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Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving

Rodrigo Marcuzzi Lucas Nunes

Abstract—Autonomous vehicles need to understand their sur-
roundings geometrically and semantically to plan and act appro-
priately in the real world. Panoptic segmentation of LiDAR scans
provides a description of the surroundings by unifying semantic
and instance segmentation. It is usually solved in a bottom-up
manner, consisting of two steps. Predicting the semantic class for
each 3D point, using this information to filter out ‘“stuff”” points,
and cluster “thing” points to obtain instance segmentation. This
clustering is a post-processing step with associated hyperparam-
eters, which usually do not adapt to instances of different sizes
or different datasets. To this end, we propose MaskPLS, an
approach to perform panoptic segmentation of LiDAR scans in an
end-to-end manner by predicting a set of non-overlapping binary
masks and semantic classes, fully avoiding the clustering step. As
a result, each mask represents a single instance belonging to a
“thing” class or a ‘“‘stuff”’ class. Experiments on SemanticKITTI
show that the end-to-end learnable mask generation leads to
superior performance compared to state-of-the-art heuristic ap-
proaches. The implementation of our approach is available at
https://github.com/PRBonn/MaskPLS.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods

I. INTRODUCTION

EMANTIC scene understanding is a key requirement for
S autonomous vehicles navigating in dynamic environments.
Panoptic segmentation [24] seeks to jointly achieve semantic
segmentation to semantically interpret the surrounding and
instance segmentation to identify object instances. On LiDAR
point clouds, panoptic segmentation is usually solved in a
bottom-up way by predicting different kind of information,
such as offset vectors [20], embedding vectors [33], and/or
object centers [2] to enable and guide the clustering of
instances using off-the-shelf clustering approaches [13], [8].
The clustering algorithms need hyperparameter tuning that
depends on the data and does not allow end-to-end training
of the model. For images, recent work [L1], [LO], [43] solves
this problem by directly predicting a set of binary masks and
semantic classes but this paradigm has not yet been applied for
3D LiDAR point clouds, where the distance-dependent spar-
sity might pose a challenge for the aforementioned approaches.
In this work, we propose to remove the clustering step and
perform panoptic segmentation on 3D LiDAR point clouds
by directly predicting a set of binary masks and semantic
classes. The method is end-to-end trainable and does not
require hyperparameter tuning to work on different data.
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Fig. 1: Panoptic segmentation by predicting binary masks and their
corresponding semantic class. Each mask represents a single instance
of a “thing” class, i.e., car or a complete “stuff” class, i.e., road,
sidewalk. Top: predicted binary masks. Middle: predicted mask class.
Bottom: panoptic prediction by merging the masks.

Inspired by recent work on images [9]], [11], we adopt a
backbone network for feature extraction, a set of learnable
feature vectors as mask proposals and a transformer decoder
to predict non-overlapping binary masks and their semantic
classes like depicted in Fig. [Tl Each mask represents a single
instance of a “thing” class or a complete “stuff” class. We base
our approach on the work by Cheng et al. [10]. Compared
to images, we have to deal with the sparsity of the LiDAR
data while avoiding the high memory requirements of 3D
convolutions. Therefore, we use a backbone based on 3D
sparse convolutions to extract multi-scale features. A modified
transformer decoder combines learnable queries and features
from different resolutions through masked attention [10]. We
generate the final 3D masks by combining the output queries
of the decoder and the full resolution point features. To deal
with the voxelization effects, we compute point-wise features
through interpolation instead of directly feeding voxel features
to the decoder. To improve the quality of 3D masks, we merge
semantic and spatial information by adding fixed positional
encodings to full-resolution point features.

The main contribution of this paper is a method to perform
panoptic segmentation by predicting a set of binary masks and
semantic classes that can be trained end-to-end without any
heuristic post-processing steps, like clustering. To the best of
our knowledge, we present the first approach for mask-based
panoptic segmentation in 3D point clouds. Our experiments
suggest that our approach (i) performs better than common
approaches relying on clustering algorithms that might need
hyperparameter tuning for different datasets; and (ii) achieves
competitive performance even with a simple feature extractor.
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II. RELATED WORK

Semantic Segmentation. Early approaches [23], [35], [36l]
process the point cloud directly, which is usually time-
consuming and computationally expensive for large point
clouds. Follow-up works build point kernels [41] while still
operating at point level. Several works [34], [29] project the
LiDAR point cloud into a range image and use lightweight
2D convolutional networks, leveraging well-known architec-
tures [[19]. Other approaches [12], [49] voxelize the 3D space
to keep topological relations and use sparse convolutions [[17]]
to reduce the memory usage. There are also works [40], [,
[44], [45] that combine different representations to extract
features and get a better performance.

Instance Segmentation. Zhang et al. [47] propose a dense
feature encoding technique and Yin et al. [46] represent objects
as points for detection and tracking. Hu et al. [21]] remove
the “stuff” points and use hierarchical clustering to get class-
agnostic instances. Based on transformers, DETR [9]] performs
object detection in images by predicting bounding boxes with
learnable queries and solving an end-to-end set prediction
problem. They add a mask head like Mask R-CNN [18] to
decode masks and obtain instance segmentation.

Panoptic Segmentation [24] requires to fuse semantic and
instance segmentation. Several approaches project into 2D
images [39], [33], [22], [27] while others [20], [15], [37], [30]
keep the 3D structure either using sparse convolutions [17]]
or kernel point convolutions [41]. Some top-down methods
[39], [22] follow image-based works and add a semantic head
to Mask R-CNN [18] and perform panoptic segmentation on
range images. Bottom-up methods [33l], [20], [37], [28], [27]
use semantic segmentation predictions to filter the “stuff”
points and apply a clustering method as post-processing to get
the final instance segmentation, which does not allow training
these methods end-to-end. Gasperini et al. [[15] propose a
learning-based clustering method to train the model end-to-
end. Still, they require several post-processing steps to fix
the clustering errors and achieve competitive performance.
Li et al. [26] propose a cluster-free instance segmentation head
by pillarizing foreground point embeddings and finding the
connected pillars with pairwise embedding comparison. Other
approaches [2], [32] extended the task to the temporal domain
by generating instance segmentations that are consistent over
time resulting in so-called 4D panoptic segmentation.

Mask Segmentation. Different from other segmentation
paradigms, mask-based approaches [18], [[7], [9]] predict a set
of binary masks and corresponding semantic classes. They
perform instance segmentation by first estimating bounding
boxes and then generating the masks from them. Recently,
Cheng et al. [11] proposed to remove the bounding boxes
and use a transformer [42]] to perform semantic segmentation
by using a set of learnable queries as object proposals and
directly output the masks. Further works [43]], [1O] apply this
concept to achieve panoptic segmentation in a top-down way
without manually-designed post-processing steps like non-
maximum suppression to remove duplicated predictions. These
approaches have been validated in the 2D image domain but
have not been applied to 3D point clouds. We extend these

ideas by facing different challenges such as a larger number
of points, sparsity of the data, and voxelization artifacts.

In this paper, we propose to perform panoptic segmentation
on 3D LiDAR point clouds by directly predicting a set
of binary masks and their corresponding semantic classes,
removing this way the need for a clustering step.

III. MASK-BASED PANOPTIC LIDAR SEGMENTATION
A. Task Definition

Given an input point cloud X € RV*3, we want to segment
it into a set Y = {(mi,c;)}X, of K non-overlapping
binary masks m; € {0,1}" and their semantic classes
¢i €{1,...,C} for C classes. Each mask represents either a
single instance of a “thing” class or a complete “stuff” class.

Our model predicts a set Z = {(1;,p;)}M, of M bi-
nary masks predictions ri2; € [0,1]" with values between
0 and 1; and probability distributions p; over the classes
{1,...,C} U {@}, where ¢ is an additional “no object” class.
Note that we assume M > K and include a “no object” class
that is assigned to the extra M — K masks.

We follow prior work [9], [1O], [11] and use an architecture
consisting of a feature extractor to obtain multi-scale features
and a transformer decoder combining learnable queries and
backbone features to obtain the segmented output. Fig.
shows an overview of our method. We voxelize the input point
cloud and extract voxel features at different resolutions via
the backbone. We convert voxel features into point features
and feed these to the transformer decoder along with A
learnable queries (learnable feature vectors). The final M mask
predictions are obtained by combining the mask embeddings
and the output query embeddings while the mask semantic
classes are decoded from the output queries.

B. Feature Extractor

We use a feature extractor to obtain multi-scale features as
input to the decoder. Given the sparse nature of the LiDAR
data, we use a MinkowskiNet [12] backbone composed of 3D
sparse convolutions to preserve spatial knowledge and obtain
meaningful features with a low memory footprint. To show
that our approach can be applied to other backbones, we also
evaluate it with CylinderNet [49] using cylindrical voxels, and
SPVCNN [40] using sparse point-voxel convolutions.

The backbone extracts voxel features F, € RE*Nv at
different resolutions, where C, is the feature dimension and
N, is the number of voxels, which depend on feature stride,
and full-resolution point features F,, € R >N where C,
is the feature dimension. We adopt multi-scale features to
help segment small instances. To use these features as decoder
input, we convert the voxel features into point features with
the voxel-to-point function (v2p) f : R€»*Nv — RC»XN that
we discuss in Sec.

C. Transformer Decoder

The decoder takes queries as mask proposals and multi-
scale features and outputs the final queries used for the
mask predictions. Following the work by Cheng et al. [10],
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(a) Description of the approach

(b) Description of the decoder layers

Fig. 2: Overview of our method. (a) The 3D feature extractor processes the input point cloud to obtain multi-resolution features. The
voxel-to-point (v2p) transforms voxel features into point features. The learnable queries and point features are inputs to the decoder layers.
The predicted masks are obtained via dot product between mask embeddings and output queries. The class prediction is decoded from the
output query embeddings. (b) we obtain intermediate binary masks and use them in the masked attention, followed by self-attention and a
feedforward network (FFN). The intermediate predictions are only used for training and are supervised with the same loss function.

we use a modified transformer decoder layer to leverage
optimization and training efficiency improvements by using
masked attention. Compared to the standard cross-attention,
where the queries attend to all the keys, masked attention
restricts the attention to a subset of keys localized inside a
mask. Each decoder layer is depicted in Fig. 2p and consists
of masked attention between queries and backbone features
followed by self-attention and a feedforward network (FFN).
Each masked attention combines the M learnable queries with
features from different resolutions to enhance the training
and help the model segment small objects. We group three
decoder layers into a transformer decoder block that we repeat
L times. After the decoder blocks, we obtain the output
query embeddings Q € RM*Cr We keep spatial reasoning
during the decoding step, adding fixed point-wise positional
encodings [42] P, € RV*C» to the point features input to
each cross-attention module and to the full resolution features
to obtain mask embeddings E = F), + P..

D. Mask Prediction

The final step is to compute the mask predictions using
output queries and point features. We obtain the probability
distributions p; over the semantic classes by applying a linear
layer over the output queries. For the masks predictions, we
want to obtain the mask scores M € RV*M je  the score of
each point for each of the M predicted masks m; € [0, 1],
where m; is represented by the i*” column of M. We compute
the mask scores via the dot product between mask embeddings
and output queries and apply a sigmoid activation function
M = sigmoid(EQ"). We can obtain the final prediction by
performing argmax twice: over the semantic class for each
mask and over the mask scores for each point. In practice,
we filter out masks with a large part of their binary mask
occluded by other predictions to reduce false positives as done
in previous works [9]], [11].

Apart from the final predictions, we generate intermediate
predictions to enhance the training by supervising them with
the same loss function as for the final predictions. Before

each decoder layer, we use the mask embeddings E and the
queries of the previous step to get the intermediate predictions
as shown in Fig. 2p. The masked attention function requires a
binary mask to allow the queries to attend only to the point fea-
tures inside it. We obtain them by applying a threshold 7 = 0.5
over the intermediate mask predictions.

E. Loss Function

To train our approach, we follow MaskFormer [11] and
perform a bipartite matching between the M predictions Z
and the K ground-truth masks ) to supervise the training.
As mentioned before, the number of predictions M is larger
than the number of ground-truth masks K. We complete with
“no object” class ¢ to obtain a one-to-one matching. We define
an assignment cost matrix C for all pairs of prediction-ground-
truth taking into account the mask and the semantic class. Each
element of the matrix takes the form:

CiJ =—Dj (CZ) + Lonask; (D)

where p;(c;) is the probability of class ¢; and L,,4s5 is the
combination of binary cross entropy and dice loss:

Lmask = )\diceDice(mi, ﬁlj) + /\ceBCE(mi, ﬁl]) (2)
We obtain the optimal matching given the fixed cost function
using the Hungarian method [38]]. After the matching between
ground-truth masks and predictions, we compute the loss
function L,,, over the K matched pairs. It consists of the mask
loss L,qsx for mask segmentation, and cross-entropy for the
semantic class, as follows:

K
Lm = Z *Acls IOgﬁj(Ci) + Lmask-

j=1

3)

For the M — K unmatched masks, we want the model to
predict the “no object” class. We only use the cross entropy
loss that we down-weight by a factor @ < 1 to compensate
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Fig. 3: Downsamplig and voxelization effects. The original point
cloud is colored with the height. Black points show the result of
voxelization and downsampling. We show artificial points of the
downsampled version in regions with no points from the original
point cloud.

for class imbalance since there is usually a majority of non-
matched masks. The loss takes the form:

M

> —alogp;(e), )
Jj=K+1
and the final loss is the sum of both: £ = L, + L,,.

Inspired by previous works [10]], [25], we randomly sample
a fixed number of .S points to calculate the mask loss instead
of using all the N points in the LiDAR scan to reduce
computation. To improve the backbone features, we add an
auxiliary loss to directly supervise them. We use a linear
layer to convert from full-resolution point features to class
probabilities for each point. We supervise the logits with cross-
entropy at the point level.

L, =

FE. Point-Level Multi-Scale Features

While using downsampled feature maps as input to trans-
former blocks works in the image domain, the voxelization of
the real-world point clouds and the downsampling operations
can lead to an undesired behavior. The voxels in lower scales
cover a bigger volume but are represented just as a point
located in the voxel center. Its coordinates represent artificial
points which do not exist in the original point cloud. This can
be seen in the Fig. [3] where we show the original full point
cloud colored with the point height and in black, the same
point cloud but voxelized and downsampled by a factor of
4. The signaled points are located in regions in which there
are no points in the original point cloud. Using the voxel
features F', in the masked attention harms the performance
since we are using non-existing points. To account for this,
we project the voxel features to the full point cloud with
the voxel-to-point operation (v2p) and feed the resulting point
features to the transformer decoder. The v2p function could be
to copy the same feature to all points inside the same voxel. To
avoid having repeated features for all points inside each voxel,
we perform a k-nearest-neighbors interpolation between voxel
centers and the points of the full-resolution scan. We discuss
the performances of these two v2p functions in Sec.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to perform panoptic seg-
mentation in an end-to-end manner by removing the classic
clustering step and directly predicting binary masks with their
corresponding semantic classes. We present our experiments

to show the capabilities of our method and support our key
claims, which are: (i) our approach performs better than com-
mon approaches relying on clustering algorithms that might
need hyperparameter tuning for different datasets, and (ii)
it achieves competitive performance even if using a simple
feature extractor without any modification.

A. Implementation Details

We use L = 3 decoder blocks (9 decoder layers). In the loss
function, we adopt Agice = Ace = D, Acls = 2 and the number
of randomly sampled points S = 50000. We set the number
of learnable queries M = 100. We train the models for 100
epochs using AdamW [31] optimizer and step learning rate
schedule. The initial learning rate is 0.0001 and we decay the
learning rate by a factor of 10 at epoch 80. As augmentations,
we apply random rotations, flips along the X or Y axis, random
scaling, and random transformations.

B. Experimental Setup

To evaluate our method, we use SemanticKITTI [4]], [3],
which provides point-wise semantic and instance annota-
tions [3] for 22 sequences of the KITTI odometry dataset [16].
Sequences 00 to 10 are used for training except for sequence
08, which serves as the validation set and sequences 11 to 21
for the test set. We run further experiments on nuScenes [6],
which consists of 1000 sequences with 20 seconds of duration
recorded with a 32-beam LiDAR sensor. The annotations are
created every 0.5s and include 16 semantic classes including
10 “thing” classes.

We use panoptic quality (PQ), segmentation quality (SQ)
and recognition quality (RQ) as metrics to evaluate panoptic
segmentation following the task definition [24]].

C. Comparison with Clustering as Post-Processing

This experiments supports claim (i) and shows that our
proposed method performs better than approaches relying on
clustering algorithms. For that, we compare the performance
of three backbones with different post-processing algorithms
with our proposed end-to-end model. We build our models on
top of three widely used 3D semantic segmentation networks
as feature extractors without making any change, namely
MinkNet [12], CylinderNet [49], and SPVCNN [40]. We will
see that our method works with potentially any given backbone
and using a better semantic segmentation network would help
to achieve better panoptic segmentation results. We name our
models MaskPLS-M (MinkNet), MaskPLS-C (CylinderNet),
and MaskPLS-S (SPVCNN).

For the clustering approaches, we follow common practices
and add an instance head composed of three convolutions and
two linear layers to predict, for each point of a “thing” class,
an offset vector to the instance center. During training, we filter
out the “stuff” points using the labels and semantic predictions
during inference. As post-processing, we shift the points using
the predicted offsets and use a clustering algorithm to group
points into instances. We use HDBSCAN [8]], mean shift [13]
and the dynamic shifting module [20]. The results on the
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Method | PQ SQ RQ | mloU
MinkNet + HDBSCAN 579 798 67.6 63.4
MinkNet + MeanShift 583 79.8 68.0 63.4
MinkNet + DS 582 804 679 63.5
MaskPLS-M (ours) 598 763 69.0 61.9
CylinderNet + HDBSCAN | 55.3 77.0 65.5 63.2
CylinderNet + MeanShift 564 765 67.1 63.5
CylinderNet + DS 577 776 68.0 63.5
MaskPLS-C (ours) 589 757 684 63.4
SPVCNN + HDBSCAN 525 715 629 60.0
SPVCNN + MeanShift 53.0 775 650 60.0
SPVCNN + DS 528 773 633 59.9
MaskPLS-S (ours) 555 750 65.1 60.6

TABLE I: Panoptic segmentation results on SemanticKITTI valida-
tion set.

validation set of SemanticKITTI are presented in Tab. [I| and
show that our method consistently improves RQ and PQ for all
the different backbones and outperforms all clustering methods
in terms of PQ while being end-to-end trainable. MaskPLS-
M achieves a better PQ but a lower mloU with respect to
the baselines. The cause might be that, for the baselines,
the backbone is trained only for semantic segmentation while
MaskPLS is trained for a different objective, which comprises
both semantic and instance segmentation. Therefore, the bal-
ance between both tasks might harm the performance of a
single one. In our experiments, we saw that even though the
mloU decreases, the SQ increases for most of the “thing”
classes, making it easier to separate points into instances.

D. Performance

The next experiment shows that our approach achieves com-
petitive performance by just using a simple feature extractor
without any modification and thus supports claim (ii). We
compare the performance of our approach MaskPLS-M and
previous works on the SemanticKITTI test set and show the
results in Tab. [l We achieve competitive performance using
as feature extractor, a simple ResNet-like model without any
modification. Furthermore, we surpass previous end-to-end
approaches Panoster [15] and CPSeg [26]. We rank first on
the leaderboard among open-source projects. It is important
to note that the semantic segmentation performance plays an
important role in panoptic segmentation and in the panoptic
quality. The state-of-the-art approaches achieve better panoptic
quality while relying on a backbone with a much better
semantic segmentation performance. Our approach achieves
a comparably good SQ, particularly for “things”. This shows
that it can better differentiate the detected segments and this
results in more accurate instance predictions. In our approach,
the semantic segmentation performance heavily relies on the
backbone performance. Potentially, a better backbone would
improve our panoptic segmentation results.

E. Different Dataset

With this experiment, we show that we do not need to
tune any hyperparameter to use our model in a different
dataset and provide support for claim (i). We conduct a
similar experiment to the one in Sec. but on nuScenes.

SemanticKITTI

nuScenes

radius
1.2m

radius
0.5m

ours

Fig. 4: Comparison of instance segmentation using mean shift with
different clustering radius and our approach. In the top row, we
select a radius for SemanticKITTI and when evaluating on nuScenes,
several pedestrians are grouped as a single instance. In the middle
row, we select a radius for nuScenes. The pedestrians are correctly
separated but a vehicle is split into two instances. In the bottom row,
our approach correctly segments instances in both datasets without
changing any hyperparameter.

Tab. [III| shows a comparison between the performances of our
approach and different clustering methods as post-processing
step with MinkNet and CylinderNet as backbones on the
nuScenes validation set. For a fair comparison, we retrain DS-
Net [20] with the annotations provided by Fong et al. [[14]. Our
approach outperforms the baselines in terms of PQ also in this
dataset recorded with a different LiDAR sensor. Furthermore,
our approach adapts to this different dataset without tuning any
hyperparameter while in the case of the clustering algorithms
it is usually necessary to specify at least a bandwidth or the
minimum cluster size. The performance of our approach does
not match state-of-the-art methods because we do not change
any hyperparameter to re-train it on this different dataset. To
improve the performance, some parameters should be changed
to account, for example, for the different LIDAR density in this
new dataset.

In Fig. 4] we depict examples of the instance segmentation
performances with different clustering radius applied to the
semantic predictions obtained by MaskPLS. We show that
the clustering algorithms usually need a different radius for
different classes and different datasets. We use MinkNet and
mean shift and compare it with our approach. First, we select
a radius of 1.2m for SemanticKITTI and the instances are
correctly segmented. However, on nuScenes several pedes-
trians are clustered together. Second, we select a radius of
0.5m for nuScenes, where the pedestrians are separated but
on SemanticKITTI a vehicle is split into two instances. Our
method, in contrast, correctly segments instances of different
classes in both datasets despite the different sensors and
without hyperparameter tuning.

F. Mask Embeddings

We generate the mask predictions via dot product between
point features and query embeddings. Thus, the quality of
the masks relies on the quality of the point features, which
should contain both semantic and spatial information. This
can be seen in Fig. E}a, where we show the cosine similarity
between the mean feature of a car that we want to segment
and the rest of the points. All the car points have a higher
similarity than the background points, showing the semantic
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Method | PQ PQ+ RQ SQ | PQ™M RQ™ sSQ™ | PQSt RQS SQS | mloU
Panoster [15] 527 599 641 807 | 494 585 833 | 551 682 788 | 599
CPSeg [26] 570 635 688 822 | 551 641 861 | 584 723 793 | 62.7
EfficientLPS [39] 574 632 687 830 | 531 605 878 | 60.5 746 795 | 614
PVCL [30] 59.1 657 696 840 | 598 667 892 | 586 71.6 803 | 64.0
GP-S3Net [37] 600 690 721 820 | 650 745 866 | 564 704 787 | 708
SCAN [45] 615 675 721 845 | 614 693 881 | 61.5 741 818 | 67.7
Panoptic-PHNet [28] | 61.5 679 721 848 | 63.8 704 907 | 599 733 805 | 66.0
MaskPLS-M (ours) 582 633 686 839 | 557 617 892 | 600 737 80.0 | 625
TABLE II: Panoptic segmentation results on SemanticKITTI test set.
Method | PQ PQ+ RQ SQ | PQ™ RQ™ sQ™ | PQS' RQS SQ% | mloU
EfficientLPS [39] 620 656 739 834 | 568 680 832 | 706 836 838 | 65.6
Panoptic-PolarNet [48] | 634 672 753 839 | 592 703 841 | 704 835 836 | 669
Panoptic-PHNet [28] 747 777 842 882 | 740 8.5 8.0 | 759 869 868 | 79.7
MinkNet + HDBSCAN | 526 574 632 690 | 59.1 712 812 | 4719 574 602 | 616
MinkNet + MeanShift | 544 589 648 695 | 62.6 740 826 | 483 581 600 | 616
MaskPLS-M (ours) 577 602 660 71.8 | 644 733 848 | 522 607 624 | 625
CylinderNet + DS 514 561 624 683 | 588 709 81.0 | 460 562 59.0 | 56.7
MaskPLS-C (ours) 574 598 662 1.8 | 636 727 846 | 529 614 625 | 60.2

TABLE III: Panoptic segmentation results on nuScenes validation set.

information in the point-wise features. Furthermore, the closer
the points are to the desired car, the higher the similarity,
depicting the spatial information. However, the obtained masks
are not always accurate enough to segment a single instance.
In our example in Fig. [5]b, the predicted mask also includes
a part of a second car.

We argue that the problem is caused by using the backbone
features F',, to generate the masks, i.e., as mask embed-
dings E. In this configuration, the point features have to
account for spatial and semantic information at the same time.
We propose to divide the mask embeddings into spatial and
semantic embeddings to relax the dependency of the point-
wise features with respect to the spatial information. We use
point-wise fixed positional encodings P, [42] to capture the
spatial information. For the semantic information, we use the
output features from the backbone F',,. This way, the backbone
features do not have to account for spatial information and
only focus on accurate semantic information to better describe
the scene. The final mask embeddings are the sum of both:
E = F,+ P.. In Fig. Blc, we show the feature similarity
between the mean feature of the desired car and all the
other points after making this change. The similarity is now
higher for almost all car points, showing that the features
are mainly focusing on semantic information. We add the
positional encodings to obtain our proposed mask embedding
and the generated masks can more accurately capture single
instances, as depicted in Fig. [5]d.

G. Ablation Studies

We perform experiments to show the influence of each
design choice and the number of decoder blocks. To reduce
the total wall-clock training time, we perform the experiments
in a smaller model by reducing the feature dimensions of the

# sem loss point feat. interp.  pos enc ‘ PQ ‘ runtime [ms]
A 51.9 390
B v 523 390
C v v 52.7 283
D v v v 53.4 313
E v v v v 54.9 315

TABLE 1V: Influence of the design choices in panoptic quality and
inference time in the validation set of SemanticKITTI.

backbone blocks and the decoder blocks by a factor of 4. We
use the same training schedule as in Sec. except that we
train the models with a fixed learning rate for 50 epochs. We
show the results on the SemanticKITTI validation set.
Design choices: In Tab. we show the influence of
each design choice in the final performance and runtime.
In experiment (A) we follow Mask2Former [10] but using
a feature extractor with 3D sparse convolutions and voxel
features, achieving a panoptic quality of 51.9%. In (B) we add
the auxiliary semantic segmentation loss on the full resolution
point features. We seek to get more distinctive features, they
are used to generate the mask predictions and the overall
performance highly relies on their quality. We boost the
performance by 0.4 percent points without affecting runtime.
In (C), we use point features instead of voxel features by
copying voxel features to all the points within that voxel as
v2p function and obtain a gain of 0.4 percent points and the
runtime decreases to 283 ms. The reason is that we do not need
to interpolate the masks for the masked-attention since we are
using full resolution masks and features. In (D) we perform
KNN interpolation between voxel features and point features.
Each point feature is the weighted sum of the k nearest voxels.
We use k& = 3 neighbors and improve 0.7 percent points while
increasing runtime to 313 ms. Finally, in experiment (E) we
add the positional encoding to the full-scale point features to
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Fig. 5: Influence of the proposed mask embeddings: (a) is the cosine similarity between the mean feature of the circled car and all the other
point features. The point features provide semantic and spatial information: all car points have high similarity and nearby points have more
similar features. The generated mask (b) includes part of a second car. Splitting the mask embeddings, the features from the backbone focus
mainly on semantic information, giving all cars similar features (c) while the spatial information is given by the positional encodings. As a

result, the mask can accurately segment a single car (d).

obtain the so-called mask embeddings and generate the mask
predictions with them. This boosts the performance by 1.5
percent points to the final PQ of 54.9% and increases the
inference time to 315 ms.

Number of decoder blocks: We show the influence of the
number of decoder blocks in Tab. M Using one block, we
achieve a panoptic quality of 53%. With two blocks, the
performance increases by 0.8 percent points and the addition
of a third block boosts the performance by 1.1 percent points,
reaching a PQ of 54.9%. The mloU remains approximately
the same but extra blocks improve instance segmentation.

H. Learnable Queries

In this experiment, we show that the learnable queries act as
mask proposals. We visualize the proposals by generating the
masks before the first decoder layer. In Fig. [f| we compute the
mask scores for each point via the dot product and visualize the
proposals. For “stuff” classes, the learnable query covers all
the points belonging to that class without differentiating the
point coordinates. In other words, the queries that generate
“stuff” masks are position invariant. On the other hand, for
“thing” classes, the queries must separate between instances
and account for the spatial information and the mask proposals
focus on individual instances.

V. CONCLUSION

In this paper, we presented an approach to perform panoptic
segmentation of 3D LiDAR point clouds by directly predicting
a set of binary masks along with their semantic classes. Our
method allows for optimizing the model end-to-end and does
not need any clustering algorithm as post-processing. This
enables us to successfully use our method on different datasets
without changing any hyperparameter. We implemented and
evaluated our approach on different datasets and compared it
against baselines and techniques to achieve panoptic segmen-
tation. We performed experiments to support all our claims
and showed that our approach achieves competitive perfor-
mance even with a semantic segmentation network without
any modification as feature extractor.
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