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Abstract— Most autonomous driving and robotic applications
require retrieving map data around the vehicle’s current
location. Those maps can cover large areas and are often stored
in a compressed form to save memory and allow for efficient
transmission. In this paper, we address the problem of place
recognition in a compressed point cloud map. To this end, we
propose a novel deep neural network architecture that directly
operates on a compressed feature representation produced by a
compression encoder. This enables us to bypass compute-heavy
decompression of the map and exploits the compact as well as
descriptive nature of the compressed features. Additionally, we
propose an alternative to the commonly used NetVLAD layer
to aggregate local descriptors. Here, we utilize an attention
mechanism between local features and a latent code. Our
experiments suggest that this produces a more descriptive
feature representation of the point clouds for place recognition.
We experimentally validate all architectural choices we made
by our ablation studies and compare our performance to other
state-of-the-art baselines on two commonly used datasets.

I. INTRODUCTION

The ability to localize in a map is a key ingredient of
most robotic systems and autonomous cars. For this purpose,
these systems require a map of their surroundings, which
can have different representations, like grid maps [23], [16],
semantic maps [7], [41], mesh-based maps [8], [46], or point
clouds [13]. In place recognition, we want to determine if the
current place, the so-called query, has been visited before.
Ideally, we want furthermore to retrieve the corresponding
match from the map for localization. It is therefore crucial
to find a representation of that data, i.e., queries and maps
(database), and a suitable similarity measure that allows
comparing the queries with the database entries.

To solve the place recognition problem in point cloud
maps, usually one compares either directly the point clouds
or utilizes extracted descriptors. Those descriptors are com-
monly based on local features that are aggregated into
histograms or feature vectors [38], [37], [39], [20]. While
classical approaches used mainly handcrafted features, recent
approaches increasingly rely on learning-based features [21],
[4], [52], [6]. The descriptors are a compact and descriptive
representation of the maps but do not allow for reconstruction
or can be used to solve other tasks. For instance, scan
registration for more fine-grained localization or change
detection still requires storing the original data. Especially
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Fig. 1: Point Cloud-based place recognition. We compress the point
clouds from a map using a compression network. The resulting
compressed encodings are used for decompression, transmission,
or place recognition, such that the original memory-consuming
point clouds do not need to be stored. For place recognition,
we propose the Retriever which extracts from the compressed
representation a descriptor. When revisiting an area, one can retrieve
the corresponding map by comparing the descriptors of the current
position (query) and the compressed descriptors in a database.

in autonomous driving, those maps cover large areas and
therefore require a substantial amount of memory [17], which
makes compression necessary for storage and transmission.
Localizing in compressed maps have been exploited for 2D
grid maps [50] but not yet for 3D point clouds.

The main contribution of this paper is a LiDAR-based
place recognition approach that directly operates on com-
pressed point clouds. It exploits the urge for a memory-
efficient representation needed for storing and transmitting
large-scale point clouds in two aspects. First, this enables
us to bypass the compute-heavy decompression. Second, it
utilizes the compact and descriptive nature of our compressed
feature representation to tackle the place recognition prob-



lem. To this end, we propose a novel neural network called
Retriever that consists of three parts. First, an encoder ex-
tracts the compact task-agnostic feature representation from
the point clouds, which can be used for storage, transmission,
decompression [51], or place recognition. Then, we feed the
compressed features into a feature propagation network to
compute a more refined task-specific representation. Finally,
we aggregate the computed features by a novel perceiver-
based attention module extending [18] into a global descrip-
tor, which we compare to other descriptors in a database
to retrieve the corresponding maps. The workflow of our
approach is visualized in Fig. 1.

In sum, we propose a place recognition pipeline that
exploits a compressed point cloud representation and a novel
attention-based aggregation module. Working directly on the
compressed representation allows for bypassing compute-
heavy decompression and utilizes the urge of a memory-
efficient representation for storage. Our implementation,
data, and the pretrained models will be publicly available
at https://github.com/PRBonn/retriever.

II. RELATED WORK

Place recognition is the task of recognizing previously
visited parts of an environment. The most common way
to solve the problem is to use images for representing the
map and the vehicle’s surrounding [48], [47], [34], [27],
[29]. This task is often solved in two steps: First, distinct
local features are extracted in either a handcrafted [26], [2],
[32], [37], [38] or computed in a data-driven learning-based
fashion [21], [4], [52], [6]. Second, those local features are
often aggregated into a global descriptor, which will then be
used for determining similarity between global descriptors
of places in the map. Classical approaches utilize bag of
visual words (BoW) [36], BoW on intensity data [10], [35],
or a vector of locally aggregated descriptors (VLAD) [19]
to compute the global descriptor. NetVLAD [1] relaxes the
hard assignments of VLAD to soft assignments to make the
operation differentiable and fully end-to-end learnable. With
the success of NetVLAD, deep learning-based methods also
evolved in different domains for place recognition, such as
LiDAR-based [44] or RADAR-based place recognition [33].

Nowadays, NetVLAD is a popular building block for many
point cloud-based place recognition approaches utilizing
deep neural networks [44], [24], [12], [52]. These point
cloud-based place recognition networks usually follow the
aforementioned two-step paradigm of first computing expres-
sive local features, which then are aggregated into a global
descriptor. The local features can be solely learned [12],
[44], [52] or enhanced with classical 3D descriptors [24]. A
third way to obtain local features is from networks that are
pretrained on different tasks and thus produce task-agnostic
features [54], [42], [14]. Our approach is one of the latter
ones where we utilize a compression network to produce
a compact feature representation that can be pretrained self-
supervised. This provides us with descriptive features, which
are additionally well suited for storage, transmission, and can
later still be used for decompression.

3D neural networks often utilize convolutions [43],
graphs [22], [40], or point-wise shared MLPs [30], [31] to
propagate the features. The attention mechanism of trans-
formers [45] is rarely used in the 3D domain due to the
huge memory consumption induced by the self-attention
mechanism for the typically large number of 3D input points.
However, the attention mechanism has specific properties
that make it theoretically well-suited for point clouds: it is
permutation invariant, and it propagates features based on the
entire input sequence without the need of downsampling.

Some approaches address the memory problem of self-
attention by either approximating the self-attention mech-
anism [49], [9] or applying it only to a subset of the
sequence [11], [57]. The Perceiver [18] tackles the problem
by completely bypassing self-attention on the input represen-
tation. It uses cross-attention between the input sequence and
several latent feature vectors that are learned while training.
The self-attention mechanism is only used on the fewer latent
feature vectors.

In contrast to the aforementioned point cloud-based place
recognition approaches, we use the Perceiver idea for ag-
gregating local features produced in the first stage into a
global descriptor and thereby substituting the commonly
used NetVLAD layer. The local features are provided by
task-agnostic features from an encoder that was originally
designed for point cloud compression [51].

III. OUR APPROACH

In this work, we tackle the problem of place recognition
in 3D point clouds. The goal is to compute a single global
descriptor for each point cloud such that spatially nearby
point clouds have similar descriptors while being dissimilar
to point clouds from different places.

To this end, we propose an approach that tackles the
problem in two steps, as depicted in Fig. 2. We first compute
expressive local features, which we aggregate in a second
step to a global descriptor. The local features are computed
by a convolutional encoder followed by a feature propagation
module. For computing the global descriptor, we propose
an attention-based feature aggregation network. The place
recognition task can then be solved by comparing the de-
scriptors of the query with the ones in the database.

By utilizing a point cloud compression encoder for the
feature generation, we have a memory-efficient and task-
agnostic intermediate representation, from which we can
restore the point cloud and can still later use it for other
tasks, which require a map. We are able to operate directly
with the compressed representation and, thus, can bypass
decompression completely. This is not only memory- and
compute-efficient but also provides expressive features for
place recognition.

A. Compression Network

Our goal is to retrieve in a compressed point cloud map.
For creating this compressed representation in the first place,
we use the autoencoder proposed in our previous work [51].
The encoder consists of three ResNet-KPConv blocks [43]

https://github.com/PRBonn/retriever
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Fig. 2: Our proposed architecture for point cloud-based place recognition. The Compression-Net (green) computes a compact feature
representation and stems from our previous work [51]. Those task-agnostic features can be used for efficient storage, transmission,
decompression, and place recognition. The feature propagation network (blue) transforms the features into task-specific features suited
for place recognition. The Perceiver (purple) aggregation computes latent features by cross attention (CA) between those compressed
features and a latent representation. Self-attention (SA) on the resulting latent features refines them and a fully connected layer (FC)
finally aggregates them into a global descriptor. Note that the decoder of the Compression-Net is only used for self-supervised pretraining
and decompression.

with an additional feature compression projection head and a
decoder with four deconvolutional blocks. For a given input
point cloud P ∈ RN×3, the encoder E : RN×3 7→ RNc×Dc

computes a small subset Nc � N of points, with an ex-
pressive feature representation F c = E(P ) from which the
decoder can recover the dense point cloud. Many approaches
use local, neighborhood-aware features to improve the place
recognition performance [37], [38]. Having features that can
reconstruct the local surrounding motivated us to conduct
the research described here as those features should be well
suited and discriminative for place recognition. This allows
us to directly operate on the compressed representation itself
and does not require decompression to regain the point
cloud information or computation of other local features.
Since saving large-scale point cloud maps in a compressed
format is often anyway needed [17], being able to work with
the compressed representation directly saves compute and
memory.

We pretrain the network as described in the original
paper [51] using a self-supervised reconstruction task, where
the employed auto encoder should reconstruct the input as
faithfully as possible. For more details on the training, we
refer to the original paper [51].

Utilizing self-supervised pretraining has the advantage of
having easy access to a lot more data, and therefore it is
usually possible to generate generalizable feature represen-
tations, which are less prone to over-fitting [3], [53], [56].
Additionally, by freezing the encoder while learning place
recognition, we keep the ability to reconstruct the point cloud

needed for other downstream tasks by using the decoder for
decompression.

B. Feature Propagation Network

The compression network extracts a smaller subset of
points with a feature representation from which the point
cloud can be reconstructed. Having such an expressive rep-
resentation does, however, not mean that it is also the best
representation for place recognition. For example, the com-
pressed feature representation cannot be rotational invariant
since it must be able to decompress the point cloud with the
correct orientation.

For place recognition, we aim for a descriptor that is
independent of the viewpoint or driving direction. Therefore,
we use a PointNet [30] variant, which transforms each
point feature in a high-dimensional nonlinear space. Our
PointNet variant consists of a TNet followed by an MLP. The
T-Net : RNc×Dc 7→ RD2

c , computes a transformation T ∈
RDc×Dc based on the compressed features F c ∈ RNc×Dc .
It consists of a multi-layer perceptron1 MLP(64, 128, 1024),
which is followed by global max pooling and a second
MLP(512, 256, D2

c ) that transforms the extracted descriptor
to the dimensionality of the desired transformation. We apply
the transformation T to the input features

F ′c = F c(Id + T ), (1)

1Here, we use the convention that the argument of MLP correspond
to the number of channels of the output, e.g., MLP(4, 16) takes a not
further specified input and produces 4 and then 16 output channels in the
intermediate and final feature map.



where Id corresponds to the identity matrix and therefore T
is just a residual added to the identity that facilitates learning.
This provides the network with the possibility to extract for
each point cloud a specific transformation to transform it into
a common frame to achieve transformation invariance.

A following MLP(64, 128, 512) projects the transformed
features F ′c ∈ RNc×6 of the T-Net into a higher-dimensional
feature space F p ∈ RNc×512 that is specialized for place
recognition.

C. Perceiver Aggregation

In the two previous parts, we have described how to
compute a set of local features F p from the source point
cloud. However, our goal is to have exactly one global
descriptor z ∈ RDg for each point cloud, which can be used
for place recognition by computing a descriptor similarity.
Consequently, we need to aggregate the local features into
a global descriptor. The original PointNet paper [30] uses
global max pooling, while in the place recognition domain
many approaches [24], [44], [55] utilize the more sophisti-
cated NetVLAD [1] layer for aggregating the features.

In this work, we propose a novel attention-based ag-
gregation method based on the Perceiver [18], which is a
variant of the Transformer [45]. The attention mechanism in
the Transformers computes new features F t ∈ RNt×D by a
linear combination of a set of value vectors V ∈ RNs×D.
The weighting W ∈ RNt×Ns of the features depend on
the outer cross product of the queries Q ∈ RNt×D and the
keys K ∈ RNs×D

F t = WV = softmax

(
QKT

√
D

)
V , (2)

where the keys K = W kXs and values V = W vXs are
linear projections of the source sequence Xs, while the
queries Q = W vXt are projections from the target se-
quence Xt. The softmax ensures that the weights of the
linear combinations sum up to one. For the case of self-
attention, where Xs = Xt and thus Ns = Nt, the weight
matrix W grows quadratically with respect to the sequence
length. Since point clouds usually have thousands to millions
of points, this is too memory expensive for most modern
GPUs.

Instead of doing self-attention on the input sequence, the
Perceiver [18] solves the problem by, using a few latent
vectors as target sequence Xt ∈ RNt×D with Nt � Ns.
These latent vectors are learned and optimized while training.
Multiple self-attention layers use a cross-attention block be-
tween the input sequence and the latent vectors on the latent
features F . Since Nt is a constant and not depending on the
input sequence length Ns, the computational complexity and
memory consumption decreases from O(N2

s ) to O(Ns).
In our application, we use the features coming from

our feature propagation network as input sequence for the
Perceiver P : RNs×Din 7→ RNt×Dout . Our Perceiver uses two
cross attention blocks for propagating the input features
to the latent vectors, where each cross attention block is
followed by 4 self-attention blocks working solely on the

latent features. All perceiver blocks are implemented as
ResNet blocks [15]. A fully connected layer projects the
latent features in the end to the desired output dimension
of the global descriptor z ∈ RDg :

z = W gf + bg, (3)

with W g ∈ RDg×Nt·Dout , bg ∈ RDg . Note that each opera-
tion is permutation invariant, which makes it perfectly suited
for the unordered nature of point clouds. As the Perceiver
always produces a fixed output feature independent of the
number of inputs, we are able to process point clouds of
arbitrary sizes.

Both, our Perceiver and the NetVLAD layer aggregate
local features relative to a common global context. This
feature representation is, in the case of the NetVLAD layer,
a set of centroids that are learned while training. For the
feature aggregation, they accumulate for each centroid the
residual to each input feature weighted by their reciprocal
squared distances.

The Perceiver uses the latent vectors as global context.
Instead of accumulating the residuals, it recombines the input
features using the cross attention mechanism. The NetVLAD
stops at this point with the feature propagation and uses a
fully connected layer for aggregating the global descriptor.
Our Perceiver uses multiple self-attention and cross-attention
blocks allowing it to propagate information also between the
latent features for a more refined representation.

D. Loss Function

We use the Lazy quadruplet loss proposed by Uy et al. [44]
to optimize our architecture for place recognition. Given a
query descriptor zq ∈ RDg as well as a set of positive
Z+ = {z+

1 , . . . ,z
+
N+} and negative Z− = {z−1 , . . . ,z

−
N−}

examples, the lazy quadruplet loss is defined as

L = max(δ+ − δ− +m1, 0) + max(δ+ − δ∗ +m2, 0), (4)

where δ+ = ||zq − ẑ+||2 is the Euclidean distance between
the query zq and the hardest positive example ẑ+. Conse-
quently, δ− = ||zq − ẑ−||2 is the distance to the hardest
negative ẑ− and δ∗ = ||ẑ− − ẑ∗||2 is the distance between
the hardest negative and a second negative ẑ∗ ∈ Z−. The
second negative ẑ∗ is not only far away from the query zq

but also from all other negatives in Z−. By this, the loss
minimizes the distance between positive pairs and tries to
maximize the distance to the negative examples. The second
negative is used to keep the distance from other negatives
that are also structurally dissimilar.

IV. IMPLEMENTATION DETAILS AND TRAINING

In this section, we report the implementation details and
the training procedure. We pretrain the compression encoder
following the self-supervised training schedule as originally
proposed in our former work [51]. We freeze the weights
of the encoder, which allows us to keep the ability to use
the features also for decompression. Additionally, we can
preprocess the point clouds and use bigger batch sizes due
to the smaller memory size of the individual point clouds. For
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Fig. 3: Average recall @N on the Oxford Robocar dataset. Even
though our approach is working on the compressed feature repre-
sentation, it is able to outperform most of the other baselines that
operate on the full input information without a memory bottleneck.

training the rest of the network, we use ADAMW [25] with a
learning rate of 0.001 and weight decay of 0.01. In the loss,
we use the margins m1 = 0.5 and m2 = 0.2. We use a batch
size of 8 in all our experiments and use N+ = 2 positive
and N− = 18 negative examples for the lazy quadruplet
loss. Our approach is implemented and tested with Pytorch
in the Pytorch Lightning framework. We use PyKeops [5]
for an optimized k-nearest neighbor search on the GPU.

V. EXPERIMENTAL EVALUATION

The main focus of this work is to realize 3D point cloud-
based place recognition. We present our experiments to
illustrate the capabilities of our method and to show that
our approach is capable of doing point cloud-based place
recognition by exploiting memory-efficient task-agnostic fea-
tures, which are finally aggregated to a global descriptor by
our novel perceiver-based attention module. We evaluate our
approach on the widely used Oxford Robocar dataset [28]
and the three In-House datasets [44]. We follow the same
processing and evaluation as PointNetVLAD [44] to be
consistent with the baselines. They use the average recall
@N and @1% for evaluating the success rate of the place
recognition. Whenever a query point cloud is retrieved within
25 m, it counts as successful.

A. Place Recognition Results

The first experiment evaluates the performance of our
Retriever approach, where we compare with other baselines
methods, i.e., PointNetVLAD [44], PCAN [55], DH3D [12]2

and LPD-Net [24]. The results for the Oxford dataset are
shown in Fig. 3. Our approach is able to outperform most of
the baselines in terms of average Recall. The Retriever has a
lower performance than LPD-Net, but it should be noted that
all methods under comparison dot not perform a reversible
compression. Even though the descriptor is compact for all

2PointNetVLAD was reimplemented and retrained from scratch which
outperforms the results of the original paper. The results from DH3D and
PCAN stem from https://github.com/JuanDuGit/DH3D,
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Fig. 4: Average recall @N on the Oxford Robocar dataset for
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cloud (Points) by our compressed feature representation (Compr) in-
creases the retrieval accuracy. Similarly, exchanging the NetVLAD
layer by our Perceiver-based aggregation module allows also for
better place recognition.

Method Oxford U.S. R.A. B.D

PointNetVLAD 85.21 74.80 73.39 71.96
PCAN 83.81 79.05 71.18 66.82
LPD-Net 94.92 96.00 90.46 89.14
Retriever (Ours) 91.93 91.88 87.44 85.53

TABLE I: Average recall @1% on different datasets. All models
have only been trained Oxford to show their generalization capa-
bilities. Our approach provides competitive results on all datasets.

approaches, it can not be used for reconstructing the point
clouds. Consequently, when the map needs to be stored in a
compressed form, e.g., for downstream tasks like scan reg-
istration, the baselines have to spend additional compute for
the decompression and feature computation (like the spectral
features for LPD-net). The advantage of our approach is that
our network operates directly on the compressed features and
does not require decompression.

In Tab. I, we evaluate the performance on multiple datasets
that have different configurations (Oxford Robocar [28] and
the three routes from the In-House dataset [44]). Each
approach is only trained on the Robocar [28] dataset to
evaluate how well the methods generalize. Our approach is
able to achieve competitive results on all datasets and does
not overfit.

B. Qualitative Results

In Fig. 5, we show qualitative results to provide deeper
insides into the behavior of our approach and the challenges
of the task. The descriptor of the query (blue) is compared
against all descriptors of a different run. Here, we can see the
top 3 retrieved point clouds using our method (green denotes
positive matches, red are from different locations). The query
is successfully retrieved in the top 1. As we can see, the
second-best match (top 2) is from a different location, while
the other true corresponding point cloud is found only at
third. Reasons for this could be that the prominent shape of
the roof from the query is not visible in the 3. The top 2,

https://github.com/JuanDuGit/DH3D
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Fig. 5: Qualitative results for a query point cloud (blue) and the top 3 retrieved maps of the Oxford Robocar dataset. Point Clouds with a
green frame refer to true corresponding matches, while the red one is from a different position. Our approach is able to find the correct
matches (as top 1 and top 3). Sometimes places from different areas (2) are more similar to the query than the true correspondences (3),
showing the challanges of the dataset.

however, has a similar roof shape. All point clouds have trees
on the opposite side and share thus similar appearance.

C. Ablation Studies

In this section, we validate the choices made in our
architecture and evaluate the importance of each part of the
network. First, we look at the compressed feature represen-
tation produced by the convolutional encoder. After this, we
compare our Perceiver-based aggregation module with the
current state-of-the-art NetVLAD layer, which is typically
used in the place recognition domain. For this, we have
trained different networks architectures. The results on the
Oxford Robocar dataset are shown in Fig. 4. We either use
the original Points or the compressed feature representation
(denoted as ’Compr’) after the encoder as input to the
PointNet block or directly to the Perceiver aggregation. For
aggregating the local features to a global descriptor, we either
use NetVLAD or our proposed Perceiver-based module.

Compressed Features. As we can see in Fig. 4, using the
compressed features in both the NetVLAD aggregation and
our aggregation module achieves better results than using the
raw input points (compare blue to red and orange to purple).
This suggests that using the compressed feature representa-
tion is not only advantageous for storage and transmission
but also the information of the local neighborhood makes the
global descriptors more distinct and mitigates the information
loss due to compression.

Perceiver vs. NetVLAD. Exchanging the NetVLAD layer
by the Perceiver-based aggregation module increases the
performance for the point and compressed feature-based
versions (compare Fig. 4 blue to orange and red to purple).
The NetVLAD layer aggregates the local features without
considering any relation between the features. The atten-
tion mechanisms in the Perceiver allow for suppressing
unimportant and concentrate more on especially descriptive
features. Additionally, the self-attention of the latent features
incorporates information from the whole sequence and can
thus change the features based on the global context. This
could help to describe the point clouds more accurately
and, therefore, increase the place recognition performance.
Directly aggregating the compressed features to a global

descriptor without feeding it to the PointNet yields worse
results, showing that transforming the task-agnostic features
to a task-specific representation is advantageous (Fig. 4 green
and purple).

VI. DISCUSSION

This paper shows that we can reliably retrieve already
visited areas in compressed point cloud maps and how the
increasingly popular self-attention mechanism for vision-
based tasks can be efficiently employed to improve feature
aggregation in the domain of LiDAR-based place recogni-
tion. A promising avenue for future work would be the
investigation of more sophisticated backbones, like the graph
neural networks, to further improve the performance as
in LPD-Net [24]. Since the Perceiver [18] already shows
promising results on different tasks and for different input
representations, we believe that our Perceiver aggregation
could help improve feature aggregation not only for the point
clouds but also in other domains like image-based retrieval.

VII. CONCLUSION

In this paper, we presented Retriever, a novel approach
to tackle 3D point cloud-based place recognition, focusing
on full operation on compressed and thus memory-efficient
representations. Our method exploits a task-agnostic compact
feature representation produced by a compression network.
This representation facilitates efficient storage, transmission,
decompression, and place recognition. For place recognition,
we first translate the compressed features into task-specific,
local descriptors, which then are aggregated to a global
descriptor. Our proposed aggregation module builds on top
of the memory and compute-efficient perceiver architecture.
We implemented and evaluated our approach on different
datasets and provided comparisons to other existing tech-
niques. The experiments suggest that the compressed feature
representation is more memory efficient and more descrip-
tive than working solely on the point cloud representation.
Additionally, our perceiver-based aggregation module seems
to produce better-suited descriptors than the widely used
NetVLAD layer.
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