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Mask4D: End-to-End Mask-Based
4D Panoptic Segmentation for LiDAR Sequences

Rodrigo Marcuzzi Lucas Nunes Louis Wiesmann Elias Marks Jens Behley Cyrill Stachniss

Abstract—Scene understanding is crucial for autonomous sys-
tems to reliably navigate in the real world. Panoptic segmentation
of 3D LiDAR scans allows us to semantically describe a vehicle’s
environment by predicting semantic classes for each 3D point
and to identify individual instances through different instance
IDs. To describe the dynamics of the surroundings, 4D panoptic
segmentation further extends this information with temporarily
consistent instance IDs to identify the different instances in the
scans consistently over whole sequences. Previous approaches for
4D panoptic segmentation rely on post-processing steps and are
often not end-to-end trainable. In this paper, we propose a novel
approach that can be trained end-to-end and directly predicts a
set of non-overlapping masks along with their semantic classes
and instance IDs that are consistent over time without any post-
processing like clustering or associations between predictions. We
extend a mask-based 3D panoptic segmentation model to 4D by
reusing queries that decoded instances in previous scans. This
way, each query decodes the same instance over time, carries its
ID and the tracking is performed implicitly. This enables us to
jointly optimize segmentation and tracking and directly supervise
for 4D panoptic segmentation.

Index Terms—Semantic Scene Understanding, Deep Learning
Methods

I. INTRODUCTION

IN the context of autonomous navigation with robots or self-
driving cars, spatio-temporal scene understanding is crucial

to navigate the environment. It is necessary to segment the
scene and identify other agents and track their motion over
time. In this paper, we investigate the problem of 4D panoptic
segmentation for 3D LiDAR scans [1], which requires a
semantic annotation of each LiDAR scan but also information
about the evolution of the individual instances throughout the
whole sequence. As illustrated in Fig. 1, existing approaches
use post-processing steps like clustering or association be-
tween predictions to output the final 4D predictions. This
does not allow for end-to-end training. These approaches
either follow the tracking-by-detection paradigm and associate
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Fig. 1: Different ways to obtain 4D Panoptic Segmentation:
(a) tracking-by-detection: segment individual scans and associate
predictions over time [24], [14]. (b) predictions for a few scans:
use aggregated scans as input and clusters over the 4D point cloud.
To get consistent instances over the whole sequence, associate the
short sequence predictions [1], [16], [12], [36]. Other approaches
rely on post-processing steps like clustering and association while
our method (c) is end-to-end trainable, operates on a scan-to-scan
basis and directly outputs 4D predictions.

scan-wise predictions [24], [14] or they aggregate scans and
perform clustering to obtain predictions for short sequences
that they later associate across such short sequences [1], [16],
[12], [36]. We investigate tackling this task in an end-to-end
manner jointly optimizing for segmentation and association,
which cannot be done with non end-to-end methods. Our
approach uses the same network to perform 3D and 4D
panoptic segmentation without relying on any post-processing
step, which often requires hyperparameter tuning or a manual
cost matrix design. Furthermore, we modify cross-attention to
add spatial prior information of the instance position given
previous detections. How to combine appearance and spatial
information is crucial and has a critical influence on the per-
formance. By proposing a fully end-to-end trainable approach,
we allow the model to choose the best way of combining
these different types of information for this particular task in
different contexts.
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The main contribution of this paper is a model that performs
4D panoptic segmentation that can be trained end-to-end with-
out any post-processing step. Inspired by MaskPLS [23], we
combine learnable queries and point features from a backbone
to obtain binary masks and semantic classes for each scan. To
perform tracking, the queries that predicted instances in the
previous scan, are used in the subsequent steps to decode the
same instances and obtain consistent instance IDs throughout
the whole 3D LiDAR sequence. We propose a loss function
that provides negative samples during training to enforce dis-
similar feature vectors for different instances and improves the
tracking performance. Query-based detection networks tend to
focus mainly on the appearance of the instances and often do
not include important position information. To alleviate this
problem, we leverage the sequential nature of commonly used
3D LiDAR scans and propose position-aware mask attention.
This modification allows us to increase the attention weights
on areas where the instance is located based on previous
detections and motion estimation.

In sum, we make three key claims: First, our method
achieves competitive performance in 4D panoptic segmenta-
tion while being end-to-end trainable without the need for
any post-processing step. Second, our proposed loss function
improves the tracking performance by providing negative
samples. Third, our position-aware mask attention improves
the performance by including spatial prior information from
the LiDAR sequence.

The implementation of our approach is publicly available at
https://github.com/PRBonn/Mask4D.

II. RELATED WORK

Semantic Segmentation on point clouds can be solved
using different data representations. Some approaches work
directly on raw, unstructured point clouds [29], [13], while
other works [27], [21] project the 3D points into a range
image and use 2D convolutional networks. State-of-the-art
approaches often partition the space in 3D voxels [7], [28]
and use sparse convolutions [10] to reduce the memory usage.
In this context, Zu et al. [37] divide the space in cylindrical
partitions while Lai et al. [17] use radial windows to partition
the space in narrow and long voxels.

3D Panoptic Segmentation [15] refers to the joint task
of fusing semantic and instance segmentation using 3D point
clouds. Bottom-up methods [11], [19], [20], [26] are predom-
inant in the LiDAR domain. They use semantic predictions to
filter out the background and group the remaining points into
instances with a post-processing step. Recently, Marcuzzi et
al. [23] propose to exploit query-based transformer architec-
tures [6], [31] and obtain end-to-end 3D panoptic segmentation
by predicting a set of binary masks and their semantic classes.

4D Panoptic Segmentation is the extension of 3D panoptic
segmentation of LiDAR scans to the temporal domain by
requiring temporally consistent instance IDs. Aygun et al. [1]
addresses the task with 4D-PLS by inputting aggregated scans
and performing segmentation by grouping instances over time.
In a post-processing step, they associate the short sequences
predictions to get sequence-level predictions. 4D-Stop [16]
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Fig. 2: MaskPLS overview. The features from the backbone are
combined in each decoder layer with N learnable queries. We obtain
the mask predictions via the dot product between queries and point
features and the semantic class from the queries.

and 4D-DS-Net [12] follow the same approach with different
clustering strategies. MOPT [14] and CA-Net [24] instead rely
on tracking-by-detection and segment instances in individual
scans and associate them across time. Zhu et al. [36] propose
rotation-equivariant modules that they apply to existing net-
works to improve their performances.

Detection and Tracking in the LiDAR domain is usually
solved using convolutional networks. PointPillars [18] projects
LiDAR points into the XY plane and extracts column features,
while Yan et al. [33] use sparse 3D convolutions and predict
bounding boxes. CenterPoint [34] represents objects as points
and tracks them by greedy closest-point matching. Weng et
al. [32] provide a strong tracking baseline using 3D object
detectors with a motion model to perform associations. In the
image domain, recent state-of-the-art object detectors build
on the ideas of DETR [5] and use transformers [30] with
learnable queries to decode bounding boxes and semantic
classes. Several end-to-end tracking methods [25], [35] adopt
this paradigm and use previous output queries for the following
camera images to decode consistent instances over time.

In this paper, we propose to perform 4D panoptic segmenta-
tion in an end-to-end manner without any post-processing. We
build on top of MaskPLS [23] and use the queries to decode
the same instance over time to obtain consistent instance
IDs throughout the whole LiDAR sequence. This leads to an
approach that allows us to directly train for the desired task
and jointly optimize segmentation and association.

III. OUR APPROACH

We base our work on MaskPLS [23], a mask-based 3D
panoptic segmentation network which is end-to-end trainable
and directly outputs a set of binary masks and their corre-
sponding semantic classes. It consists of a feature extractor
and a transformer decoder to combine learnable queries, which
act as mask proposals, with the features and obtain the mask
predictions. We extend this work to the temporal domain by
reusing the queries that detected instances in previous scans to
track the same instance over time and modify cross-attention
to include spatial information about the instance position given
the detections in previous scans.
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Fig. 3: Overview of our method. We extract point features and combine them with the learnable queries to perform panoptic segmentation
by predicting masks and semantic classes. We reuse the output queries that decoded instances as tracking queries in the next scans. After
each detection, we fit an ellipse into the instances to get its center, size and orientation and generate a kernel to modify the attention weights.
The tracking queries carry the identity of the instances, allowing us to keep consistent instance IDs over time.

A. Brief MaskPLS Review

First, we review the concepts of the 3D model
MaskPLS [23], also illustrated in Fig. 2. It consists of a
backbone to extract M point-wise features f ∈ RC from the
point cloud with M points and a transformer decoder with
mask attention and N learnable queries q ∈ RC . The queries
are learnable feature vectors used as mask proposals which
are input to the decoder. They are refined through consecutive
decoder layers to predict the masks in the scan, either an
instance of a thing class or a full stuff class. Each of the D
decoder layers follows the original transformer decoder [30]
replacing cross-attention with mask attention between the
queries and point features from the backbone followed by self-
attention and a feedforward network (FFN). The mask scores
for each output query, i.e., the scores of each point for each of
the N predicted masks mi ∈ [0, 1]M , are obtained from the
output query qi and the point features f , as follows:

m̂i = sigmoid(fq>i ). (1)

The final predictions are obtained by performing argmax
over the semantic logits and over the mask scores. For further
information, refer to MaskPLS [23].

In MaskPLS, a fixed number of N queries at the input must
decode all classes and objects in the scene. These queries
get refined through the cross and self-attention layers in the
decoder and the output queries are combined with the point
features to decode a single mask.

B. Mask4D for 4D Panoptic Segmentation

In MaskPLS, the output queries that detected instances have
information about the instance’s appearance and position. As-
suming that instances do not change too much its appearance
or position in two consecutive LiDAR scans, we can use the
output queries, to detect always that same instance over time.
This way, we leverage the existing 3D model and modify it
to perform 4D panoptic segmentation.

In our proposed approach, we use two groups of queries
as input: detection queries Qdet and tracking queries Qtr,
and we input them simultaneously into the network at each
step together with the LiDAR scan. New instances and the
stuff classes are decoded by the fixed N detection queries

Qdet while the already tracked instances are decoded by their
corresponding tracking queries Qtr and thus keep a consistent
instance ID. The number of Qtr varies over time depending on
the number of instances being tracked. This way, we do not
perform any association or post-processing, and our approach
directly outputs for each point a semantic class and instance
IDs which are consistent over time.

Tracking using queries: We depict the inference of our
model in Fig. 3. First, we detect all the instances and the
stuff classes with Qdet. Each time we decode a new instance,
we take its corresponding output query to initialize a new
tracking query, which carries the instance identity across the
whole LiDAR sequence. We initialize a new tracking query
when the classification score is larger than a threshold τnew.
In the next scan, we concatenate Qdet and Qtr and input
them to the decoder, along with the point features from the
backbone. We decode the stuff classes and the new appearing
instances with Qdet and the already tracked instances with Qdet
and assign consistent instance IDs. To adapt to the changing
appearance of the instance, we replace the tracking query
with the corresponding output query after each detection. The
self-attention applied to all queries allows us to detect new
instances and avoid the re-detection of the tracked objects.

Re-identification: To handle occlusions or instances that
temporally leave the scene, we keep queries of all tracked
instances, even if they have not been detected (inactive) for
a maximum of τlife scans. If an inactive query decodes an
instance with a classification score larger than a threshold τre,
we perform re-identification and assign the ID of the inactive
track to the instance. This way, we preserve the identity of the
instances even in the case of short-term occlusions.

C. Training Setup

We illustrate our training procedure in Fig. 4. For simplicity,
we only show the predicted mask and the paired ground truth
mask for each output query, to depict how we compute the loss
functions. We train our model by sequentially providing S
scans randomly sampled from a sequence of length L. The
aim of the training is for the model to segment the whole
scan and each instance over time with the same query, giving
a consistent instance ID. We segment the first scan using
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Fig. 4: Training setup of Mask4D. We run the inference for scan t
and compute the losses on the pairs matched using the Hungarian
algorithm. At t + 1 we input detection and tracking queries and
compute the losses over two sets. First, with a fixed matching for
the tracking queries and second, with the Hungarian algorithm for
the detection queries to match with new instances and stuff classes.

only Qdet to decode all instances and stuff classes and use
the Hungarian algorithm to match them with the ground
truth masks and compute the losses as in MaskPLS. For
the subsequent S − 1 scans, we use the same set Qdet but
concatenate the output queries that decoded instances in the
previous step as Qtr. We want detection queries to decode
only the new instances and stuff masks and tracking queries to
decode the already tracked instances. To do that, we perform a
fixed matching between the prediction of Qtr and their ground
truth masks and then the Hungarian algorithm for predictions
given by Qdet.

D. Loss Function

MaskPLS loss review. In MaskPLS, the Hungarian algo-
rithm matches all predicted masks Z and ground truth masks Y
to compute the cross-entropy loss for the class and a mask loss
over the K matched pairs:

Lm =

K∑
j=1

−λcls log p̂j(ci) + Lmask, (2)

where p̂j(ci) is the probability of class ci and Lmask is the
combination of dice loss Di and binary cross-entropy CE:

Lmask =
M∑
k=1

λdDi(mi(k), m̂j(k)) + λbCE(mi(k), m̂j(k)), (3)

where mi is the ground truth mask i, m̂j the mask scores for
query j and M is the number of points. For the non-matched
masks Zn, the model is enforced to predict the “no object”
class ø by computing only the class loss with α < 1:

Ln =
∑
j∈Zn

−α log p̂j(ø). (4)

Their final loss Ld is given by the sum of both losses:

Ld = Lm + Ln (5)

The loss supervises the mask predictions obtained with the
input queries and after each of the D decoder layers.

Detection and tracking loss: We enforce tracking queries
Qtr to decode the same instance over time and detection
queries Qdet to decode new instances and stuff classes.

In the first scan, we are not tracking any instance and
therefore use the same procedure as MaskPLS to compute our
detection loss Ld following Eq. (5). For the following steps,
the set of predictions Z = Zdet ∪ Ztr consists on the predic-
tions Zdet made by Qdet and the predictions Ztr = Zac ∪ Zin
made by Qtr, which correspond to the tracked instances present
in the current scan (active) Zac and the tracked instances not
present in the scan (inactive) Zin. We first perform a fixed
matching between the active tracking predictions Zac and their
corresponding ground truth masks and compute the tracking
loss Lt over the matched pairs using the same function as in
Eq. (2).

Second, we remove tracking predictions and their ground
truth and compute Ld using Eq. (5) over the rest of the
predictions Zh = Zdet ∪ Zin for the new appearing instances
and stuff masks. We also supervise intermediate outputs with
the detection loss, which gives D+ 1 terms for each tracking
loss term. In addition, the first scan is only supervised for
detection, which creates an imbalance between the losses
that we compensate by down weighting Ld with αd < 1 and
increase the contribution of Lt by αt > 1 in our detection and
tracking loss Ldt:

Ldt = αdLd + αtLt. (6)

Matching loss. During training, the fixed matching enforces
the tracking predictions to resemble the right instances. During
inference, however, a detection query could decode a tracked
instance and a tracking query could decode a wrong instance.
To account for that, we use the Hungarian algorithm between
all predictions and ground truth and compute two losses.
We select the K ′det instances predicted by Qdet that matched
tracked instances and compute the loss in Eq. (4). This way,
we optimize these queries to predict “no object” to avoid
decoding a tracked instance at inference.

Then, we select the K ′tr pairs of prediction and ground truth
corresponding to instances predicted by Qtr that matched a
wrong instance and perform a dissimilarity loss to enforce
that the masks are different. We invert the ground truth mask
m to generate the target as follows: m∗i = |1−mi|. We only
compute the loss over the foreground points F = {i |m(i) =
1} of the ground truth mask m. The dissimilarity loss Ldis is
the same function in Eq. (3) but only applied to the subset of
foreground points F :

Ldis =
∑
k∈F

λ∗dDi(m∗i (k), m̂j(k)) + λ∗bCE(m∗i (k), m̂j(k)), (7)

where m∗i is the inverted version of m and m̂j are the mask
scores for query j. This enforces low scores for predictions
obtained by Qtr that match another instance, which can be
thought of as negative samples.
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The complete matching loss Lmatch is:

Lmatch =

K′
det∑

j=1

−α log p̂j(ø) +

K′
tr∑

j=1

Ldis. (8)

Our final loss L is the summation: L = Ldt + Lmatch.

E. Position-aware Mask Attention

Analysing the network predictions, we observe ID switches
between instances in different positions in the scan like cars
in different lanes. We argue that the problem might be that
the queries encode mainly appearance information and lack
important spatial knowledge.

To alleviate this problem, we propose position-aware mask
attention. We leverage predictions of previous scans by adding
information about the position and size of the instances to the
cross-attention. Each time we detect an instance, we fit an
ellipse to infer its position, size and orientation and generate
a Gaussian-like kernel to modify the binary mask and the
attention weights in the next step. The kernel increases the
weights of points around the instance center to provide prior
information from previous detections.

Ellipse fitting. We calculate the instance 2D center
µ =

(
µx, µy

)>
as the mean of all instance point coordinates

and fit a 2D ellipse, as shown in Fig. 5 (top), using Singular
Value Decomposition over the set of instance points I. We
compute UΣV ∗ = SVD(I), where Σ = diag(s1, s2). We use
the singular values s1, s2 as the magnitude of the semiaxes
and V ∗ as the orientation.

Kernel generation. We generate a Gaussian-like kernel
g ∈ RM for the M points for each instance I, i.e., a kernel
with value one at its center and exponentially decaying. We
use an anisotropic squared exponential function G(x):

G(x) = exp

(
−1

2
(x− µ′)>K ′(x− µ′)

)
. (9)

We use R = V ∗ as rotation matrix to match the orientation
of the instance and scale the kernel according to the instance
size using the singular values s1, s2. We compute the new
mean and covariance matrix as:

µ′ = Rµ, with K ′ = RK R>, (10)

where

K =

(
s21 0
0 s22

)
. (11)

We obtain our Gaussian-like kernel g ∈ RM by applying
G(x) to the point cloud, i.e., g(i) = G(i), 1 ≤ i ≤M .

Mask generation. Mask attention [6] is a variation of cross-
attention that only attends within the foreground region of a
binary mask for each query i and its output xi is:

xi = softmax(Mi + qik
>)v, (12)

where k = v are the point-wise features and the attention
mask Mi is given by:

Mi(j) =

{
0 if m̄i(j) = 1

−∞ otherwise
, (13)

Fig. 5: Application of the Gaussian-like kernel. At time t (top) we fit
a 2D ellipse around the instance and generate our kernel. At t+1, we
apply the kernel as spatial prior. Compensating only the ego-motion
(middle), the kernel does not consider the instance velocity, does not
fully cover the instance and includes other points. Using a motion
model (bottom), we apply the kernel closer to the instance position.
Colors depict the magnitude of the kernel for each point.

where m̄i(j) is the binarized mask prediction m̂i (threshold
at 0.5) of the previous layer for each point j, as in Eq. (1).

We apply the kernel g to the binary mask to consider
the area where the instance is located. We compute g with
Eq. (9) using the last detection for each instance, add it
to the mask scores and normalize the weights to obtain
m̂′i = norm(m̂i + g). The new attention mask is given by:

M′i(j) =

{
0 if m̄′i(j) = 1

−∞ otherwise
, (14)

where m̄′i is the binarized (thesholded at 0.5) version of m̂′i.
We generate a different kernel for each tracking query and use
zeros as the kernel for the detection queries.

Attention weights. We want to use the spatial informa-
tion to also modify the attention weights and emphasize the
contribution of points around the instance position. Following
previous works [8], we add the logarithm of the kernel to the
attention weights before the softmax, as shown in Fig. 6, and
compute our position-aware mask attention as:

xi = softmax(M′i + (qik
>) + log(g))vi. (15)

F. Motion Compensation for Position-aware Mask Attention
To better estimate the instance locations, we compensate the

ego-motion using a SLAM approach [4] to help in the associa-
tion process. After each detection, we update previous instance
centers µt−1 by applying the relative transformation T t

t−1
between previous and current scan and apply the kernel
around the new instance center µt = T t

t−1µt−1. However, the
compensation does not consider the motion of the instances,
as observed in Fig. 5 (middle). To account for the motion,
we predict the new positions of the instances with a constant
velocity motion model and apply the kernel around the new
instance centers, as depicted in Fig. 5 (bottom). We update the
inactive queries as well for re-identification.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is an approach for 4D panoptic
segmentation that does not require any post-processing step
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Fig. 6: Structure of position-aware mask attention. We add the
logarithm of the kernel as spatial prior to the attention scores and
apply the attention mask to consider a subset of points within the
mask. The resulting attention weights focus on the desired instance.

and can be trained in an end-to-end fashion. In this section, we
present our experiments to show that (i) our method achieves
competitive performance in 4D panoptic segmentation while
being end-to-end trainable without the need for any post-
processing step, (ii) our proposed loss function improves the
tracking performance by providing negative samples, (iii) our
position-aware mask attention improves the performance by
including spatial prior information from the LiDAR sequence.

A. Experimental Setup

We evaluate our method using the 4D Panoptic Segmen-
tation benchmark [1] of SemanticKITTI [2], [3]. It provides
point-wise annotations for 22 sequences of the KITTI odome-
try dataset [9]. We use the LiDAR Segmentation and Tracking
Quality (LSTQ) metric [1] given by LSTQ =

√
Scls × Sassoc,

which is the geometric mean of the classification score Scls and
the association score Sassoc. We further report the intersection
over union for stuff IoUSt and things classes IoUTh.

B. Implementation Details and Parameters

We build on top of MaskPLS using D = 6 decoder
layers, SphereFormer [17] as backbone and N = 100 de-
tection queries. We keep inactive tracks for τlife = 5 scans
and use τnew = τre = 0.8 for new detected instances and re-
identification. We use the same cost as MaskPLS for the
matching and the same weights to build Ld and Lt, which
we combine in Ldt using αd = 0.5, αt = 50 to empirically
equalize the losses. For the disimilarity loss Ldis, we use
λ∗d = λ∗b = 20. We train for 50 epochs using AdamW [22]
optimizer and 0.0001 as a fixed learning rate. We use S = 3
scans randomly picked from a sequence of L = 10 as input.

C. Performance

The first experiment shows the performance of our approach
on the SemanticKITTI validation set in Tab. I and test set
in Tab. II. Our method achieves competitive performance in
4D panoptic segmentation while being end-to-end trainable
without the need for any post-processing step. Our model ranks
second in the benchmark without requiring the hyperparameter
tuning necessary for the post-processing steps and allows us to
optimize jointly for segmentation and association. In contrast,
CA-Net [24] uses a clustering step to predict instances and
later an association step, which needs a manually designed cost
function. The other works [1], [12], [16], [36] follow a similar

Method LSTQ Sassoc Scls IoUSt IoUTh

4DPLS[1] 62.7 65.1 60.5 65.4 61.3
4D-DS-Net[12] 68.0 71.3 64.8 64.5 65.3
CA-Net[24] 68.0 72.9 63.4 64.6 62.0
4D-StOP[16] 67.0 74.4 60.3 65.3 60.9
Eq-4D-StOP[36] 70.1 77.6 63.4 66.4 67.1

Mask4D (ours) 71.4 75.4 67.5 65.8 69.9

TABLE I: SemanticKITTI validation set results. Bold numbers indi-
cate the best results and underlined the second best.

Method LSTQ Sassoc Scls IoUSt IoUTh

4DPLS[1] 56.9 56.3 57.4 66.9 51.6
4D-DS-Net[12] 62.3 65.8 58.9 65.6 49.8
CA-Net[24] 63.1 65.7 60.6 66.9 52.0
4D-StOP[16] 63.9 69.5 58.8 67.7 53.8
Eq-4D-StOP[36] 67.0 72.0 62.4 69.1 60.9

Mask4D (ours) 64.3 66.4 62.2 69.9 52.2

TABLE II: SemanticKITTI test set results. Bold numbers indicate the
best results and underlined the second best.

procedure and use a clustering step to obtain 4D predictions
on short sequences of a few scans and an association step
to combine them into the final 4D predictions. Particularly,
4DPLS, 4D-StOP and Eq-4d-StOP save all the predictions and
run an offline association step to stitch them together, finding
the best association between overlapping tracklets.

D. Ablation Studies

We show the influence of our contributions in the perfor-
mance of our approach, namely the loss function, different
ways of computing the Gaussian-like kernel and the motion
compensation. To reduce the total wall-clock training time, we
train the model using S = 2 scans as input for 25 epochs.

1) Loss Functions: This experiment supports our second
claim, that our proposed loss function improves the tracking
performance by providing negative samples. To evaluate only
the influence of the loss functions, we train the models with
mask attention and show the results in Tab. III. First, we use
the detection and tracking loss and obtain LSTQ = 61.7%.
Next, we add our matching loss to provide negative samples
and improve the association Sassoc by 9.5 percent points but
hinder Scls by 0.4 percent points. Adding our loss improves
the tracking but harms the segmentation performance.

2) Kernel Computation: In this experiment, we illustrate
how our modification of mask attention improves the perfor-
mance by including spatial prior information from the LiDAR
sequence. We show different ways of computing the Gaussian-
like kernel in Fig. 7 and the performance of the model in
Tab. IV. In setting (C), no kernel is applied and in setting (D),
we compensate the ego-motion and apply a fixed-size isotropic
kernel (as shown in Fig. 7-col.1) only to the binary mask and
not to the attention weights. We improve Sassoc by 2.8 percent
points and LSTQ by 1 percent point.

Next, we compensate the ego-motion and use different
kernels to adapt to the instances. In setting (E), we use the
same kernel as in (D) and LTSQ improves by 1.4 percent
points. In setting (F), the size of the kernel is proportional to
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# tracking matching LSTQ Sassoc Scls IoUSt IoUTh

A X 61.7 56.5 67.3 66.3 68.7
B X X 66.5 66.0 66.9 66.9 66.8

TABLE III: Influence of the loss functions on the validation set.

Fig. 7: Different kernels for position-aware mask attention. Col.1
shows an isotropic kernel with fixed size which does not adapt to
different instances and includes background points. Col.2 shows an
isotropic kernel scaled by the size of the instance, which adapts
better to different classes. Col.3 shows an anisotropic axis-aligned
kernel scaled by the instance size. It adapts to axis-oriented instances
(middle) but not to non-aligned instances (bottom). Col.4 shows an
anisotropic kernel scaled and rotated to match size and the orientation.
It adapts to different classes and different orientations. Colors depict
the magnitude of the kernel for each point.

the size of the instance, as seen in Fig. 7-col.2, which improves
the performance by 1.7 percent points. Third, in setting (G),
we compute the instance size in the X and Y coordinates and
generate an axis-aligned anisotropic kernel scaled with the size
of the instance, as shown in Fig. 7-col.3. The performance
improves by 1.5 percent points but drops by 0.2 percent points
related to the (F). Finally, in setting (H) we fit an ellipse into
the instance using SVD and compute an anisotropic kernel
scaled and rotated to match the instance, as seen in Fig. 7-col.4
and improve Sassoc by 1.8 percent points and LSTQ reaches
69.4%. This shows the improvement given by our proposed
position-aware mask attention which makes the model slower,
taking 500 ms per scan in contrast with the 300 ms needed by
MaskPLS when measured on an NVIDIA RTX A5000 GPU.

3) Motion Compensation: In the next experiment, we illus-
trate how the motion compensation for the instances affects the
performance of the model and show our results in Tab. V. We
use the anisotropic kernel based on the ellipse computation.
The validation set (sequence 08) occurs inside a city, with
the ego-car moving at a low speed and with only 11% of
the instances moving. In contrast, in sequence 01 the ego-
car drives on a highway and all instances are moving. The
results in both sequences depict the influence of the motion
compensation also in dynamic environments.

In setting (I), we apply the Gaussian-like kernel using the
instance centers in the coordinates of the previous scan. This
spatial information helps for instances located further apart,
as mentioned in Sec. III-E. Next, in setting (J), we compen-
sate the ego-motion by applying the relative transformation
between scans increasing LSTQ by 0.5 percent points for
sequence 08 and 2.2 percent points for sequence 01 because
the kernel is applied closer to the actual instance center but
we do not account for the motion of dynamic instances, as
seen Fig. 5-middle. Finally, in setting (K), we predict instance
centers with a constant velocity motion model and compute

# Kernel LSTQ Sassoc Scls IoUSt IoUTh

C no kernel 66.5 66.0 66.9 66.9 66.8
D only mask 67.5 68.8 66.3 66.3 66.1

E fixed 68.9 70.9 67.0 66.6 68.7
F size 69.2 71.7 66.7 66.6 69.2
G size xy 69.0 70.4 67.7 66.7 68.9
H ellipse 69.4 71.8 67.2 66.7 68.8

TABLE IV: Influence of how to calculate the kernel on Se-
manticKITTI validation set. (C) not applying any kernel, (D) using
the kernel only for the binary mask attention and (E-G) applying the
kernel computed in different ways: (E) fixed size, (F) scaled with the
instance size, (G) scaled with the instance size in X and Y; and (H)
scaled and rotated to match instance size and orientation.

# center update LSTQ Sassoc Scls

sequence 08 01 08 01 08 01

I local coords 68.9 68.7 70.5 82.1 67.2 57.5
J ego-motion 69.4 70.9 71.8 82.6 67.2 60.9
K motion model 69.7 71.6 72.3 84.2 67.1 60.9

TABLE V: Influence of the different pose compensations on Se-
manticKITTI sequence 08 and sequence 01.

the kernel around it, as shown at the bottom of Fig. 5. We
improve the performance by 0.3 percent points for sequence
08 and 0.7 percent points for sequence 01.

E. Queries for Tracking

In this last experiment, we show an insight into why we
add spatial information to better track instances over time.
In Fig. 8, we show the consecutive instance predictions of
MaskPLS for a few scans. The colors represent the query
number that detected the instance as its ID. In the circled
areas, we observe certain consistency in the instance IDs. On
the left, the car that follows the ego-car remains in a similar
relative position and gets assigned the same ID because is
decoded by the same query. On the right, the same instance
ID is assigned to different cars that traverse the same spatial
region. These examples show that the queries decode masks
in a particular spatial region. This observation motivates our
proposed position-aware mask attention to include spatial
information instead of relying only on the query information,
which always points to the same relative position.

V. CONCLUSION

We presented a novel approach to perform 4D panoptic
segmentation without any post-processing step that achieves
competitive performance while being end-to-end trainable.
We use a mask-based 3D panoptic segmentation network
and extend it to 4D by using queries to segment the same
instance over time. The experiments show that our proposed
loss function improves the performance by providing negative
samples. Finally, our position-aware mask attention allows us
to include spatial prior information in the cross-attention and
improve the association. This enables us to jointly optimize
for segmentation and association and let the network choose
how to combine appearance and position information.
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Fig. 8: Instance segmentation results of sequential scans using
MaskPLS. Colors depict instance IDs. Instances at a similar spatial
location are decoded by the same query over time and therefore keep
the same ID. The queries decode instances in a specific area.
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