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Prediction in Urban Environments
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Abstract—Semantic scene understanding is crucial for au-
tonomous systems and 3D semantic occupancy prediction is
a key task since it provides geometric and possibly semantic
information of the vehicle’s surroundings. Most existing vision-
based approaches to occupancy estimation rely on 3D voxel
labels or segmented LiDAR point clouds for supervision. This
limits their application to the availability of a 3D LiDAR sensor
or the costly labeling of the voxels. While other approaches
rely only on images for training, they usually supervise only
with a few consecutive images and optimize for proxy tasks
like volume reconstruction or depth prediction. In this paper,
we propose a novel method for semantic occupancy prediction
using only vision data also for supervision. We leverage all
the available training images of a sequence and use bundle
adjustment to align the images and estimate camera poses from
which we then obtain depth images. We compute semantic maps
from a pre-trained open-vocabulary image model and generate
occupancy pseudo labels to explicitly optimize for the 3D semantic
occupancy prediction task. Without any manual or LiDAR-based
labels, our approach predicts full 3D occupancy voxel grids
and achieves state-of-the-art results for 3D occupancy prediction
among methods trained without labels.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods

I. INTRODUCTION

IN the context of outdoor navigation, scene understanding
plays a crucial role to enable safe navigation in complex

environments. 3D perception tasks often rely on costly 3D sen-
sors like LiDAR, whereas, vision-centric scene understanding
seeks to provide meaningful information about the surrounding
scene using only RGB cameras.

Among the different vision-centric tasks, 3D semantic occu-
pancy prediction aims to represent the 3D geometric structure
of the surrounding scene from a setup of surrounding cameras,
this means, extracting 3D information from images. Other
tasks for geometric and semantic scene understanding from
images include 3D object detection and depth estimation.
Compared to 3D object detection [19], [20], [29], occupancy
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Fig. 1: Approaches that do not rely on ground-truth occupancy labels
for training like RenderOcc [27] usually perform implicit supervision
and have bleeding effects in their predictions as highlighted by circles
in the image. Using only RGB images for training, we explicitly
supervise for occupancy, which allows us to predict occupancy and
reduce the bleeding.

prediction [16], [17], [27], [34] provides a more fine-grained
representation and in contrast to monocular depth estima-
tion [12], [38], it seeks to also reconstruct the environment
in occluded areas.

State-of-the-art approaches for 3D semantic occupancy pre-
diction [17], [34], [42] rely on 3D voxel labels as an explicit
supervision signal to learn the full occupancy of the surround-
ing scene. Due to the costly annotation process, some recent
approaches project segmented LiDAR scans [3], [27] into the
images and use these for supervision. Given the sparsity of a
3D LiDAR compared to camera images, they use multiple
past and future scans to obtain denser supervision signals
but rely on the availability of a LiDAR sensor. In contrast,
recent research [16], [41] investigates using only images for
training. These approaches leverage multiple temporally close
RGB images jointly for supervision and consider multi-view
consistency to train a depth estimator for the surrounding
views but do not exploit all available images taken of the
whole scene. Some methods that use LiDAR scans [3], [27] or
RGB images [16], [41] provide implicit supervision to learn
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the occupancy by optimizing for a proxy task like volume
rendering [26]. Due to their training scheme, the predictions
of these methods usually present bleeding effects at the object
boundaries as shown in Fig. 1.

In this paper, we tackle the task of 3D semantic occupancy
prediction using only RGB images for training. We propose
to explicitly supervise for 3D semantic occupancy prediction
while relying only on image information to better predict the
full geometry and semantics of the scene, also behind occluded
voxels as shown in Fig. 1.

The main contribution of this paper is a method to generate
occupancy pseudo labels relying solely on images that we
can use to supervise networks for 3D semantic occupancy
and predict the full occupancy of the surrounding area. We
leverage all available images of the training set and use
bundle adjustment to align the images of each scene and
compute the camera poses. We exploit this information to
generate depth images to replace the LiDAR supervision. We
furthermore generate triangle meshes and use them to filter
out depth values belonging to occluded objects. We leverage
a foundation model to semantically segment the RGB images
and combine them with the depth images to generate sparse
occupancy pseudo labels as explicit supervision. We achieve
state-of-the-art performance while using only unlabeled RGB
images for training.

Our experiments suggest that without any labels, (i) our ap-
proach achieves state-of-the-art performance on 3D semantic
occupancy prediction among methods using only images for
training; and (ii) our depth filtering using a triangular mesh
improves the performance of 3D occupancy prediction. The
paper and our experimental evaluation back up these claims.

The implementation and generated pseudo labels used in our
approach are available at https://github.com/PRBonn/SfmOcc.

II. RELATED WORK

In this section, we examine works belonging to the main
tasks related to 3D semantic occupancy prediction. We high-
light recent research directions and common approaches to-
gether with the current challenges.

Depth Estimation is a key task in predicting 3D geometry
given images as input. Early works on depth estimation [22],
[43] rely on depth annotations for supervision. However,
more recent methods [24], [28], [33], [36], [39] use a self-
supervised approach to predict depth maps and ego-motion
and supervise through photometric constraints [11] between
adjacent frames. To adapt to multi-camera setups normally
used for autonomous vehicles, some approaches [12], [38]
tackle depth estimation using the multi-view information.
In particular, SurroundDepth [38] uses structure-from-motion
(sfm) in the overlap between cameras to obtain scale-aware
pseudo depths to pre-train the models and increase perfor-
mance. This highlights how even sparse depth supervision
obtained from structure-from-motion can help in obtaining
real-world depth predictions.

Instead of using only the small overlap between cameras,
we propose to use all available images captured by the multi-
camera setup for each scene. We perform bundle adjustment

to obtain camera poses and sparse scale-aware depth images
for the whole training set.

3D Semantic Occupancy Prediction, also known as se-
mantic scene completion, aims to provide a complete under-
standing of the scene by estimating the 3D geometry and
semantics within a predefined voxel grid. SemanticKITTI [1]
introduced a benchmark for 3D semantic scene completion
based on a LiDAR and stereo camera setting. While some
works focus on reconstructing the surroundings using LiDAR
data [7], [18], [44] others use monocular or stereo cameras [6],
[17]. Occ3D-nuScenes [34] provides 3D semantic occupancy
ground-truth for the nuScenes dataset [5], where the input
is the six images of the surrounding camera setup. Various
methods [10], [17], [37] build on top of 3D object detection
architectures [15], [20] to extract 2D features and lift them into
a common 3D space. Some of the most recent approaches [23],
[40] focus on efficient supervision while others design new
architectures to improve the performance [21], [42]. Due to the
challenging nature of the 3D occupancy task, these methods
rely on costly 3D ground-truth and laborious annotations.
Instead of using 3D voxel labels, some approaches [3], [9],
[27] train with 2D depth and semantic labels obtained by
projecting the segmented LiDAR scan into the images, which
requires annotation of the LiDAR data.

To avoid relying on expensive 3D sensors and labeling of
3D data, some approaches [16], [41], [42] use only unlabeled
camera images and implicitly learn occupancy by supervising
with a few subsequent images and optimizing for a proxy
task like volume rendering [26]. These methods [9], [16], [41]
use foundation models [32] to obtain semantic labels for each
image during training.

We follow this line of work and only use images as
supervision. However, instead of using a few sequential images
for supervision, we propose to leverage all available images of
the scene and bundle adjustment to generate sparse occupancy
pseudo labels and explicitly supervise the network for occu-
pancy prediction. We furthermore exploit a foundation model
to generate semantics for each image, which are added to our
pseudo labels to provide geometric and semantic supervision.

III. OUR APPROACH TO
3D SEMANTIC OCCUPANCY PREDICTION

A. Task Definition

Given a set of RGB images I = {I1,t, . . . , IN,t} from a
setup with N surrounding cameras recorded at timestep t,
the objective is to predict the geometry and semantics of
the surroundings as a dense 3D voxel grid Õ ∈ RH×W×D×B

where H , W , D is the volume resolution and B is the number
of semantic classes (including the “empty” class).

We show an overview of our approach, called SfmOcc,
in Fig. 2. We first extract 3D voxel features F ∈ RH×W×D×C

from the input images I using a network G, where C is the
feature dimension. The network G usually extracts 2D image
features and projects them to 3D by either first predicting
depth [27] or via attention [17]. From the voxel features F ,
we obtain semantic logits and occupancy probabilities using
two MLP heads ϕs and ϕo and supervise the model using

https://github.com/PRBonn/SfmOcc
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Fig. 2: Overview of our approach called SfmOcc. Given a set of RGB images from a multi-camera setup, we extract a 3D volume feature F
and use MLP heads ϕs and ϕo to predict semantic logits and occupancy probabilities for each voxel, which we fuse to obtain the final
voxel grid Õ. For supervision, we leverage all available training images and use structure-from-motion (sfm) and volume reconstruction to
generate sparse occupancy pseudo labels. We use a foundation model to obtain semantic maps for the images and set the semantic class of
each voxel. This way, we explicitly supervise our approach for semantic occupancy prediction while relying only on camera data.

(a) Point cloud from sfm (b) Mesh from sfm
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Fig. 3: Point cloud (a) and triangle mesh (b) obtained from structure-
from-motion for one scene. The scene depicts a parked truck on the
left side of the road, construction barriers on the right, a building on
the left, and a curvature at the end of the road.

sparse occupancy pseudo labels. We obtain the final semantic
occupancy predictions by assigning the predicted semantic
class to the voxels predicted as occupied. Note that our method
is not bounded to a particular network G to perform occupancy
prediction and could be used to train different models by
replacing the supervision.

To obtain pseudo labels for each scene, we use all images
recorded by the camera setup at all timesteps t ∈ {t1, . . . , tM}.
We use bundle adjustment to align all N ·M images in
the scene, obtain camera poses, and then generate depth
images as explained in the next section. We further use these
depth images to perform volume reconstruction and obtain
occupancy pseudo labels. We use a foundation model [32]
to obtain 2D semantic maps for each image and generate
semantic occupancy pseudo labels.

B. Depth Image Generation

We leverage all the available image information to ob-
tain depth images that we can further use to generate
occupancy pseudo labels. For each recorded scene, we
use bundle adjustment [35] to align the RGB images
{{I1,1, . . . , IN,1}, . . . , {I1,M , . . . , IN,M}} captured by the N
cameras at the M timesteps in the scene.

Given that the N cameras are rigidly attached, we optimize
the poses Ti,t ∈ R4×4 of a single camera i for each timestep t
and, for each other camera j, the transformation jTi ∈ R4×4

to camera i for the whole sequence. Furthermore, we fix

the intrinsics Ki for each camera and do not optimize them,
i.e., assuming a fixed, not-changing camera calibration. These
two modifications allow us to optimize a smaller number of
parameters and better constrain the adjustment, which in turn
leads to more reliable results and is more robust to outliers
from dynamic objects. This way, we obtain the camera poses
for each camera, i.e., Tj,t =

jTiTi,t at each given timestep t in
the scene. To simplify notation, when referring to a camera i
at a timestep t, we drop the subscript t.

Given the optimized camera poses Ti, we use multi-view
stereo reconstruction [8], [30] to generate a sparse point
cloud P for the given scene as shown in Fig. 3 (a). We use
the camera intrinsics Ki to project the point cloud P into each
camera i and obtain a depth image DP

i = π(P,Ti,Ki), where
π represents the projection of each point in the point cloud to
the depth image, as shown in Fig. 4.

Each depth image DP
i provides depth for the reconstructed

regions. Due to the sparsity of the point cloud P , the obtained
depth images DP

i often have pixels with wrong depth belong-
ing to occluded objects or areas. This can be seen in the point
cloud obtained when unprojecting a depth image DP

i to 3D,
as shown in Fig. 4.

C. Depth Filtering

As our point cloud P is sparse, points belonging to occluded
objects are projected into the depth image DP

i , generating
wrong depth values. If we obtain a closed surface without
holes, we can avoid the projection of occluded points into the
depth image. We can obtain such a surface by generating [13],
[31] a triangle mesh T of the given scene using the poses
from bundle adjustment to align the predicted depths from
the multi-view stereo reconstruction. We show such mesh
in Fig. 3 (b). Projecting the mesh we obtain the depth
image DT

i = π(T ,Ti,Ki) as shown in Fig. 4. We can observe
that the mesh generation introduces blob-like artifacts and
problems in the boundaries, which prevents us from directly
using the depth image DT

i for supervision. However, we can
use this depth image DT

i to filter out pixels with wrong depth
in DP

i belonging to occluded areas.
We compute the residual between both depth im-

ages D̂i = |DP
i − DT

i | and filter out pixels with residual larger
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Fig. 4: Filtering of depth images. We project the point cloud P into
the image Ii and obtain a depth image DP

i . Due to the sparsity of the
input point cloud, pixels associated with occluded points have wrong
depth values. This is better visible when unprojecting the depth image
to 3D. We show the full sfm point cloud for reference. We project
the triangle mesh T into the image Ii to obtain a depth image DT

i

and use it to filter out pixels with wrong depth. The result is Df
i . We

unproject it to 3D to better show the filtering. We draw a bounding
box around the truck for better visualization.

than a threshold τ , which results in the filtered depth map Df
i

for image Ii:

Df
i (u, v) =

{
DP

i (u, v) , if D̂i(u, v) ≤ τ

0 , otherwise
. (1)

The depth image from the mesh DT
i represents the closest

surface to the camera and therefore the pixels (u, v) belonging
to occluded objects have different depth values and a large
residual in D̂i, which allows us to filter them out.

We show an example of the obtained depth image Df
i in

Fig. 4. Given the filtering, the result is less dense than DP
i but

pixels with wrong depth are discarded, as seen in Fig. 4, by
unprojecting the depth images into 3D.

It is important to mention that during this process, also
pixels with correct depth are removed, making the supervision
even sparser. This filtering helps the network to better learn
the depth and to generate better occupancy pseudo labels, as
discussed in Sec. IV-F1.

D. Occupancy Pseudo Labels

The obtained depth images Df
i can be used to replace

the supervision in methods that use projected LiDAR for
supervision [3], [27]. To explicitly supervise our method for
occupancy, we can use the depth images along with the camera
poses from bundle adjustment to generate sparse occupancy
pseudo labels. Since we have depth images for the whole
scene, we use the N ·M depth images Df

i to obtain a denser
supervision, also behind occluded voxels in the current view.

We build a global voxel grid Vg ∈ RH′×W ′×D′×B , where
H ′,W ′, D′ are the dimensions of the complete sequence
and perform a similar operation to occupancy mapping [14].
For each ray of each image, we assume that the endpoint
corresponds to a surface and that the line of sight between
the camera center and endpoint is free space. To determine
the voxels that need to be updated, we perform a ray-casting
operation to determine voxels along the ray from the camera

(a) Occupancy pseudo labels (b) Semantic occupancy pseudo labels

Fig. 5: Generated occupancy pseudo labels. We show in (a) the
occupancy labels generated from a single (blue) and from all depth
images in the scene (gray) and in (b) the corresponding semantic
classes for each occupied voxel.

center to the endpoint. We use a 3D variant of the Bresenham’s
algorithm [4] to approximate the ray and step through the
voxel grid from the camera center to the endpoint of the
ray. We set all traversed voxels as “empty” and the voxel at
the end of the ray as “occupied”. We show examples of our
generated pseudo labels from one or all timesteps in Fig. 5.
With this approach, we combine all the different viewpoints
of all cameras and obtain sparse occupancy pseudo labels for
the whole scene, including free space and occluded voxels
behind objects. This allows us to directly supervise occupancy
probabilities instead of relying on proxy tasks like volume
rendering [3], [16], [27].

E. Semantic Maps

To supervise for semantic occupancy, we extract semantic
maps using a pre-trained open-vocabulary model [32]. This
way, we obtain 2D semantic maps for each image without
any 2D or 3D ground-truth label. To add semantic information
in the pseudo label generation, instead of setting voxels as
“occupied” at the end of a ray, we accumulate in a histogram
the class of the ray, which we obtain from the corresponding
semantic map. At the end of the generation, we perform
majority voting for each voxel to obtain the final semantic
class. Given the inconsistency of the semantics predicted by
the pre-trained model for the different views, the obtained
labels may not be consistent for the different objects or
surfaces but still provide reasonable classes for the whole
scene as shown in Fig. 5.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a method to perform 3D se-
mantic occupancy prediction, which is trained using only RGB
images. We leverage all available training images to generate
sparse pseudo labels and explicitly supervise for occupancy.
We present our experiments to show the capabilities of our
method, and support our key claims: (i) our approach achieves
state-of-the-art performance on 3D semantic occupancy pre-
diction among methods using only images for training, and
(ii) our depth filtering using a triangular mesh improves the
performance of 3D occupancy.

A. Implementation Details

We use BEVStereo [19] as the network G to obtain the
3D voxel features F . We predict 3D semantic occupancy
for a voxel grid with resolution H = 200, W = 200,
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D = 16 and voxel size {0.4× 0.4× 0.4}m3. We keep the
original architecture and only add the semantic and occupancy
heads ϕs, ϕo, which both consist of two linear layers and
softplus activation layers. We follow the training strategy of
RenderOcc [27], resize the image to 512 × 1408 pix and use
AdamW [25] optimizer to train for 12 epochs with learning
rate of 10−4 and batch size 8. We supervise both the semantic
logits and the occupancy probabilities using Cross Entropy
loss between predictions and pseudo labels. All experiments
are conducted on 8 NVIDIA A40 GPUs.

We filter static sequences where the car moved less than 1m
and discard complete scenes where less than 75% of the
images were successfully aligned. We use the camera intrin-
sics Ki provided by the dataset and do not optimize them. To
obtain semantic maps, we use Grounded SAM [32] and follow
OccNerf [41] to prompt the model with multiple synonyms of
each class name of the nuScenes dataset.

B. Experimental Setup

We evaluate our method on Occ3D-nuScenes [34] dataset,
which provides 3D semantic occupancy ground-truth for
the images of nuScenes [5]. nuScenes provides 1000 driv-
ing scenes with six surrounding-view cameras. The oc-
cupancy ground-truth covers a range of [−40, 40]m in x
and y direction and [−1, 5.4]m in z direction with voxel
size {0.4× 0.4× 0.4}m3 meters and contains 17 semantic
classes, the 16 classes of nuScenes plus an extra “empty”
class. We use IoU to evaluate occupancy performance without
considering semantics and mIoU to get the average across all
non-empty semantic classes. Occ3D-nuScenes only provides
labels for the training and validation set of nuScenes but not
for the test set. To avoid running experiments in the same set
of 150 scenes (validation) where we evaluate our performance,
we separate 60 scenes from the training set and use this set
as our validation set. This way, we run our experiments and
evaluate our performance in different subsets of the data.

C. Pseudo Labels

We generate pseudo labels only for the training set. How-
ever, given that we use bundle adjustment, we do not consider
scenes where the image alignment fails like scenes where the
vehicle does not move, too dark scenes or scenes with too
many dynamic objects. We obtain depth images and pseudo
labels for 584 out of the 700 scenes in the training set and
use 60 of the remaining scenes as validation set. The bundle
adjustment and depth image generation take around 25min
per scene while the occupancy pseudo-label generation takes
around 2min per scene. We generate a total of 127, 458 depth
images, which we use to generate 21, 231 voxel-level sparse
pseudo labels covering the surroundings of the vehicle with the
same voxel grid and range as Occ3D-nuScenes. The generated
pseudo labels contain 18 semantic classes including the 17
of Occ3D-nuScenes, and an extra “uncertain” class, which
represents occupied voxels with no class given by the pre-
trained semantic model. We consider the voxels with this class
for occupancy but not for semantic supervision.

Method Mode GT Sem. IoU [%] mIoU [%]

OccFormer [42] 3D ✓ - 21.9
TPVFormer [17] 3D ✓ - 27.8
CTF-Occ [34] 3D ✓ - 28.5
BEVStereoOcc 3D ✓ 51.6 27.7

TPVFormer [17] L ✓ 17.2 13.6
RenderOcc [27] L ✓ 45.9 23.9
OccFlowNet [3] L ✓ - 26.1

SimpleOcc [34] C - 7.1
SelfOcc [16] C 45.0 9.3
OccNeRF [41] C 45.0 9.5
GaussianOcc [9] C - 9.9
LangOcc [2] C 51.8 11.8
SfmOcc (ours) C 57.7 17.7

TABLE I: 3D semantic occupancy prediction performance on occ3D-
nuScenes. In the column mode: 3D are methods trained with occu-
pancy ground truth labels, L trained with LiDAR supervision, and
C trained only with cameras. GT Sem. indicates the usage of ground-
truth semantic labels for supervision. We denote our model trained
with ground-truth labels as BEVStereoOcc.

Method mIoU bicycle bus car cons. veh. motorcycle pedestrian trailer truck

SelfOcc [16] 10.5 0.1 6.6 13.2 0.0 0.4 2.4 0.0 7.7
GaussianOcc [9] 11.0 3.8 14.6 17.2 0.8 2.9 10.1 0.14 10.6
SfmOcc (ours) 19.6 8.2 14.8 20.9 7.1 12.0 12.2 1.6 15.9

TABLE II: 3D semantic occupancy prediction performance on scenes
with many dynamic objects in Occ3D-nuScenes.

D. 3D Semantic Occupancy Prediction Performance

The first experiment evaluates the performance of our
approach in Occ3D-nuScenes [34] dataset and shows that
our approach achieves state-of-the-art performance among
methods supervised using only camera data. In Tab. I, we
compare against methods that use as supervision the ground-
truth 3D labels (3D), LiDAR (L), and only cameras (C).

Our approach SfmOcc surpasses previous camera-only
methods by at least 5.8 percent points both in terms of IoU
and mIoU. We are able to predict better 3D geometry, shown
by our higher IoU compared to the baselines and we even
outperform methods trained with LiDAR supervision both in
IoU and mIoU. We also train our same architecture with
ground truth labels and denote it as BEVStereoOcc. Relying
on images only, our approach SfmOcc is able to learn the free
space but drops in terms of mIoU, probably because of wrong
semantic classes in the generated pseudo labels.

E. Performance in Scenes with Dynamic Objects

We generate occupancy pseudo labels relying on bundle
adjustment with the static scene assumption, where we do not
reconstruct dynamic objects. In this experiment, we compare
the performance of different image-based methods on scenes
with many dynamic objects. We select 30 scenes with more
dynamic objects in the validation set of Occ3D-nuScenes
and evaluate image-based methods in Tab. II. Our approach
outperforms other methods relying on images for training for
all dynamic classes and in the average of all classes. Other
methods that supervise with a few consecutive images also
rely on multi-view geometry for supervision and therefore face
the same problem.
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# Depth supervision IoU [%] mIoU [%]

A LiDAR 53.8 16.4

B Depth images DP 40.5 12.3
C Filtered depth images Df 46.6 14.0

TABLE III: Semantic occupancy prediction performance supervising
only with depth images. We compare using depth images obtained
by projecting LiDAR scans and by projecting the sfm point cloud P
before DP and after Df filtering.

# Pseudo labels IoU [%] mIoU [%]

D Depth images DP 60.7 18.7
E Filtered depth images Df 68.3 20.5

TABLE IV: Semantic occupancy prediction performance supervising
with pseudo labels from unfiltered and filtered depth images.

F. Ablation Studies

We show the influence of our design choices in the perfor-
mance of the approach, namely the depth filtering and different
ways of generating pseudo labels. We evaluate our model in
the 60 scenes that we separated from the training set. We
indicate each experimental setup with capital letters [A], [B],
etc. in Tabs. III, IV and V.

1) Depth Filtering: In this experiment, we show the im-
portance of the depth filtering to obtain depth supervision and
generate the occupancy pseudo labels.

We first supervise only with depth images and the cor-
responding semantic maps. We follow RenderOcc [27] and
randomly sample camera rays and use volume rendering to
obtain their semantic and depth values. We show our results
in Tab. III. In [A], we get depth images by projecting the
LiDAR using the calibration between sensors. Due to the
sparsity of the LiDAR, we follow a common practice [27]
and use a window of 7 consecutive LiDAR scans for a denser
supervision. We achieve 16.4% mIoU and 53.8% IoU. In [B],
we use the depth images Dp obtained by projecting the point
cloud P into the image plane. These depth images contain
pixels with wrong depth due to the sparsity of the obtained
point cloud, as explained in Sec. III-B and as shown in Fig. 4.
Given the density of the supervision, we can train using the
depth images for a single timestep, resulting in 12.3% mIoU
and 40.5% IoU. In [C], we use the depth images Df obtained
after the depth filtering with the triangle mesh. We filter
out pixels with wrong depth, as explained in Sec. III-C and
shown in Fig. 4. This filtering allows us to achieve 14.0%
mIoU and 46.7% IoU, improving 1.7 percent points and 6.1
percent points respectively and shows that we improve the
performance.

For the next experiments we train using only the sparse
occupancy pseudo labels generated with the depth images as
explained in Sec. III-D and show the results in Tab. IV. In [D],
we use the depth images DP obtained by projecting the point
cloud P into the image plane, and in [E], we use the filtered
depth images Df . Compared with Tab. III, training with
pseudo labels instead of only using depth images improves the
IoU by at least 14 percent points and the mIoU by around 4
percent points. As shown in Tab. IV, our depth filtering

# Single image All images Volume rec. IoU [%] mIoU [%]

F ✓ 38.4 13.9
G ✓ 38.5 14.5
H ✓ ✓ 58.6 17.2
I ✓ ✓ 68.3 20.5

TABLE V: Influence in semantic occupancy prediction performance
supervising with different sparse pseudo labels. Either using a single
or multiple images to generate them and whether or not to use volume
reconstruction to obtain supervision for the free space.

Pseudo labels IoU [%] mIoU [%]

Whole voxel grid 49.6 8.7
Visible area only 50.4 15.7

TABLE VI: Evaluation of our generated pseudo labels vs. the ground-
truth voxel labels for the training set of Occ3D-nuScenes.

helps to remove invalid depth values due to occlusions and
improves the performance from 60.7 to 68.3 in terms of IoU
and from 18.7 to 20.5 in terms of mIoU. This highlights the
importance of filtering wrong depth values before generating
the occupancy pseudo labels.

2) Pseudo Label Generation: In this experiment, we show
how the different ways of generating pseudo-labels presented
in Sec. III-D influence the model performance.

In [F], we only use depth images for a given timestep
unproject them into a point cloud, and voxelize them. This
way, we get supervision only for the occupied voxels as shown
in Fig. 5 (a) and only up to the first occupied voxel. The IoU
reaches 38.44 due to the sparsity of the supervision and the
fact that we can only supervise the occupied voxels.

In [G], we aggregate the point clouds from all the depth
images for the scene and voxelize it. In this case, we obtain
supervision for occupied voxels in the complete scene. This
includes voxels occluded by objects, but which are visible
from a different view, as shown in Fig. 5 (b). Here we
only supervise occupied voxels and therefore the occupancy
prediction performance is similar to [F], as shown by the IoU.
However, since we have more voxel with semantic classes as
supervision, the mIoU improves from 13.9 to 14.5.

In [H], we use the depth images from a single timestep to
perform volume reconstruction and also set all the traversed
voxels as “empty”, as explained in Sec. III-D. Here, we only
have values for the voxels up to the first object. While the
mIoU improves around 3 percent points with respect to [G],
the IoU improves by 20 percent points with respect to [F] and
[G]. We argue that this is due to the supervision of empty
voxels, which represent around 90% of the scene and help the
model better understand the 3D geometry.

Finally, in [I], we perform volume reconstruction using all
the depth images in the scene. This way, we obtain supervision
for all voxels along the rays of each depth image in the scene.
The IoU reaches 68.25 and mIoU 20.52 due to the supervision
of both occupied and free voxels observed from the different
points of view of the different cameras.

3) Evaluation of Pseudo Labels: To show the quality of our
generated pseudo labels, we evaluate them against the ground-
truth labels for the training set and show the results in Tab. VI.
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RenderOcc SelfOcc SfmOcc (ours) GT from annotated LiDAR

others barrier bicycle bus car cons. veh. motorcycle pedestrian cone

trailer truck driv. surf. other flat sidewalk terrain manmade vegetation

Fig. 6: Qualitative results of our approach SfmOcc. We compare against approaches that use depth images (RenderOcc) or multiple RGB
images (SelfOcc) as supervision. They show a bleeding effect similar to monocular depth estimation predictions while our approach better
learns the full shape of the objects, including the part that is not visible from the camera.

If we evaluate the whole voxel grid, our labels have an IoU
of 49.6% and mIoU of 8.7% with respect to the ground-truth
labels. During training, we do not consider the parts of the
scene not seen by any camera for supervision, in which case
our pseudo labels have an IoU of 50.4% and mIoU of 15.7%.

G. Qualitative Results

Finally, we compare qualitatively the semantic occupancy
predictions of our approach SfmOcc with different state-of-
the-art methods. Namely RenderOcc [27] trained using LiDAR
and SelfOcc [16] supervised only with images [16]. We show
predictions for each method in Fig. 6.

Training only with LiDAR depth, RenderOcc [27] shows
bleeding at the boundaries of the objects, which is usually
observed in methods that perform mono-depth estimation. This
is because they only supervise each camera ray up to the first
object and therefore are not able to learn the whole shape
of the objects. This is similar to methods that supervise only
with RGB images like SelfOcc [16], which provide, for each
ray, the corresponding ray in other views and leverage multi-
view consistency, and supervise using photometric constraints.
On the other hand, our approach relies only on images for
training but provides sparse supervision for multiple voxels in
the scene, including occluded voxels. This allows the model
to better learn the geometry of the scene and the shape of
objects, not only the depth, and leads to more complete results.
Furthermore, although the semantics of the pseudo labels are
sometimes not consistent within an object, the model is able to

learn a single class for the whole object. Because we do not
use ground truth semantics, our method sometimes predicts
wrong semantic classes.

In summary, our evaluation shows that our method achieves
state-of-the-art performance on semantic occupancy prediction
among methods trained only with camera data and that we are
able to predict full occupancy instead of only performing depth
estimation. However, due to the static surrounding assumption
in our bundle adjustment system, we are currently not able to
reconstruct dynamic objects in the pseudo label generation.

V. CONCLUSION

In this paper, we presented a novel approach to generate
occupancy pseudo labels for 3D semantic occupancy pre-
diction using only vision data. Our method allows us to
supervise using only camera data and exploits the information
from all the input images during training jointly. Without
manual labeling and relying only on a foundation model for
semantics, our approach achieves state-of-the-art performance
among methods trained only with camera information and even
competitive performance among methods trained with LiDAR.
We implemented and evaluated our approach, provided com-
parisons to other existing techniques, and supported all claims
made in this paper. The experiments suggest that we can use
only images and structure-from-motion to generate supervision
for occupancy estimation. Furthermore, we proposed a depth
filtering method using a triangle mesh, which eliminates wrong
depth values and improves the performance.
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