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Contrastive Instance Association for 4D Panoptic Segmentation
using Sequences of 3D LiDAR Scans

Rodrigo Marcuzzi Lucas Nunes

Abstract—Scene understanding is critical for autonomous nav-
igation in dynamic environments. Perception tasks in this domain
like segmentation and tracking are usually tackled individually.
In this paper, we address the problem of 4D panoptic segmenta-
tion using LiDAR scans, which requires to assign to each 3D point
in a temporal sequence of scans a semantic class and for each
object a temporally consistent instance ID. We propose a novel
approach that builds on top of an arbitrary single-scan panoptic
segmentation network and extends it to the temporal domain
by associating instances across time. We propose a contrastive
aggregation network that leverages the point-wise features from
the panoptic network. It generates an embedding space in which
encodings of the same instance at different timesteps lie close
together and far from encodings belonging to other instances.
The training is inspired by contrastive learning techniques for
self-supervised metric learning. Our association module combines
appearance and motion cues to associate instances across scans,
allowing us to perform temporal perception. We evaluate our
proposed method on the SemanticKITTI benchmark and achieve
state-of-the-art results even without relying on pose information.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods

I. INTRODUCTION

N the context of mobile robotics and self-driving cars,

spatial-temporal semantic scene understanding is critical
since it is necessary to segment and identify the other agents
in the scene but also understand how they behave over time.
Different tasks related to dynamic scene understanding, i.e.,
object detection, semantic segmentation, instance segmenta-
tion, and multi-object tracking, are often tackled separately.

In this paper, we address the problem of 4D panoptic
segmentation using LiDAR scans recorded by an outdoor
platform, see also [1l]. This requires to assign to each 3D
point in a temporal sequence of scans a semantic class and
a temporally consistent instance ID, as illustrated in Fig. []

In panoptic segmentation for LiDAR scans, state-of-the-
art methods [17], [12], [27] rely on their strong 3D feature
extractors. We argue that these features can also be leveraged
to generate temporally consistent instance-wise embeddings in
order to extend the segmentation to the temporal domain by
means of the tracking-by-detection paradigm: identify objects
in individual 3D scans and then perform temporal instance
associations via feature similarity.
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Fig. 1: Our method allows to perform semantic segmentation (top)
and temporally consistent instance segmentation (bottom) of 3D
LiDAR scans. The different instance colors depict different IDs.

The main contribution of this paper is a novel method
based on a sparse convolutional neural network, which takes
3D point cloud representation of LiDAR scans as input and
outputs, for each point, a semantic label and a temporally
consistent instance ID over the whole sequence. We build
on top of a single-scan panoptic segmentation network to
obtain the semantic and instance predictions as well as point-
wise features. Our contrastive aggregation network takes these
features as input to generate instance-wise embeddings that
are consistent over time. It learns through a contrastive ap-
proach using as positive samples the same instance at several
timesteps and as negative samples different instances in the
same and other scans. Finally, our association module com-
bines appearance and motion cues to perform the instance
associations and generate consistent instance IDs over time.
In sum, we propose an approach that is able to perform
4D panoptic segmentation of LiDAR scans using a frozen
panoptic segmentation backbone and associating instances
across time via feature similarity. We achieve state-of-the-art
performance in 4D panoptic segmentation even without sensor
pose estimates provided by a SLAM approach.

The implementation of our approach is publicly available at
https://github.com/PRBonn/contrastive_association.
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II. RELATED WORK

Our work targets outdoor environments, for tasks such as,
perception in autonomous driving, for which the point clouds
are extensively used [15]].

Panoptic Segmentation on Point Clouds. To unify seman-
tic and instance segmentation, Kirillov et al. [23] propose
panoptic segmentation for images and Milioto et al. [27]
extend it to LiDAR point clouds. This task boils down to
performing semantic segmentation of szuff classes and instance
segmentation for thing classes. To deal with 3D data, some
approaches project it into a 2D representation like range
images [27] or bird’s-eye-view [38] and use 2D convolutional
networks. Another alternative is to divide the space into 3D
partitions to maintain the geometric relations between the data
points and apply 3D convolutional networks. Gasperini et
al. [12] use point convolutions [32] to improve the results
but require a higher computational cost and applying hard
downsampling. Recently, Hong et al. [17] use sparse con-
volutions [14] and improve results by voxelizing the space
using cylindrical coordinates to match the distance-dependent
density of the LiDAR point clouds.

Multi-Object Tracking. Multi-object tracking in the vi-
sion domain is usually solved using the tracking-by-detection
paradigm [30]], [36] formulated as a data association task con-
sisting of two steps: obtaining object detections in the current
frame and associating them across time. The performance of
the task relies on the quality of the appearance and motion
models [6]. When using deep learning to tackle this task,
the focus of the research is on learning these models and
their effective combination. Some works [36] only rely on
a motion model and others [11], [31] use metric learning
to generate instance embeddings for data association. They
provide positive and negative samples to enforce that positive
pairs of detections have more similar features than negative
pairs. Dong et al. [L1] use a triplet loss with one positive and
one negative sample. Hermans et al. [16] use hard batch triplet
loss to mine a hard negative sample which is more beneficial
for learning. Son et al. [31] add an extra positive sample to
increase temporal consistency. We propose to leverage instance
labels to train our contrastive aggregation network with several
positive and negative samples to compute temporally con-
sistent instance features and perform associations via feature
similarity.

Segmentation and Tracking. There have been a few works
to unify tracking and segmentation tasks. Kim et al. [22]]
extend panoptic segmentation [23] from 2D images to the
video domain focusing on short and sparsely labeled video
snippets in an offline setting. Voigtlaender et al. [35]] extend the
multi-object tracking task with segmentation. Aygun et al. [1]]
propose to use as input 4D volumes by aggregating LiDAR
scans and cluster instances across time and space to perform
instance segmentation and tracking simultaneously. Recently,
Hurtado et al. [18]] proposed a new architecture that includes
a tracking head to perform the instance associations across
time. Similarly, we add instance associations to a panoptic
segmentation network using the extracted features from the
encoder-decoder but we do not retrain it. This allows our

method to leverage features from arbitrary panoptic back-
bones. Furthermore, we train our approach using contrastive
learning to leverage several positive and negative samples
instead of just one.

Contrastive Learning. Contrastive learning for self-
supervised representation-learning [33], [8], [[7] became pop-
ular due to the performance improvement on image classifi-
cation tasks. In this setup, a data point is used as an anchor,
positive samples are augmented views of it and the negative
samples are the augmented views of other data points in the
batch. The loss seeks to compare the generated encodings
for each sample in an unsupervised way without labels. The
goal is to learn a generic feature representation in which
embeddings from positive samples lie close together and far
from embeddings of negative samples. After this pretraining,
the network is fine-tuned to solve a downstream task. Due
to the availability of instance labels, we adopt the supervised
contrastive loss [21] to use several positive along with many
negative samples. However, the positive samples come from
other timesteps of the same anchor instance and are not
generated through augmentations of it.

In sum, our method is based on a panoptic segmentation
backbone followed by temporal instance association via fea-
ture similarity learned using positive and negative samples.

III. OUR APPROACH

The goal of our approach is to achieve 4D panoptic segmen-
tation of LiDAR scans, which means tackling simultaneously
semantic and instance segmentation in the 3D spatial and 1D
temporal domain. We achieve this by predicting, for each 3D
point in the LiDAR scan, a semantic label, and for each object,
a temporally consistent instance ID. To address this task, we
follow prior work [36], [18] and use the tracking-by-detection
paradigm [30]] to identify objects in single 3D scans and then
perform temporal associations via feature similarity.

Fig. |2| gives an overview of our approach. We adopt the
point cloud representation of LiDAR scans, which represents
each point by its 3D coordinates. We use a frozen panoptic
segmentation network (backbone), to obtain semantic predic-
tions, instance predictions, and features for every point in the
scan. Using the instance predictions, we select the points and
features belonging to each instance and apply our contrastive
aggregation network (CA-Net) to produce instance-wise fea-
tures. Finally, our association module assigns instance IDs,
which are consistent throughout the whole temporal sequence,
by combining appearance information from the instance-wise
features and motion information using a constant velocity
motion model. Combining this with the semantic predictions,
we obtain 4D panoptic segmentation.

To be able to learn descriptive features, the CA-Net is
trained with the supervised contrastive loss [21]]. Using the
instance labels, we identify the same object over time and use
the same instance in different scans as positive samples. The
negative samples are all other instances in the same and other
scans in the training batch.
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Fig. 2: Overview of our method. Given the current 3D LiDAR scan, we use a panoptic segmentation backbone B to obtain semantic classes,
instance IDs, and features for each point. We select the points and features for each instance using the IDs and input them into the CA-Net
to obtain instance-wise features. These features are used to perform instance associations using our association module to assign temporally
consistent instance IDs. Combining this with the semantic predictions, we obtain 4D panoptic segmentation.

A. Panoptic Segmentation Backbone

The first element of our approach is a frozen panoptic
segmentation network to obtain semantic predictions, instance
predictions, and point-wise features. To achieve panoptic seg-
mentation, bottom-up methods [27], [12], [38], [L7] use a
shared feature extractor to obtain point-wise features based on
convolutions and apply task-specific heads to obtain semantic
and instance features. The instance features are clustered in a
post-processing step to produce instances.

Given a point cloud P = {p¢,...,p{} with point co-
ordinates [_)ic € R3, we apply the backbone B and ob-
tain point-wise semantic classes P° ..., 0%}
where p? € {1,...,Mdasses; and point-wise instance IDs
PL={pl,....,p} with p! € N from the task specific
heads. From the feature extractor, we obtain the point-wise
features P = {pf",... pL}, where p/' € RP? with feature
dimension Dpg. We use the ID of each point to select for each
instance j € {1,..., M}, its points I” = {p{ € P | p] = j}
and its point-wise features 1", which we use as input of our
CA-Net.

In this paper, we use DS-Net [17] as backbone B. Since we
are not modifying nor retraining the backbone and only use it
to get predictions and features, our approach can potentially
be applied to other panoptic segmentation networks.

B. Contrastive Aggregation Network

Our contrastive aggregation network (CA-Net) generates
temporally consistent appearance features for instance as-
sociations. Given the input points I]P and point-wise fea-
tures [ JF for all M instances in the current point cloud
P, the output of the network are instance-wise features
T =1{fy,... S IV PR RP4 with feature dimension D4,
i.e., a single feature vector for each instance in the scan.

The point-wise features from the backbone capture more
general and high-level information, not specific to the in-
stances. We are only interested in encoding information related
to the individual instances. To learn from the shape of the
instances and the relations between their points, we first
apply three convolutional blocks with stride 2 to reduce the
spatial dimension while increasing the feature dimension. This
increases progressively the receptive field and allows us to
capture low-resolution features to get information about the
whole instance. After applying the convolutions, a pooling

layer computes a single feature vector from all the features
belonging to the instance points I¥, which summarizes the
information of each point in a single instance feature. This is
followed by two linear blocks and a projection head to obtain
the final instance-wise feature f;. The goal is to project the
intermediate feature representation into an embedding space,
where embeddings belonging to the same instance across time
have a high similarity and embeddings belonging to different
instances have low similarity.

Due to the inherent sparsity of the data, we use sparse
convolutions [9]] to process the voxelized scan as it leads to
better performance and reduces computational cost [14].

C. Association Module

After computing instance-wise embeddings I using our
CA-Net, we maintain consistent instance-wise IDs by associ-
ating the instances {Iy...Ips} in the current scan with the
corresponding instances {I ... Ik} in the previous ones. To
achieve this, we follow a similar procedure as previous works
[36], [6]. We compute a cost matrix C € RM>*X between all
M instances in the current scan and all K instances identified
in previous scans, by means of the similarity between their
features. Then, the problem can be formulated as a bipartite
graph matching problem that can be solved using the Hungar-
ian method [24] to determine the pairs of associations between
current and previous instances.

Tracking instances in consecutive frames is only part of the
problem. We need to manage tracked objects that might leave
the scene, newly detected objects that are not explained by any
trajectory and re-identify objects, which have been occluded
or missed in intermediate frames. To handle new targets, we
add detected objects in the current frame only if the feature
similarity with any of the already active instances is lower than
a threshold 7}.y. For re-identification of objects, we store the
deactivated trajectories for a fixed number of scans ngg and
compare with the deactivated targets. We re-identify objects if
the similarity is higher than a threshold Tj.

To add information about the movement of the targets, we
apply a constant velocity assumption for all objects by adding
a constant velocity motion model independent of the sensor
ego-motion. This means that the model does not estimate the
ego-motion but the motion of all the objects in the scene.
We fuse the appearance and motion information in the cost
matrix as a linear combination of the feature cost and the
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center distance between current instances and the predicted
positions of the previous instances. Each entry of the cost
matrix C is an association cost between the new instance m
and the previous instance k:

Cm,k: :ozf-(l—sz'm(fm,fk))—I—ad- Hcm_ckHa (D)

where f,, is the feature and c,, € R3 the center coordi-
nates of instance m, sim(-) is the cosine similarity function
sim(f,,, ) = £ufi /|l |[1£:]l, and ay, aq € R are impor-
tance weights for the individual feature and distance costs.
For re-identification, the motion model is applied continuously
also to the deactivated targets (not associated with any other
instance) to estimate their position in case of occlussions or
missing detections.

D. Input Features

The point-wise features P from the panoptic segmentation
backbone are used by the task-specific heads to perform
segmentation of the points. They are similar for instances
belonging to the same semantic class and thus cannot be
directly used to perform instance associations for objects of
the same semantic class.

Inspired by the recent findings in natural language process-
ing [34], we seek to enhance the point-wise features with
spatial knowledge using positional encodings. We compute
for each instance point p; € [ f a fixed positional encoding
e, € RPB. We generate for each point a Fourier feature
position encoding [20] with the same dimension as the point-
wise features. We select a maximum frequency maxgeq and
sample, for each coordinate, from a series of sines and cosine
functions with frequencies evenly spaced in [0, maxfeq] On a
logarithmic scale. Then, we use a padding of zeros to reach
the same dimension as the point feature. To get the final
input to the network, the feature and the positional encoding
are combined by performing the addition of both. Due to
their similarity, using the point-wise features as the only
input to our CA-Net does not provide enough information
to learn distinct instance-wise features to do the associations.
By adding the positional encodings as extra information, we
exploit the spatial relations between the instances and create
more distinct features, and help the network learn better
instance-wise features for this task.

E. Instance Point Extraction

As the input of the CA-Net, we select from all the points
and features (P, P¥') in the current point cloud P, the ones
belonging to the different instances (I, I'*"). During training,
we rely on the instance labels P to group the points into
instances and select their corresponding features. At inference
time the instance points are selected using the predictions
P! from the backbone. These predictions are not perfect due
to problems like wrong semantic predictions or errors in the
clustering algorithm used to separate instances in the backbone
after the instance head. The inputs for the CA-Net are then
different at train and test time.

We can circumvent this by applying augmentations to the
point instances to imitate what may happen during inference.

We design specific augmentations to deal with the problems
commonly observed at test time, mainly splitted instances and
incomplete instances. Compared to other kinds of augmenta-
tions applied to the full point cloud, in our case we implement
instance-wise augmentations since these are the input to our
network.

The problem of splitted instances is due to the imperfect
clustering applied in the backbone to obtain the instance
predictions. It can wrongly cluster the points into instances,
dividing one instance into two smaller ones, as shown in Fig.
To mimic this, we create an augmentation, which we call split,
to separate the points on each side of an imaginary plane to
split the instance. We sample a random unit normal vector
n € R? |n||= 1 and a random instance point p; € If to
generate a randomly oriented plane with Hessian normal form
n'p; = d, where d is the distance from the plane to the
origin. The remaining points after the augmentation are the
query points q; which lie in the half-space of the normal:

Iaug:{ql GIJP |anlC—d>0}7 (2)

which leads to splitted instances.

The incomplete instances are caused by the wrong semantic
class predicted for some instance points, usually at the bor-
ders of the instances. Their semantic class assigns them to
the background, and they are not considered as part of the
instance, as can be seen in Fig. E} To address it, we create
an augmentation, which we call confour, to discard points
in the contour of the instances. We first normalize the point
coordinates to the range [—1, 1], generate a random maximum
coordinate value v € R and save the indices of the points with
smaller absolute coordinates that v. We use these indices to
select the instance points (with unnormalized coordinates) to
keep after the augmentation, i.e.,

Loug = {P1 EIJP & <y Algl <y Azl <~y 3)

where ;, i, Z; are the normalized coordinate components of
I*M point.

We illustrate our augmentations applied to instances in
Fig. 3| It is important to notice that the augmentations do
not change the position of any point but rather drop some of
them. As an extra augmentation, we randomly drop cuboids of
points belonging to the instance [37]. We discuss the influence
of these augmentations in Sec. [V-C|

F. Pose Information

Both, the positional encoding, which adds spatial knowledge
to the computed features, and the constant velocity motion
model, rely on the positions of the instances in the current
scan, i.e., positions in a local coordinates frame. As these are
local coordinates, the positions are not consistent for scans at
different timesteps and the ego-motion of the sensor must be
compensated.

By adding the sensor pose estimates using a SLAM ap-
proach [5], we can improve the instance associations by
leveraging this extra information. We use the pose estimates
to transform the positions of previously observed objects into
the current local coordinates frame. This way, objects have
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Incomplete, splitted and perfect instance (top). Proposed split aug-
mentation (left) and contour augmentation (right). The gray points
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consistent positions over time and the constant velocity motion
model only predicts the motion of the other objects as the
ego-motion is compensated. We recompute the features of
the previously observed instances by updating their posi-
tional encoding using the consistent positions in the current
coordinate frame. We obtain more similar features for the
same instance at different points in time, which improves the
instance associations as illustrated in Sec.

G. Contrastive Training

For the multi-object tracking problem, we use the instance
head to get the predicted instances {I1, ..., I5s} in the current
point cloud P and associate them with previous instances
across time. Several works [18]], [16], [L1], [31] use metric
learning to learn instance representations by comparing the
embedding of one anchor object with one or a few positive
and negative samples. Contrastive learning is used in self-
supervised representation learning [33], [8] to train a network,
which is later fine-tuned on a downstream task. The main
idea of those approaches is to use data augmentation to
generate two versions of one anchor sample and train the
network to learn to pull the embeddings of these samples
(positives) together and push them away from all other samples
(negatives).

Given a batch of samples B, the loss function seeks to
discriminate between the positive pairs (augmented versions of
the anchor) and the negatives (augmented versions of different
anchors). In the self-supervised contrastive loss InfoNCE [33]],
an encoder is used to obtain the feature vectors z; for each
augmented sample j. Let r(j) be the index of the other
augmented sample from the same anchor j and A(j) the set
of all indices in the batch except j. Then, the loss function
takes the form:

Lself = — Z log

JEB

exp (Z;FZT(]-)/T)

Ty T

“4)

where 7 is a temperature parameter.

In our setup, the samples are all instances in the batch and
their corresponding feature vectors {fi, ..., f,} are computed
using our CA-Net. We want to enforce that features of the
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Fig. 4: In our contrastive setup, for each instance, positives samples
are the same instance in different scans (green) in a sequence, and
negatives samples are all the other instances (red) in all scans and all
other sequences in the batch.

same instance are consistent. The appearance of the instances
changes over time as the viewpoint changes due to the in-
stance’s and the sensor’s motion. As the samples for the same
instance are different across time but depict the same object,
we can use this as an implicit augmentation. To obtain positive
samples, we select the same instance in different scans over
time instead of using one instance as an anchor and generating
augmented versions of it.

The appearance can, however, change significantly in scans
temporally far from each other. We define a temporal window
of scans A € N, in which we consider instances similar
enough to perform the associations and from which the posi-
tive samples are drawn. As A is the number of scans from
which we extract instances, it is the maximum number of
positive samples to consider in the loss function. Using the
labels, we select a set of positive samples P(j) considering
the instances with the same ID in consecutive scans in the
temporal window. As negative samples, we use all other
instances in the batch, as depicted in Fig. @ To learn from
many positive in addition to the many negative samples, we
use the supervised contrastive loss [21]]:

1 exp (£ £,/7)
Lap == 157 D L (5)
%P0 2, 5 e iR

where f;,f,,f, € RP4 are respectively the feature for the
anchor instance, the feature for the positive samples and, the
feature for all the other instances in the batch.

We are leveraging the properties of the supervised con-
trastive loss for our task. First, we can use an arbitrary number
of positives which are determined by the temporal window.
Second, we increase the number of negatives compared to
other losses by considering all other instances in the same
and other scans. Third, we benefit from the intrinsic ability of
the loss to perform hard positive/negative mining and avoid
the need for explicit hard negative mining.
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Method | LSTQ  Sassoc Sas | ToUS IouT™
RangeNet++[28] + PP + MOT | 35.52  24.06 52.43 64.52 35.82
KPConv [32] + PP + MOT 38.01 25.86 55.86 66.90 47.66
RangeNet++[28] + PP + SFP 3491 2325 52.43 64.52 35.82
KPConv [32] + PP + SFP 38.53  26.58 55.86 66.90 47.66
4DPLS[1] 56.89  56.36 57.43 66.86 51.64
Ours (without pose estimates) 60.04 59.49 60.60 66.88 51.98
Ours (with pose estimates[5]) 63.11 65.71 60.60* 66.88* 51.98*

TABLE I: 4D panoptic segmentation on SemanticKITTI test set.
MOT [36]; SFP - scene flow based propagation [29]; PP - Point-
Pillars [25]. Numbers with * denote the same segmentation results.
Adding pose information to our single-scan panoptic backbone does
not influence the segmentation performance.

H. Implementation Details

We build on top of DS-Net [17]] as panoptic segmentation
backbone. The feature extractor provides point-wise feature
vectors pf € RPs , Dp = 128. For the instance clustering, we
use mean shift [[10].

For our CA-Net, the convolutional blocks are 3D sparse
convolutions [9], followed by a batch normalization layer
[19] and leaky ReLU [26] as activation layer. The sparse
linear blocks consist of a linear layer followed by a batch
normalization layer and a leaky ReLU as activation layer.
The final projection head is a linear layer that projects the
intermediate instance-wise embeddings into a feature space of
dimension D4 = 1024 in which we use feature similarities to
associate instances across time.

We keep deactivated targets for n,; = 8 frames and use
different thresholds to handle new targets and re-identification
for the appearance and the motion model. For the feature
similarity, we use Tjew, = Toig, = 0.7 and for the center
distance, we use Thew, = Tola, = 2. The weights for the
feature cost and the center distance in Eq. (I) are ay = 0.4
and ag = 0.7. In the loss function, see Eq. @) we use 7 = 0.1.
At each step, the positive and negative samples are selected
from a sequence of scans of random length A € [2,5]. This
way, at each step, the loss considers samples from sequences
of variable length, which provides a different number of
instances.

IV. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of
our method and to support our statement that our approach
achieves state-of-the-art performance in 4D panoptic segmen-
tation of LiDAR scans. Furthermore, we show that using
a frozen panoptic segmentation backbone and associating
instances across time via feature similarity allows us to out-
perform previous methods that strongly rely on ego-motion
estimates provided by SLAM techniques. Moreover, we il-
lustrate that the performance of our approach increases when
including the pose information.

A. Experimental Setup

We evaluate our method on SemanticKITTTI [3]], [2]], which
consist of 22 sequences from the KITTI odometry dataset [13]].
Sequences 00 to 10 are used for training, leaving sequence
08 as validation set and the test set consists of sequences

30 1 no positional encoding
20 A

10 1

0 I I I I
with positional encoding

30 A

20 1

Number of instances

10 1

0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Feature similarity

Fig. 5: Histograms of similarities between instances features in a
sequence of scans. Without positional encoding (top), the histogram
shows a high density at high similarities. Hence, there is a large
number of instances with similar features, which makes it difficult
to identify the same instance in different scans as different other
instances in the sequence have similar features. With the positional
encoding (bottom), most of the feature similarities are in the middle
range and only a few features have high similarity. Therefore, features
from different instances are more distinct, which makes them better
suited for associating instances.

11 to 21. The provided annotations are point-wise semantic
and instance labels [4]. To evaluate our performance, we
use the LiDAR Segmentation and Tracking Quality (LTSQ)
metric LSTQ = +/Scis X Sassoc [1l]. It consists of two terms,
the classification score S and the association score Spssoc-
Since our panoptic segmentation backbone is frozen and we
use its single-scan predictions, our results do not change the
segmentation results represented by the S term. Thus, we
focus instead on the Syeoc term to evaluate the quality of our
associations.

B. 4D Panoptic Segmentation Results

The first experiment evaluates the performance of our
approach on the SemanticKITTI test set and supports the
claim that we achieve state-of-the-art results on the 4D panop-
tic segmentation task. In this experiment, we compare our
approach with the recent and high-performing method by
Aygun et al. [1] and baselines using semantic segmentation
networks [32]], [28] and combining the predictions from the
PointPillars (PP) object detector [25] with a constant velocity
motion model [36] or using scene flow propagation (SFP) [29].
Note that the approach by Aygun et al. [1]] and the baselines
rely on the sensor poses to either aggregate scans or transform
them into a global coordinates frame where objects have
consistent positions and are easier to associate. For these
approaches, this knowledge is a pre-requisite.

We outperform all previous methods without relying on the
pose estimations from a SLAM approach. See Tab. [l Both
experiments using our method show the same segmentation
performance S, IoUS, and IoU™ since we use the semantic
predictions from the same single-scan backbone and the pose
information does not modify semantic segmentation results of
a single scan. More detailed results are shown in Tab.
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instance feature

max average E
backbone positional pooling pooling CA-Net
features encoding
v 155 31.8 59.9
v 32.1 522 58.4
v v 36.9 59.5 70.4

TABLE II: Association performance Sysoc using different instance-
wise features for association in SemanticKITTI validation set.

V. ABLATION STUDIES
A. Positional Encoding

First, we analyze the influence of adding the positional
encoding to the point-wise features.

We show the similarity between point-wise features from
the backbone. To this end, we generate instance-wise features
f; by averaging the point—wise features for each instance:

> ol 6)

VT F|
pielf
and compute their similarities.

In a sequence of scans, there is a large number of highly
similar instance features, which makes it hard to distinguish
them, as shown Fig. [5] (top).

To illustrate how the spatial encoding helps, we add the
positional encoding generated from the point coordinates as
explained in to each point-wise feature and then average
them to get a instance feature:

f; = 1F| > bl te, @)
pielf

where pf € RP5 is the point-wise feature from the backbone
and e; € RP2 is the positional encoding for the I*" instance
point. As can be seen in Fig. [ (bottom), when adding
the positional encoding, the amount of similar instance-wise
features is visibly reduced. Thus, instances of different objects
have a large distance in the feature space.

B. Feature Design

In the next experiment, we have a closer look at our feature
design decisions. We generate instance-wise feature vectors
and associate the instances using only their features similarity,
without relying on any other information to better show the
performance. Tab. [II| shows the association performance of
the different feature options, namely pooling the features and
positional encodings and using them as input to the CA-Net
to obtain the instance-wise features.

As reflected in the experiments, the information about the
position of the instances plays a crucial role in the association
process. However, the features from the backbone allow us to
exploit some extra information but, as discussed in Sec.
they are similar for objects of the same semantic class
and adding a positional encoding improves the performance.
Lastly, adding the positional encoding to each point p; + e,
we obtain even better results. This shows that both parts are
important and that leveraging the point-wise features from the
backbone improves the instance association performance.

augmentations

split contour cuboids Sassoc
49.9
v 60.9
v 54.6
v 52.6
v v 62.3
v v v 63.6
instance predictions 50.2

TABLE III: Influence of the selection of input points and the different
augmentations in the association quality Spsoc-

# feature encoding motion model poses  Sassoc
A v 59.9
B v v 70.4
C v v v 71.2
D v 68.0
E v v v 71.7
F v v v v 729

TABLE IV: Influence of the different components of the approach in
Sassoc 0n SemanticKITTI validation set.

C. Instance Augmentations

In this experiment, we show that using instance labels
to select point-wise features can lead to suboptimal results
and how our proposed augmentations improve this. For this
experiment, we fix the temporal window A = 3, do not use the
sensor poses nor motion model, and perform the associations
using only feature similarity.

As shown in Tab. training using the labels to select the
instance points gives the worst results and using the predictions
only helps to increase Syoc by 0.3 percent points. Each
individual augmentation outperforms training with the labels
or the predictions. Particularly, the split augmentation has the
strongest influence. Combining all three augmentations results
in a 13.7 percent points improvement compared to the training
using only the labels.

D. Method Components

Tab. [IV]| shows the influence of different components on on
the performance in terms of Sy, On the validation set.

In (A), we only use the point-wise features from the
backbone as input to our CA-Net and perform the associations
via instance feature similarity. Since no spatial information is
included, instances at different positions in the scan can be
wrongly associated. In (B), we add the positional encoding
to the input features, see Sec. which adds spatial
information, visibly improving the results. In (C), we add the
SLAM poses [3] to update the previous instance positional
encoding, see Sec. This way, objects have consistent
positions and are easier to associate. In (D), we use only the
constant velocity motion model to perform the associations.
This result is better than (A) and shows that motion and
appearance models are necessary to achieve good association
results. In (E), we add the motion model to (B). We combine
cues from the appearance and motion models, improving the
results obtained when the models are used separately. In (F),
we add the sensor ego-motion poses estimates and obtain the
best performance.
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VI. CONCLUSION

We presented a novel approach to perform 4D panoptic
segmentation on 3D LiDAR scans. We identify objects in the
current scene and associate them with previously seen targets
across time combining appearance and motion information.
We show that it is possible to leverage the point-wise features
from a single feature extractor to tackle concurrently the tasks
of semantic and instance segmentation over time. Further-
more, generating a descriptive appearance model improves the
instance association and allows our approach to outperform
previous methods strongly relying on ego-motion estimates.
We evaluated the different parts of our approach and provided
comparisons to other existing techniques. The experiments
suggest that we are able to learn a descriptive representation
for each instance that in turn allows us to perform temporal
associations and extend a panoptic segmentation backbone to
perform 4D panoptic segmentation.
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