
Scaling Diffusion Models to Real-World 3D LiDAR Scene Completion

Lucas Nunes1 Rodrigo Marcuzzi1 Benedikt Mersch1

Jens Behley1 Cyrill Stachniss1,2
1Center for Robotics, University of Bonn 2Lamarr Institute for Machine Learning and Artificial Intelligence

{firstname.lastname}@igg.uni-bonn.de

... ...

Figure 1. Starting from a single input scan P , we add Gaussian noise to each point, defining the noisy input PT . Then, we use our trained
noise predictor ϵθ to denoise PT iteratively until arriving at P0, yielding a completed representation of the 3D scene.

Abstract

Computer vision techniques play a central role in the
perception stack of autonomous vehicles. Such methods are
employed to perceive the vehicle surroundings given sen-
sor data. 3D LiDAR sensors are commonly used to col-
lect sparse 3D point clouds from the scene. However, com-
pared to human perception, such systems struggle to de-
duce the unseen parts of the scene given those sparse point
clouds. In this matter, the scene completion task aims at
predicting the gaps in the LiDAR measurements to achieve
a more complete scene representation. Given the promising
results of recent diffusion models as generative models for
images, we propose extending them to achieve scene com-
pletion from a single 3D LiDAR scan. Previous works used
diffusion models over range images extracted from LiDAR
data, directly applying image-based diffusion methods. Dis-
tinctly, we propose to directly operate on the points, refor-
mulating the noising and denoising diffusion process such
that it can efficiently work at scene scale. Together with
our approach, we propose a regularization loss to stabilize
the noise predicted during the denoising process. Our ex-
perimental evaluation shows that our method can complete
the scene given a single LiDAR scan as input, producing a
scene with more details compared to state-of-the-art scene
completion methods. We believe that our proposed diffusion
process formulation can support further research in diffu-
sion models applied to scene-scale point cloud data. 1

1Code: https://github.com/PRBonn/LiDiff

1. Introduction

Perception systems are a crucial component of self-driving
cars, enabling them to understand their surroundings and
safely navigate through it. Such systems rely on the data
collected by the sensors installed on the vehicle to perceive
the environment but fail to deduce areas only partially ob-
servable by the sensor. For a human it is comparably rather
simple to infer the complete scene from the scene context.
Especially in autonomous driving, LiDAR sensors are em-
ployed to collect 3D information of the vehicle surround-
ings to enable safe navigation. Despite the accuracy of those
sensors, collected point clouds are sparse, with large gaps
between the data points measured by the sensor beams. Be-
ing able to complete the measured scene can add valuable
information to perception systems, helping to improve dif-
ferent tasks such as object detection [42], localization [40]
or navigation [29].

Scene completion tries to infer the missing parts of a
scene, providing a dense and more complete scene repre-
sentation. Given the LiDAR data sparsity, having a way
to fill the gaps of non-observed regions is helpful to en-
large the incomplete data measured by the sensor. Pre-
viously, this task was tackled using paired RGB images
and LiDAR point clouds by inferring depth maps from
an RGB image supervised by the LiDAR depth measure-
ments [8, 21, 22, 44]. Other approaches [15, 25, 40] employ
signed distance fields (SDF) where the scene is represented
as a voxel grid where each voxel stores its distance to the
closest surface in the point cloud. Such methods approx-

https://github.com/PRBonn/LiDiff


imate the scene by a surface representation, losing details
usually present in real-world data since these approaches
are limited to the voxel resolution. As an extension to this
task, semantic scene completion has emerged [15, 31, 32],
where the goal is to infer an occupancy voxel grid with a
semantic label associated to each voxel. However, those
methods require large amounts of labeled data and operate
at a predefined fixed voxel grid resolution. More recently,
denoising diffusion probabilistic models (DDPM) were em-
ployed in the context of self-driving cars [14, 26, 50] relying
on image representations of the LiDAR data, such as range
images [26, 50] or a discrete diffusion process formulation,
inferring the occupancy on a predefined voxel grid [14].

In this work, we propose a diffusion scheme for 3D data
operating at point level and at scene scale. We exploit the
generative properties of DDPMs to infer the unseen regions
of a scene measured by a 3D LiDAR sensor, achieving
scene completion from a single point cloud as illustrated
in Fig. 1. We reformulate the (de)noising scheme used in
DDPMs by adding noise locally to each point without scal-
ing the input data to the noise range, allowing the model to
learn detailed structural information of the scene. Further-
more, we propose a regularization to stabilize the DDPMs
during training, approximating the predicted noise distribu-
tion closer to the real data. We compare our method with
different scene completion approaches and conduct exten-
sive experiments to validate our proposed scene-scale 3D
diffusion scheme. In summary, our key contributions are:
• We propose a novel scene-scale diffusion scheme for 3D

sensor data that operates at the point level.
• We propose a regularization that approximates the pre-

dicted noise to the expected noise distribution.
• Our method can generate more fine-grained details com-

pared to previous methods.
• Our approach achieves competitive performance in scene

completion compared to previous diffusion and non-
diffusion methods.

2. Related Work
Scene completion aims at inferring missing 3D scene in-
formation given an incomplete sensor measurement. This
inference of unseen information can be helpful for percep-
tion tasks [42], localization [40] or navigation [29]. Some
works [8, 21, 22, 44] tackled this task by jointly extract-
ing information from paired RBG images and LiDAR point
clouds, predicting a depth map from an RGB image su-
pervised by the LiDAR data. Differently, other meth-
ods [15, 40] approach the problem by optimizing a signed
distance field (SDF) given only the LiDAR measurements,
representing the scene as a voxel grid where each voxel
stores its distance to the closest surface in the scene. How-
ever, such methods are bound to the voxel resolution and
lose details in the scene due to the discretization by voxels.

Distinctly, our approach works directly on the points and ex-
ploits the generative properties of DDPMs to complete the
unseen data without relying on a voxel grid representation.

Semantic scene completion has been of great interest
more recently due to the availability of large datasets with
semantic labels [2–4, 7, 9, 16, 39]. This task extends the
scene completion task by predicting a semantic label for
each occupied voxel [15, 31, 32]. However, those methods
are also tightly bound to the voxel grid resolution, which
usually has a low resolution due to memory limitations. Be-
sides operating at point level, given the recent research ef-
fort for DDPMs, our method could also later be extended to
predict a semantic class for each generated point.

Denoising diffusion probabilistic models have gained
attention due to their high-quality results in image gener-
ation [6, 11, 27, 28, 30, 33, 48, 49]. Besides that, condi-
tioned diffusion models gained even more relevance due to
the possibility of generating data towards an input condi-
tion [1, 10, 46]. The drawback of DDPMs is usually the
time needed during the denoising process. For that reason,
many efforts have been put to achieve a faster generation,
e.g., by doing a distillation of the denoising model [23, 34]
or by analytically approximating the denoising steps solu-
tion to reduce the amount of steps needed [12, 17, 18, 37].

Diffusion models for 3D data have been investigated
due to their promising performance in the image domain.
Such methods [19, 20, 35, 36, 43, 45, 47] are focused on
single object shapes, achieving novel object shape gener-
ation or completion. Few works [14, 26, 50] target real-
world data generation. Some works [26, 50] rely on pro-
jecting the 3D data to an image-based representation such
as range images, such that the methods proposed in the im-
age domain can be directly applied. For such approaches,
the 3D scene cannot be completed since when reprojecting
the image to the 3D world, some regions do not have any
information due to occlusions in the projected point cloud.
Lee et al. [14] achieves scene-scale 3D data generation us-
ing a discrete diffusion model formulation and a fixed voxel
grid representation of the environment. The model is then
used to infer for each voxel whether it is occupied, and a
semantic label is predicted. Different from previous works,
our method operates directly at point level and does not rely
on a grid representation or projection to the image domain.

Given the recent advances in DDPMs for data gener-
ation, we propose a formulation of the denoising diffu-
sion process that works at point level, achieving compet-
itive performance in scene-scale diffusion scene comple-
tion. Our formulation enables the use of DDPMs to gen-
erate scene scale, real-world-like data without relying on
any discretization or projection of the LiDAR data.



3. Approach
We propose using DDPMs to achieve scene completion
from a single 3D LiDAR scan as input. First, we reformu-
late the DDPMs [19, 20, 47] to work at scene scale. Instead
of normalizing the input point cloud, we add and predict the
noise locally for each point. During the denoising process,
we condition the noise prediction with the input scan such
that the final scene retains the structural information from
the input scan while inferring the missing parts. In this for-
mulation, the initial point cloud is a noisy version of the
input scan and the networks task is to denoise it to get the
complete scene as depicted in Fig. 1. Next, we provide the
needed background on diffusion models and describe the
individual components of our approach.

3.1. Denoising diffusion probabilistic models

Denoising diffusion probabilistic models [6, 11, 27] formu-
late the data generation as an iterative denoising process.
Commonly, the model starts from Gaussian noise [6, 11, 27]
and iteratively removes noise from the input until it con-
verges to the target output (e.g., images [6, 11, 27, 28, 30,
33, 48, 49] or shapes [19, 20, 35, 36, 43, 45, 47]). This can
be achieved by defining a forward diffusion process where
noise is iteratively added T times to the target data. Then,
the model is trained to predict the noise added at each step t.
By predicting the noise at each step t and removing it, the
denoised sample should be closer to the target training data.

The diffusion process as formulated by Ho et al. [11]
can be generally written as follows. Given a sample
x0 ∼ q(x) from a target data distribution, the diffusion pro-
cess adds noise to x0 over T steps, resulting in x1, . . . ,xT ,
where q

(
xT

)
≈ N(0, I), where N(0, I) is a normal dis-

tribution with mean 0 and the identity matrix I as diag-
onal covariance. This diffusion process is parameterized
by a sequence of defined noise factors β1, . . . , βT , where
iteratively at each step t, Gaussian noise is sampled and
added to xt−1 given βt. This can be simplified to sam-
ple xt from x0, without computing the intermediary steps
x1, . . . ,xt−1. To do so, Ho et al. [11] define αt = 1 − βt

and αt =
∏t

i=1 αi, and xt can be sampled as:

xt =
√
αtx

0 +
√
1− αtϵ, (1)

where ϵ ∼ N(0, I). Note that when T is large enough
q
(
xT

)
≈ N(0, I), since αT gets closer to zero.

The denoising process aims to undo the T noising steps
by predicting the noise ϵ added at each step t [11]. Given
an initial xT , we want to reverse the diffusion process and
get to x0. The reverse diffusion step can be written as:

xt−1 = xt − 1− αt√
1− αt

ϵθ
(
xt, t

)
+

1− αt−1

1− αt
βtN(0, I) , (2)

where ϵθ(x
t, t) is the noise predicted from xt at step t.

This generation can also be guided given a condition c.
This conditional generation can either stem from a pre-
trained encoder [6] or from classifier-free guidance [10],
where the encoder is trained together with the noise pre-
dictor. In our case, we use the classifier-free guidance since
it does not require a pre-trained encoder. With the classifier-
free guidance, the model is trained to learn the conditional
and unconditional noise distribution. In this case, at each
training step the model has a probability p of predicting the
unconditional noise distribution, where the conditioning is
set to a null token, i.e., c = ∅.

The training process optimizes the denoising model to
predict the noise ϵ added at step t to a given input. Given
an input x0 and a condition c, a random step t ∈ [0, T ] is
sampled, and xt is sampled from Eq. (1) with a Gaussian
noise ϵ. Then, from xt, c and t, the model computes the
noise prediction, supervising it with an L2 loss:

L
(
xt, c̃, t

)
=

∥∥ϵ− ϵθ
(
xt, c̃, t

) ∥∥2, (3)

with c̃ ∼ B(p) where B is a Bernoulli distribution with out-
comes {∅, c} with probability p that ∅ occurs.

The inference starts from an initial xT ∼ N(0, I) and
iteratively denoise it to get x0. For the classifier-free guid-
ance [10], we predict the conditional and unconditional
noise distribution and compute the final predicted noise as:

ϵ′θ
(
xt, c, t

)
= ϵθ

(
xt, ∅, t

)
+s

[
ϵθ
(
xt, c, t

)
− ϵθ

(
xt, ∅, t

)]
, (4)

where s ∈ R is a parameter that weights the conditioning
to c, and ϵθ(x

t, ∅, t) is the unconditional noise prediction.
With Eq. (4) we can compute the noise at any step t,

from which we can use Eq. (2) to compute xT−1, . . . ,x0,
where x0 is a newly generated sample conditioned on c.

3.2. Diffusion scene completion

In this work, we use the generative aspect of DDPMs
to complete a scene measured in a single scan by a Li-
DAR sensor. Similarly to shape completion [19, 20, 47],
the input is a partial point cloud P = {p1, . . . ,pN}
where p ∈ R3, and the output should be the complete point
cloud P ′ = {p′

1, . . . ,p
′
M} where p′ ∈ R3. In our case, the

partial point cloud is a single LiDAR scan from which we
want to achieve scene completion. Given a sequence of con-
secutive LiDAR scans and their poses, we can build a map
and sample the complete scene ground truth G for an indi-
vidual scan P , where our scene completion P ′ should be as
close as possible to G.

Given the pair of input scan P and ground truth G, we
can train the DDPM to achieve scene completion. As de-
tailed in Sec. 3.1, we can compute a noisy point cloud Gt at
step t from the complete scene G in a point-wise fashion:

pt
m =

√
αtpm +

√
1− αtϵ, ∀pm ∈ G, (5)

with Gt = {pt
1, . . . ,p

t
M}.



Normalized
global noise

Non-normalized
global noise

Non-normalized
local point noise

Figure 2. Comparison between Gaussian noise with standard de-
viation σ and mean µ over non-normalized and normalized input
point cloud and our proposed local point-wise noise formulation.

In our case, we want to retrieve the complete scene G
from GT . However, GT retains little information from G
due to the T diffusion steps. Therefore, we condition the
generation with the scan P such that its structure guides
the point cloud generation. From Eq. (4), the point-wise
classifier-free noise prediction at step t can be rewritten as:

ϵ′θ
(
Gt,P, t

)
=ϵθ

(
Gt, ∅, t

)
+s

[
ϵθ(Gt,P, t)− ϵθ

(
Gt, ∅, t

)]
. (6)

For training, at each iteration we select a random step
t ∈ [0, T ] and compute Gt from G given Gaussian noise
ϵ ∼ N(0, I). Then, we use the model to predict the noise
from Gt conditioned to the LiDAR scan P or a null token ∅
given a probability p as in Eq. (3), supervising with the loss:

Ldiff
(
Gt, c̃, t

)
=

∥∥ϵ− ϵθ
(
Gt, c̃, t

) ∥∥2, (7)

where as in Eq. (3), c̃ ∼ B(p) with B as a Bernoulli distribu-
tion with outcomes {∅,P} with probability p that ∅ occurs.

During inference, as detailed in Sec. 3.1, we can gener-
ate a scene conditioned to a LiDAR scan P , by denoising
from GT to G0 which is the predicted completion P ′.

3.3. Local point denoising

The formulation detailed in Sec. 3.2 is usually used for
shape completion [20, 47]. Even though achieving promis-
ing results for shape completion, this formulation may not
directly work at the scene scale. For single object shapes,
the data is either normalized or within a small range close to
a Gaussian distribution with mean µ = 0 and standard de-
viation Σ = I . For scene scale, the LiDAR data has a much
larger scale, and the data range differs depending on the
point cloud axis. Therefore, the input data distribution is far
from a Gaussian distribution N (0, I), and if we normalize
the data, we lose many details in the scene due to compress-
ing it into a much smaller range as illustrated in Fig. 2.

To overcome this problem, we reformulate the diffu-
sion process as a point-wise local problem. Instead of
sampling xt as a mixed distribution between ϵ ∼ N (0, I)
and x0 as in Eq. (1), we formulate the diffusion process as
a noise offset added locally to each point pm ∈ G. In this
case, from Eq. (1), we set x0 = 0 and add xt to pm:

pt
m = pm +

(√
αt0+

√
1− αtϵ

)
, (8)

= pm +
√
1− αtϵ. (9)

M
ea

n 
[m

]

St
an

da
rd

 d
ev

ia
ti

on
 [

m
]

-0.02-0.02
-0.01-0.01-0.01-0.01

0.00.00.0

Predicted noise

1 2 3 4 5 6 7 8 9 10
Denoising step

-8.5

526

1
222
333
44
5

Mean
Standard deviation

Figure 3. Mean and standard deviation of the predicted noise ϵθ
without the noise regularization. In this experiment we use DPM-
Solver [17] to reduce the denoising steps from 1, 000 to 10.

With this formulation, the noise ϵ is a random offset
scaled w.r.t. the step t added to each point pm in G. The
model needs to predict the noise at each step t, slowly mov-
ing the noisy points towards the target scene G conditioned
to the LiDAR scan P , still operating in the original scale.

During inference, due to this local diffusion formula-
tion, GT cannot be approximated by a Gaussian distribution.
Instead, we can generate GT from the LiDAR scan P . Be-
sides, to complete the LiDAR scan, we need more points
than the input scan. Therefore, given a single LiDAR
scan P , we increase its size by concatenating its points K
times to get P∗ = {p∗

1, . . . ,p
∗
KN}, where M = KN .

Then, we sample a Gaussian noise for each point p∗
m ∈ P∗

and compute the initial noisy point cloud PT from P∗ with
Eq. (9). Finally, we calculate the T denoising steps by pre-
dicting the noise at step t from Eq. (4), and denoising it with
Eq. (2) to get the complete scan P ′ = P0.

Note that, as long as PT is “noisy enough” to resem-
ble GT as seen during training, the generation process is
the same independent of using P∗ or the ground truth G to
sample the initial xT .

3.4. Noise prediction regularization

DDPMs use a leveraged formulation to train the model to
predict only the noise added to the data. This formulation
has only to optimize an L2 loss between the added noise and
the model prediction. However, this formulation optimizes
the model to precisely predict the noise added to each point,
ignoring the overall distribution of the noise sampled.

Given that the added noise ϵ ∼ N(0, I), it is reasonable
to expect that the prediction ϵθ(Gt,P, t) ≈ N(0, I). How-
ever, the model predicts a peaky distribution far from the ex-
pected, as shown in Fig. 3. The predicted noise starts with a
mean far from zero and with a large standard deviation. As
the denoising starts the mean gets closer to zero but the stan-
dard deviation is still far from one. Therefore, we propose a
regularization to approximate ϵθ(Gt,P, t) to N(0, I). We
compute the mean ϵθ and the standard deviation ϵ̂θ over
ϵθ(Gt,P, t) and calculate the regularization losses:

Lmean = ϵθ
2 and Lstd =(ϵ̂θ − 1)

2
, (10)



Pos enc.
Concat.

MLP
Closest point

Figure 4. Diagram of the conditioning in each layer l.

then our final loss becomes:

L = Ldiff + r (Lmean + Lstd) , (11)

where r is a weighting factor.
With this regularization, we aim at smoothing the peaky

distribution from the predicted noise, and approximating it
to the expected distribution, i.e., ϵθ(Gt,P, t) ≈ N(0, I).

3.5. Refinement network

Despite the impressive results from DDPMs, the denois-
ing process still demands time since it has to predict all
the T steps. Recent efforts [12, 17, 18, 23, 34, 37] fo-
cus on increasing the inference speed. However, by reduc-
ing the inference time, the generation quality may also de-
crease. Besides, processing 3D scene-scale data demands
many computational resources. This limitation hinders the
number of points we can generate to represent the com-
plete scene. Therefore, we follow the refinement upsam-
pling scheme proposed by Lyu et al. [20]. As done by
them, we train an additional model to refine the scene gen-
erated by the diffusion process while upsampling it by pre-
dicting κ offsets oκ ∈ R3 for each point in the completed
scene P ′. Then, we add the offsets to the completed scene
points as {p′

n + o0, . . . ,p
′
n + oκ}, ∀ p′

n ∈ P ′ refining the
diffusion completion while upsampling it.

3.6. Noise predictor architecture

We parameterize the denoising process using a
MinkUNet [5] as the noise predictor which uses sparse
convolutions to process 3D data. To encode information
from the conditioning scan P , we use the encoder part
from MinkUNet with the same architecture as the noise
predictor. The encoder downsamples P to a smaller version
C = {cn′ ∈ Rdc | 1 < n′ < N ′}, where N ′ < N and dc
is the encoder output embedding size. To encode the
denoising step t, similar to previous work [47], we use a
sinusoidal positional encoding to compute the temporal em-
bedding τ ∈ Rdt . Then, before each layer l in the denoising
model, we compute the closest point between the layer
input points Fl = {fn′

l
∈ Rdl | 1 < n′

l < N ′
l} and the con-

ditioning embeddings C to get a per-point guidance, passing
it over an MLP to get Cl = {cn′

l
∈ Rdl | 1 < n′

l < N ′
l}.

Then, we compute τl ∈ Rdl from τ through another

MLP, and concatenate τl to each point in Cl to obtain
Wl = {wn′

l
∈ R2dl | 1 < n′

l < N ′
l}. Finally, we use one

more MLP layer to project Wl to the layer feature dimen-
sion dl and get W ′

l . Then, we compute F ′
l = W ′

l ⊙Fl as
an element-wise multiplication, which is then feed as the
input to layer l, as depicted in Fig. 4. As the refinement
network, we use the same MinkUNet architecture used
for the noise predictor without the conditioning encoder.
For more details on the embeddings dimensions, noise
predictor and refinement network architectures, we refer to
the supplementary material.

4. Experiments
Datasets. For training our DDPM, we used the Se-
manticKITTI dataset [2, 9], an autonomous driving bench-
mark with point-wise annotations over sequences of LiDAR
scans collected in an urban environment. To generate the
ground truth complete scans, we used the dataset poses to
aggregate the scans in the sequence and remove moving
objects with the semantic labels, building a map for each
sequence. For evaluation, we used the validation set from
SemanticKITTI, i.e., sequence 08. Additionally, we used
sequence 00 from the KITTI-360 dataset [16] and collected
our own data with an Ouster LiDAR OS-1 with 128 beams
to further compare the approaches.

For SemanticKITTI and KITTI-360, we used the ground
truth poses to build the map, and for our data, we used
KISS-ICP [41] to get the scan poses for our sequence. To
remove the moving objects from the map in KITTI-360 and
our data, we used an off-the-shelf moving object segmen-
tation [24]. To compute the evaluation metrics, for each
scan in the sequences, we remove the moving objects using
the semantic labels using only the static points as input to
the scene completion methods. Then, we evaluate the com-
pleted scene by comparing it with the corresponding region
in the ground truth map.

Training. We train our model for 20 epochs, using only
the training set from SemanticKITTI. As optimizer, we
used Adam [13] with a learning rate of 10−4 decreased
by half every 5 epochs, and decay of 10−4, with batch
size equal to 2. For the diffusion parameters, we used
β0 = 3.5 · 10−5 and βT = 0.007, with the number of diffu-
sion steps T = 1000, linearly interpolating between β0 and
βT to define β1, . . . , βT−1. We set the noise regularization
r = 5.0, and the classifier-free probability p = 0.1. For the
MinkUNet parameters, we set the quantization resolution
to 0.05m. For each input scan, we define the scan range
as 50m and sample 18, 000 points with farthest point sam-
pling. For the ground truth, we randomly sample 180, 000
points without replacement. For the refinement network we
use κ = 6 as the number of offsets.

Inference. During inference, we use DPMSolver pro-
posed by Lu et al. [17], reducing the number of denoising



Method CD [m] ↓ JSDBEV [m] ↓

LMSCNet [32] 0.641 0.431
LODE [15] 1.029 0.451
MID [40] 0.503 0.470
PVD [47] 1.256 0.498

Ours 0.375 0.416

Table 1. Mean chamfer distance and Jensen-Shannon divergence
evaluation on validation set from SemanticKITTI.

steps T from 1, 000 to 50. Besides, we set the classifier-
free conditioning weight to s = 6.0. To maintain the same
amount of points used during training, we again use the scan
max range as 50m and sample 18, 000 points with farthest
point sampling. Furthermore, as explained in Sec. 3.3, we
set K = 10 to define the input noisy scan P∗.

Baselines. We compare our method with different scene
completion methods, LMSCNet [32], PVD [47], Make It
Dense (MID) [40], and LODE [15]. For all baselines,
we used their official code and the provided weights also
trained on SemanticKITTI. For PVD, we trained the ap-
proach with SemanticKITTI with their default parame-
ters. We also follow their data loading, where the point
clouds are normalized before the diffusion process. LMSC-
Net [32] and LODE [15] are limited to a fixed voxel grid of
51.2m×51.2m×6.4m. Given that our point cloud genera-
tion is done over a scan with a radius of 50m, we divide the
input scan into four quadrants over the 360◦ LiDAR field
of view, generating the complete scene over each quadrant
and finally gathering them together as the final prediction.
All baselines and our method were trained only with Se-
manticKITTI, and later evaluated on SemanticKITTI, and
on KITTI-360 and our data without fine-tuning.

4.1. Scene reconstruction

In this experiment we evaluate how close is the predicted
scan completion from the expected complete scene. To
do so, we quantify it with two metrics, the Chamfer dis-
tance (CD) and the Jensen-Shannon divergence (JSD). The
Chamfer distance evaluates the completion at point level,
measuring the level of detail of the generated scene by cal-
culating how far are its points from the expected scene. The
JSD compares the points distribution between the generated
and the ground truth scene. For the JSD, we follow the eval-
uation done by Xiong et al. [42], where the scene is first
voxelized with a grid resolution of 0.5m and then projected
to a bird’s eye view (BEV) evaluating over this projection.

Tab. 1 shows the results comparing our approach
with previous state-of-the-art methods, where our method
achieves the best performance in both metrics. First, we
can notice that the state-of-the-art shape generation diffu-
sion method, PVD, achieves the lowest performance, show-
ing that current 3D diffusion methods cannot directly be

KITTI-360 Our data

Method CD [m] ↓ JSDBEV [m] ↓ CD [m] ↓ JSDBEV [m] ↓
LMSCNet [32] 0.979 0.496 0.826 0.439
LODE [15] 1.565 0.483 0.387 0.389
MID [40] 0.637 0.476 0.475 0.379

Ours 0.564 0.459 0.518 0.360
Ours refined 0.517 0.446 0.471 0.341

Table 2. Mean chamfer distance and Jensen-Shannon divergence
evaluation on KITTI-360 sequence 00 and our data.

applied to scene-scale data. The best performance of our
method over the CD metric can be explained by the fact that
our method operates directly on the points, which enables it
to produce a more detailed scene compared to the baselines.
The scene representation from SDF-based methods inherits
artifacts from the surface approximation and voxelization,
impacting the details in the reconstructed scene and there-
fore decreasing their performance with respect to the CD.
The JSD evaluates the reconstructed scene points distribu-
tion over a voxelized grid comparing the overall scene dis-
tribution between the generated and the expected comple-
tion. Even though our method is not optimized over a voxel
representation, we still achieve the best performance, show-
ing that our scene completion is at the same time closer to
the expected point distribution and can yield more details.

Tab. 2 compares the results of the scene completion
methods on KITTI-360 and our collected data. Due to the
poor performance of PVD over KITTI dataset, we do not
evaluate it on those datasets. For KITTI-360 we notice the
same behavior as in Tab. 1, where our method achieves the
best performance in both metrics. When evaluating in our
data, the performance of the SDF-based methods improve.
This is expected since our data has denser point clouds,
which is an advantage for such methods since they rely on
the input points to approximate a surface to represent the
scene. However, our method still achieves the best perfor-
mance on the JSD metric and competitive performance on
the CD metric. This evaluation shows that our method can
still achieve scene completion over different datasets with-
out fine-tuning since its generation is conditioned to the in-
put scan. In Fig. 5 we can compare the scene completion
generation between the methods. We can see that the dif-
fusion baseline, PVD, fails on generating scene-scale data.
SDF-based methods inherits artifacts from the voxelization,
while our method, especially after the refinement, can gen-
erate a scene closer to the expected, following closely the
structural information from the input scan.

4.2. Scene occupancy

In this experiment, we assess the scene completion by eval-
uating the occupancy of the predicted scene compared with
the ground truth. To do so, we follow the evaluation pro-
posed by Song et al. [38] where the intersection-over-union



LODE

Ours Ours refined

MID

GTInput scan

LMSCNet

PVD

Figure 5. Qualitative results on one scan from KITTI-360. Colors depict point height normalized by the height range of each point cloud.

IoU [%]
Grid resolution (m)

Method 0.5 0.2 0.1

LMSCNet [32] 32.23 23.05 3.48
LODE [15] 43.56 47.88 6.06
MID [40] 45.02 41.01 16.98
PVD [47] 21.20 7.96 1.44

Ours 42.49 33.12 11.02
Ours refined 40.71 38.92 24.75

Table 3. Completion metric where the IoU is computed against the
ground truth and prediction grids with different resolutions.

(IoU) is computed between the predicted and ground truth
voxelized scene, classifying each voxel as occupied or not.
In this evaluation, we compute the IoU at three different
voxel resolutions, i.e., 0.5m, 0.2m, and 0.1m. With a voxel
size of 0.5m, we evaluate the occupancy over the coarse
scene, where the scene details are not considered. As we
decrease the voxel size, more fine-grained details are con-
sidered in the evaluation.

Tab. 3 shows the IoU of our method compared to the

KITTI-360 (IoU) [%] Our data (IoU) [%]
Grid resolution (m) Grid resolution (m)

Method 0.5 0.2 0.1 0.5 0.2 0.1

LMSCNet [32] 25.46 16.35 2.99 21.93 8.48 0.95
LODE [15] 42.08 42.63 5.85 42.99 42.24 5.14
MID [40] 44.11 36.38 15.84 44.47 44.08 16.38

Ours 42.22 32.25 10.80 37.16 29.17 6.53
Ours refined 40.82 36.08 21.34 38.51 40.20 17.48

Table 4. Completion metric where the IoU is computed against the
ground truth and prediction grids with different resolutions.

baselines at the different voxel resolutions. First, the diffu-
sion baseline PVD has the lowest performance overall. This
again shows that current state-of-the-art 3D shape comple-
tion diffusion methods cannot be directly applied to scene-
scale data. At a higher voxel size, our approach stays behind
some SDF-based baselines. This is reasonable in this eval-
uation since SDF methods use a voxel representation to re-
construct the scene. Therefore, its reconstruction is equally
distributed over the point cloud and its voxel representation
is denser compared to our result voxelized. As we decrease
the voxel size, the baselines performance drops. At the low-
est resolution, our method outperforms the baselines. LM-



-0.02
0.0

0.02
Mean [m] 526Standard deviation [m]

r=0
r=1

r=3
r=5

1 2 3 4 5 6 7 8 9 10-8.5 1 2 3 4 5 6 7 8 9 10
1
222
333
44
5

Denoising steps

Figure 6. Mean and standard deviation of the predicted noise ϵθ
over different regularization weights. In this experiment we use
DPMSolver [17] to reduce the denoising steps from 1, 000 to 10.

SCNet [32] and LODE [15] are bound to a voxel resolution
of 0.2m, therefore with a voxel size of 0.1m their perfor-
mance drops drastically. Make It Dense [40] was trained
with a voxel size of 0.1m, however, our method still out-
performs it at this resolution. This shows the advantage of
our approach. Since it is trained at point level, it can pro-
duce a more detailed scene, not limited to a fixed grid size.

Due to the poor performance of PVD on SemanticKITTI,
we compared our method only with non-diffusion ap-
proaches for the other two datasets. In Tab. 4, the same be-
havior is seen on KITTI-360 and our data. At higher voxel
resolution, the SDF baselines have a higher IoU, while with
a lower voxel size, our method achieves the best perfor-
mance. It is also noteworthy that despite of SDF-based
having advantage in our data as discussed in Sec. 4.1, our
method still achieves the best performance at lower resolu-
tion. This suggests that our approach can reconstruct the
scene with more details, and it is able to generate data from
a different dataset than the one it was trained on, since its
generation is guided by the input LiDAR scan.

4.3. Noise regularization

In this section, we evaluate the impact of the proposed noise
prediction regularization on the generated scene. We com-
pare the predicted noise distribution with different regular-
ization weights r in Fig. 6 from the 10 denoising steps in
one scan as in Fig. 3. As can be seen, without the regu-
larization, i.e., r = 0, the predicted noise starts far from
the expected distribution, with a mean of around −9.0 and
a standard deviation of about 526. As we denoise the in-
put, the distribution gets closer to the expected, however,
still with a high standard deviation. When we add our pro-
posed regularization, the model already starts predicting a
more reasonable noise distribution from the beginning, sta-
bilizing the denoising process. From this evaluation, we no-
ticed that using r = 5.0 achieved a more stable distribution
over the denoising steps. In our supplementary material, we
provide also qualitative comparison between the generated
point clouds with different regularization weights.

To evaluate how the regularization impacts the data gen-
eration, we compare the model performance over a short se-
quence from the SemanticKITTI validation set. We run the

r 0.0 1.0 3.0 5.0

CD [m] 0.529 0.470 0.441 0.445

Table 5. Mean chamfer distance over a short sequence from the
validation set of SemanticKITTI.

scene completion pipeline every one hundred scans with-
out using the refinement network, evaluating only the regu-
larization influence over the noise predictor. In Tab. 5, we
compute the chamfer distance to compare the impact of the
regularization over the quality of the generated scene. As
we increase the regularization, the generation quality im-
proves. Despite r = 3.0 achieving a slightly better result in
this evaluation, we stick with r = 5.0 due to the analysis of
the noise distribution from Fig. 6, and from the qualitative
comparisons provided in the supplementary material.

5. Conclusion

In this paper, we propose a novel point-level denoising dif-
fusion probabilistic model to achieve scene completion us-
ing autonomous driving data. We exploit the generative ca-
pabilities of DDPMs to generate the missing parts from a
single sparse LiDAR scan. We reformulate the diffusion
process as a local problem. We define each point as the
origin of the sampled Gaussian noise, learning an iterative
denoising process to gradually predict offsets to reconstruct
the scene from the input noisy LiDAR scan. This formula-
tion enables the processing of scene-scale 3D data, retaining
more details during the denoising process. In our exper-
iments, we compare our method with recent state-of-the-
art diffusion and non-diffusion methods. Our results show
that our approach produces a more fine-grained completion
compared to the baselines and can achieve scene comple-
tion on different datasets since its generation is conditioned
to the input LiDAR scan. Besides, our proposed diffusion
formulation distinguishes from previous state-of-the-art dif-
fusion approaches by enabling the generation of scene-scale
3D data. Furthermore, we believe that our scene-scale dif-
fusion formulation can support further research in the 3D
diffusion generation research field.

Limitations. Even though achieving compelling results
on scene completion, our method is still not able to generate
unconditional data. This limits the data generation capabil-
ity since it requires an input scan to guide the generation.
In our supplementary material, we show examples of the
unconditional generation of our approach. For future work,
we plan on extending our method to generate unconditional
data, creating novel 3D point cloud scenes.

Acknowledgments. This work has partially been funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy, EXC-2070 –
390732324 – PhenoRob.



References
[1] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,

Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu
Liu. ediff-i: Text-to-image diffusion models with an ensem-
ble of expert denoisers. arXiv preprint, arXiv:2211.01324,
2022. 2

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Juergen Gall. Se-
manticKITTI: A Dataset for Semantic Scene Understand-
ing of LiDAR Sequences. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2019. 2, 5

[3] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Juergen Gall, and Cyrill Stachniss. To-
wards 3D LiDAR-based Semantic Scene Understanding of
3D Point Cloud Sequences: The SemanticKITTI Dataset.
Intl. Journal of Robotics Research (IJRR), 40(8–9):959–967,
2021.

[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuScenes: A Multi-
modal Dataset for Autonomous Driving. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[5] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
Spatio-Temporal ConvNets: Minkowski Convolutional Neu-
ral Networks. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019. 5

[6] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In Proc. of the Conf. on Neural
Information Processing Systems (NeurIPS), 2021. 2, 3

[7] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lub-
ing Zhou, Holgr Caesar, Oscar Beijbom, and Abhinav Val-
ada. Panoptic nuScenes A Large-Scale Benchmark for Li-
DAR Panoptic Segmentation and Tracking. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2022. 2

[8] Chen Fu, Chiyu Dong, Christoph Mertz, and John M.
Dolan. Depth Completion Via Inductive Fusion of Planar
LIDAR and Monocular Camera. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2020.
1, 2

[9] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2012. 2, 5

[10] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 2, 3

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In Proc. of the Conf. on Neural
Information Processing Systems (NeurIPS), 2020. 2, 3

[12] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. In Proc. of the Conf. on Neural Information Pro-
cessing Systems (NeurIPS), 2022. 2, 5

[13] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In Proc. of the Int. Conf. on Learn-
ing Representations (ICLR), 2015. 5

[14] Jumin Lee, Woobin Im, Sebin Lee, and Sung-Eui Yoon. Dif-
fusion probabilistic models for scene-scale 3d categorical
data. arXiv preprint, arXiv:2301.00527, 2023. 2

[15] Pengfei Li, Ruowen Zhao, Yongliang Shi, Hao Zhao, Jirui
Yuan, Guyue Zhou, and Ya-Qin Zhang. LODE Locally Con-
ditioned Eikonal Implicit Scene Completion from Sparse Li-
DAR. In Proc. of the IEEE Intl. Conf. on Robotics & Au-
tomation (ICRA), 2023. 1, 2, 6, 7, 8

[16] Yiyi Liao, Jun Xie, and Andreas Geiger. KITTI-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence (TPAMI), 2022. 2, 5

[17] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. DPM-solver: A fast ODE solver for dif-
fusion probabilistic model sampling in around 10 steps. In
Proc. of the Conf. on Neural Information Processing Systems
(NeurIPS), 2022. 2, 4, 5, 8

[18] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models. arXiv preprint,
arXiv:2211.01095, 2023. 2, 5

[19] Shitong Luo and Wei Hu. Diffusion probabilistic models
for 3d point cloud generation. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021. 2, 3

[20] Zhaoyang Lyu, Zhifeng Kong, Xudong XU, Liang Pan,
and Dahua Lin. A conditional point diffusion-refinement
paradigm for 3d point cloud completion. In Proc. of the
Int. Conf. on Learning Representations (ICLR), 2022. 2, 3,
4, 5

[21] Fangchang Ma and Sertac Karaman. Sparse-To-Dense:
Depth Prediction from Sparse Depth Samples and a Single
Image. In Proc. of the IEEE Intl. Conf. on Robotics & Au-
tomation (ICRA), 2018. 1, 2

[22] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Ser-
tac Karaman. Self-Supervised Sparse-To-Dense Self-
Supervised Depth Completion from LiDAR and Monocular
Camera. In Proc. of the IEEE Intl. Conf. on Robotics & Au-
tomation (ICRA), 2019. 1, 2

[23] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 2, 5

[24] Benedikt Mersch, Tiziano Guadagnino, Xieyuanli Chen,
Tiziano, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss.
Building Volumetric Beliefs for Dynamic Environments Ex-
ploiting Map-Based Moving Object Segmentation. IEEE
Robotics and Automation Letters (RA-L), 8(8):5180–5187,
2023. 5

[25] Zak Murez, Tarrence van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich. Atlas: End-
to-end 3d scene reconstruction from posed images. In
Proc. of the Europ. Conf. on Computer Vision (ECCV), 2020.
1



[26] Kazuto Nakashima and Ryo Kurazume. Lidar data syn-
thesis with denoising diffusion probabilistic models. arXiv
preprint, arXiV:2309.09256, 2023. 2

[27] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In Proc. of Ma-
chine Learning Research (PMLR), 2021. 2, 3

[28] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision (ICCV), 2023. 2, 3

[29] Marija Popović, Florian Thomas, Sotiris Papatheodorou,
Nils Funk, Teresa Vidal-Calleja, and Stefan Leutenegger.
Volumetric Occupancy Mapping With Probabilistic Depth
Completion for Robotic Navigation. IEEE Robotics and Au-
tomation Letters (RA-L), 6(3):5072–5079, 2021. 1, 2

[30] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In Proc. of the Interna-
tional Conference on Machine Learning, 2021. 2, 3

[31] Christoph Rist, David Emmerichs, Markus Enzweiler, and
Dariu Gavrila. Semantic scene completion using local deep
implicit functions on lidar data. IEEE Trans. on Pattern
Analysis and Machine Intelligence (TPAMI), 44(10):7205–
7218, 2021. 2

[32] Luis Roldão, Raoul de Charette, and Anne Verroust-Blondet.
LMSCNet: Lightweight Multiscale 3D Semantic Comple-
tion. In Proc. of the Intl. Conf. on 3D Vision (3DV), 2020. 2,
6, 7, 8

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Image
Synthesis With Latent Diffusion Models. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2, 3

[34] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. In Proc. of the
Int. Conf. on Learning Representations (ICLR), 2022. 2, 5

[35] Aditya Sanghi, Hang Chu, Joseph G. Lambourne, Ye Wang,
Chin-Yi Cheng, Marco Fumero, and Kamal Rahimi Malek-
shan. CLIP-Forge: Towards Zero-Shot Text-To-Shape Gen-
eration. In Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022. 2, 3

[36] Aditya Sanghi, Rao Fu, Vivian Liu, Karl D.D. Willis,
Hooman Shayani, Amir H. Khasahmadi, Srinath Sridhar, and
Daniel Ritchie. CLIP-Sculptor: Zero-Shot Generation of
High-Fidelity and Diverse Shapes From Natural Language.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2023. 2, 3

[37] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In Proc. of the Int. Conf. on
Learning Representations (ICLR), 2021. 2, 5

[38] Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang,
Manolis Savva, and Thomas Funkhouser. Semantic Scene
Completion from a Single Depth Image. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2017. 6

[39] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,

Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Sheng Zhao,
Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng Chen,
and Dragomir Anguelov. Scalability in perception for au-
tonomous driving: Waymo open dataset. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[40] Ignacio Vizzo, Benedikt Mersch, Rodrigo Marcuzzi, Louis
Wiesmann, Jens Behley, and Cyrill Stachniss. Make it dense:
Self-supervised geometric scan completion of sparse 3d lidar
scans in large outdoor environments. IEEE Robotics and Au-
tomation Letters (RA-L), 7(3):8534–8541, 2022. 1, 2, 6, 7,
8

[41] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis
Wiesmann, Jens Behley, and Cyrill Stachniss. KISS-ICP:
In Defense of Point-to-Point ICP – Simple, Accurate, and
Robust Registration If Done the Right Way. IEEE Robotics
and Automation Letters (RA-L), 8(2):1029–1036, 2023. 5

[42] Yuwen Xiong, Wei-Chiu Ma, Jingkang Wang, and Raquel
Urtasun. Learning Compact Representations for LiDAR
Completion and Generation. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR),
2023. 1, 2, 6

[43] Jiale Xu, Xintao Wang, Weihao Cheng, Yan-Pei Cao, Ying
Shan, Xiaohu Qie, and Shenghua Gao. Dream3D: Zero-Shot
Text-to-3D Synthesis Using 3D Shape Prior and Text-to-
Image Diffusion Models. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2023. 2,
3

[44] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun
Bao, and Hongsheng Li. Depth Completion From Sparse
LiDAR Data With Depth-Normal Constraints. In Proc. of
the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2019.
1, 2

[45] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-
cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-
tent point diffusion models for 3d shape generation. In
Proc. of the Conf. on Neural Information Processing Systems
(NeurIPS), 2022. 2, 3

[46] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2023. 2

[47] Linqi Zhou, Yilun Du, and Jiajun Wu. 3D Shape Generation
and Completion Through Point-Voxel Diffusion. In Proc. of
the IEEE/CVF Intl. Conf. on Computer Vision (ICCV), 2021.
2, 3, 4, 5, 6, 7

[48] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,
Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and
Tong Sun. Towards Language-Free Training for Text-to-
Image Generation. In Proc. of the IEEE/CVF Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 2, 3

[49] Yufan Zhou, Bingchen Liu, Yizhe Zhu, Xiao Yang,
Changyou Chen, and Jinhui Xu. Shifted Diffusion for Text-
to-Image Generation. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2023. 2,
3



[50] Vlas Zyrianov, Xiyue Zhu, and Shenlong Wang. Learning
to generate realistic lidar point clouds. In Proc. of the Eu-
rop. Conf. on Computer Vision (ECCV), 2022. 2



Certificate of Reproducibility

The authors of this publication declare that:

1. The software related to this publication is distributed in the hope that it will be useful,
support open research, and simplify the reproducability of the results but it comes
without any warrenty and without even the implied warranty of merchantability or
fitness for a particular purpose.

2. Lucas Nunes primarily developed the implementation related to this paper. This was
done on Ubuntu 22.04.

3. Rodrigo Marcuzzi verified that the code can be executed on a machine that follows
the software specification given in the Git repository available at:

https://github.com/PRBonn/LiDiff

4. Rodrigo Marcuzzi verified that the experimental results presented in this publication
can be reproduced using the implementation used at submission, which is labeled
with a tag in the Git repository and can be retrieved using the command:

git checkout CVPR24

https://github.com/PRBonn/LiDiff

	. Introduction
	. Related Work
	. Approach
	. Denoising diffusion probabilistic models
	. Diffusion scene completion
	. Local point denoising
	. Noise prediction regularization
	. Refinement network
	. Noise predictor architecture

	. Experiments
	. Scene reconstruction
	. Scene occupancy
	. Noise regularization

	. Conclusion

