Rodrigo Marcuzzi

PhD Student
Contact:
Email: rodrigo.marcuzzi@nulligg.uni-bonn.de
Tel: +49 – 228 – 73 – 29 05
Fax: +49 – 228 – 73 – 27 12
Office: Nussallee 15, 1. OG, room 1.003
Address:
University of Bonn
Photogrammetry, IGG
Nussallee 15
53115 Bonn

Research Interests

  • Autonomous Vehicles
  • Deep Learning for Robotics
  • 3D LiDAR-based systems

Short CV

Rodrigo Marcuzzi is a Ph.D. Student at the University of Bonn since October 2020. He received his Electrical Engineering Degree from Universidad Nacional de Rosario, Argentina in November 2019. During his studies, he spent six months at IMT-Atlantique, France as an internship student. In the year preceding his Ph.D., he worked for iRobot (USA) on Software development and Hardware integration for consumer robots. Previous to his start in the robotics world, he worked for one year in the E-Bike Industry as Lead Electrical R&D.

Publications

2022

  • I. Vizzo, B. Mersch, R. Marcuzzi, L. Wiesmann, J. and Behley, and C. Stachniss, “Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 3, pp. 8534-8541, 2022. doi:10.1109/LRA.2022.3187255
    [BibTeX] [PDF] [Code] [Video]
    @article{vizzo2022ral,
    author = {I. Vizzo and B. Mersch and R. Marcuzzi and L. Wiesmann and and J. Behley and C. Stachniss},
    title = {Make it Dense: Self-Supervised Geometric Scan Completion of Sparse 3D LiDAR Scans in Large Outdoor Environments},
    journal = ral,
    url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/vizzo2022ral-iros.pdf},
    codeurl = {https://github.com/PRBonn/make_it_dense},
    year = {2022},
    volume = {7},
    number = {3},
    pages = {8534-8541},
    doi = {10.1109/LRA.2022.3187255},
    videourl = {https://youtu.be/NVjURcArHn8},
    }
  • L. Nunes, X. Chen, R. Marcuzzi, A. Osep, L. Leal-Taixé, C. Stachniss, and J. Behley, “Unsupervised Class-Agnostic Instance Segmentation of 3D LiDAR Data for Autonomous Vehicles,” IEEE Robotics and Automation Letters (RA-L), 2022. doi:10.1109/LRA.2022.3187872
    [BibTeX] [PDF] [Code]
    @article{nunes2022ral-3duis,
    author = {Lucas Nunes and Xieyuanli Chen and Rodrigo Marcuzzi and Aljosa Osep and Laura Leal-Taixé and Cyrill Stachniss and Jens Behley},
    title = {{Unsupervised Class-Agnostic Instance Segmentation of 3D LiDAR Data for Autonomous Vehicles}},
    journal = ral,
    url = {https://www.ipb.uni-bonn.de/pdfs/nunes2022ral-iros.pdf},
    codeurl = {https://github.com/PRBonn/3DUIS},
    doi = {10.1109/LRA.2022.3187872},
    year = 2022
    }
  • X. Chen, B. Mersch, L. Nunes, R. Marcuzzi, I. Vizzo, J. Behley, and C. Stachniss, “Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 3, pp. 6107-6114, 2022. doi:10.1109/LRA.2022.3166544
    [BibTeX] [PDF] [Code]
    @article{chen2022ral,
    author = {X. Chen and B. Mersch and L. Nunes and R. Marcuzzi and I. Vizzo and J. Behley and C. Stachniss},
    title = {{Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation}},
    journal = {IEEE Robotics and Automation Letters (RA-L)},
    year = 2022,
    volume = 7,
    number = 3,
    pages = {6107-6114},
    url = {http://arxiv.org/pdf/2201.04501},
    issn = {2377-3766},
    doi = {10.1109/LRA.2022.3166544},
    codeurl = {https://github.com/PRBonn/auto-mos},
    }
  • L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley, “Retriever: Point Cloud Retrieval in Compressed 3D Maps,” in Proc.~of the IEEE Intl.~Conf.~on Robotics & Automation (ICRA), 2022.
    [BibTeX] [PDF]
    @inproceedings{wiesmann2022icra,
    author = {L. Wiesmann and R. Marcuzzi and C. Stachniss and J. Behley},
    title = {{Retriever: Point Cloud Retrieval in Compressed 3D Maps}},
    booktitle = {Proc.~of the IEEE Intl.~Conf.~on Robotics \& Automation (ICRA)},
    year = 2022,
    }
  • L. Nunes, R. Marcuzzi, X. Chen, J. Behley, and C. Stachniss, “SegContrast: 3D Point Cloud Feature Representation Learning through Self-supervised Segment Discrimination,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 2, pp. 2116-2123, 2022. doi:10.1109/LRA.2022.3142440
    [BibTeX] [PDF] [Code]
    @article{nunes2022ral,
    author = {L. Nunes and R. Marcuzzi and X. Chen and J. Behley and C. Stachniss},
    title = {{SegContrast: 3D Point Cloud Feature Representation Learning through Self-supervised Segment Discrimination}},
    journal = {IEEE Robotics and Automation Letters (RA-L)},
    year = 2022,
    doi = {10.1109/LRA.2022.3142440},
    issn = {2377-3766},
    volume = {7},
    number = {2},
    pages = {2116-2123},
    url = {http://www.ipb.uni-bonn.de/pdfs/nunes2022ral-icra.pdf},
    codeurl = {https://github.com/PRBonn/segcontrast}
    }
  • R. Marcuzzi, L. Nunes, L. Wiesmann, I. Vizzo, J. Behley, and C. Stachniss, “Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans,” IEEE Robotics and Automation Letters (RA-L), vol. 7, iss. 2, pp. 1550-1557, 2022. doi:10.1109/LRA.2022.3140439
    [BibTeX] [PDF]
    @article{marcuzzi2022ral,
    author = {R. Marcuzzi and L. Nunes and L. Wiesmann and I. Vizzo and J. Behley and C. Stachniss},
    title = {{Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans}},
    journal = ral,
    year = 2022,
    doi = {10.1109/LRA.2022.3140439},
    issn = {2377-3766},
    volume = 7,
    number = 2,
    pages = {1550-1557},
    }