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Fig. 1: A TSDF-based surface model from a single 16-beam LiDAR scan (left) turned into a denser, completed TSDF-based surface
model (right) by the learning-based approach proposed in this paper.

Abstract—Mapping systems that turn sensor data into a model
of the environment are standard components in mobile robotics.
Outdoor robots are often equipped with 3D LiDAR sensors to
obtain accurate range measurements at a high frame rate. The
price for a robotic LiDAR sensor scales roughly linearly with the
number of beams and thus the vertical resolution of the scanner.
In general, the cheaper the sensors, the sparser the point cloud.
In this paper, we address the problem of building dense models
from sparse range data. Instead of requiring the vehicle to move
slowly through the environment or to traverse the scene multiple
times to cover the space densely, we investigate geometric scan
completion through a learning-based approach. We revisit the
traditional volumetric fusion pipeline based on truncated signed
distance fields (TSDF) and propose a neural network to aid the
3D reconstruction on a frame-to-frame basis by completing each
scan towards a dense TSDF volume. We propose a geometric scan
completion network that is trained in a self-supervised fashion
without labels. Our experiments illustrate that such frame-wise
completion leads to maps that are on-par or even better compared
to maps generated using a higher resolution LiDAR sensor. We
additionally show that our system can be used to improve the
performance of SLAM systems.
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I. INTRODUCTION

MOST autonomous vehicles rely on some form of map-
ping. Modern outdoor robots and self-driving cars are

equipped with 3D sensors such as RGB-D cameras or LiDARs
to perceive their surroundings. Volumetric mapping pipelines
have shown to be an effective approach to mapping [7], [20],
[36]. Most of the existing volumetric mapping works rely on
the fact that they integrate dense 3D data at a rather high frame
rate into a model, often at 10 to 30 frames per second (fps).

Outdoor robots often use 3D LiDARs such as Velodyne or
Ouster scanners, which have between 16 and 128 beams. Their
price scales roughly linearly with their number of beams and
thus the vertical resolution of the scans. The denser a single
scan, the more expensive the scanner. Thus, it is a relevant
research question whether we can build a mapping or SLAM
system that generates dense models but only requires sensors
with a low vertical (or horizontal) resolution. The left image
of Fig. 1 depicts the TSDF model computed from a single 16-
beam LiDAR with a state-of-the-art mapping system [36]. As
can be seen, the data and thus the model is rather sparse. As a
result, it can be challenging for standard mapping pipelines to
build dense models from such spare measurements, especially
if the vehicle is driving at high speeds or the LiDAR scanner
is operating at a low frame rate. Additionally, this spareness
of the sensor data can lead to wrong pose estimation results
of the SLAM system.

Recent work has shown the importance of obtaining a
dense observation of the environment without the need to
accumulate multiple frames [37]. The ability to predict how
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the environment looks beyond the current observation can be
exploited for robotic tasks such as navigation [37], thus, being
able to complete the geometry of single observations is also a
relevant (and interesting) research question.

This paper addresses the problem of completing sparse
3D LiDAR scans in a frame-to-frame fashion for TSDF
mapping using a learning approach. Fig. 1 illustrates our
central question: “Based on data obtained from a single scan
of a 16-beam LiDAR, can we estimate and hallucinate how
the scene looks like?” For investigating this, we revisit the
traditional volumetric fusion idea [7], [20] and combine it with
a learning approach. We aim at exploiting the best of both
worlds. In contrast to recent work on scan completion [10],
[19], [37], we target single geometric scan completion in large
outdoor environments where existing completion approaches
fail to operate due to memory limitations of commonly used
GPUs.

The main contribution of this paper is a self-supervised
approach for turning a sparse 3D LiDAR scan into a com-
parably dense TSDF representation of the local scene. We
propose a 3D convolutional neural network (CNN) trained in a
self-supervised manner that completes the reconstructed scene
on a frame-to-frame basis. In contrast to recently published
works [10], [19], [37], we aim at completing single scans
instead of completing a scene created from aggregated scans
offline. In our approach, we process the 3D LiDAR data
and pass it to our CNN. The output of the network is a
TSDF representation that encodes the most recent observation
plus synthetically completed data, which is then fused into
a global map. Our experiments show that our approach can
complete sparse LiDAR scans improving the mapping results,
as well as a state-of-the-art SLAM pipeline [3]. We see this
as a step towards getting better representations with cheaper
scanners and thus reducing hardware costs through smarter
software. We also publish our code together with the pre-
trained models1.

II. RELATED WORK

3D scene reconstruction and understanding have been an
active area of research for the last three decades. The classi-
cal volumetric integration method introduced by Curles and
Levoy [7], made the use of the truncated signed distance
functions popular in computer graphics, computer vision,
and robotics applications. With KinectFusion, Newcombe et
al. [20] popularized the use of volumetric integration meth-
ods [22], [24], [39], [36].

With the recent advances in LiDAR technology, the use of
TSDF for volumetric mapping also gained increased attention
in the research community. However, the sparsity of the sensor
data and the volume that one scan covers makes it challenging
to use such representation in outdoor environments with basic
data structures like dense voxel grids. Some works specifically
address the memory consumption, e.g., voxel hashing [21],
[22], rolling grids [39], octrees [15], [32], or more recently
using VDBs [36].

1https://github.com/PRBonn/make it dense

With the recent developments in deep learning, many ap-
proaches have been developed to solve 3D reconstruction [17],
[25], [26], [27] and scene completion [8], [10]. However,
most approaches only consider relatively small objects (from
ShapeNet [5]) and do not apply to the setting we target, namely
large outdoor scenes.

More recently, learning-based approaches have been pro-
posed for RBG-D sensors that improve the volumetric aggre-
gation in a TSDF [38] or learn to complete or improve the
appearance of the generated reconstruction [10], [18], [19].
Our work is related to the work of Dai et al. [10] as well as
Atlas [19]. In contrast to these methods, which work on the
aggregated volumes, we target the single scan setting to avoid
the time-consuming buffering of scans.

With the availability of large, annotated LiDAR datasets [2],
new approaches have been proposed for semantic scene com-
pletion. Typically, these approaches require a rather large
amount of training data to produce reasonable results [28],
[29]. Additionally, adapting such systems to target geometry-
only predictions is not straightforward due to the complexity
of the network architectures. Instead, we aim at producing
a smooth surface representation of the map. Additionally,
our geometric scan completion does not require any labels,
allowing our system to be trained from pure real-world data.

Furthermore, semantic scene completion systems typically
require the input data to be fitted into a fixed-size volume, to
cope with memory limitations, typically 256×256×32 vox-
els [28], [29]. One common drawback of such design choice
is that all the information on the negative x axis is discarded,
being of importance for mapping applications but of not much
relevance for semantic scene completion. Additionally, such
methods use only a voxel size of 0.2 m, while we can produce
a higher resolution model by picking 0.1 m, instead. In contrast
to those works, we do not assume the size or the volume to be
processed, allowing us to entirely complete a full outdoor-like
TSDF volume. It might be tempting at a first sight to see our
approach as a subset of the semantic scene completion task.
However, this is not the case as our contribution is to produce
denser semantic-free, geometric models using low-resolution
scanners, also without making any assumption on the size of
the input data.

In sum, we propose a geometry-driven system that integrates
sparse LiDAR scans into volumetric maps by completing each
scan using a 3D CNN. Our approach aims at taking the best
of both worlds: classical mapping and deep learning.

III. SINGLE GEOMETRIC SCAN COMPLETION

Our approach creates a dense reconstruction of single Li-
DAR scans recorded with a low vertical resolution, meaning
few (e.g., 16) beams, to obtain results similar to those recorded
with a larger number of beams (e.g., 64). We target processing
every single scan as it gets recorded and we do not target a
post-processing solution as Dai et al. [10] for RGB-D mapping
or Vizzo et al. [35] for LiDAR mapping. Furthermore, this
work does not focus on pose estimation, but only on the
mapping part.

Fig. 2 shows an overview of our processing pipeline that
combines classical mapping with a learning-based refinement

https://github.com/PRBonn/make_it_dense
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Fig. 2: Overview of our approach. We first generate a TSDF volume DS
x (t) of a single scan Pt at time t. We then apply our geometric scan

completion network in a strided fashion, such that missing values are added to the single-scan TSDF, giving a more complete TSDF volume
DP

x (t). The predicted TSDF values are then used to update the global TSDF representation DG
t (x) using a weighting term η to avoid

integrating the same observation twice into the map. The colored boxes highlight different areas of the input scans and its corresponding
reconstruction in the final fusion results.

to generate high-fidelity representations from sparse LiDAR
measurements. We first generate a TSDF-based volumetric
representation of a single scan, which we denote as DS

t (x),
and (optionally) corresponding weights, denoted as W S

t (x).
Here, x refers to the voxel location in the grids. Then, we use
DS

t (x) to predict a new volume of TSDF values, denoted as
DP

t (x) using a fully convolutional network. The network is
trained to fill in values in a self-supervised way as if the data
would have been recorded with a high-resolution LiDAR.

As the grids are globally aligned, we integrate the scan-
based predicted grid, DP

t (x), into a global grid DG
t (x). From

the global signed distance fields, we can determine a surface
representation using marching cubes [16]. In the following
sections, we describe the individual processing steps in more
detail.

A. Scan Integration Using TSDF

The LiDAR generates a point cloud Pt = {p1, . . . ,pN}
of N points pi ∈ R3 at time t. We assume that we have
an estimate of the current pose of the sensor Tt ∈ R4×4

available (from a GPS/IMU combination). We denote by Rt ∈
R3×3 and tt ∈ R3 the rotational part and the translational part
of the transformation Tt, respectively.

To obtain the TSDF representation of the scan, we employ
VDBFusion [36] with voxel size of vsize, truncation distance
(also known as background value) of τTD and no space
carving enabled [36]. We then extract the truncated signed
distance field DS

t (x) and the weight grid W S
t (x) from the

mapping system. We refer the curious reader to the original
publication [36] for more details. As a result of this step,
we end up with a volumetric scalar field DS

t (x) : R3 → R
representing the TSDF.

B. Geometric Scan Completion

The TSDF grid DS
t (x) encodes the surface representation

of the single scan and is then passed through our CNN
architecture that predicts a new TSDF grid DP

t (x) with the
same dimensions as DS

t (x) to create the dense information.
This is done for each incoming scan individually.

Network input. Instead of learning to regress a TSDF value
directly from raw sensor data, we input a batch of TSDF
volumes to the network and train it to improve its quality
towards a more expensive sensor with more LiDAR beams.
For this reason, the TSDF representation of the scan DS

t (x), is
split into non-overlapping volumes of 3.2m3. These volumes
are batched together into a dense multidimensional tensor and
then feed to our network. By storing the coordinates of the
origin of each of these volumes, we can later reconstruct
the original scene once the network has completed the TSDF
values. Instead of using point-wise operations [34], [29], we
can directly use 3D convolutions on these volumes. Since we
operate on smaller sub-volumes from a single scan instead
of a full scene, our network architecture is small and fast
to train, making it rather compact and deployable on mobile
robots. The fully convolutional design and the small number
of parameters make it also hard for the network to overfit
a particular dataset [23], [41]. Our network has about 1.4M
parameters and already shows reasonable results after 1 hour
of training.

Architecture. Our architecture is based on a 3D convo-
lutional encoder-decoder architecture with skip connections
between the output of each encoder stage and the input of
the decoder stage with the same feature map dimensions.
Our model is very similar to the architecture proposed by
Dai et al. [10], with the difference that our architecture can
process directly dense volumes, and therefore there is no need
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to convert back and forth between dense and sparse tensors.
Analogously, our architecture is also similar to the Atlas [19]
architecture, but in contrast, we do not fix the size of the
volume but allow the scene to be arbitrarily large. In essence,
our model reassembles a 3D-UNet [6], [30] architecture.
More specifically, we first compute volumetric features using
standard, dense 3D convolutions to increase the number of
channels. For each subsequent encoder step, we increase the
number of output channels by a factor of 2 using standard 3D
convolutions and subsequently reduce the volumetric resolu-
tion with strided 3D convolutions. For upsampling, we use
transposed convolutions to regain resolution in the output.
Each convolution is followed by batch normalization and a
ReLU activation.

Overall, we have a symmetrical encoder-decoder structure
with S = 3 stages such that we achieve the same spatial
resolution in the output as with the input voxel grid. Let Di be
the ith decoder stage of a transposed convolution followed by
a convolutional layer with an output dimension M ×M ×M
of the corresponding scalar field. Consequently, the output
of the Di−1 stage is M/2 × M/2 × M/2 and therefore D1

denotes the first decoder stage after the last encoder stage
which corresponds to a strided convolution followed by a
convolutional layer.

We not only predict a scalar field after the final decoder
stage, i.e., DS , but generate also intermediate outputs of the
intermediate decoder stages D1, . . . ,DS−1. To transform the
output of each decoder stage at every resolution level, we
use convolutions with kernel size 1 to reduce the number of
channels to 1 (the scalar field) and use tanh as an activation
function to predict both positive and negative values.

Multi-Resolution Loss. We optimize our network end-
to-end with a masked multi-resolution ℓ1 loss between the
predicted TSDF values (at all decoder stages, i.e., D1, . . . ,DS)
and the target TSDF values. In line with prior work [9], [10],
[19], [33], we log-transform the predicted and target values
before applying the ℓ1 loss. This enable us to obtain better
predictions close to the surface [9], [10]. In contrast to recent
works in scene completion [10], [37], we do not add any
classification layer to predict invalid or occlusions.

At each decoder stage Di, we mask out regions where the
predicted TSDF values are equal to the background value
τTD. The following decoder stages will then skip the loss
computation on those voxels and focus more on the fine-
grained TSDF predictions at surface boundaries. Furthermore,
we also mask out all the planes in the target volumes that are
equal to the background value [19], which avoids artifacts on
the predicted scalar field.

We denote by Ri all locations that are relevant for com-
putation of the loss at decoder stage Di, since they are not
already predicted by stage i−1 or masked out. Therefore, we
use the following loss for the i-th resolution:

L(D̂i, Di) =
∑
x∈Ri

||ϕ(D̂i(x))− ϕ(Di(x))||1, (1)

where D̂i ∈ RM×M×M and Di ∈ RM×M×M correspond to
the target TSDF volume and the predicted TSDF volume at
the decoder stage i, respectively, and ϕ(x) : R → R is the log

transform, defined as

ϕ(x) = sgn(x) · log(|x|+ 1) (2)

Overall, we therefore minimize the following loss:

L =
∑

i∈{1,...,S}

L(D̂i, Di). (3)

Self-Supervised Training. We train our geometric scan
completion network self-supervised by using VDBFusion [36]
on the scans of the KITTI odometry dataset [11] using
the provided poses. To achieve self-supervision, we take the
sequential scans with known poses and build the following
TSDF representations. First, we generate the desired input for
our network by using a subset of beams of the Velodyne HDL-
64E sensor. To this end, we keep every 4th row from a range-
image representation of the original scan. While this input scan
does not represent the exact sensor characteristics of a low-
cost LiDAR sensor, e.g., a Velodyne VLP-16, it is close to it
in terms of density.

Next, we generate the multi-resolution targets, i.e.,
D̂1, . . . , D̂S , by applying the TSDF pipeline on the original
scan, without dropping beams. To increase the density of the
targets, we aggregate npast=25 scans in the past and nfuture=25
scans in the future for the current frame. Furthermore, to avoid
dynamic objects corrupting the supervision data, we make use
of SemanticKITTI labels [2] and remove dynamic objects from
those scans that are being aggregated.

To train the network efficiently, we split the generated
target TSDF representations into non-overlapping volumes of
32×32×32, 16×16×16, and 8×8×8 voxels, respectively. Due
to the different voxel sizes for the three representations, each
extracted volume spans a total of 3.2m3 in the volumetric
space. At test time, we use non-overlapping contiguous vol-
umes of 32×32×32 voxels, since this empirically provided
the best results. Note that the completion artifacts visible in
Fig. 1 are due to this choice but do not affect the final mapping
results, as shown in Fig. 2, Fig. 4, and Fig. 5.

The varying speed of the vehicle can change the characteris-
tics of the target representation, which serves as an additional
data augmentation. Furthermore, the targets are not complete
and include sensor noise and artifacts in the reconstruction.
Nevertheless, our network can learn how to complete a sparse
input scan in a coarse-to-fine fashion with a high level of detail
and completeness.

C. Global Map Update

Once we have the two observations, one based on sensor
data and the other one based on the geometric scan completion
network, we proceed to integrate this information into our
global volumetric grid DG

t (x).
It is important to note that we need to provide a way to

combine the two data sources without integrating the same
observation twice. Additionally, the real TSDF measurements
are sparse and incomplete but do not contain reconstruction
artifacts. In contrast, the predicted TSDF volumes are denser
and more complete but they hold reconstruction artifacts due
to prediction errors in the network. To fuse these two sources,
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Approach / Sequence 00 01 02 03 04 05 06 08 09 10 Avg.
16

-b
ea

m
s Voxblox [22] 0.74 0.75 0.81 0.76 0.74 0.71 0.74 0.74 0.68 0.71 0.75

TSDF [36] 7.01 7.20 7.83 6.93 7.03 7.02 7.25 6.84 6.75 7.05 7.20
TSDF [36] + Upsample 14.08 14.10 15.83 13.97 14.12 14.21 14.65 13.66 13.76 14.55 14.10

TSDF [36] + Morphological 13.39 13.68 14.32 13.11 13.33 13.76 13.81 13.14 13.72 13.67 13.68
PSR [13] 15.38 15.19 16.09 15.20 15.27 15.37 15.60 14.98 14.94 15.67 15.19

Our approach 24.57 24.95 25.71 24.11 24.57 24.52 25.36 24.01 24.33 24.73 24.95

64
-b

ea
m

s Voxblox [22] 13.35 13.88 14.66 13.30 13.52 13.54 14.07 12.84 12.89 13.72 13.88
TSDF [36] 23.27 24.17 25.34 23.07 23.37 23.69 24.30 22.54 23.06 23.93 24.17

TSDF [36] + Morphological 14.16 14.46 14.76 14.18 13.97 14.44 14.72 13.99 15.25 14.67 14.46
PSR [13] 25.22 25.57 26.12 24.87 25.19 25.24 26.06 24.48 25.01 25.59 25.57

Our approach 33.44 33.70 34.31 33.09 33.29 33.53 34.64 32.79 33.78 33.58 33.70

TABLE I: Intersection-over-union results of the single geometric scan completion experiment. First row exhibits the IoU for a 16-beam
sensor, while second row shows the results for a 64-beam one. Sequences are taken for the KITTI odometry benchmark [11].

we introduce a weighting term η ∈ [0, 1]. The term η specifies
how much more we want to trust an actual measurement over
a predicted TSDF value.

In TSDF mapping using RGB-D cameras, one may use the
weight matrix W S

t (x) to control the update of the TSDF
grid [20], [22], [4] and, for example, down-weigh certain
measurements within a single image. This, however, is much
less relevant for LiDAR scans where measurements have
similar accuracy. Thus, we generally set W S

t (x) = 1 for all
cells next to the truncation distance τTD and 0 otherwise. We
do the same for the weight for the predicted scan W P

t (x).
In case more knowledge about uncertainties are available, one
can introduce different weights here.

We use the factor η to weight the actual observations and
the predicted ones in a consistent manner, making sure infor-
mation is not incorporated multiple times. We can effectively
fuse both data sources without duplicating the observation at
every timestamp by:

∆D(x) = ηW S
t (x)D

S
t (x) + (1− η)W P

t (x)D
P
t (x) (4)

∆W(x) = ηW S
t (x) + (1− η)W P

t (x). (5)

Intuitively choosing a η factor close to 1 will completely
discard the prediction of the network while keeping the real
TSDF values, producing fewer artifacts on the output but
having a sparse and incomplete model of the scene. In contrast,
picking η close to 0 will reject entirely the real TSDF measure-
ments and keep only the prediction of the network, producing
a dense map representation but with more artifacts on the
reconstruction. In our work, we find empirically that a good
compromise is to set η=0.7. Once we have the aggregated
SDF values ∆D(x) for the two sources and their respective
weights ∆W(x), we fuse both analogously to Curless and
Levoy [7] for all voxels at location x as follows:

DG
t (x) =

WG
t−1(x) ·D

G
t−1(x) + ∆D(x)

WG
t−1(x) + ∆W(x)

(6)

WG
t (x) = WG

t−1(x) + ∆W(x). (7)

IV. EXPERIMENTAL EVALUATION

The main focus of this work is to complete sparse LiDAR
scans to aid in mapping the environment while navigating

PSRTSDF

Our ApproachTSDF + Interpolation

TSDF + Morph. Operation Reference Point Cloud

Fig. 3: Illustration of the results obtained through different geometric
scan completion approaches. All representations were built with just
one 16-beam LiDAR point cloud except for the GT point cloud used
for evaluation.

through it. The experiments are designed to showcase the ca-
pabilities of our geometric scan completion approach. We will
see that we can estimate comparably dense TSDF representa-
tions from a single 16-beam LiDAR scan using purely self-
supervised training for our network. We obtain improved maps
fusing real observations and observations produced by a CNN.
Furthermore, we also show that our approach improves the
accuracy of existing SLAM systems [3] when low-resolution
scanners are employed.

A. Experimental Setup

We optimized our network with the Adam optimizer [14]
and with an adaptive learning rate of 0.001. Our network takes
only 1 hour to converge to reasonable results, but we keep
training as long as 8 hours for fine-tuning some details. We use
the KITTI odometry dataset [11] for evaluation and use labels
provided by the SemanticKITTI dataset [1] to filter dynamic
objects for the evaluation of the mapping results. We train
our network on sequence 07 and report quantitative results on
sequences 00 to 06 and 08 to 10. We use the GPS/IMU poses
provided by the KITTI dataset. For all our experiments, we
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Fig. 4: Results of TSDF-based mapping (left) and our approach (right) after aggregating and subsequently fusing 10 (top row) and 50 (bottom
row) scans from a 16-beam LiDAR. As can be seen, our approach yields a more complete model than standard TSDF mapping. The LiDAR
frames are taken from sequence 03 of the KITTI odometry benchmark [11].

used a voxel size of vsize=0.10m at the finest resolution. The
truncated distance, also known as background value, is set to
τTD=3 voxels.

For quantitative evaluation, we use the standard scene com-
pletion metric proposed by Song et al. [31], which measures
the intersection-over-union (IoU) between a ground truth voxel
grid of occupied voxels and the predicted occupancies. Note
that we account for areas that are never observed and are
occluded and ignore these voxels.

B. Completeness Achieved by Geometric Scan Completion

The first experiment evaluates the performance of our
approach for geometric scan completion and shows that we
can predict a local scene in an urban environment using a
single 16-beam LiDAR scan. As baselines for comparison,
we use three other geometric approaches. First, a combination
of morphological operations [12] such as opening and closing
plus smoothing. Second, we use Poisson surface reconstruction
(PSR) [13]. Third, we apply tri-linear interpolation on the
range-image representation of the 16-beam LiDAR scanner to
up-sample the point cloud to a 64-beam scan. This experiment
is key to evaluate the performance of our approach as each
scan is processed by the neural network and immediately
incorporated into the mapping pipeline.

To use scene completion metrics [31] we need to obtain
ground truth voxel grids that contain only occupancy infor-
mation. To this end, we follow the approach of Behley et
al. [2] and for each input scan at timestamp t, we aggregate
2L+1 full-resolution scans (L before, L after, and the current
scan) into a reference point cloud. We use then labels from
SemanticKITTI [2] and filter out dynamic objects in this
reference point cloud. Lastly, we crop the reference point cloud
with the bounding box of the input scan under evaluation.
We then determine the occluded voxels by raycasting the

point cloud from the known poses, such that never observed
voxels, i.e., voxels that cannot be reached by the raycasting,
are marked as occluded. We then proceed to obtain occupancy
voxel grids for the methods under consideration. To ensure
that the IoU is not affected by the density of the point
sampling [40], we first obtain a triangle mesh representation
for each method. We sample a dense point cloud on these
meshes and use it to obtain an occupancy voxel grid as
described above. A qualitative illustration of this process is
depicted in Fig. 3, and all methods visible in this figure will
be compared to the reference point cloud. For the evaluation,
we use every 500th scans from each of the test sequences and
average errors across each sequence.

The results of this experiment are shown in Tab. I. The first
row of Tab. I provides the quantitative results for all methods
under consideration when using a single 16-beam LiDAR
scan. This is the most relevant experiment for our work, as
it shows how well we can complete a single 16-beam LiDAR
observation. Nevertheless, we also run all the methods using a
single 64-beam scan. Our approach outperforms all baselines
in all the testing sequences for both sensor resolutions. It
shows that we can complete sparse as well as dense scans.

To illustrate what such numbers mean, Fig. 3 shows a
single scan and the completion results. The traditional TSDF-
based method [36] can reconstruct the surfaces only where
observations are available. Even when trying to augment the
results of a traditional TSDF pipeline with morphological
operations and upsampling, the results are not on-par with our
approach. PSR [13] shown overall the best performance among
the baselines, but as seen on Fig. 3 the method tends to over-
smooth the reconstruction results. Our approach outperforms
all baselines and provides accurate reconstructions close to
the observations plus smooth and complete results for areas
without measured points.
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Method Error 00 03 04 05 06 07 08 09 10 Avg.

SuMa trans. 3.39 8.83 8.25 3.27 4.37 2.03 4.60 6.18 6.60 5.28
(16 beams) rot. 1.62 4.53 1.32 1.53 2.10 1.66 2.10 2.52 2.32 2.19

Ours trans. 1.45 4.99 1.05 0.66 0.87 1.06 1.52 2.52 2.87 1.89
(16 beams) rot. 0.63 1.60 0.85 0.37 0.44 0.83 0.73 0.73 1.08 0.81

TABLE II: Pose estimates results on the KITTI dataset [11]. The
relative translational error (trans.) is in % and the relative rotational
error (rot.) in degrees per 100m. All errors are averaged over
trajectories of 100 to 800m length. Bold numbers indicate the best
approach for the given sequence. Sequences 01 and 02 are not
reported due failure in both methods.

C. Improving Existing SLAM Systems using Low-Resolution
LiDARs

This experiment showcases how our approach can be em-
ployed on existing 3D LiDAR SLAM pipelines, e.g. SuMa [3].
To conduct this experiment, we compare the pose estimates
from the SLAM system using the standard metrics from
the KITTI Odometry benchmark [11] with and without our
densification pipeline. As a baseline, we run SuMa with the
16-beam LiDAR using the default parameters but changing
the vertical resolution to 16 beams. For our approach, we
first complete each scan individually, using our geometric scan
completion network, and then project the completed scan into
the vertex and normals maps needed for SuMa [3]. Note that
given the high resolution of the completed scan, we have the
freedom to choose any vertical resolution for the projection.
For our experiments, we choose to use a vertical resolution of
64.

As shown in Tab. II the original SLAM system performs
quite poorly when employing low-resolution LiDAR scanners.
We overcome the spareness of the data by employing our
geometric scan completion network and, as a result, we can
improve the pose estimation on all sequences, except for
sequences 01 and 02 where both methods fail, our results show
to be almost 3 times better than the baseline.

D. Qualitative Evaluation for Mapping on Scan Sequences

16 beams. The next experiment illustrates how the presented
self-supervised approach can aid a traditional volumetric re-
construction pipeline when considering whole scan sequences
and not only individual scans. To do so, we illustrate the result-
ing local maps obtained when combing 10 and 50 consecutive
16-beam scans (with the scanner running at the maximum
frame rate of 10 Hz). We compare our results against the
most frequently used TSDF-based approach [36] that works
on large-scale LiDAR data. As can be seen in Fig. 4, the
traditional TSDF pipeline creates consistent maps, but the
results are by far less complete when compared to our results.
For example, the scene’s street, sidewalks, cars, and other
major shapes are properly reconstructed.

64 beams. The following experiment evaluates qualitatively
how our system can improve the mapping results in cases
where the frame rate of the scanner is relatively low or
when driving at high speeds. We generate synthetic data
from an urban sequence by dropping frames but keeping the
full resolution of the scanner. We choose sequence 00 from

TSDF [36]

Our Approach

64
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sc
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Fig. 5: Qualitative results of a high-speed/low frame rate LiDAR
sequence. The LiDAR used for this experiments uses 64 beams,
nevertheless classical integration methods [36] (top row) are not able
to properly map the environment. Our geometric scan completion
approach (bottom row) is able to aid the reconstruction system
enabling a more complete representation of the scene.

the KITTI dataset [11] and run a traditional TSDF mapping
pipeline [36] as baseline. As shown in Fig. 5, when the number
of frames is relatively low, traditional integration methods fail
to reconstruct a dense map of the environment. Our approach
to geometric scan completion can help to cope with this type
of situation improving the results of the mapping pipeline as
well as its completeness.

V. CONCLUSION

In this paper, we proposed a novel mapping approach
that builds dense 3D models from sparse LiDAR data. We
investigate sparse 3D geometric scan completion through a
learning-based approach. We combine traditional TSDF-based
volumetric mapping with 3D convolutional neural networks
to aid reconstruction on a frame-to-frame basis. From a single
sparse scan, we can generate comparably dense TSDF surface
models. Our completion network is trained in a fully self-
supervised fashion. Our experiments suggest that our maps
built with 16 LiDAR beams are on-par or even better compared
to traditionally-built TSDF maps generated using 64-LiDAR
beams.

The current limitation of our method is the network archi-
tecture, which does not exploit the sparse nature of the data,
instead, it employs dense convolutions on the input volumes,
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which are generally not fully occupied. A natural extension is
to replace the current architecture with one that exploits sparse
convolutions to reduce memory consumption but also runtime
operation at the same time.
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[32] F. Steinbrücker, J. Sturm, and D. Cremers. Volumetric 3D Mapping in
Real-Time on a CPU. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2014.

[33] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao. NeuralRecon: Real-Time
Coherent 3D Reconstruction From Monocular Video. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[34] H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and
L. Guibas. KPConv: Flexible and Deformable Convolution for Point
Clouds. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2019.

[35] I. Vizzo, X. Chen, N. Chebrolu, J. Behley, and C. Stachniss. Poisson
Surface Reconstruction for LiDAR Odometry and Mapping. In Proc. of
the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[36] I. Vizzo, T. Guadagnino, J. Behley, and C. Stachniss. Vdbfusion:
Flexible and efficient tsdf integration of range sensor data. Sensors,
22(3), 2022.

[37] L. Wang, H. Ye, Q. Wang, Y. Gao, C. Xu, and F. Gao. Learning-Based
3D Occupancy Prediction for Autonomous Navigation in Occluded
Environments. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2021.

[38] S. Weder, J.L. Schonberger, M. Pollefeys, and M.R. Oswald. Neural-
fusion: Online depth fusion in latent space. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

[39] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J.J. Leonard, and J. Mc-
Donald. Real-time large scale dense RGB-D SLAM with volumetric
fusion. Intl. Journal of Robotics Research (IJRR), 34(4-5):598–626,
2014.

[40] L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, and J. Behley.
Deep Compression for Dense Point Cloud Maps. IEEE Robotics and
Automation Letters (RA-L), 6:2060–2067, 2021.

[41] A. Zhang, Z.C. Lipton, M. Li, and A.J. Smola. Dive into deep learning.
arXiv preprint, 2021.


	Introduction
	Related Work
	Single Geometric Scan Completion
	Scan Integration Using TSDF
	Geometric Scan Completion
	Global Map Update

	Experimental Evaluation
	Experimental Setup
	Completeness Achieved by Geometric Scan Completion
	Improving Existing SLAM Systems using Low-Resolution LiDARs
	Qualitative Evaluation for Mapping on Scan Sequences

	Conclusion
	References

