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Fig. 1: Robots used for collecting data in agricultural environments (a) will inherently suffer from occlusions due to the cluttered nature
of such environments (b). Our approach completes 3D shapes of fruits if only a partial observation is available (c).

Abstract— Robots that operate in agricultural environments
need a robust perception system that can deal with occlusions,
which are naturally present in agricultural scenarios. In this
paper, we address the problem of estimating 3D shapes of fruits
when only partial observations are available. Generally speak-
ing, such a shape completion can be realized by exploiting prior
knowledge about the geometry of the fruit. This is typically done
by template matching using traditional optimization algorithms,
which are slow but accurate, or by encoding such knowledge
into the weights of a neural network, leading to faster but
often less accurate estimates. Our approach combines the best
of both worlds. It exploits the benefit of having a template
representing our object of interest with the advantages of using
a neural network to learn how to deform a template. Our
experimental evaluation demonstrates that our approach yields
accurate estimation at a competitively low inference time in
challenging greenhouse environments.

I. INTRODUCTION

Nowadays, the agricultural production system has to cope
with labor shortages and increased demand for food, feed,
and fiber for an ever-growing population [12]. Robotic sys-
tems have the potential to tackle several issues by taking over
tasks commonly executed by humans or by performing time-
demanding or specialized tasks. Recently robotic solutions
have been proposed for spot spraying to reduce chemical
inputs [1], [35], for high-throughput phenotyping to support
breeders in developing more resistant plant varieties [3], [38],
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and to increase yield or for autonomous harvesting [2], [4].
However, the cluttered nature of the agricultural environment
poses challenges to the aforementioned tasks. For example, a
phenotypic trait can be misinterpreted because a plant is only
partially visible, or an autonomous grasp may fail because
the robot wrongly estimates a partially occluded fruit shape.

In this paper, we investigate the problem of estimating the
complete 3D shape of fruits when only a partial view can
be gathered by the robotic system. This is a typical scenario
in different agricultural environments, from greenhouses and
orchards to arable fields, see Fig. 1 for an example. By
exploiting prior knowledge about fruit shape, it is possible
to solve a non-rigid registration problem [7], [32] to align
a simple 3D mesh, with the partial observation. A different
direction consists of encoding the prior knowledge into the
weights of a neural network [28], [33], [36] that takes as
input partial observation and outputs complete shapes. In
the first case, it is possible to obtain high-fidelity shape
estimation at the cost of high execution time. In the second
case, the estimated shapes are less accurate but the infer-
ence step is typically one order of magnitude faster. Such
approaches [22], [28] typically rely on a discretization of the
scene which is suboptimal to represent fine-grained details.

The main contribution of this paper is a novel approach
for completing 3D shapes combining template matching
with deep learning. First, we use a 3D sparse convolutional
backbone to extract point-wise features. We then aggregate
such features into vertex features and feed them to a trans-
former decoder that iteratively deforms our template. Such
an architecture allows us to estimate the complete 3D shape
of fruits when only a partial point cloud is available.

As we demonstrate in this paper, our approach yields
better shape completion estimates on different fruit species.
Additionally, our iterative deformation formulation is a key
ingredient for achieving accurate shape completion per-
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Fig. 2: Overview of our approach. We first extract point-wise features with the backbone and combine them with learnable queries using
cross-attention. We interpolate the point features at the coordinates of the template vertices and obtain the vertex features, which we use
as keys and values. The self-attention allows the queries to attend to each other. We predict, for each vertex, a scaling factor to deform
the template. In the subsequent decoder layers, we interpolate using the deformed template from the previous layer. We supervise with
the same loss the output and intermediate meshes.

formance, and modeling the mesh vertices with learnable
queries allows us to learn the average fruit shape.

II. RELATED WORK

Dealing with occlusions is a central problem for sensing
applications in agricultural robotics. It is intrinsic to a broad
range of agricultural environments from arable fields to
greenhouses and orchards [10], but also to other applications
such as service robotics [29] or autonomous driving [33].

Recently, a variety of works tackled the problem of esti-
mating the shape of non-visible parts of plants or fruits using
either 2D images or 3D point clouds. Lobefaro et al. [19]
consider data association across time during mapping. In
the 2D case, Kirk et al. [15] propose a convolutional neural
network (CNN) to count fruits by re-identifying them after
disappearances caused by occlusions. Blok et al. [5] predict
an instance mask for broccoli heads, including its non-visible
part. Similarly, Kierdorf et al. [13] estimate grapevine yield
by using a generative adversarial network that learns to
generate images without occlusions caused by leaves. Our
work is different as we learn to estimate complete 3D shapes
of occluded fruits so that our 3D estimates could be used for
downstream tasks such as harvesting or yield estimation.

To obtain a more complete representation of fruits in dense
canopies, Lehnert et al. [18] exploit a camera array mounted
on a robotic arm to select the next best view. To obtain
views that better cover fruits, Zaenker et al. [37] propose
to combine a local, gradient-based method with global view-
point planning to enable local occlusion avoidance while still
being able to cover large areas. Gibbs et al. [10] propose an
active vision pipeline to improve 3D plant reconstruction. In
contrast, we do not tackle active perception and only rely
on an incoming stream of sensor data. We do not rely on a
manipulator to move around the plant and our approach can
be deployed on robotic systems with fixed cameras as well.

Estimating and completing 3D shapes from partial obser-
vation has gained interest in recent years. Lehnert et al. [17]
improve robotic grasping performances by fitting a super-
ellipsoid on point clouds of partial fruits. Menon et al. [25]
explicitly use the shape prediction by super-ellipsoid fitting

to guide the sensor to view unobserved parts of the fruits.
Thanks to the closed-form solution of the super-ellipsoid, this
method can quickly provide an estimate of the fruit shape.
It, however, cannot estimate fine-grained details. Template
matching algorithms are a different solution for estimating
the 3D shape of known objects. In the agricultural context,
the templates can be simplified versions of plants [21] or
leaves [24] in the form of 3D meshes. Such a template can
then be fitted to partial observations using gradient-based
optimization. Depending on the initialization of the template,
such approaches can yield precise reconstruction at the cost
of higher inference time when compared to closed-form or
learning-based solutions [24].

Using deep learning, one can overcome the drawbacks
of both closed-form solutions and optimization-based ap-
proaches. In our previous work, we learn a general fruit
representation training DeepSDF [28] on complete point
clouds, afterwards, we estimate 3D shapes from partial fruits
with a contrastive learning framework [22] together with the
estimation of 6-DoF pose for each fruit [27]. Both works
are limited in representing fine-grained details given the
discretization induced by the SDF representation. To solve
this issue, we propose in this paper to learn the deformation
of a template without relying on any discretization of the 3D
space, thus being able to capture fine-grained details.

III. OUR APPROACH
TO SHAPE COMPLETION AND RECONSTRUCTION

Given a point cloud representing a partial observation of
a fruit, our goal is to estimate a triangular mesh representing
the complete shape of such fruit. Our architecture design
combines the advantages of learning-based approaches and
template matching techniques. Thereby, we draw inspiration
from recent advances in vision transformers [6], [8], [23].
Our architecture consists of a sparse 3D convolutional feature
extractor to compute features for each point in the input
point cloud. We encode such point features in the vertices
of a 3D mesh representing our template. The template goes
through an iterative deformation process in an attention-
based decoder that gives us the final 3D mesh as output.



This combines the high-quality results of the template with
the efficiency of the network. Furthermore, the whole system
is differentiable, thus it can be trained end-to-end. Fig. 2
illustrates an overview.

A. Feature Extractor

Given an input point cloud P = {p1, . . . ,pMp}, pi ∈ R3,
the objective of our feature extractor is to compute per-
point features Fp = {fp

1, . . . ,f
p
Mp}, fp

i ∈ RC . We later
combine such features in the decoder to obtain the per-vertex
features Fv , fvj ∈ RC of the Mv vertices that will drive
the deformation process. We choose an encoder-decoder
architecture based on MinkowskiNet [9] as feature extractor
due to the sparsity of the input data. It is a ResNet-like [11]
architecture using 3D sparse convolutions, which allows to
keep the memory footprint low while preserving the spatial
information. Note that also other feature extractors providing
point-wise features could be used in this step.

First, we voxelize P using a voxel grid with voxel
size vs and obtain Mo voxels with voxel centers O =
{o1, . . . ,oMo} with oi ∈ R3. Using the aforementioned
encoder-decoder, we obtain voxel features F o, fo

k ∈ RC .
Then, we convert voxel features F o into point features Fp

using a k-nearest neighbors interpolation as follows:

fp
i =

∑
oj∈Nk(pi)

1

‖pi − oj‖22
fv
j , (1)

where we denote with N k(pi) the set of k-nearest neigh-
boring centers {o1, . . . ,ok} ⊂ O in respect to pi and with
fv
j ∈ Fv the corresponding voxel feature of the j-th voxel.

B. Template Deformation

Let T be a triangular mesh of a sphere of radius ρ with
vertices V = {v1, . . . ,vMv}, vi ∈ R3, and center c ∈ R3.
We use T as starting template that we iteratively deform into
meshes T 1, . . . , TS to estimate the shape of our fruits. More
specifically, we denote with Vt the vertices of the deformed
mesh T t. At each stage t, we use the extracted point features
Fp and the coordinates of the vertices Vt−1 of T t−1 at the
last stage t− 1 to predict a scaling value sti for each vertex
vi to iteratively deform the initial template T 0 = T .

The deformation is carried out by moving each vertex vi

along the normalized direction di using the predicted per-
vertex scale sti:

vt
i = stidi + vi, (2)

with:

di =
vi − c

||vi − c||2
, (3)

where, the sphere center c corresponds to the fruit center.
To learn the per-vertex scaling values, st1, . . . , s

t
Mv , we

represent each of the Mv vertices with learnable queries
qi ∈ RC and use a multi-layer perception (MLP) as scaling
head to predict the scaling value sti to move each vertex vi

and deform the template T t. See Fig. 3 for a visualization
of the deformation process.

ground truth
mesh

template

Fig. 3: Deformation of a triangle mesh. Given direction vectors di

starting at the center of the sphere c (blue point), we iteratively
transform the mesh by scaling along this direction, such that vertex
vi is on the surface of fruit (red point).

C. Transformer Decoder for Shape Completion

We use a multi-layer transformer decoder following pre-
vious work [23] to allow the queries qi representing the
vertices vi to interact with point features Fp and to share
information between them. In the following, we define as
block B a sequence of cross-attention, self-attention, and an
MLP. We concatenate multiple blocks to obtain our decoder.

To fuse information from point features Fp into the
queries, we define the vertex features Fv that we obtain by
interpolating the point features Fp at the coordinates of the
vertices Vt−1 of the mesh T t−1 using the same interpolation
scheme as in Eq. (1). That means in each stage t, we
interpolate point features Fp at the locations given by the
vertices of the last stage. As we want to iteratively deform
our initial template T 0 into a mesh TS representing as
closely as possible our fruit, each block at stage t takes as
input the vertices Vt−1 of a mesh T t−1 with its associated
features Fp and outputs scaling values sti for each vertex vi.

Each decoder block Bt consists of cross-attention [34] be-
tween queries and vertex features followed by self-attention
plus MLP. We use a fixed positional encoding [34] to include
spatial information of the vertices into the attention. The
MLP predicts a scale value sti for each vertex vi.

In the first block, we use the sphere template mesh T 0 = T
to perform interpolation and obtain the vertex features Fv .
After each decoder block at stage t, we move the vertices
vi using the predicted scale sti and deform the mesh, see
Eq. (2), resulting in T t. In the next block at stage t+ 1, we
use this deformed mesh vertices Vt as coordinates where to
interpolate the point features Fp and obtain the new vertex
features Fv used in the cross-attention of stage t+ 1.

We perform the deformation incrementally, which allows
each decoder block at stage t to improve the performance
of the previous one, i.e., stage t− 1 by using the previously
deformed template T t−1 to perform the feature interpolation.
This means that each decoder block Bt produces an incre-
mentally more accurate shape estimate T t based on the last
deformed shape T t−1.

D. Loss Function

We compute a loss term Lt for each decoder block Bt

to feed deeper decoder layers with a mesh that is closer and
closer to the desired output. At each block Bt, after applying



Fig. 4: Qualitative illustration of our shape completion approach on as sweet pepper greenhouse dataset. We additionally show zoomed-in
views to better appreciate our completion approach in real-world conditions where mapping and segmentation errors are present.

the predicted scaling sti to the current template vertices vt
i,

we can compute a loss term between predicted mesh T t and
ground truth mesh T̂ . The objective of this loss term is to
make sure that our predictions correctly represent the input
point cloud. To this end, we compute the Chamfer distance
between template vertices Vt and ground truth vertices V̂:

Lt
cd(Vt, V̂) =

d̄(Vt, V̂)

2
+
d̄(V̂,Vt)

2
, (4)

where d̄(A,B) between vertex sets A and B is defined as:

d̄(A,B) =
1

|A|
∑
u∈A

min
v∈B
‖u− v‖22. (5)

By using only the Chamfer distance we are not enforcing
any relation between neighboring vertices. This can result in
noisy mesh predictions T t due to the stochastic nature of
the optimization process. To alleviate this issue, we use two
different regularization terms: Lt

nc acting on the normals of
the predicted mesh and Lt

s acting on the 3D position of the
predicted mesh. The goal of these regularization terms is to
obtain smooth meshes. We compute the normal consistency
for each pair of neighboring faces of the template mesh T t:

Lt
nc(T

t) =
∑
fi∈F

∑
fj∈N (fi)

1− n>i nj , (6)

where F is the set of faces in the template T t, and N (f)
defines the neighborhood of adjacent faces of a given face f .
The normals ni ∈ R3 and nj ∈ R3 are associated to triangle
faces fi and fj , where we assume that ‖ni‖2= ‖nj‖2= 1.

We compute the Laplacian smoothing objective Lt
s for the

template mesh leading to:

Lt
s(T

t) =
∑
v∈Vt

1

|N (v)|
∑

u∈N (v)

u− v, (7)

where N (v) defines the direct neighborhood of vertex v,
given the triangle mesh T t, i.e., all vertices that are connected
to v via an edge.

Our loss function L is, then, defined as the weighted sum
of Lt

cd, Lt
nc, and Lt

s for all decoder blocks Bt, t = 1, . . . , S:

L =

S∑
t=1

wcdLt
cd(Vt, V̂) + wncLk

nc(T
t) + wsLk

s (T t). (8)

E. Implementation Details

In our implementation, we use a sphere of 5 cm radius
with 2500 vertices uniformly spread around the surface
to define our initial template. Note that, as we have one
query for each vertex, increasing the number of vertices will
increase the network computational demands. Our backbone
is composed of a first block consisting of a convolutional
layer followed by batch normalization, followed by 4 down-
sampling blocks, and 4 upsampling blocks. In each block,
we use one convolutional layer (de-convolution for the
upsampling blocks) followed by a batch normalization layer
and residual connections. Our decoder has 9 transformer
blocks, with each block composed of a cross-attention layer
a self-attention layer, and a 2-layer MLP to obtain the
final predictions. After each block, we use LeakyRELU [20]
activations with the exception of the last layer of each
decoder block where we use a sigmoid activation scaled
between 0 and 2 to allow for increasing the size of the
predicted meshes. We train for 500 epochs using ADAM [14]
with an initial learning rate of 10−4 with a step decay of
0.95 % each 25 epochs. Our implementation can be found at
https://github.com/PRBonn/TCoRe.

IV. EXPERIMENTAL EVALUATION

The main focus of this work is a transformer-based archi-
tecture able to estimate the complete 3D shape of fruits in
the presence of occlusions by leveraging a general template.
Our experiments show the capabilities of our method. The
results also support our key claims, which are: our approach
(i) yields better shape completion estimates on different
fruit species; (ii) our iterative deformation formulation is
a key ingredient for achieving accurate shape completion
performance; (iii) modeling the mesh vertices with learnable
queries allows us to learn the average fruit shape.

A. Experimental Setup

We use datasets of strawberry and sweet pepper fruits
for performing evaluations. For each individual fruit in our
datasets, we collected RGB-D frames with an Intel Realsense
d435, where the fruits are only partially visible, and one com-
plete point cloud using a high-precision LiDAR system. We
refer to our previous works for more details [30]. Note that
this dataset is collected in the lab. In line with our previous



TABLE I: Fruit reconstruction results in controlled environment. The ↓ and ↑ indicate that lower or higher values mean better performance.

Approach
Sweet Pepper Strawberry

DC [mm] f-score [%] precision [%] recall [%] time [s] DC [mm] f-score [%] precision [%] recall [%] time [s]
↓ avg ↑ avg ↑ avg ↑ avg ↓ avg ↓ avg ↑ avg ↑ avg ↑ avg ↓ avg

CPD [26] 12.36 39.84 76.68 27.07 15.62 5.13 57.93 94.09 42.34 0.57
PF-SGD [24] 3.97 68.95 71.20 66.94 17.48 2.71 86.08 88.82 83.90 8.10

DeepSDF [28] 29.78 37.12 32.96 46.06 44.13 3.61 74.01 83.76 68.32 36.84
CoRe [22] 7.83 52.85 47.38 60.00 0.004

¯
2.67 86.01 87.97 84.85 0.004

¯HoMa [27] 3.16 80.86 82.14 79.72 0.60 2.42 92.81 94.38 94.53 0.53

T-CoRe (Ours) 2.97
¯

84.59
¯

85.73
¯

83.50
¯

0.33 1.37
¯

99.23
¯

99.83
¯

98.67
¯

0.33

TABLE II: Reconstruction results in the commercial greenhouse. The ↓ and ↑ indicate that lower or higher values mean better performance.

Approach DC [mm] f-score [%] precision [%] recall [%] inference time [s] Learning?↓ avg ↑ avg ↑ avg ↑ avg ↓ avg

CPD [26] 25.38 3.09 8.10 1.92 0.57 7
PF-SGD [24] 9.28 35.03 37.32 33.21 30.21 7

DeepSDF [28] 9.33 35.24 32.38 38.77 16.01 3
CoRe [22] 6.90 41.47 43.17 41.64 0.004

¯
3

HoMa [27] 5.29 58.56
¯

61.28
¯

56.26
¯

0.62 3

T-CoRe (ours) 5.17
¯

56.72 58.19 55.64 0.51 3

works [22], [27], we split the datasets into train (70%), test
(20%), and validation (10%) sets. We use the complete point
clouds of each fruit in the train set to pre-train our network,
while we use the complete point clouds of each fruit in the
test set to compute the metrics for the evaluation of our
approach. We additionally evaluate our approach on a sweet
pepper dataset collected in a commercial greenhouse [27],
[31]. In line with related works [22], [24], [27], we use the
Chamfer distance DC, i.e., the average symmetric squared
distance of each point to its nearest neighbor in the other
point cloud to evaluate our shape completion solution. We,
additionally, use the f-score, precision, and recall at a fixed
threshold as proposed by Knapitsch et al. [16] for quantitative
evaluation. In all our experiment we fixed this threshold to
5 mm. Additionally, we report the average inference time
needed to obtain the complete 3D shape. In our experiments,
we used an NVIDIA Quadro RTX A5000.

B. Fruit Completion

The first experiment evaluates the performance of our ap-
proach and its outcomes support the claim that our approach
yields better shape completion estimates on different fruit
species. Using the previously defined metrics, we compare
our approach against a diverse set of baselines consisting of
both learning [22], [27], [28] and non-learning-based [24],
[26] solutions and report such metrics in Tab. I and Tab. II,
where we refer to our approach as T-CoRe.

Regarding the reconstruction accuracy, our approach
yields a better Chamfer distance on each dataset compared
to the baselines. Notably, our approach is the only one with
Chamfer distance below 1.5 mm on the strawberry dataset,
where the second best approach [27] reaches 2.42 mm. Sim-
ilarly, on the sweet pepper dataset in lab conditions, our ap-
proach is the only one below 3 mm with the second best [27]
at 3.16 mm. Similarly, on these datasets our approach yields
better f-score than baselines. In the sweet pepper dataset

Fig. 5: Quantitative representation of our predictions where brighter
colors indicate higher reconstruction errors. We notice that higher
errors are more present on the top and the bottom of our predictions.
We show the input point cloud (left) and the ground truth (right).

collected in the greenhouse, our approach reaches 5.17 mm
against the 5.29 mm from HoMa [27], which surpasses our
approach, T-CoRe, in terms of f-score: 58.56 % against
56.72 % mainly due to the higher precision score. Regarding
the inference time, our novel approach ranks always in
second place providing 3D estimates at roughly 2-3 Hz.
However, the approach with the smallest inference time [22]
yields 3D estimates which are substantially less accurate
compared to our approach. As an example, the f-score for the
strawberry dataset decreases from 99.23 % to 86.01 % while
for the sweet pepper dataset drops from 84.59 % to 52.85 %
for the lab conditions and from 56.72 % to 41.47 % for the
greenhouse condition.



TABLE III: Iterative deformation vs. non-iterative deformation

Iterative Def.
Sweet Pepper Strawberry

DC [mm] f-score [%] DC [mm] f-score [%]
↓ avg ↑ avg ↓ avg ↑ avg

7 3.69 75.16 1.64 97.21
3 2.97

¯
84.59

¯
1.37

¯
99.23

¯

TABLE IV: Modeling the mesh vertices with learnable queries
allows us to learn the average fruit shape.

Approach
Sweet Pepper Strawberry

DC [mm] f-score [%] DC [mm] f-score [%]
↓ avg ↑ avg ↓ avg ↑ avg

Template 9.24 21.03 5.88 39.00
Queries 3.24 81.56 1.60 98.06

Whole Model 2.97
¯

84.59
¯

1.37
¯

99.23
¯

We additionally provide qualitative results of our approach
in Fig. 4 and a quantitative representation in Fig. 5 where
brighter mesh colors represent higher reconstruction errors.
One can notice that the top and bottom parts are more prone
to errors. It is not surprising as those are the most problematic
parts given, for example, the presence of the sweet pepper
peduncle and the strawberry petiole.

C. Ablation Study

The second experiment highlights the benefit of iteratively
deforming the initial template. It additionally supports our
second claim, i.e., our iterative deformation formulation is a
key ingredient for achieving accurate shape completion per-
formance. We train an additional model where the predicted
template deformations are applied only at the last block.
See Tab. III for a quantitative comparison. The iterative
deformation design yields an increase in f-score of 7% for
the sweet pepper dataset and 2% for the strawberry. At the
same time, we obtain a Chamfer distance below 3 mm for
the sweet pepper and below 1.5 mm for the strawberry.

D. Learnable Queries

The last experiment evaluates the meaning of the learnable
queries in our design. It furthermore supports our third
claim, namely that modeling the mesh vertices with learnable
queries allows us to learn the average fruit shape, we
extract the mesh estimated by the queries alone. In previous
works [6], [8], [23], the learnable queries act as bounding
boxes or region proposals, they give a first approximation
of where objects of different classes are located in the
scene. In our case, each query represents one vertex in
the template mesh and we decode from them the necessary
scaling to deform it and match the input fruit. To show what
the queries learn after training, we can predict the scaling
from them and deform the sphere template mesh without
any intervention of the input point cloud. In Tab. IV, we
compute the reconstruction metrics described in Sec. IV-A
using the spherical template without deformations, the mesh
obtained by the queries alone and the deformed mesh after
using our model. As can be seen, the spherical template is
not sufficient to represent the fruits reaching less than 50 %
of f-score on both datasets. The queries, instead, learn to

Fig. 6: Estimated average fruits obtained by applying the scaling
factor from the queries to the template sphere.

approximate the average shape of the fruits, i.e., the average
template that reduces the loss functions for all the training
samples, obtaining 81 % for the sweet pepper and 98 %
for the strawberry. We show the estimated average fruits
in Fig. 6. When incorporating the point features, we allow the
network to deform this average template to match the input
point cloud and get a more accurate fruit representation 84 %
for the sweet pepper and 99 % for the strawberry.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to 3D shape
completion and reconstruction of different fruit species on
real-world datasets. Our approach operates on partial point
clouds of fruits collected by a robotic system. Our method
combines the advantages of template matching and deep
learning to obtain accurate 3D estimates without sacrificing
the inference time. We use a 3D sparse CNN to extract
features from a partial point cloud, which we aggregate into
vertex features, i.e., features representing the vertices of a
template mesh. We exploit these vertex features to learn how
to deform the original template to better align with the input
point cloud. This allows us to successfully estimate the 3D
geometry of non-visible fruit parts on different species while
keeping a competitive inference time. We implemented and
evaluated our approach on different datasets and provided
comparisons to other existing techniques and supported all
claims made in this paper. The experiments suggest that our
approach yields more accurate results in terms of reconstruc-
tion accuracy in presence of occlusions on different species.

Despite our encouraging results, there is further space for
improvements. The learned average fruit of a species can
be used as the initial template for a different one, e.g. from
sweet peppers to tomatoes. In this way, one can train the
network using only partial data of the target species without
needing point clouds of complete fruits. Additionally, while
our sphere template is suited for most fruit shapes, it cannot
represent leaves. In theory, one can overcome such an issue
by using a planar template and deforming its vertices along
a fixed axis, rather than the vertices’ normals. Lastly, by
alternating our inference with a next-best view pipeline the
estimated shapes can be further improved. Looking outside
the agricultural robotics focus, an interesting direction would
be using such a network in the context of autonomous driving
where the estimated complete shapes of traffic participants
could be used to estimate future behaviors.
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