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in Point Clouds Obtained Under Real Field Conditions
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Fig. 1: Workflow to obtain high precision segmentations of crop leaves. We collect images on the field (a), process them into point clouds (b)
by using bundle adjustment. We feed these into our segmentation network to obtain leaf instance candidates (c). As done in current breeding
practices, we use a subset of leaves for phenotypic trait evaluation. We select these leaves with the highest confidence based on a predicted
confidence score to alleviate the influence of the segmentation errors on the phenotyping process (d).

Abstract—Measuring plant traits with high throughput allows
breeders to monitor and select the best cultivars for subsequent
breeding generations. This can enable farmers to improve yield
to produce more food, feed, and fiber. Current breeding practices
involve extracting leaf parameters on a small subset of the leaves
present in the breeding plots, while still requiring substantial
manual labor. To automate this process, an important step is the
precise distinction between separate leaves, which is the problem
we address in this paper. We exploit recent advancements in
3D deep learning to build a convolutional neural network that
learns to segment individual leaves. As done in current breeding
practices, we select a subset of leaves to be used for phenotypic
trait evaluation as this allows us to alleviate the influence of
segmentation errors on the phenotypic trait estimation. To this
extent we propose to use an additional neural network to predict
the quality of each segmented leaf and discard inaccurate leaf
instances. The experiments show that our network yields higher
segmentation accuracy on sugar beet breeding plots planted
under the supervision of the German Federal Office for Plant
Varieties. Furthermore, we show that our neural network helps
in filtering out leaves with lower segmentation accuracy.

Index Terms—Agricultural Automation; Robotics and Automa-
tion in Agriculture and Forestry; Deep Learning for Visual
Perception
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I. INTRODUCTION

PLANT phenotyping is a crucial tool for plant breeding
and crop production. It analyses the visible traits of

plants to understand the physical and physiological plant
development [8]. Breeders measure individual plants and their
organs, i.e., leaves, and fruits, regularly to select the best
cultivars to be used for the following breeding generations.
This process is fundamental for providing food, feed, and fiber
for the growing world population as new species are targeted to
increase the productivity and adaptability of crops. However,
common breeding practices involve substantial human labor
to estimate plant features, even when evaluating the traits
only on a small subset of the crop canopies. This is leading
to measurements with low throughput and low repeatability,
especially for the more subjective parameters dependent on
color and lighting [6], [9].

For high-throughput and cost-efficient objective measure-
ments, a promising approach is the usage of unmanned aerial
vehicles (UAVs) for collecting data and deep learning pipelines
to analyze the data. The main advantage of collecting data
using UAVs is that they can cover large breeding plots in a
small time frame using high-resolution cameras.

In most applications UAVs acquire images from a single
viewpoint (top-down perspective) and only analyze single im-
ages, i.e., 2D data. This approach, however, makes it difficult
to extract three-dimensional traits in breeding plots, which are
densely covered with plants, leading to many parts of the crops
being occluded from the UAV perspective. We alleviate this
issue by collecting UAV image data from different viewpoints,
leading to better coverage the lower parts of the crops. We then
use these images to compute high-resolution point clouds by
using bundle adjustment.

We address the task of detecting and segmenting leaves in
densely planted agricultural plots, using the aforementioned
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point clouds generated out of high-resolution cameras mounted
on a UAV. The task of leaf segmentation is a highly relevant
step for autonomous phenotyping and the quality of the
segmented leaves is of high importance, as the variations in
the traits that need to be measured by the breeders are often
very small. In current breeding practices, only a subset of
the leaves present in the breeding plots are actually used for
phenotypic trait estimation, as breeders are interested in the
average trait per plot and a subset of leaves is sufficient to
compute this [6]. We also select a subset of leaves to mitigate
segmentation errors, which still affect current state of the art
3D deep learning approaches, and otherwise would negatively
impact the phenotypic trait extraction, see Fig. 1. We target the
monitoring of sugar beet plants in commercial breeding plots
grown and maintained under the supervision of the German
Federal Office of Plant Varieties (Bundessortenamt). In the
agricultural context, the task of segmenting leaf canopies into
single leaves from noisy and partial 3D point cloud data has
not been tackled in a unified manner, given the cluttered nature
of the scene and the lack of publicly available datasets to
benchmark new approaches. However, being able to segment
individual leaves allows for precise 3D reconstruction and
estimation of important phenotypic traits [15], [16], [18].

The main contribution of this paper is a novel deep learning
method to segment crop leaves in field point clouds with high
precision. We perform this operation on patches that are ex-
tracted automatically to achieve full coverage of each breeding
plot, minimizing the amount of manual labor involved. As
done in current breeding practices, we select a subset of the
leaves for subsequent trait extraction. We do this to alleviate
the influence of the segmentation errors on the phenotyping
process, since the accuracy of the extracted traits is very
important to detect even minor differences between varieties.
We, therefore, aim for discarding inaccurate leaf predictions,
which allows us to minimize segmentation errors while still
evaluating substantially more leaves than required, i.e., by the
phenotyping guidelines of the European Commission [6]. To
achieve this, we predict leaf instance masks and an associated
confidence score with a deep neural network. Based on the
estimated confidences, we then filter out the predictions with
the lowest confidence scores, which allows us to keep only
the more accurate leaf masks.

In sum, we make three key claims: Our approach is able
to (i) improve leaf segmentation performance on manually
segmented plant point clouds; (ii) robustly segment leaves
from point cloud patches of real breeding fields with high mea-
surement noise; (iii) filter out inaccurate leaf masks based on
a confidence prediction to increase the quality of the leaf seg-
mentations. These claims are backed up by the paper and our
experimental evaluation. The open source implementation is
available at https://github.com/PRBonn/plant pcd segmenter.

II. RELATED WORK

Multiple works have been proposed for leaf segmenta-
tion [10], [21], [22], [30], [31]. Most of these however work
on 2D image data as this is readily available and methods for
image segmentation have been developed early on [4], [11].

Weyler et al. [30], [31] propose a deep learning approach to
predict offset vectors pointing to the center of the leaves and
plants. They then cluster the pixels into individual leaves and
plants based on the predicted offsets. The approach by Guo et
al. [10] instead directly predicts the leaf masks, skipping the
clustering post-processing step. Roggiolani et al. [21], [22]
propose an approach to segment individual plants and their
leaves while exploiting the hierarchical structure of the task.
Our work instead works on point clouds as we are interested
in the 3D structure of the plants.

Recently, a diverse number of works proposed deep learning
methods to process 3D data, either by using voxel grids [5],
rendering multi-view images [27], employing point opera-
tors [20], or by defining convolutions on point clouds [28].
Similar to images, some approaches base their predictions on
estimating offset vectors and subsequently clustering of points
into single instances [13], [29]. Instead, to achieve end-to-end
segmentation without a post-processing step the mask-based
approaches show promising results on point clouds [17], [24].

Above-mentioned works address the segmentation of au-
tonomous driving scenarios and indoor environments, our
work instead focuses on agricultural field data, which present
different challenges, especially the deformability of the scene
causing high levels of noise induced by meteorologic factors.
One of the major bottlenecks for point cloud segmentation
in the agricultural setting is the lack of publicly available
datasets for instance segmentation. To tackle this issue, Rog-
giolani et al. [21], [23] propose a self-supervised pretraining
mechanism to better initialize the neural network, thus needing
less training data. To the best of our knowledge, Schunk et
al. [25] released the only publicly available dataset with leaf
instances tracked over time. In this dataset, however, the plants
are scanned with a high-precision laser scanner in laboratory
conditions, a data acquisition approach that is not feasible
for our application. Using similar data, Heiwolt et al. [12]
segment plants into individual organs using a deep architecture
operating on points. Shi et al. [26] instead use a multi-
view neural network predicting instances on images and then
aggregating them into point clouds.

In contrast to the aforementioned approaches, our approach
works directly on point clouds acquired using UAV imagery
in densely planted agricultural plots containing a multitude of
different varieties leading to a big variation in the leaf shapes.
Also, the data acquisition was performed under the influence
of typical field conditions such as wind, heat, and variation of
the light conditions. This leads to high levels of noise in the
point clouds as exemplified in Fig. 3.

III. OUR APPROACH

We propose a deep learning approach designed for detecting
individual leaves of real crop plants in 3D point cloud data
acquired in breeding plots, see Fig. 2. We aim to segment
each point cloud S containing a portion of a breeding plot,
from now on referred to as field patch, into disjoint subsets
Si, representing the individual leaves.

To perform the segmentation, we predict a spatial offset
vector for each point from its location to the center of the

https://github.com/PRBonn/plant_pcd_segmenter
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Fig. 2: The architecture of our leaf segmentation approach. The layers in the yellow box are part of our autoencoder network for the prediction
of the offset vectors. In the green box we show the encoder network for predicting the confidence of each instance.

corresponding leaf. We then shift the points by the offsets and
cluster such leaf center estimates into separate instances.

The targeted use for our leaf segmentations is extracting
phenotypic traits, which often show only minor differences
between varieties. Therefore, our main focus is having highly
precise segmentation results. As in current breeding practices,
we select a subset of leaves for evaluation and do so to mitigate
false positives. To this extent, we propose a second network
to predict the accuracy of each leaf prediction which allows
us to filter out the most inaccurate predictions.

A. Leaf Instance Segmentation

To cluster the points into individual leaves, we leverage
a deep neural network to predict an offset vector for each
point, pointing towards the leaf center. The encoder part of
this offset prediction network takes a field patch point cloud
S as input. Those point clouds are generated from a high-
resolution camera mounted on a UAV using bundle adjustment.
To provide additional information to the network, we input
also point positions and colors as input features for the first
encoding block. Our encoder is composed of encoding blocks
Ei that use KPConv [28] as the backbone, which is a form
of convolution working directly on 3D points in Euclidean
space. For more details, we refer to the original publication
by Thomas et al. [28].

Each encoding block Ei contains a pre-activation and post-
activation block, composed of a linear layer, layer norm, and
Leaky ReLU activation. Each of these blocks Ei takes as input
the features FE

i−1 from the previous block Ei−1 and outputs
the features FE

i .
To achieve an increase of the feature scale, we successively

increase the kernel radius r of the convolution after each
downsampling operation to get

ri = rmin + rstep i, (1)

where rmin is the user defined smallest kernel radius,
rstep = (rmax − rmin)/nd, rmax is the maximum kernel radius
defined by the user, and nd is the number of downsampling
steps. To save compute time, we perform downsampling on the
point cloud after each increase of the kernel size r. To perform
this downsampling operation, we divide the Euclidean space
R3 into voxels. For each voxel, we compute the centroid of the
subset of points falling within it and output these centroids as

the resulting point cloud. The voxel size of the grid sampling
algorithm is set as ds = ri/σ, where σ is a user-defined ratio.

We also increase the feature depth sio at each downsampling
step from smin

o to smax
o to allow the network to learn more com-

plex features at the deeper levels. This increase is performed
at equal steps in the same manner as for the kernel radius r,
see Eq. (1). In sum, our encoder architecture is composed of
ne = 9 encoding blocks and nd = 4 downsampling steps. The
actual sequence of these operations is shown in Fig. 2.

In the decoder, we use a sequence of upsampling blocks
followed by a multi-layer perceptron (MLP) to predict the
offset vectors. The upsampling blocks are again composed of
KPConv blocks. To support the decoding phase with high-
resolution details, the output features FD

i of each decoding
block are are then summed to the features FE

i originating
from the encoding block Ei at the same stage. The MLP
is composed of 4 linear layers combined with Leaky ReLU
activations, has smax

o input channels and 3 output channels.
The size of the layers in the MLP decreases in a stepwise
manner from smax

o to the size 3 of the spatial offset vectors.
By applying the network on every point, we end up with the
set of offset vectors Vi, containing a predicted offset vj for
every point pj in the input point cloud S.

To group the points into separate leaves we use the bottom-
up hierarchical clustering method HDBSCAN [19], by using
the distance function

γ = ∥(pj + vj)− (pk + vk)∥2. (2)

Given a set of points, the algorithm finds core points
of high density and expands clusters from them, while it
marks as outliers points that are in low-density regions. The
algorithm performs DBSCAN over varying density values ϵ
and integrates the result to find a clustering with the most
stable result when changing ϵ. This improves the algorithms
robustness to variations in the densities. The output of this
postprocessing step are the individual leaf instances Si.

B. Confidence Estimation of the Leaf Instances

We discard the inaccurate leaf instance predictions to
minimize the influence of the segmentation errors on the
phenotypic feature extraction. Therefore, we design a second
network to estimate the accuracy of each leaf instance by
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assigning a confidence score to them. We compute the con-
fidence of each instance Si separately, as we found this to
work better than estimating them all at once. The confidence
network is composed of an encoder, which has the same
topology as the one used in the offset network.

We feed the network with the points Pn := {p |
dmin(p, Si) < dlim} with p ∈ S, where dmin is the function
that returns the minimum Euclidean distance to the points
contained in the leaf instance prediction Si and dlim is a
selectable threshold. The point cloud Pn is therefore the set
of all points p in the neighborhood of the leaf prediction Si.
Together with Pn, we also input a set of feature vectors Fc

into the network. To obtain these features Fc, we compute
the 3D vector δj containing the difference between the center
prediction cipred = pj+vj associated to the point and the mean
center prediction of the leaf

δj = cipred −
∑
j

cipred

|Vi|
, (3)

where Vi is the set of offset predictions of the points Si

predicted as part of a leaf instance i. Then, we define Fc =
{f0, . . . ,f |Vi|} with

f j =

{
δj , if pj ∈ Si

0, otherwise.
(4)

By providing the input features Fc instead of the instance
masks mi, defined as:

mi =

{
1, if pj ∈ Si

0, otherwise,
(5)

to the network, one provides information about the distribution
of the leaf center predictions. This information intuitively can
help to better estimate the confidence value, compared to
providing only which points belong to the leaf instance.

The output of the last convolution block is a feature vector
of defined size smax

c for each point produced by the last
downsampling step. These points are then fed into an MLP,
which outputs for each point a feature vector f j

c of size smax
c .

We perform voxel downsampling operations on the instance
mask mi to obtain the downsampled version mout

i defining the
predicted instance in the downsampled point cloud. To get the
IoU prediction for the current instance, we then apply average
pooling to all points defined by mout

i . We then obtain the
IoU estimate for the current instance by average pooling the
output vectors and taking the mean of all entries. To leverage
the confidence prediction of each leaf we fix a ratio rkeep =
nkeep/ntot, where nkeep is the number of kept leaves and ntot

is the total number of leaves. We then compute the minimum
confidence value cmin in order to obtain the percentile given by
rkeep and discard all leaf instance with a predicted confidence
below that threshold.

C. Loss Functions

To supervise the network to predict offset vectors for
accurate leaf instance segmentation, we first compute the leaf

center ci for each leaf point cloud Si as follows:

ci =
1

|Si|
∑
p∈Si

p. (6)

Then, we compute the offset labels v∗
j = pj − ci, | pj ∈ Si

used for the supervision. V∗ := {v∗
j = pj−ci, | pj ∈ Si, Si ∈

S} We then use an L1 loss for the optimization of the network
weights with vj ∈ V and v∗

j ∈ V∗ :

Loffset =

∑
i |vj − v∗

j |
|S|

. (7)

To compute the loss Lconfid of the IoU prediction network,
we need reference values IoU∗

k for each predicted leaf instance.
To obtain these labels we compute the intersection of the
predicted instance mask mi with all ground truth instance
labels m∗

i :

IoUk =
|mi ∩m∗

i |
|mi ∪m∗

i |
, m∗

i ∈ GT, (8)

where GT is the set of ground truth leaf instances. Then we
take the highest intersection as our reference value:

Oi = {IoU0, . . . , IoUngt} (9)

IoU∗
i = max(Oi), (10)

where Oi is the set of all IoUk and ngt = |GT| is the
number of ground truth leaf instances. We then compute
the L1 loss between the predicted IoU values IoUi and the
corresponding IoU∗

i . By discarding leaf predictions in the
filtering procedure based on the predicted IoU values IoUi, we
want to make sure that all kept instances are high-accuracy
predictions. Therefore, we favor underestimations instead of
overestimations by the confidence network, as overestimations
often lead to remaining predictions with low accuracy after
filtering. To induce this behavior, we increase the weight of
the overestimated predictions in the loss computation, leading
to the loss being computed as

Lconfid =
∑
j

ai
|pj − v∗

j |
|S|

(11)

with

ai =

{
ω, if IoUi > IoU∗

i

1, otherwise,
(12)

where ω is a user-defined weight.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an approach that accurately
segments leaf instances in the point cloud of a field, while
discarding low accuracy instances to alleviate the influence of
segmentation errors on the phenotypic trait extraction.

We present our experiments to analyze the capabilities of
our method. The results of our experiments support our key
claims, which are: (i) improve leaf segmentation performance
on manually segmented plant point clouds; (ii) robustly seg-
ment leaves from point cloud patches of real breeding fields
with high measurement noise; (iii) filter out inaccurate leaf
masks based on a confidence prediction to increase the quality
of the leaf segmentations.
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(a) (b) (c) (d)
Fig. 3: Data used by our approach. (a) Shows the 3D point cloud of the field using bundle adjustment, with the train and test data collected
in the pink row and the test data in the cyan row. (b) Shows the field patches as they are used as input for the network. We also show how
crowded the breeding plots are (c). In the top image of (d) we show noise induced by deformation due to high temperature which leads to
the same leaf showing up multiple times in the data and in the bottom noise due to wind which can be seen as scattered points.

A. Datasets

We trained and evaluated our approach on a dataset com-
posed of sugar beet plant point clouds. We generated the data
by imaging breeding plots containing multiple varieties of
the crops, to ensure better generalization capabilities of the
trained models, and processing the resulting 100-megapixel
images into 3D point clouds using bundle adjustment. As
sensor, we used the PhaseOne iXM-100 camera attached to
a UAV. We flew three missions over the breeding field at
21 m height from ground and with a camera angle of 45◦,
90◦, and 135◦ from the ground plane as this leads to the best
photogrammetric reconstruction. This approach leads to a 10-
fold increase in the computation time but enables coverage
of the full crops including the lower parts even in advanced
growth stages. To ensure that the test data remains unseen
during the training phase we defined a test region in the field
that is used exclusively for evaluation purposes.

The captured breeding field contains a large number of
varieties and a huge amount of leaves, making the labeling
of all crops intractable. We, therefore, manually annotated the
leaf IDs of small groups of adjacent plants. The annotation
process was carried out by different people to avoid human
biases. The resulting labels enable the networks to learn
the interconnections between plants while also covering the
varieties on the field.

As the point cloud of the whole field contains 11.6 billion
points, it is impossible to process it at once. Thus, we extracted
patches of 1×1m overlapping by 50% in both directions. This
resulted in 37 patches for training, 10 for validation, and 69
for testing. We show the field, an overview of the data, and
examples of noise in the dataset in Fig. 3.

B. Training Procedure

We train our networks on an Nvidia Quadro RTX A6000
with 24 GB of memory. We generate input batches of 10 point

clouds containing 100,000 points by randomly subsampling
the original point clouds. We use elastic deformation [3],
random rotation, and axis flipping as augmentations to improve
generalization with the relatively small training set.

We use a learning rate of 10−4, nine encoder and decoder
blocks, four downsampling and four upsampling operations,
and a maximum feature size smax

o = 256. We generally found
that with a smaller maximum convolution kernel size rmax

the performance increases but so does the memory usage and
compute time. We use rmin = 0.006 and rmax = 0.08, which
allows us to train with a batch size of 4. We trained the
segmentation network for 500 epochs.

For the confidence estimation task, a smaller number of
parameters is sufficient, which leads us to use a maximum
feature size smax

c of 96 and nine convolutional encoder and
decoder blocks. The lower amount of input points and network
parameters enabled us to use a smaller rmax = 0.02 and the
same rmin = 0.006 while still allowing us to train with a batch
size of 10. We set the weight ω in the confidence loss Lconfid

to 2. We train the confidence network for 200 epochs. After
convergence, we evaluate the performance of our model in the
following experiments.

C. Leaf Instance Segmentation on Field Patches

The first experiment evaluates the performance of our ap-
proach in segmenting individual leaves in point cloud patches
extracted from a field and shows that we achieve accurate
predictions even by using point clouds affected by measure-
ment noise and big occlusions (see Fig. 3) and training only
on 37 patches. We compare the results of our approach to
the state-of-the-art approaches for clustering-based [29] and
mask-based [24] point cloud segmentation, to show that our
approach has the best performance on segmenting leaves in
densely planted breeding plots.

The data of our task is quite different from commonly inves-
tigated data from indoor and outdoor environments like the one
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Fig. 4: Qualitative examples of the results of our segmentation approach and SoftGroup. We show the input data and the ground truth in the
first row, the full predictions in the middle row and the instances with the highest predicted confidence score in the bottom row. For clarity
for the ground truth and predictions we show only the labeled part of the point clouds and the prediction errors are marked in red..

present in widely adopted datasets like ScanNet [7], S3DIS [1],
or SemanticKITTI [2]. On one hand, the background can be
easily segmented by color-based classic approaches, leaving
us only with leaves and making the semantic segmentation
superfluous. On the other hand, the instance segmentation is
challenging as the leaves are heavily overlapping, are affected
by high occlusions, and neighbors in breeding plots look
very similar as they are of the same variety, making it hard
to separate them. Additionally, the point clouds show also
substantial amounts of noise due to wind and temperature
induced deformations of the plants during the data collection
(see Fig. 3).

For the comparison, we use panoptic quality (PQ) [14]
defined as follows:

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP|︸ ︷︷ ︸
SQ

|TP|
|TP|+ 1

2 |FP|+ 1
2 |FN|︸ ︷︷ ︸

RQ

. (13)

As can be seen in Tab. I, we outperform the baseline
approaches in all metrics. Mask3D’s [24] performance suffers
a lot from the fact that labels are not present for all points
in the point cloud patches while training. In their approach,
instances that are not assigned to a ground truth label are
regarded as not being an object, which in the unlabeled parts
leads to inconsistencies. SoftGroup [29] instead cannot cope
well with the point clouds that contain many erroneous points
due to noise in the data and makes segmentation mistakes,
especially in the lower parts of the plants. Some exemplary
results can be seen in Fig. 4.

D. Leaf Instance Segmentation on Presegmented Plants

The second experiment shows the performance of our
approach in segmenting individual leaves in plants that have

Approach PQ [%] SQ [%] RQ [%]

Mask3D [24] 18.47 67.71 25.80
SoftGroup [29] 72.07 79.45 90.69

Ours 75.58 80.97 93.17

TABLE I: Performance of the proposed baselines and our approach
on segmenting field patches.

Approach PQ [%] SQ [%] RQ [%]

Mask3D [24] 80.28 88.57 90.48
SoftGroup [29] 83.61 89.85 92.98

Ours 87.10 92.06 94.54

TABLE II: Performance of the proposed baselines and our approach
on data with reduced noise and fully annotated point clouds.

been manually annotated (for details see Sec. IV-A). Our aim
here is to evaluate our approach in a setting that is closer to
the type of data the baselines were developed for. While still
training and evaluating on agricultural data, the samples used
in this experiment have annotations for all points and most
of the noise has been manually removed during the labeling
process. Especially the noise due to the deformation of the
plants, which shows as multiple occurrences of the same leaf
in different positions, shown in Fig. 3 (d), is challenging to
tackle and it is not present in this experiment.

As expected the results shown in Tab. II improve on this
data. Mask3D improved drastically backing the assumption
that the low performance in the previous experiment was due
to noise and partial labels. Our approach gains improvements
on the results as well, leading to a slightly better performance
compared to the baselines also in this simple setting.

E. Prediction Accuracy Estimation

The last experiment evaluates our confidence network and
shows that our approach is capable of estimating meaningful
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Approach KL-div χ2

Cluster var σ2
lc 0.39 0.68

Ours 0.28 0.57

TABLE III: Effects of filtering on the leaf size distribution. We report
the Kullback-Leibler divergence and the chi square test between leaf
size distribution before and after filtering.

Approach PQ⊙
10 [%] SQ [%] PR [%] RC [%]

Mask3D [24] 18.30 59.03 31.00 10.18
SoftGroup [29] 85.34 86.59 98.55 25.26

Ours + HDBSCAN [19] 77.92 82.69 94.23 20.83
Ours + CV 83.99 85.22 98.55 18.29

Ours + Confidence 91.32 91.32 100.00 22.23

TABLE IV: Performance of the baselines and our approach at filtering
out bad predictions based on the confidence prediction.

confidence values for the leaf instance predictions, allowing us
to filter out the worst leaf predictions. To evaluate the perfor-
mance in such a setting we defined the metric PQ⊙ = SQ ·PR,
as the product of the segmentation quality SQ as defined in
Eq. (13) and the precision PR.

PQ⊙ therefore accounts for the accuracy of the predic-
tions (SQ) and for precision of the detected instances (PR). It
therefore ignores missed predictions (false negatives) as in the
targeted application recall is important, as long as it is above
the application specific threshold [6]. Both, Mask3D [24]
and SoftGroup [29] output a confidence score along with
the instance predictions. We used those values to filter the
predictions of those approaches.

To filter the predictions of our method we use the confidence
estimates computed as explained in Sec. III-B. As comparison
we also evaluated the cluster probabilities of HDBSCAN [19]
and the variance of the leaf center predictions σ2

lc, i as con-
fidence estimates. We define the variance of the leaf center
predictions for leaf Si as

σ2
lc, i =

∑
j((pj + vj)− cpred)

|Si|
, (14)

where

cpred =

∑
j(pj + vj)

|Si|
, (15)

with pj ∈ Si and vj ∈ Vi, where Vi is the set of predicted
offset vectors for the points in Si. As an upper bound for the
improvement of the PQ⊙ metric by filtering by the confidence
estimates, we filtered the predictions with the IoUgt values.
As we report in Tab. IV, our confidence prediction network
achieves the best performance in all but the recall metric (RC)
where SoftGroup is slightly better but our result of 22.2%
still leads to the evaluation of many more leaves compared
to currently used practices [6]. We show the influence of the
ratio of kept leaf instances rkeep on PQ⊙ and SQ in Fig. 5 and
Fig. 6.

One concern that may arise about filtering the predicted
instances is a resulting change in the leaf size distribution.
This would negatively impact phenotyping applications where
this distribution is relevant. Therefore, we evaluated how
much the distribution of the predictions by our segmentation
network changes after filtering with the two most promising

0.20.40.60.81.0
rkeep

77.5

82.5

87.5

92.5

PQ
 [%

]

Cluster var
GT
HDBSCAN
ours

Fig. 5: Evolution of PQ⊙ metric with varying values of rkeep. The
monotonic increase of our results shows that the confidence is
succesfully predicting the quality of the predictions. We also show the
upper bound of the PQ⊙ metric computed by filtering the prediction
based on the ground truth IoU values.
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rkeep

82.0
84.0
86.0
88.0
90.0
92.0
94.0
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SQ
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]

Cluster var
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HDBSCAN
ours

Fig. 6: Evolution segmentation quality (SQ) with varying values of
rkeep. We outline this metric explicitly as a good value is necessary
for the correct estimation of size based phenotypic features.

approaches, our network and the cluster variance σ2
lc. For this,

we use the Kullback-Leibler divergence (KL-div) and the χ2

test and reported the results in Tab. III. For clarity, we also
show the original and the filtered distributions in Fig. 7. This
experiment shows that our approach can accurately predict the
quality of predicted leaf instances, while keeping the leaf size
distribution almost unchanged.

F. Ablation on Feature Input for Confidence Network

To evaluate the influence of our proposed feature input, we
perform an experiment comparing two setups. The main setup
is the one used in our final approach, consisting in inputting
the 3D offset of the center prediction of each point from the
mean center prediction for the leaf as features for all points
that are predicted to be part of the leaf. For the points that are
part of the neighborhood of the current leaf, we instead pass
zero vectors as features, see Eq. (4). In the baseline setup
for comparison, we instead pass one-vectors for the points
contained in the leaf instance and zero-vectors for the other
points, see Eq. (5). As metrics for the comparison we use
the mean absolute error (MAE) of the IoU prediction and the
mean overestimation MO =

∑
i oe/|δ| with

oe =

{
δi − δ∗i , if δi − δ∗i > 0

0, otherwise,
(16)

where δi and δ∗i are predictions and ground truth values.
In the results that we report in Tab. V, it can be seen that

using our features improves the IoU estimation performance
and also slightly decreases the overestimation.
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Input features IoU MAE [%] IoU overestimation (MO) [%]

Instance mask 7.75 4.95
Ours 6.93 4.53

TABLE V: Effect of using our features instead of instance masks as
input features to the confidence network.
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Fig. 7: Both filtering methods change the unfiltered leaf size distri-
bution (blue) only very slightly. For quantitative results see Tab. III

V. CONCLUSION

In this paper, we present a novel approach to segment
leaves from point clouds acquired using cameras in real
field conditions to support plant phenotyping. We show that
compared to existing works our approach delivers improved
performance in the presence of noise and occlusions, which
is a serious challenge in basically all real world applications
in crop fields. Additionally, we proposed a novel approach to
identify low accuracy predictions in order to discard them,
which improves the segmentation performance of a subset of
the leaves by a good margin, more specifically 13 percent
points on the PQ⊙ metric. In sum, the complete pipeline
enables us to obtain a highly accurate segmentation of a subset
of the leaves in a plot, enabling the extraction of many plant
and leaf phenotypic traits.
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