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Abstract—Fine-grained scene understanding is essential for
autonomous driving. The context around a vehicle can change
drastically while navigating, making it hard to identify and
understand the different objects that may appear. Although
recent efforts on semantic and panoptic segmentation pushed
the field of scene understanding forward, it is still a challenging
task. Current methods depend on annotations provided before
deployment and are bound by the labeled classes, ignoring long-
tailed classes not annotated in the training data due to the scarcity
of examples. However, those long-tailed classes, such as baby
strollers or unknown animals, can be crucial when interpreting
the vehicle surroundings, e.g., for safe interaction. We address the
problem of class-agnostic instance segmentation in this paper that
also tackles the long-tailed classes. We propose a novel approach
and a benchmark for class-agnostic instance segmentation and
a thorough evaluation of our method on real-world data. Our
method relies on a self-supervised trained network to extract
point-wise features to build a graph representation of the point
cloud. Then, we use GraphCut to perform foreground and
background separation, achieving instance segmentation without
requiring any label. Our results show that our approach is able
to achieve instance segmentation and a competitive performance
compared to state-of-the-art supervised methods.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods

I. INTRODUCTION

SEMANTIC scene understanding has been widely studied
in the context of autonomous vehicles. Recent work aims

to push different tasks in scene understanding such as semantic
segmentation [43], [33], panoptic segmentation [24], [42], and
instance segmentation forward, providing meaningful semantic
information for autonomous systems. Such methods usually
rely on learning algorithms, which require many annotated
data points. Especially for autonomous driving, it is hard to
generate representative labeled datasets due to the wide range
of different object semantics, and it is hard to predict scenarios
that can happen in such dynamic and complex environments.
Current benchmark datasets try to provide enough semantic
labels for the research community to evaluate approaches to
deal with scene understanding. However, such datasets need
to divide the semantics of complex environments into a finite
number of classes for annotation. This leaves important long-
tailed semantic classes unlabelled since they rarely appear on
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Fig. 1: We show the extended instance annotations of the Se-
manticKITTI dataset [3], where segments with green outline cor-
respond to known classes, i.e., person A and car C, and red outlines
correspond to things that are not part of the training data. While A and
C are known classes, B corresponds to a baby stroller—an unknown
class, which obviously should be detected even though not annotated
in the training set.

the data and are often ignored during data labeling. This can
bias the learning-based methods to ignore or misclassify such
long-tailed classes.

In this paper, we address the problem of instance segmen-
tation, more specifically, class-agnostic instance segmentation.
Given the challenging task of providing enough labeled data
to cover all possible semantic classes that can appear in an
outdoor urban scenario, we approach the problem withdraw-
ing the necessity of classifying the instances to compute a
semantic label. Thus, the problem is reduced to identifying
individual objects in the point cloud and segmenting them.
The complexity of this task is caused by the unknown classes,
which either do not occur in the training data or are usually
ignored during the dataset annotation process but can be
essential and are considered in this case.

This task can be seen as how well we can segment object
instances in LiDAR point clouds when only partial knowl-
edge about the world is given at training time, i.e., only a
subset of all occurring object instances. Recent state-of-the-
art approaches [20], [36] tackle this by removing the back-
ground with a predictor trained for semantic segmentation.
They cluster the remaining points with different heuristics and
optimization processes. Still, those learning-based methods
require labeled data.

The main contribution of this paper is a new unsuper-
vised class-agnostic instance segmentation method1. Given the
recent developments in the field of representation learning,
we use a network trained in a self-supervised manner to
extract point-wise features for the point cloud and build a

1Code at https://github.com/PRBonn/3DUIS

https://github.com/PRBonn/3DUIS
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graph that maps the similarities between neighboring points.
Then, we use GraphCut [6] to separate the foreground objects
from the background, achieving instance segmentation without
requiring any labels or semantic background removal. Also, to
evaluate the class-agnostic instance segmentation for known
and unknown long-tailed classes, we propose a dataset that
is an extension to the SemanticKITTI benchmark [2], [3],
[17]. We provide instance labels for such long-tailed classes
together with the instance labels already present in the original
dataset, as exemplified in Fig. 1. Note that our dataset does not
provide instance labels for long-tailed classes in the training
data. However, we extend the validation and the hidden test set
with additional instance labels for long-tailed classes to exam-
ine instance segmentation performance for unknown objects2.
Our experiments show that our approach is able to segment
instances without labels and without semantic background
removal and achieves competitive performance compared to
state-of-the-art supervised methods.

II. RELATED WORK

In a closed-world setting, we are given full information at
training time. This means that all object classes that appear
at inference time are known during training. In this setting,
different tasks can be defined to extract semantic knowledge
in the context of autonomous driving, e.g., semantic segmenta-
tion [43], [33] or panoptic segmentation [24], [42], [23]. Large
labeled datasets helped to push the state-of-the-art for learning-
based approaches forward, achieving solid results. LiDAR-
based methods perform well for frequently occurring objects
with many training examples, e.g., cars and pedestrians. Often,
however, they struggle with underrepresented classes for which
few training examples exist, e.g., motorcyclists or bicyclists,
and the generalization to unknown objects.

Self-supervised representation learning aims at learning de-
scriptive features without labels. Given the cost of annotating
data [3], such methods define simple but meaningful pretext
tasks [27]. Recent works propose a discriminative task by
approximating extracted features from pairs of augmented ver-
sions of one anchor image via contrastive loss function [19],
[11], [18] or redundancy reduction [39]. Especially for vision
transformer models [14], such methods revealed interesting
properties of self-supervised learning [9], such as the ability to
extract semantic information from the input data without any
supervision. For point clouds, recent works using contrastive
loss proposed to learn descriptive features either via scan [41]
or point [37] discrimination. In our previous work [28], we
proposed segment discrimination by contrasting augmented
versions of segments extracted by clustering the point cloud.

In contrast to learning-based supervised methods operating
on LiDAR data, bottom-up clustering methods rely on decom-
posing point clouds based on proximity cues via clustering.
This is relevant in automotive scenarios, where intelligent
vehicles need to react to all objects, including those that
cannot be recognized semantically. Therefore, such methods
can decompose the point cloud and define instance segments
in a class-agnostic way. However, those methods generally

2See the competition at https://bit.ly/39VFTRD

need to consider the spatial neighborhoods of points, which
can be costly to determine. To tackle that, several approaches
exploit different representations such as 2D grids [34], [4],
voxel grids [15], or range images [26], [5] to determine
neighboring points and efficiently cluster points using these
implicit neighborhoods. Besides that, several methods operate
directly on the point cloud. A simple yet effective approach is
to use Euclidean clustering [30]. Chen et al. [12] apply ground
removal for moving instance clustering. Alternatively, Wang et
al. [35] proposed to first compute a minimum spanning tree of
the point cloud and learn to remove links in the graph such that
the recall on the labeled classes is maximized. Our approach
also uses proximity cues to define point neighborhood but
mainly relies on self-supervised learned features to map the
points similarities.

Recently, Hu et al. [20] proposed an algorithm that finds
a segmentation from a hierarchy of multiple segmentations
given a learned objectness regression function that provides
an open-world scan interpretation. Such an algorithm can
be used in conjunction with the aforementioned cluster-
ing methods to achieve class-agnostic instance segmentation.
Wong et al. [36] proposed an open-world LiDAR panoptic
segmentation method, which learns to assign points to thing
and stuff classes and clusters the remaining unknown points
using HDBSCAN [8] to obtain segmentation hypotheses for
unknown objects. This method is evaluated on the TOR4D [38]
dataset, and its subset contains only rare objects, Rare4D.
Unfortunately, neither the dataset nor the proposed model
is publicly available. Therefore, we believe that providing a
public test-bed for unknown LiDAR instance segmentation
is essential for future progress in this field. Hence, we will
release our benchmark and baselines.

This paper proposes a new method based on self-supervised
learned features and a graph optimization process to achieve
class-agnostic instance segmentation. Unlike previous works,
our approach does not rely on labeled data for training or
semantic background removal. Therefore, it is more suitable
for class-agnostic instances segmentation since it is not biased
by the annotated classes, relying only on embeddings learned
in an unsupervised manner.

III. OUR APPROACH
TO UNSUPERVISED INSTANCE SEGMENTATION

An overview of our approach is shown in Fig. 2. Our method
exploits GraphCut [6] and self-supervised learned features to
segment instances from the point cloud. We represent the
point cloud as a graph, and use the self-supervised network
to compute the points saliency map [31], [40] to sample
foreground and background seeds and perform the instance
segmentation. As a LiDAR point cloud may contain many
instances, it can be hard to define foreground and background.
Therefore, we divide ground and non-ground points and cluster
the non-ground points to define the initial instances proposal.
Then, we iterate over each proposal and select a cubic region
of interest around it with the same size as the proposal plus a
pre-defined margin. For a region of interest around the instance
proposal, we define the points from the current instance as

https://bit.ly/39VFTRD
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Fig. 2: Given a point cloud P and set of instance proposals I, we iterate over each proposal Sk defining a region of interest Ŝk around the
proposal. We extract point-wise features F̂k for this proposal region using a network φ pre-trained with SegContrast [28]. Then, we build
a graph weighting the neighborhood edges with the features affinity, and the foreground and background edges given the sampled seeds.
Finally, we apply a min-cut over the graph to segment the instance from the background.

foreground and all the other points (from the ground or other
instances) as background. Then, we create a graph from this
region of interest and divide the graph into foreground and
background.

A. Instance Proposals

To segment the instances, our method relies on an initial
guess, so called proposals, which are refined to a more accurate
segmentation. To define the instance proposals, we follow the
same process used in our prior work, called SegContrast [28].
Given a point cloud P = {p1, . . . ,pN} with |P| = N
points pi ∈ R3. We use a ground segmentation method [22] to
partition the scene into ground G and non-ground points P ′.
Then, we cluster the non-ground points P ′ with HDBSCAN
clustering [8] to divide the scan into m segments which will
be the instance proposals I = {S1, . . . ,Sm} where Sk ⊂ P ′

and Sk ∩ Sl = ∅, l 6= k.
As displayed in Fig. 3, these segments are a starting

point but clearly not perfect, often showing under- or over-
segmentation. These segments are just the initial guess for
our method. Our approach refines these proposals by mapping
them in a graph of feature similarities for points inside the
proposal. Then, we separate the object from the background
to achieve a refined instance segmentation.

B. Self-Supervised Features

Our approach takes advantage of self-supervised represen-
tation learning to extract point-wise features. We use the
MinkUNet model [13] as a feature extractor, which uses
sparse convolutions, pre-trained with SegContrast [28]. Seg-
Contrast [28] relies on segments extracted in an unsupervised
manner by removing the ground and clustering the remaining
points. Then, the contrastive loss function is applied segment-
wise, learning a feature space via segments discrimination.

For each instance proposal Sk ∈ I, we define a region of
interest Ŝk ⊂ P and use the SegContrast pre-trained model φ
to extract point-wise features F̂k. We use those features to
later compute the point similarity instead of using the directly
measured information, i.e., coordinates or intensity. Since
SegContrast trains the network in an unsupervised manner

Fig. 3: Instance proposals from ground removal and clustering
with HDBSCAN [8]. Different instance proposals are shown with
randomly assigned colors. Best viewed in color.

to produce embeddings able to discriminate segments, such
a model is likely to produce relevant features for our instance
segmentation task. Therefore, we have descriptive features to
identify the differences between the instance segment and the
background.

C. Saliency Maps

A saliency map is commonly used to analyze the feature
space learned by a network [31], [40]. To compute the saliency
map, we calculate the gradients over one value to visualize
the regions that have the most influence on its computation.
Recently, similar visualizations were drawn from the attention
layers used in Transformers [9], showing a good indication
of objects boundaries even without labels [9]. Even though
SegContrast [28] relies on sparse convolutional neural net-
works, we observed that it can also arrive at a similar “instance
attention” in the saliency maps. The saliency values can be
interpreted as which points are more likely to be foreground
or background in the graph, which we exploit to sample the
respective seeds for the GraphCut.

Given a model pre-trained with SegContrast φ, a point cloud
P , and an instance proposal Sk ⊂ P , we partition a region of
interest Ŝk ⊂ P from the point cloud around the proposal
Sk where Sk ⊂ Ŝk. Then, we extract point-wise features
F̂k = {φ(sk) | sk ∈ Ŝk}, and calculate the mean value
δ of all the feature vectors F̂k = {fk1, . . . ,fkm} from the
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Fig. 4: Saliency map over the proposal points features, comparing
the semantic segmentation supervised network and the network self-
supervised trained with SegContrast. Best viewed in color.

points inside the instance proposal Sk:

δ =

∑m
j fkj

m
, where fk =

∑n
i fki
n

(1)

We compute the gradients w.r.t. δ calculated in the equation
above to get the saliency map around the input proposal
region Ŝk. In Fig. 4, we compare the saliency maps generated
from the network trained in an unsupervised manner with
SegContrast, and trained with labels for semantic segmen-
tation, as used for background removal by Hu et al. [20].
From this comparison, we notice that the saliency from
SegContrast highlights the instance points, while the network
trained supervised for semantic segmentation highlights many
regions around the scan, e.g., road and sidewalk. Such analysis
suggests that together with the network point-wise features,
we can use the saliency values to select the seeds to perform
GraphCut, since it indicates the points most related to the
instance.

D. Seeds Sampling
To select the foreground and background seeds, we use the

instance proposals Sk and their saliency values. The instance
proposals correspond to different objects, which means that
their shape and size are variable. Sampling a fixed number of
seed points may not work well for all the proposals. Thus,
we sample a number of seeds according to the proposal size
to perform the GraphCut. Given the proposal Sk and the
cube region of interest around it Ŝk, we count the number of
proposal points nf and the number of non-proposal points nb.
Then, we select τf =

nf

γf
points as foreground seeds and

τb = nb

γb
points as background seeds, where γf and γb are

pre-defined parameters.
Fig. 5 displays the seed selection process. As described in

Sec. III-C, we compute the saliency map around the proposal
region of interest to evidence the points most related to the
instance. We select the τf points with the highest saliency
as foreground, and the τb points with the lowest saliency as
background. We also sample the k nearest neighbors for each
foreground seed to reinforce the foreground likelihood in the
seeds neighborhood. Lastly, to avoid possible outliers from the
saliency map, we remove any foreground seeds from outside
the proposal Sk and any background seeds from inside it.
By doing so, we can avoid a wrong seed being improperly
assigned and harming the GraphCut performance.

E. GraphCut
To segment the instances from the point cloud, we use

GraphCut [6], a classical method used previously for im-

Fig. 5: From the proposal points (in blue) we compute the saliency
and sample foreground (in green) and background seeds (in red).

age segmentation, applying it for point clouds. The method
consists of a graph representation, mapping the relationship
between each node and its neighbors and two terminal nodes,
foreground and background. Then, a min-cut over the graph
is applied, cutting the edges with the weakest relationship.
We use the SegContrast point-wise features to compute the
neighboring points similarity and define the non-terminal
edges. And we calculate the saliency maps to sample the seeds
and determine the edges between the points and the terminal
nodes.

In our formulation, the graph contains a set of nodes
Z = {z1, . . . , zn+2}, |Z| = n + 2 where each node is a
point in the proposal region Ŝk, corresponding to n points
and 2 virtual terminal nodes, the foreground and background.

1) Terminal Edges: Every point has an edge with both
virtual terminal nodes, and we weight these edges based on
the probability of a node belonging to these nodes. Each
edge probability is initialized with a small ε close to zero.
Then, the edge probability between a selected seed and the
corresponding terminal node is updated to 1.0. Finally, the
edge between a node i and a terminal node t is weighted as:

wi,t = −λlog(pi,t), (2)

where λ is a pre-defined parameter and pi,t is the defined
probability for the node i to belong to the terminal node t.

2) Non-terminal Edges: For non-terminal nodes, edges
are defined between each point and its k nearest neighbors,
according to the coordinates of the points. To weight the edges,
we use our point-wise features and calculate the dissimilarity
between one point feature and its neighbors. Since GraphCut
relies on the min-cut of the graph, the dissimilarity between
the points should be as significant as possible. Thus, we use the
L1 norm as a dissimilarity function between the point features
f i and f j as:

di,j =
∑
l

|f il − f jl|. (3)

Then, the edge weight between two points will be their affinity
computed given the dissimilarity di,j ,

wi,j = ω exp (− 1

2σ
di,j), (4)

where σ and ω are pre-defined parameters. With the graph
built as described and edges computed between each point
and the terminal nodes, we then perform the min-cut on the
graph, separating the instance from the background.

We do this process iteratively over each proposal to achieve
the instance segmentation for the whole point cloud, having
separated each object in the point cloud.
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Object class Car Bicycle Person Other Motor- Bicyclist Truck Motor- Unknown
vehicle cycle cyclist

#instances 5,034 549 373 138 82 80 50 9 3,587
#bound. boxes 318,718 50,440 25,287 8,655 8,167 4,296 2,596 490 292,871

TABLE I: Instance and bounding box counts per class for Open-World SemanticKITTI test set. known instance class annotations are also
annotated in the train set and unknown are only available on the test set and validation set.

IV. OPEN-WORLD LIDAR INSTANCE SEGMENTATION
BENCHMARK

This section, outlines our new and benchmark Open-World
SemanticKITTI, which extends the test set and validation set
of SemanticKITTI [2] with unknown class instance labels.

A. Problem Setting

Existing instance segmentation models assume all object
classes present during inference to be manually labeled and
present at training time. We refer to these object classes as
known classes. In this paper, we also want to focus on instance
segmentation for those objects that may only appear during the
inference, which we denote as unknown classes.

More formally, the set of all object classes X is potentially
large, and many instances occur rarely. In practice, we cannot
record, label, and evaluate performance on all possible object
classes, as these appear in the long tail of the object class
distribution. It is thus practically only feasible to label a fixed
subset of these classes.

To this end, we perform the following division. We use
the labels provided from SemanticKITTI for the set of known
classes (i.e., K = {k1, . . . , kN} ⊂ X ) for the whole dataset
(train, validation, and test set). This set contains the frequently
occurring object classes, such as car, person, truck, and simi-
lar. We label an additional, disjoint set of object instances only
in the validation and test set, i.e., unknown object instances
U ⊂ X with U∩K = ∅. Thus, our test set provides a proxy for
evaluating performance for unknown objects that only appear
rarely. We note that examples of these instances may appear in
the training and validation set, but are not labeled as instances.

As we tackle instance segmentation, we label only thing
classes. In literature [21], stuff classes are considered uncount-
able classes, e.g., vegetation or road. On the other hand, thing
classes, such as car and pedestrian, usually have clearly defined
boundaries, are visible in individual scans, and are countable.

B. Evaluation

For open-world instance segmentation, we evaluate how
well we can decompose a LiDAR point cloud into a unique
set of object instances. To quantify the performance, one pos-
sibility would be to adopt the recall-based variant of Panoptic
Quality (PQ), Unknown Quality (UQ) [36], that replaces the
recognition quality (RQ) term (F1-score) with a recall-based
measure. However, this metric treats the stuff regions of the
point cloud as a single instance, which is not desirable [29].
For example, the vegetation class could be decomposed into
several instances (tree trunks, small bushes) – these are not
labeled by human annotators but can be considered valid
instances, depending on the task, e.g., for segment-based
LiDAR odometry or SLAM [16].

We instead adopt the recently introduced LiDAR Segmen-
tation and Tracking Quality (LSTQ) metric [1]. It consists
of two terms, a classification term Scls and a segmentation
term Sassoc . However, since we propose a class-agnostic task,
we remove the Scls term, relying only on the Sassoc term to
evaluate how good are the instance segments.

The association term Sassoc measures how well we assign
points to their instances independent of the semantics:

Sassoc =
1

|T |
∑
t∈T

1

|t|
∑

s∈S,s∩t6=0

TPA(s, t)IoU (s, t), (5)

where the IoU term for each ground truth object t ∈ T
and a prediction s ∈ S pair is computed based on sets of
true positive associations (TPA), false negative associations
(FNA), and false positive associations (FPA). These sets are
evaluated in a class-agnostic manner, but differ from the work
of Aygün et al. [1], as the sets are calculated per-scan instead
of the whole sequence. Intuitively, the TPA set quantifies how
many points were correctly assigned to their corresponding
instance, and TPA and FPA sets signal two different types of
point-to-instance association errors. More precisely, the TPA
set contains all mutually overlapping points. The FPA set
denotes all points in s that do not overlap with t, and finally,
FNA contains all points from t that are not contained in s (see
also Aygün et al. [1]).

The association term is class-agnostic and only informs us
how well we assign points to labeled object instances. This
allows us to evaluate instance segmentation independent of
semantics, making this metric uniquely suitable for open-world
LiDAR instance segmentation evaluation.

C. Open-World SemanticKITTI Dataset and Benchmark

A natural basis for a dataset suitable for benchmarking seg-
menting objects that appear in the long tail of the object class
distribution would be a dataset that provides instance labels
for the most common objects, such as traffic participants,
and semantic labels for stuff classes. SemanticKITTI [3] or
nuScenes-lidarseg [7] provides such labels, opposed to recent
object detection datasets which provide only 3D bounding
boxes, e.g., [32], [7], [10]. We opt for the SemanticKITTI
dataset [3] that extends the KITTI odometry benchmark [17]
with dense point-wise semantic and instance labels for each
LiDAR scan. It contains 23,000 labeled scans in train and
20,000 labeled scans in test set, providing semantic and object
instance labels for 6,315, in total 418,649 bounding boxes,
object instances belonging to several known object classes.

We build the open-world SemanticKITTI benchmark, which
is suitable for assessing the performance in the open-world
setting. We extend the hidden test set of SemanticKITTI with
3,587 instances, in total 292,871 additional object instance
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Sassoc

Method known unknown all
Euclidean 0.651 0.426 0.611
Quick shift 0.212 0.406 0.246
HDBSCAN 0.660 0.601 0.650
Range image 0.270 0.427 0.297
Ours† 0.677 0.605 0.664
Ours 0.720 0.599 0.699
4D-PLS 0.795 0.004 0.657
Hu et al. 0.697 0.587 0.678

TABLE II: Evaluation results with Sassoc metric on open-world
instance segmentation benchmark test set for known, unknown and
all the instances. The gray rows indicate the supervised methods.
Ours† is our method with ground removed using the proposals ground
segmentation.

Fig. 6: Without using any background removal our method can
define the boundaries between the objects and the ground. On the
lower part we compare our final result with the proposal generated
with HDBSCAN. Our method can refine the proposals and correctly
segment points previously ignored (highlighted in the red circles).

labels for object classes that do not necessarily belong to a
semantic class from the original object classes – unknown
objects. See Tab. I for statistics on the distribution of classes.
We additionally also label instances of unknown classes in
the validation set, but provide only a way of evaluating the
performance with a server-side evaluation to keep the instances
unknown at training time.

V. EXPERIMENTAL EVALUATION

The main focus of this work is a class-agnostic instance
segmentation. Unlike previous methods, our work does not
need instance or semantic labels to remove the background.
We present our experiments to show the capabilities of our
method and that it is able to segment instances without seman-
tic background removal and achieves competitive performance
compared to state-of-the-art supervised methods.

In all our experiments, we use the same parameters, defined
empirically. For the instance proposal, we use a pre-defined
margin of 1 meter around the proposal size to define the region
of interest. For the seed sampling, we use γf = 2, and γb = 2.
For GraphCut, we use σ = 1.0, ω = 10.0 and λ = 0.1,
and we select the k = 8 nearest neighbors to define the non-
terminal edges, and build the graph. For the self-supervised
pre-trained model, we use the same pre-training described in
SegContrast [28], trained for 200 epochs.

We compare our approach in two setups: using only the
segmentation from GraphCut, named as Ours, and with a
post-processing step, where we filter points from the ground
segmentation used to generate the proposals, named as Ours†.

We compare our results with different unsupervised clus-
tering methods and supervised learning-based methods. For
the clustering methods, we use the same instance proposals
process used for our approach, i.e., remove the ground, then
cluster the remaining points. We evaluate HDBSCAN [8]
and Euclidean clustering [30]. Also, we compare with a
technique that operates on the birds-eye-view representation
of the point cloud, clustering with quick shift algorithm [25],
and a fast range image-based proposal generation method [5].
Additionally, we evaluate two supervised learning-based ap-
proaches. The method proposed by Hu et al. [20] removes
the background with a semantic segmentation network, and
cluster the remaining points given a learned objectness value.
And a fully data-driven method 4D-PLS [1] for closed-world
instance segmentation.

A. Association Quality

This experiment evaluates the association between the pre-
dicted and ground truth instances on the test set. The results
show that our method achieves state-of-the-art performance,
even though not using labels.

Tab. II shows the evaluation of the different methods with
the Sassoc metric, for the known and unknown instances, and
the class-agnostic case, i.e., both known and unknown. Com-
paring the different clustering methods, HDBSCAN presents
the best performance, which supports our choice of using it for
the instance proposal. The 4D-PLS method achieves the best
performance for the known instances, while our method has the
best performance for the unsupervised methods. Our approach
improves by a large margin the HDBSCAN instance proposal
and even surpasses Hu’s method. For the unknown instances,
the performance of supervised methods degrades. Our method
achieves the best performance for unknown when removing
the ground points. When looking at the class-agnostic case,
our method with ground removal is better than unsupervised
methods, and without removing ground it is also better than
supervised methods.

Tab. III shows the Sassoc for each known class. The per-
formance of the supervised methods presents the best per-
formance on the most represented class, i.e., car. For other
classes, their performance degrades since those classes have
fewer samples in the training set. Our method surpasses HDB-
SCAN instance proposals and the supervised methods on most
classes. By using unsupervised learned features, our approach
is less overfitted to frequently occurring classes, being more
suited to class-agnostic instance segmentation. Fig. 6 shows
our results on one scan and compares our segmentation with
the HDBSCAN instance proposals.

B. Instance Segmentation Quality

This experiment evaluates the intersection-over-union (IoU)
and recall between predicted instances and the ground truth.
We compute the IoU and recall filtered by different IoU
thresholds and calculate the average of the different thresholds
to evaluate the overall performance of the methods.

Tab. IV shows the results for IoU and recall for different
thresholds. With a high threshold, i.e., IoU90, the supervised
methods perform better than the others. Since it is a panoptic
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Sassoc

Method car bicycle motorcyle truck other-vehicle person bicyclist motorcyclist
HDBSCAN 0.695 0.178 0.497 0.690 0.695 0.674 0.772 0.757
Ours† 0.714 0.193 0.508 0.693 0.698 0.678 0.769 0.747
Ours 0.762 0.203 0.552 0.722 0.737 0.684 0.788 0.773
4D-PLS 0.876 0.183 0.436 0.553 0.495 0.504 0.687 0.649
Hu et al. 0.755 0.200 0.539 0.512 0.509 0.503 0.693 0.793

TABLE III: Evaluation results with Sassoc on open-world instance segmentation benchmark test set for each known instance class. The gray
rows indicate the supervised methods.

IoU90 Recall90 IoU70 Recall70 IoU50 Recall50

Method known unknown known unknown known unknown known unknown known unknown known unknown IoU Recall
Euclidean 0.484 0.263 0.503 0.276 0.637 0.393 0.688 0.434 0.681 0.429 0.761 0.493 0.569 0.618
Quick shift 0.064 0.221 0.067 0.232 0.119 0.347 0.136 0.385 0.184 0.396 0.247 0.468 0.158 0.185
HDBSCAN 0.424 0.388 0.444 0.402 0.645 0.565 0.713 0.617 0.710 0.605 0.819 0.683 0.594 0.657
Range image 0.100 0.213 0.106 0.225 0.223 0.408 0.257 0.462 0.278 0.455 0.349 0.541 0.236 0.274
Ours† 0.459 0.402 0.480 0.415 0.663 0.569 0.728 0.619 0.721 0.608 0.823 0.683 0.612 0.672
Ours 0.461 0.381 0.481 0.393 0.686 0.546 0.755 0.595 0.745 0.591 0.850 0.668 0.624 0.686
4D-PLS 0.667 0.003 0.683 0.003 0.753 0.003 0.788 0.004 0.792 0.004 0.854 0.004 0.613 0.644
Hu et al. 0.510 0.410 0.528 0.424 0.670 0.562 0.724 0.608 0.721 0.596 0.806 0.664 0.624 0.676

TABLE IV: Evaluation results with IoU and Recall with different IoU thresholds and the performance averaged over all thresholds {0.5,
0.6, 0.7, 0.8, 0.9} on test set. The gray rows indicate the supervised methods.

Sassoc IoU

Method known unknown known unknown
HDBSCAN 0.660 0.601 0.607 0.531
Ours† 0.677 0.605 0.628 0.538
Ours 0.720 0.599 0.646 0.517

TABLE V: Comparison between the instance proposals of our method
and our results without and with ground removal post-processing step.
Evaluation on open-world instance segmentation benchmark test set.
The gray rows indicate the supervised methods.
segmentation method, 4D-PLS achieves the best performance
for the known instances over all the thresholds. However, it
fails in segmenting unknown instances. With a lower threshold,
our method performance gets closer to the supervised methods
and surpasses them in the unknown instances. On the overall
evaluation, our method achieves an IoU on par with supervised
methods and best performance in terms of recall.
C. Limitations

We additionally compare our method with and without the
ground removal post-processing to discuss the limitations. As
seen in the previous section, without ground removal post-
processing our method achieves the best overall performance,
especially for known instances. However, it performs better on
unknown instances with the ground removal.

Tab. V compares both setups with the HDBSCAN propos-
als. Even though removing the ground points leads to better
instance segmentation for unknown instances, it has a higher
impact for known instances, decreasing the performance by a
large margin. In Fig. 7, we illustrate one example to explain
such behavior. Since the ground segmentation is done by an
unsupervised method, it may have points wrongly assigned
as ground and non-ground. Therefore, our method can im-
prove the segmentation by correctly assigning instance points
previously erroneously considered ground. However, some
proposals may have ground considered as instance points due
to the imperfect ground segmentation. In this case, our method
may sample ground points as foreground seeds, leading to
segmenting a wider ground region as part of the instance. By

Fig. 7: Sometimes ground is wrongly assigned to an instance pro-
posal (blue), we sample those ground points as foreground (green),
affecting our final instance segmentation (orange).

removing the ground with the post-processing, we filter the
ground region sampled as foreground, but also filter the points
correctly assigned as instances points that were previously
wrongly labeled as ground. Therefore, the main limitation of
our method relies on the initial proposals used for sampling
the foreground and background seeds.

VI. CONCLUSION

In this paper, we presented a novel approach for unsu-
pervised class-agnostic instance segmentation. Our method
uses unsupervised clustering to define instance proposals and
a graph optimization algorithm to refine those proposals to
more appropriate instance segmentation. Our method repre-
sents the point cloud as a graph, and exploits self-supervised
representation learning to extract point-wise features to map
the points neighborhood similarities in the graph. This allows
us to separate the foreground instance from the background
points without requiring labels. Besides, we also propose a
new open-world dataset to evaluate class-agnostic instance
segmentation for known and unknown instances classes and
an evaluation procedure for this benchmark. The experiments
suggest that our method is more suited for class-agnostic in-
stance segmentation since it achieves competitive performance
with state-of-the-art supervised methods, even surpassing it for
unknown classes. We hope our work motivates further studies
on self-supervised instance segmentation, and our benchmark
contributes to the research community.
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