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Long-Term Localization using Semantic Cues
in Floor Plan Maps
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Abstract—Lifelong localization in a given map is an essential
capability for autonomous service robots. In this paper, we
consider the task of long-term localization in a changing indoor
environment given sparse CAD floor plans. The commonly used
pre-built maps from the robot sensors may increase the cost
and time of deployment. Furthermore, their detailed nature
requires that they are updated when significant changes occur.
We address the difficulty of localization when the correspondence
between the map and the observations is low due to the sparsity
of the CAD map and the changing environment. To overcome
both challenges, we propose to exploit semantic cues that are
commonly present in human-oriented spaces. These semantic
cues can be detected using RGB cameras by utilizing object
detection, and are matched against an easy-to-update, abstract
semantic map. The semantic information is integrated into a
Monte Carlo localization framework using a particle filter that
operates on 2D LiDAR scans and camera data. We provide a
long-term localization solution and a semantic map format, for
environments that undergo changes to their interior structure
and detailed geometric maps are not available. We evaluate our
localization framework on multiple challenging indoor scenarios
in an office environment, taken weeks apart. The experiments
suggest that our approach is robust to structural changes and
can run on an onboard computer. We released the open source
implementation1 of our approach written in C++ together with
a ROS wrapper.

Index Terms—Localization, Semantic Scene Understanding

I. INTRODUCTION

TO operate autonomously in indoor environments, such
as factories or offices, mobile robots must be able to

determine their pose. For localization in a given map, there
are two challenges: the changing nature of human-occupied
environment and the quality of available maps. Precise, highly-
detailed maps are an accurate representation of the environ-
ment only at the time they were captured, and they become
outdated in the presence of “quasi-static” changes such as
moving furniture, clutter, opening and closing doors. We de-
scribe “quasi-static” changes as long-lasting alterations (hours,
days, weeks) that cause deviation between sensor observations
and the given map, in contrast to dynamics such as humans
and fast-moving objects. The availability of feature-rich, dense
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Fig. 1: Floor plan maps include high degree of symmetry and low
similarity to actual LiDAR measurements. This leads to multiple
hypotheses that cannot be resolved correctly. We propose integrating
semantic cues from a high level, abstract semantic map to assist with
global localization. The red cross indicates the ground truth pose
and the green dots are the particles. Left: 2D LiDAR MCL with
multiple hypotheses. Right: Convergence to a single hypothesis when
exploiting semantic cues, in an abstract semantic maps including
various objects (colored rectangles).

maps is not guaranteed and construction of such maps can be
costly. Therefore, autonomous robots benefit from localizing in
sparse maps such as floor plans or hand-crafted room layouts
as they are seldom affected by changes. Architectural drawings
are familiar to inexpert users and can be easily updated
with CAD software. As they capture persistent structures,
they typically do not require updates. However, using these
sparse maps is challenging due to the paramount discrepancies
between the robot’s observations of the environment and the
information depicted in the maps. Additionally, floor plans
lack geometric information necessary to localize in a highly
repetitive indoor environment, as can be seen in Fig. 1.

Additional sources of information can be used to overcome
the challenges of global localization, and such cues have been
frequently used by researchers to improve robot localization.
For example, WiFi, an extremely prevalent utility, can aid
in pose estimation by considering the signal strength [14].
Textual information, constantly used by humans to navi-
gate, is readily available in human-occupied environments.
However, very few works consider textual cues for localiza-
tion [7][28][43].

Another avenue is exploiting semantic information. The
last decade was marked by significant advances in object
detection [2][41] and semantic segmentation [12][32], where
semantic cues can be efficiently inferred from images (with
some fine-tuning). The most commonly used map represen-
tation for robotics is an occupancy grid map [24]. However,
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human environments tend to be object-centric, and humans do
not require precise metric information in order to navigate
them [21][39]. Rather, humans rely on a small number of
specific landmarks, and associate places with the objects
present there. For this reason, we consider localization in a
sparse, approximate map, that does not require an elaborate
map acquisition process. No work on semantic localization in
sparse maps with abstract and hierarchical semantic informa-
tion exists to our knowledge.

The main contributions of this paper is a global localization
system in floor plan maps that integrates semantic cues. We
propose to leverage semantic cues to break the symmetry and
distinguish between locations that appear similar or identical
in the nondescript maps. Semantic information is commonly
available in the form of furniture, machinery and textual
cues and can be used to distinguish between spaces with
similar layout. To avoid the complexity of building a 3D
map from scans and to enable easy updates to semantic
information, we present a 2D, high level semantic map.
Thus, we present a format for abstract semantic map with
an editing application and a sensor model for semantic infor-
mation that complements LiDAR-based observation models.
Additionally, we provide a way to incorporate hierarchical
semantic information. Unlike most modern semantic-based
SLAM approaches [6][20][31][37][38], our approach does not
require a GPU and can run online on an onboard computer.
Like semantic visual SLAM methods, we also rely on semantic
information, but while SLAM approaches construct a map
online, we focus on localization in a given map. In our exper-
iments, we show that our approach is able to: (i) localize in
sparse floor plan-like map with high symmetry using semantic
cues, (ii) localize long-term without updating the map, (iii)
localize in previously unseen environment. (iv) localize the
robot online using an onboard computer. These claims are
backed up by the paper and our experimental evaluation.

II. RELATED WORK

Localization in 2D maps has been thoroughly re-
searched [5][35][36][40]. Among the most robust and
commonly-used approaches, are the probabilistic methods for
pose estimation, including Markov localization by Fox et
al. [11], the extended Kalman filter (EKF) [16] and particle
filters, also known as Monte Carlo localization (MCL) by Del-
laert et al. [8]. These works laid the foundation for localization
using range sensors and cameras.

Localization in detailed, feature-rich maps, usually con-
structed by range sensors, is extensively-studied [23], but
few works address the problem of localization in sparse, floor
plan-like maps, despite their benefits. Floor plans are readily-
available in many facilities, and therefore do not depend on
prior mapping. As they only include information on permanent
structures, they do not require frequent updates when objects,
such as furniture, are relocated. Their main drawback comes
from their sparse nature, and the lack of detailed geometric
information can results in global localization failures when
multiple rooms look alike. Another concern is the possible
mismatch between the floor plans and the constructed build-
ing [3]. Li et al. [17] address the scale difference between

constructed structure and floor plans by introducing a new
state variable. Boniardi et al. [4] uses cameras to infer the
room layout via edge extraction and match it against the floor
plan. In the evaluation, the authors initialized the pose within
10 cm and 15◦ from the ground-truth pose, and did not evaluate
global localization. We speculate that edge extraction of the
walls is not sufficient in a highly repetitive indoor environment
where many rooms have the same size. Both approaches
provide tracking capabilities, but not global localization.

Recent works in extracting semantic information with deep
learning models showed significant improvement in perfor-
mance for both text spotting [18][33] and object detec-
tion [2][41]. The use of textual cues for localization is sur-
prisingly uncommon, with notable works by Cui et al. [7] and
Zimmerman et al. [43]. Both works considered using textual
information within an MCL framework, but used different
approaches to integrate it. In our approach, we expand our
previous work [43] to consider semantic cues via object
detection, not only textual ones.

The use of semantic information for localization and place
recognition is applied to a variety of sensors, including 2D
and 3D LiDARs, RGB and RGB-D cameras. Rottmann et
al. [30] use AdaBoost features from 2D LiDAR scans to infer
semantic labels such as office, corridor and kitchen. They
combine the semantic information with occupancy grid map
in an MCL framework. Unlike our approach, their method
requires a detailed map and manually assigning a semantic
label to every grid cell. Hendrikx et al. [13] utilize available
building information model to extract both geometric and
semantic information, and localize by matching 2D LiDAR-
based features corresponding to walls, corners and columns.
While the automatic extraction of semantic and geometric
maps from a BIM is promising, the approach is not suitable
for global localization as it cannot overcome the challenges of
a repetitively-structured environment.

Atanasov et al. [1] treat semantic objects as landmarks
that include their 3D pose, semantic label and possible
shape priors. They detect objects using a deformable part
model [9], and use their semantic observation model in an
MCL framework. The results they report do not outperform
LiDAR-based localization. An alternative representation for
semantic information is a constellation model, as suggested
by Ranganathan et al. [29]. In their approach, they use
stereo cameras, exploiting depth information. They rely on
hand-crafted features including SIFT [19] to detect objects.
Places are associated with constellations of objects, where
every object has shape and appearance distribution and a
relative transformation to the base location. Unlike these two
approaches, our approach does not require exact poses for the
semantic objects. A more flexible representation is proposed
by Yi et al. [39], who use topological-semantic graphs to
represent the environment. They extract topological nodes
from an occupancy grid map, and characterize each node by
the semantic objects in its vicinity. It suffers when objects
are far from the camera and can easily diverge when objects
cannot be detected, while our approach is more robust as it
relied additionally on LiDAR observations and textual cues.
Similarly to the above mentioned approaches, we also use
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Fig. 2: A simplified overivew of the online localization approach.
Given RGB images, 2D LiDAR scans an odoemtry input, we integrate
semantic cues into an MCL framework.

sparse representation for semantic objects. However, by using
deep learning to detect objects, we are able to detect a larger
variety of objects with greater confidence, and localize in
previously unseen places.

Sünderhauf et al. [34] construct semantic maps from camera
by assigning a place category to each occupancy grid cell.
They use the Places205 ConvNet [42] to recognize places,
and rely on a LiDAR-based SLAM for building the occupancy
grid map. The limitation of their approach is in the high level
of semantic abstraction. As their work relied on coarse room
categorization, it might not be sufficient for global localization
in highly repetitive environments.

III. OUR APPROACH

Our goal is to globally localize in an indoor environment
represented by a nondescript floor plan and a high level seman-
tic map. As sensors for localization, we use 2D LiDAR, cam-
eras and wheel odometry. We build our localization approach
on the Monte Carlo localization (MCL) framework [8]. To
distinguish between locations that appear similar or identical in
the sparse maps, we introduce imprecise, high-level semantic
maps in Sec. III-B and a sensor model for semantic similarity
in Sec. III-D. The integration of the semantic information in
the MCL framework is introduced in Sec. III-E. In addition,
we perform an analysis to determine the stability of semantic
classes as discussed in Sec. III-G and utilize the semantic
information to discard LiDAR measurements resulting from
dynamic objects. Furthermore, in Sec. III-G we explore a
hierarchical semantic approach for inferring the room type
based on objection detection, and exploit this information to
initialize the particle filter. An overview of the approach is
illustrated in Fig. 2.

A. Monte Carlo Localization

Monte Carlo localization [8] is a particle filter-based ap-
proach for state estimation given a map m and sensor readings
zt at time t. As we localize in floor plan maps, the robot’s state
xt is defined by the 2D coordinates (x, y)> and the orientation
θ ∈ [0, 2π). The map m is represented by an occupancy grid
map [24] or an abstract semantic map, see Sec. III-B, and

(a) (b) (c)

(d) (e) (f)

sink door whiteboard table storage

Fig. 3: A visualization of the semantic visibility concept. (a) A
semantic map of a single room, with a query point (black dot). (b)-(f)
The bearings in which each semantic class objects are visible from
the query point.

the observation z is composed of K elements zk. We apply
a recursive Bayesian update to a set of particles St, which
represent the belief about the robot’s pose, p(xt | z1:t,m).
Every particle is represented by a state x(i)t and a weight w(i)

t .
The proposal distribution p(xt | xt−1, ut) is sampled when
a new motion prior ut is available, using a motion model
for holonomic robots with odometry noise σodom ∈ R3. By
computing the likelihood of an observation zt given a robot’s
state xt using the observation model p(zt | x(i)t ,m) , an
individual importance weight w(i)

t is assigned to each particle.
In the resampling step, we use low-variance resampling [35].

B. High-Level Semantic Maps

We represent our prior information about semantics with a
2D high level semantic map, where semantic objects are rep-
resented by a semantic class label l and a rectangle overlying
the occupancy grid map. see Fig. 3. The size of the rectangle
does not have to be very accurate and the location where it
is marked can be a rough estimate of its actual placement.
In our abstract map, objects differed from their actual size
by 62.5%, or up to 1.25 m. This imprecise representation
of semantic information is both generic enough to address
variety of objects and simple enough to allow editing by end
users. Each room can be assigned a name, corresponding to
a text sign, and a room category representing a higher level
of semantic understanding compared to basic object detection.
The semantic maps can be easily created and edited using the
GUI application MAPhisto2.

2https://github.com/FullMetalNicky/Maphisto
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C. Beam End Point Model
The beam end point model [35] pL(zt | xt,m) is an

observation model for range sensors

pL(z
k
t | xt,mL) =

1√
2πσobs

exp

(
−edt(ẑkt )

2

2σ2

)
(1)

Where ẑkt is the end point of the LiDAR beam in the
occupancy grid map mL and edt is the Euclidean distance
transform [10], in which each cell is labeled with the distance
to an occupied cell in the occupancy grid map. The edt was
truncated at rmax, a predefined maximal range.

D. Semantic Visibility Model
The last decade’s progress in semantic interpretation allows

us to use deep learning models for text spotting [18][33] and
object detection [2][41].

Object detection is the task of detecting instances of seman-
tic objects in images and videos. In our approach, the required
output from an object detection model is a semantic label, a
bounding box and a confidence score for every detected object.
For each bounding box in the prediction, we transform it to
a 3D cone x̂ in the robot coordinate system, see Fig. 4. We
take the pixel coordinates of the right and left boundaries of
a bounding box, (bbr, bbl) and project them to 3D rays by
using the camera’s intrinsics and extrinsics matrices. For a
pixel v = (x, y, 1)T , we define the associated 3D ray V (λ) as
follows:

V (λ) = O + λR−1K−1v, (2)

where K ∈ R3×3 is the camera intrinsics, R ∈ R3×3 is the
camera rotation and O ∈ R3 is camera center.

From the high-level semantic information, we construct
visibility maps for the semantic classes. For each valid, free
space cell c in the occupancy grid map, we compute the
visibility of semantic objects. A semantic object o is visible
from a grid cell c if we can ray-trace it without crossing
a non-valid, i.e., occupied or unknown, cell. For each cell
c, we maintain a list of all visible semantic classes. For
each semantic class l, we store the set of bearing vectors,
B = {b1, . . . , bn}, ‖bi‖= 1, in which objects of class l
are visible. This process of constructing the visibility maps
is performed once, when the algorithm is launched, and is
illustrated in Fig. 3.

A semantic observation yt includes the set of detected
objects. For every object we store its semantic label l, its
confidence score f and the center of its cone as the bearing b̂.
For each particle s(i)t with pose x(i)t = (x, y, θ)>, we transform
the bearing b̂ into the world coordinate system. We query the
pre-built semantic visibility maps for cell c corresponding to
the pose of particle s(i)t , and compare it with the observation.
If an object is observed with confidence score f which is lower
than a threshold τ , we ignore the observation. Otherwise, if an
object with semantic label l is visible from cell c, we compare
the observed bearing b̂ to the set of possible bearings B by
using the cosine similarity:

sim(v1,v2) =
v1 · v2

‖v1‖‖v2‖
. (3)

Fig. 4: The bounding box detecting a dynamic class (person) is
projected to 3D and used to mask the LiDAR beams that fall within
the cone.

where v1,v2 ∈ R2. To compare the observed bearing b̂
with all possible visible bearings bi ∈ B and select the best
match according to the distance d, defined as

d = 1−max
bi∈B

(sim(bi, b̂)). (4)

For a set of detected objects zSt , our observation model is
given by

pS(z
k
t | xt,mS) = exp (−d) zkt ∈ zSt , (5)

where zkt is the kth confidently observed object in the set zSt ,
and mS is the abstract semantic map.

E. Integrating Different Modalities in the MCL Framework
We handle all information sources asynchronously – the

motion model is sampled when odometry input is available,
and the particles are re-weighted when an observation arrives.
We integrate the 2D LiDAR measurements and the object
detections using two different observation models. For a
2D LiDAR observation, zLt , we use the beam-end model
pL(z

L
t | xt,mL) described in Sec. III-C. When object de-

tection information arrives, zSt , we use the semantic visibility
model pS(zSt | xt,mS), detailed in Sec. III-F.

The product of likelihood model assumes elements of each
observation, e.g scan points in a LiDAR scan, are independent
of each other. With the high angular resolution of our LiDAR
this assumption does not hold. Similarly, for the semantic
visibility model, detected objects are not entirely independent
of each other as they often belong to the same context. The
traditional product of likelihood model tends to be overconfi-
dent in such circumstances, leading us to choose the product
of experts model [22], which uses geometric mean to compute
the weight of each particle

p(zt | xt,m) =

K∏
k=0

p(zkt | xt,m)
1
K , (6)

where zkt is a single component of an observation zt, be it
a LiDAR scan or a set of detected objects. The beam-end
model is triggered only when the robot moves more than dxy
or rotates more than dθ, while the semantic observation model
is always updated. Based on the semantic stability analysis, we
detected semantic classes that tend to move frequently, which
we refer to as dynamics. In addition to excluding these classes
from the semantic map, we also use these detections to filter
out LiDAR measurements that are the result of dynamics, as
seen in Fig. 4
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F. Semantic Stability Analysis

To decide which semantic classes would benefit localization,
we estimated how likely they are to move around. We prepared
a semantic map for all detectable classes, and examined the
training-dedicated recordings T1-T5 spanning over multiple
weeks. As our dataset includes the ground truth pose of the
robot using an external reference system, we were able to con-
clude whether the position of detected objects corresponded
to their position in the map. Using Eq. (4), we consider a
detected object to correspond to the semantic map if d < τs.
We calculate the ratio of map-consistent detection per semantic
class, and deem a semantic class stable if the ratio was above
0.6. The ratio is computed by dividing the number of map-
consistent detected objects of class l, by the total number of
detections. Unstable classes are excluded from the semantic
visibility model, and then stability scores are given in Tab. I.

G. Hierarchical Semantic Localization

In big indoor environments, a very large number of particles
is required to sufficiently cover the area in the initialization
phase of global localization, which result in great compu-
tational costs. It is possible to reduce the number of used
particles and achieve global localization by considering a
hierarchy of semantic information. We propose to infer the
room category (office, corridor, kitchen, reception) based on
the predictions from the object detection. We use a nearest-
neighbor classifier [25] to learn a relationship between the de-
tected objects and the room category. We encode the semantic
information as a feature vector r ∈ RM , where M is the
number of classes we are able to detect. Each vector element
rl represents the number of detected objects from a specific
semantic label l. We used our initial semantic observations
to infer the room category, and initialize the particle filter
accordingly, so that particles are only initialized in rooms of
the same category. The information about the category of each
room is stored in the high-level semantic map (Sec. III-B).

IV. EXPERIMENTAL EVALUATION

The focus of this work is to provide an efficient, robust
localization approach that exploits semantic information for
long-term operation in sparse floor plans. We conducted our
experiments to support our claims and show that our approach
is able to: (i) localize in sparse floor plan-like map with
high symmetry using semantic cues, (ii) localize long-term
without updating the map, (iii) localize in previously unseen
environment, (iv) localize the robot online using an onboard
computer.

A. Experimental Setup

To evaluate the performance of our approach, we recorded
a dataset on the first and second floors of our building. Our
mobile sensing platform consisted of a Kuka YouBot platform
with 2 Hokuyo UTM-30LX LiDAR sensors, wheel encoders, 4
cameras covering jointly a 360◦ field-of-view, and an upward-
looking camera that is used only for evaluation purposes, see
Fig. 5. The recordings span across several weeks, capturing

different scenarios including moving furniture, opening and
closing of doors and humans passing by.

By using precisely localized AprilTags [26], which are
densely placed (approx. 1 tag/m2) on the ceiling of every
room and corridor on the second floor, we are able to extract
the ground truth pose of the robot from the upwards-looking
camera. The camera is used to detect the AprilTags, which
allows us to accurately localize the robot even when the
environment undergoes changes. The upward-looking camera
captured frames at 25 fps, and due to its wide-angle lens, we
were able to detect multiple AprilTags in every frame. The
pose was extracted in a least-squares fashion using multiple
detections. The locations of the AprilTags were obtained using
a high resolution terrestrial FARO laser scanner, and were
aligned to the floor plan of the second floor. By enforcing
a shared coordinate system, we are able to compare the pose
estimation to our ground truth poses.

Recording R1-R11 are captured in the second floor of our
building and include ground truth poses. Recording Q1-Q3
were recorded in the first floor of the building and do not
include ground truth information, and are used for qualitatively
evaluation on previously unseen environment. Each sequence
was evaluated multiple times to account for the inherent
stochasticity of the MCL framework.

In our implementation, we used YOLOv5 [15], which is a
family of object detection models of varying size and perfor-
mance. YOLOv5 models are capable of real-time inference
on CPU-only platforms, thus making them well-suited for
mobile robots. We trained a small model, YOLOv5s, on 581
images from the second floor of our building using the default
training script provided in the YOLOv5 repository. The map
used for localization is joint map of two CAD floor plan
drawings, of the first and second floor side-by-side, illustrated
in Fig. 1. The semantic information was integration using
our GUI application MAPhisto3 based on our recollection of
location of semantic objects. For all experiments, we use a
map resolution of 0.05 m by 0.05 m per cell and the algorithm
parameters specified in Tab. II.

As baseline, we compare against AMCL [27], which is a
publicly available and highly-used ROS package for MCL-
based localization, our own MCL implementation without
using semantic cues and a text-enhanced MCL [43], which
we refer to as TMCL. Our method, exploiting both semantic
information from object detection and hierarchical semantic
knowledge discussed in Sec. III-G, is referred to as HSMCL.
For the tracking experiments, we considered SMCL, a varia-
tion of our approach that uses only semantic cues through the
semantic visibility model, without hierarchical semantic local-
ization. All experiments were executed with 10,000 particles
in the filter unless mentioned otherwise.

We consider two metrics, the success rate and absolute
trajectory error (ATE) after convergence. In our definition,
convergence occurs when the estimated position is within a
radius of 0.3 m from the ground truth pose and the estimated
orientation is within π

4 radians. Tracking of the pose is con-
sidered unreliable if the pose estimate diverges for more than

3https://github.com/FullMetalNicky/Maphisto

https://github.com/ultralytics/yolov5
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TABLE I: Semantic stability scores for different detected object classes computed on sequences T1-T5.

Class sink door oven whiteboard table cardboard plant drawers sofa storage chair extinguisher person desk

Score 0.97 0.96 0.90 0.91 0.95 0.46 0.88 0.86 0.99 0.96 0.58 0.84 0.11 1.00

TABLE II: Algorithm parameters

Method σodom σobs rmax τs ρ dxy dθ

MCL (0.15 m, 0.15 m, 0.15 rad) 6.0 15.0 m - - 0.1 m 0.03 rad
TMCL (0.15 m, 0.15 m, 0.15 rad) 6.0 15.0 m - 0.5 0.1 m 0.03 rad

HSMCL (0.15 m, 0.15 m, 0.15 rad) 6.0 15.0 m 0.6 - 0.1 m 0.03 rad

Hokuyo UTM-30LX
Intel RealSense D-455

GoPro Hero 5 Black
(used only for evaluation)

Fig. 5: The data collection platform, an omnidirectional Kuka
YouBot, with 2D LiDAR scanners (marked by a red outline) and
with 4 cameras (marked by a blue outline) providing 360◦ coverage.
The up-ward facing camera (marked by a green outline) is only used
for generating the ground truth via AprilTag detections.

1% of the time. If convergence did not occur within the first
95% of the sequence, or if the pose is not reliably tracked
from convergence moment until the end of the sequence, we
consider it a failure.

B. Long-Term Localization in CAD Floor Plans

The first experiment evaluates the performance of our ap-
proach and supports the claim that we are capable of long-term
localization in sparse, floor-plan-like maps. Sequences R1-R11
are recorded in April-June 2022, and traverse all the rooms
in the second floor. The given map had been constructed in
2021. All sequences include humans walking around, opening
and closing of doors, moving furniture and large amount of
clutter. We repeat the evaluation of each sequence 5 times,
computing the success rate, ATE and convergence time over
all 5 runs, and compare against the baselines. As can be
seen in Tab. III the semantically-enhanced methods have
superior performance over the baselines. AMCL and MCL are

TABLE III: Success rate for 11 sequences recorded all across the
second floor in the span of several weeks. A run was considered
successful if the algorithm converged to the ground truth in the first
95% of the recording and remained localized until the end of the
sequence.

Method R1 R2 R3 R4 R5 R6

AMCL 0% 0% 0% 0% 0% 0%
MCL 40% 20% 60% 40% 20% 0%

TMCL 80% 0% 100% 80% 60% 40%
HSMCL 100% 100% 100% 100% 100% 100%

Method R7 R8 R9 R10 R11 AVG

AMCL 0% 0% 0% 0% 0% 0%
MCL 0% 40% 20% 60% 0% 27%

TMCL 100% 100% 100% 80% 100% 76%
HSMCL 100% 100% 100% 100% 100% 100%

mostly used with detailed maps constructed using range-sensor
measurements, and we can attribute their poor performance to
the sparse nature of the floor plans. This highlights the impact
of semantic information when localizing in nondescript, sparse
maps, especially in face of high geometric symmetry.

As reported in Tab. IV, upon successful convergence,
HSMCL achieves accuracy of 0.23 m and negligible angular
error. HSMCL successfully converges, on average over all
sequences, after 25 s.

We further provide pose tracking experiments. A similar
approach to ours, Boniardi et al. [4], tracked the pose of a robot
by inferring the room layout from camera images, reporting
RMSE of approx. 0.23 m and approx. 0.04 rad with adaptive
particle number ranging between 1,500-5,000. However, they
did not provide open source code. Our office environment is
similar to the Freiburg one where Boniardi et al. [4] evaluated
their method. For the tracking experiments we used SMCL,
which integrates semantic cues from object detection, without
hierarchical information. We report our tracking results with
fixed 1500 particles in Tab. V, achieving an ATE of 0.2 m
and 0.05 rad. This suggest that integrating semantic cues,
and specifically, our SMCL approach, are beneficial also for
tracking purposes and not only for global localization.

C. Localization in a Previously Unseen Environment

To support our claim that we are able to localize in a
previously unseen environment, we qualitatively evaluate our
method on sequences Q1-Q3 recorded on the first floor of our
building. The object detection model and the room category
classifier were not trained or validated on data from this floor.
While the first floor is not entirely dissimilar to the second
one, it does include different furniture and rooms that serve
different purposes such as a classroom and a robotics lab. The
pose estimated by SMCL sequences is shown in Fig. 6. Our
approach correctly predicts that the robot is located in the
first floor and identifies the correct room and maintaining a
trajectory that is consistent with floor plan map. We manually
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TABLE IV: ATE for global localization on consistently stable (100% success rate) sequences recorded all across the second floor in the
span of several weeks. Angular error in radians / translational error in meters.

Method R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 AVG

AMCL -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-
MCL -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-

TMCL -/- -/- 0.048/0.16 -/- -/- -/- 0.034/0.22 0.043/0.18 0.050/0.21 -/- 0.034/0.18 0.042/0.19
HSMCL 0.054/0.15 0.064/0.24 0.069/0.25 0.205/0.23 0.100/0.34 0.064/0.23 0.069/0.23 0.049/0.18 0.090/0.26 0.052/0.16 0.052/0.25 0.079/0.23

TABLE V: ATE for tracking on a subset of sequences recorded all
across the second floor in the span of several weeks. The particle filter
was set to adaptive 1,500-5,000 particles for AMCL and a fixed 1,500
particles for MCL and SMCL. Angular error in radians / translational
error in meters.

Method R3 R4 R6 R7 R8 R10 AVG

AMCL -/- -/- 0.047/0.22 -/- -/- -/- 0.047/0.22
MCL 0.051/0.17 0.050/0.21 0.051/0.29 0.064/0.23 0.039/0.14 0.041/0.15 0.049/0.20

SMCL 0.063/0.21 0.046/0.22 0.068/0.29 0.048/0.19 0.042/0.15 0.044/0.13 0.052/0.20

Q1
Q2
Q3

Fig. 6: Examples of pose estimation for localization in previous
unseen environment, using SMCL and 10,000 particles.

verified that the robot’s estimated trajectory corresponded to
the rooms visited using the RGB footage from the sequences
Q1-Q3.

D. Ablation Study

To justify our use of both low-level and hierarchical seman-
tic information, we conducted an ablation study. We analyzed
three strategies for integrating semantic knowledge into an
MCL framework. SMCL uses only semantic cues through
the semantic visibility model. HMCL uses semantic hierar-
chy, described in Sec. III-G, to initialize the particles only
in the rooms corresponding to the observed room category,
and then relies solely on the LiDAR information. HSMCL
combines both strategies. The ATE was computed only on
stable sequences with 100% success rate. As can be seen
in Tab. VI, utilizing the two levels of semantic information
benefits localization. HSMCL was able to localize stably even
on the challenging sequences, where other methods failed.
The ATE for HSMCL is on par with the other methods, and

TABLE VI: Performance on 11 sequences recorded all across the
second floor in the span of several weeks. A run was considered
successful if the algorithm converged to the ground truth in the first
95% of the recording and remained localized until the end of the
sequence. Angular error in radians / translational error in meters.

Method Hierarchy Semantics Success ATE ATE
(# of stable sequences) (# of successful runs)

MCL 27% - (0) 0.046/0.20 (15)
HMCL X 61% 0.046/0.21 (3) 0.044/0.19 (34)
SMCL X 81% 0.055/0.23 (7) 0.066/0.24 (45)

HSMCL X X 100% 0.079/0.23 (11) 0.079/0.23 (55)

TABLE VII: Runtime for HSMCL, with 10,000 particles. The
Yolov5s results are for inference on a single camera.

Platform Sem. Visibility Beam-End Yolov5s Yolov5s
(640x480) (320x240)

NUC10i7FNK 55 ms 24 ms 223 ms 57 ms
Dell Precision-3640-Tower 19 ms 14 ms 10 ms 6.8 ms

the slightly larger error can be attributed to including more
challenging sequences and runs in the computation of the ATE
for HSMCL, sequences and runs where other methods failed
to localize entirely.

E. Runtime

We evaluate the runtime performance of our approach in
support of our fourth claim, that we are able to operate onboard
and allow real-time localization. We tested our approach on a
Dell Precision-3640-Tower (with NVidia GeForce RTX 2080)
and once on an Intel NUC10i7FNK, which we have on our
robot. The Dell PC has 64 GB of RAM and runs at 3.70 GHz.
The Intel NUC has 16 GB of RAM and runs at 1.10 GHz.
The measurements are reported in Tab. VII. Since we are
using 4 cameras simultaneously for object detection, we used
an optimized ONNX export of YOLOv5s, and run inference
on 320 by 240 images. Qualitative online tests indicates that
reducing the resolution does not impact the detection accuracy
significantly. These runtime results suggest that our approach
is suitable for online localization, and utilizes semantic infor-
mation without requiring a GPU onboard.

V. CONCLUSION

Our approach incorporates semantic information, from low-
level object detection to higher understanding of room cate-
gories, to assist navigation in human-oriented environments.
This enables us to successfully localize in sparse floor plans
under high geometric symmetry and changing environments.
We demonstrate that using sparse and abstract map represen-
tation benefits long-term localization, and reduces the need
to update the map. We also provide a tool for updating the
semantic map, when critical changes occur. For our evaluation,
we recorded a dataset spanning across weeks, introducing a
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variety of elements that are not represented in the floor plan,
and the changes a human-occupied environment undergoes.
We compared our performance to other existing methods,
supporting all of our claims. The results of our experiments
imply mobile localization systems can benefits greatly from
exploiting ever-present semantic cues.
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