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Abstract— A large number of applications use motion capture
systems to track the location and the body posture of people.
For instance, the movie industry captures actors to animate
virtual characters that perform stunts. Today’s tracking systems
either operate with statically mounted cameras and thus can be
used in confined areas only or rely on inertial sensors that allow
for free and large-scale motion but suffer from drift in the pose
estimate. This paper presents a novel tracking approach that
aims to provide globally aligned full body posture estimates by
combining a mobile robot and an inertial motion capture system.
In our approach, a mobile robot equipped with a laser scanner
is used to anchor the pose estimates of a person given a map
of the environment. It uses a particle filter to globally localize
a person wearing a motion capture suit and to robustly track
the person’s position. To obtain a smooth and globally aligned
trajectory of the person, we solve a least squares optimization
problem formulated from the motion capture suite and tracking
data. Our approach has been implemented on a real robot and
exhaustively tested. As the experimental evaluation shows, our
system is able to provide locally precise and globally aligned
estimates of the person’s full body posture.

I. INTRODUCTION

The movie industry and creators of computer games are ma-
jor markets for professional motion capture systems. Marker-
based visual tracking approaches that use multiple statically
mounted cameras, such as the Vicon mocap studio [18],
belong to the most commonly used systems. These tracking
systems are highly accurate but restrict the actor to a rather
small area that can be captured by the cameras. To overcome
this limitation, motion capture systems based on inertial
measurement units (IMUs), such as the Xsens MVN motion
capture suit [20], have been developed. These inertial motion
capture suits attach multiple IMUs to a person and provide an
estimate of the person’s full body posture. They can accurately
track the person’s pose locally but suffer from global drift
particularly when the person moves over large distances. As
this drift accumulates over time due to the incremental nature
of the IMU-based filter, interactions between the person and
the environment itself are difficult to realize. Consequently,
applications that require a locally accurate as well as a
globally correctly aligned estimate of the person’s posture
are still limited to rather small scenes.

The contribution of this paper is a novel approach that
bridges this gap by combining locally accurate full body
posture estimates with a precise global alignment of the
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Fig. 1: Globally aligned full body posture estimate of a person
obtained using an inertial motion capture system and a mobile robot
equipped with a laser range finder.

tracked person with respect to the environment. Our approach
combines the estimates of an inertial motion capture suit
with particle filter-based people tracking techniques using a
mobile robot equipped with a laser range finder (see Fig. 1).
To obtain accurate trajectory estimates, our method computes
the solution of a global least squares problem consisting of
the estimates of both the inertial motion capture suit and
the laser-based tracker. As a result, our approach is able to
compute a globally accurate alignment of the smooth track
of the person in the scene including the full body posture
estimate of the person from the inertial motion capture suit.

II. RELATED WORK

Tracking people in the environment is a well studied
problem in robotics and related disciplines. Approaches to
people tracking in robotics can be classified according to
the used sensor, e.g., laser scanners [1], [7], monocular
cameras [3], stereo cameras [6], IMUs [16], or combinations
of these sensors [4], [10], [12], [19], [21].

Key techniques found in most people tracking approaches
are Kalman filters [5], [7], [8], particle filters [15], [19], and
HMMs [2]. To tackle the data association problem, approaches
rely on nearest neighbor techniques [15], the Hungarian
method [3], multi-hypothesis data association trackers [1],
probabilistic data association filters [12], or its joint variant
called JPDAFs [2], [17].

Montemerlo et al. [15] present an approach to simulta-
neously localize a mobile robot and people in its vicinity.
This method is related to our system in so far as we also
estimate the trajectory of the robot and the person jointly.
In contrast to Montemerlo et al., we do not only track but
also smooth the output to obtain a more accurate maximum
likelihood solution. However, we do not consider that the



laser beams reflected by a person may negatively influence
the pose estimate of the robot itself.

Grzonka et al. [9] present an approach which is able to
reconstruct the trajectory of a person wearing an inertial
motion capture suit along with localized events such as
opening doors to estimate the path of the person as well
as a topological-metric map.

The approach presented in this paper is based on a mobile
robot that observes the tracked person with a laser-range finder
and a mobile motion capture system based on IMUs, such as
the Xsens MVN suit. Our method is able to provide globally
consistent and locally accurate full-body motion estimates of
a person, even over large distances. We use a combination of
particle filter-based localization, people tracking, and global
optimization to obtain the most likely motion path. In addition
to that, our approach can deal with situations in which the
person being tracked is temporarily outside the field of view
of the robot.

III. APPROACH TO PARTICLE FILTER-BASED PERSON
TRACKING USING AN INERTIAL MOTION CAPTURE SUIT

In our approach, we use a particle filter to track the pose xt
of a person. We estimate the posterior

p(xt | z1:t, u1:t) ∝

p(zt | xt)
∫
x′
p(xt | x′, ut)p(x′ | z1:t−1, u1:t−1) dx′, (1)

where ut describes the movement of the person, and zt
corresponds to an observation of the person at time t. The
particle filter estimates this posterior using the motion model
p(xt | xt−1, ut) and the observation model p(zt | xt). In our
approach, the motion model is based on the estimate provided
by the inertial motion capture suit, and the observation model
is based on the laser measurements obtained by the robot.

A. Motion Model
An estimate of the motion of the person to be tracked is

provided by the inertial motion capture suit. In our current
implementation, the Xsens MVN suit estimates the motion
of the person’s full body posture using a set of IMUs.
Consequently, the estimate of the inertial motion capture suit
is affected by drift. Although the relative motion estimate is
globally inaccurate, it is typically locally precise and therefore
well-suited for the motion model.

The estimates provided by the inertial motion capture suit
are with respect to its own reference frame. The motion
ut = (T,∆θ)> consists of a translation T and a change ∆θ
in orientation.

The particle filter algorithm samples a new pose for each
particle according to the motion model based on ut and its
estimate of the current state. Assuming Gaussian noise in T
and ∆θ, the sampled motion for a sample i is given by

∆θi = ∆θ + εrot,where εrot ∼ N (0, α1|T |+ α2|∆θ|) (2)

T i = T + εtrans,where εtrans ∼ N (0, α3|T |+ α4|∆θ|). (3)

The noise parameters α1, α2, α3, and α4 determine the uncer-
tainty with respect to translation and rotation. Finally, the new
pose for sample i is computed as xit = xit−1 ⊕ (T i,∆θi)>.

B. Observation Model

The particle filter uses the observation model p(zt | xt)
to correct the prediction estimated by the motion model. In
our approach, the observation model is based on a (localized)
mobile robot equipped with a laser range finder.

To obtain p(zt | xt), we compute the expected observation
of the tracked person given its current estimated pose. We
do so by constructing a 3D skeleton model of the person
using the current estimate of the person’s full body posture,
which is provided by the inertial motion capture suit. The
intersection of the skeleton and the plane of the laser range
finder indicates where the legs of the person are expected to
appear in the scan.

To evaluate how well the expected observation matches the
actual observation, we detect potential legs in the current laser
range scan. We consider the distances between the expected
locations of the legs and the locations of the detected legs. Let
p(ll) = p(lr) be the probability of the detector identifying
the legs of the person to track, which we assume to be
independent from the state xt and the measurement zt. This
probability can be easily learned from a labeled dataset. Since
the data associations are unknown, we integrate/sum over all
possible associations. Assuming Gaussian noise, we have

p(zt | xt) ∝ p(¬ll)p(¬lr)

+ p(ll)p(lr)
∑

ll 6=lr∈L
exp(−λ(‖l∗l − ll‖2 + ‖l∗r − lr‖2))

+ p(ll)p(¬lr)
∑

ll∈L
exp(−λ‖l∗l − ll‖2)

+ p(¬ll)p(lr)
∑

lr∈L
exp(−λ‖l∗r − lr‖2), (4)

where l∗l and l∗r are the positions of the left and the right
leg of the skeleton, according to the current particle, and L
refers to the set of legs detected in the current range scan.
Finally, λ is a scaling parameter that determines how peaked
the distribution is.

Our approach applies a technique similar to that proposed
by Kluge [11] to detect legs in the laser range scans. We group
the laser endpoints into segments based on the Euclidean
distance between the endpoints of the laser beams and
subsequently examine the width and shape of each segment.
If the width of a segment approximately corresponds to that
of a human leg and the shape roughly resembles a half circle,
the segment is classified as a leg candidate.

Note that for evaluating a particle it is more important to
obtain few false-negatives (i.e., missing a leg) rather than a
non-zero number of false positives (i.e., legs of other persons
or similarly looking objects). This is similar to the observation
likelihood in robot localization, which often is a multi-modal
distribution over the environment. Hence, this relatively naive
heuristic for leg extraction turned out to be sufficient in
practice.

To update the weight wi of each sample i we apply

wi
t = ηp

(
zt | xit

)
wi

t−1, (5)

where η is a normalization constant computed by summing
up the individual likelihoods. Our approach carries out



the resampling step selectively by considering the effective
number of samples, similar to Liu [14].

C. Globally Localizing a Person

A common approach to global localization is to uniformly
sample poses from the entire state space, which is rather
inefficient. An alternative method is to add samples to the
particle filter such that the probability of adding a particular
sample is proportional to its observation likelihood, similar
to Lenser and Veloso [13]. In our application, however, such
a technique is likely to make the particle filter diverge since
the robot may observe a different person while the person
that is supposed to be tracked is outside the robot’s field of
view.

To mitigate this problem, we require that a potential pose
be consistent with the measurements for some time before
we incorporate it into the particle filter. For this purpose, we
sample from the distribution

xt ∝ p(xt | zt−k:t, ut−k:t), (6)

taking into account the last k measurement updates and
motion predictions. In this way, our algorithm prevents
samples that correspond to a different person and that move
differently from being added to the particle filter as the
person to be tracked. To efficiently sample from (6), we run
an additional particle filter at the corresponding locations
and only incorporate the samples into the main particle filter
whose motion and measurements are consistent.

D. Following a Person

Our approach is designed to track the person over longer
periods of time and longer distances. Therefore, the robot
needs to follow the person in order to obtain relevant
observations, which are required to correct the pose estimate
obtained from the inertial motion capture suit. To follow the
tracked person, our current implementation uses a standard
robot navigation approach to guide the robot to the vicinity
of the person’s current location.

IV. OPTIMIZING THE TRAJECTORIES OF PERSONS
BY MEANS OF LEAST SQUARES

When an animated character walks in a movie or in a virtual
game according to the recorded trajectory, it is necessary that
this trajectory accurately reflects the motion of the person.
A tracking approach, especially based on particle filters,
however, can lead to non-smooth tracks with small jumps
in the trajectory. In an animation, this would look like the
character being teleported between nearby locations because
the track does not reflect the smooth motion of a person that
the inertial motion capture suit itself provides.

To bridge this gap between local and global accuracy,
we perform a post-processing step that refines the trajectory
estimate provided by the particle filter. Our solution presented
here bears resemblance with the graph-based SLAM problem,
except that three different types of constraints are considered,
namely the location of the robot, the person’s location

rt−1 rt rt+1

µMCL
t−1 µMCL

t µMCL
t+1

xt−1 xt xt+1

(zt−1,Ωzt−1 ) (zt,Ωzt ) (zt+1,Ωzt+1 )

(ut,Ωut ) (ut+1,Ωut+1 )
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Fig. 2: The structure of the underlying optimization problem
illustrated as a graph, similar to the pose graph in the SLAM
problem. The nodes in the graph represent the poses rt of the robot
while observing the person and the tracker estimates of the person’s
locations xt. The edges model the laser-based observations zt and
the inertial motion capture suit data ut. The poses rt of the robot
are anchored in the global reference frame according to the MCL
estimate of the robot during data acquisition. Uncertainties are
modeled by the corresponding information matrices Ω.

observation, and the inertial motion capture suit data. See
Fig. 2 for an illustration.

As before, let xt be the person’s pose at time t, let zt be
the observation of that person seen from the location rt of the
robot, and let ut be the motion estimate of the inertial motion
capture suit. Let Ωzt be the information matrix encoding
the accuracy of the estimated poses of the particle-based
tracker of the person (see Section III), let and Ωrt be the
accuracy of the localization of the robot itself, which is, in
contrast to Section III, considered explicitly here. Let Ωut

be
the information matrix encoding the accuracy of the inertial
motion capture suit.

The overall goal is to find the most likely configuration
x∗1:n of the person’s trajectory of length n as

x∗1:n = argmax
x1:n

p(x1:n, r1:n | z1:n, u1:n). (7)

Under the assumption of independent Gaussian noise, the
maximum likelihood estimation is equivalent to a least squares
error minimization given the error function

F =

n∑
t=1

(e>ztΩztezt︸ ︷︷ ︸
fzt

+ e>rtΩrtert︸ ︷︷ ︸
frt

) +

n∑
t=2

e>ut
Ωzteut︸ ︷︷ ︸
fut

. (8)

The individual error terms ert for the robot’s own localization,
ezt for the observed locations of the person, and eut for the
inertial motion capture suit estimate are defined as

ezt = (rt ⊕ zt)	 xt (9)

ert = rt 	 µMCL
t (10)

eut
= (xt−1 ⊕ ut)	 xt. (11)

Minimizing these error functions is not directly possible since
they include non-linear terms. Therefore, we compute an
approximation of these error functions by applying a Taylor
expansion. For simplicity of notation, we introduce ekt

as
a generic error function that can be used for k ∈ {z, r, u}.
Given this notation, the approximations of the individual error
functions can be written as

ekt(x + ∆x) ' ekt(x) + Jkt∆x, (12)



where x is a stacked vector of the person’s poses x1:t and
the robot poses r1:t. Furthermore, Jkt

is the Jacobian of the
corresponding error functions given in (9)-(11). Given this
approximation of the error function, we can write

fkt
(x + ∆x)

' e>kt
Ωktekt︸ ︷︷ ︸
ckt

+2 e>kt
ΩktJkt︸ ︷︷ ︸
bkt

∆x + ∆x> J>kt
ΩktJkt︸ ︷︷ ︸
Hkt

∆x

= ckt
+ 2bkt

∆x + ∆x>Hkt
∆x, (13)

yielding the variables ckt , bkt , and Hkt . Based on this
equation, we can directly obtain an approximation of F that
can be solved via the Gauss-Newton algorithm:

F '
n∑

t=1

∑
k∈{z,r}

ckt
+ 2bkt

∆x + ∆x>Hkt
∆x

+

n∑
t=2

cut
+ 2but

∆x + ∆x>Hut
∆x (14)

= c + 2b>∆x + ∆x>H∆x. (15)

The quadratic form in (15) is obtained from (14) by setting
c =

∑
ckt

, b =
∑

bkt
, and H =

∑
Hkt

. To minimize (15),
we derive it with respect to ∆x and set it to zero. Thus, the
minimum can be found by solving the linear system

H∆x∗ = −b. (16)

Note that the matrix H is sparse by construction, which
allows us to efficiently solve (16) without computing H−1

explicitly by applying a sparse Cholesky factorization.
The solution ∆x∗ to (16) is used to update the current

estimate of the trajectory of the person and the robot by

x← x + ∆x∗. (17)

The Gauss-Newton algorithm iterates the procedure until
convergence and yields a solution which represents the
maximum likelihood trajectory of the person given all
observations. Our experiments suggest that the resulting
smooth trajectory estimate is well suited for rendering a
virtual character locally and globally consistent in a virtual
scene.

V. EXPERIMENTAL EVALUATION

To evaluate the presented approach, we carried out several
experiments. We there used an Xsens MVN suit, which is an
inertial mobile motion capture suit that consists of 17 IMUs
and estimates the full body posture of the person that is
wearing it. We furthermore used an ActivMedia PowerBot
mobile robot equipped with a SICK LMS laser ranger finder.

A. Accuracy of the MVN Inertial Motion Capture Suit

The first experiment evaluates the global accuracy of the
Xsens MVN suit without any external system, such as the
mobile robot. A subject therefore walked around our campus
multiple times in a loop passing predefined locations. Each
loop had a length of 300 m-350 m. Figure 3 depicts a typical
trajectory. The red solid line is the raw estimate of the
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Fig. 3: The accuracy of the Xsens MVN suit in an experiment
conducted on our campus. The manually verified trajectory of a
person (obtained by inspecting every scan) is plotted as a dashed
line. The raw trajectory estimate of the Xsens MVN suit is depicted
in red. To measure the global drift, the start and the end locations
of the trajectory were identical (see magnification).

Xsens MVN suit. The black dashed line is a ground truth
trajectory that was recorded by an accurately localized mobile
robot. This ground truth trajectory was obtained by manually
verifying every single laser scan of the robot and providing
the data association. After having walked a loop of 350 m,
the subject returned to its starting point, which allowed us
to measure an offset of 5.2 m. The run includes a number of
rapid motions and small turns as can be seen by the trajectory.

In addition to that, we measured the tracking error when
walking 10 times around the campus. Fig. 4 depicts the
corresponding plot. Along this trajectory, we physically
labeled 9 locations (1 and 10 are the same). We then evaluated
the error for each round individually. The error-bars in Fig. 5
show the standard deviation around the mean error. The red
and blue points correspond to the estimates of the Xsens
MVN suit and our approach, respectively. We also carried
out a paired sample t-test taking into account the errors at all
checkpoints, which suggests that the results are statistically
significant at a 99% confidence level.

B. Following a Person

The next experiment evaluates the capability of our
approach to track and follow a person over long distances.
We therefore used our approach to track a person that walked
a distance of more than 1 km. In this experiment, the person
wearing the Xsens MVN suit was additionally accompanied
by three other persons walking closely to the tracked person,
frequently blocking the field of view of the robot. Furthermore,
there were several other people walking independently on
our campus. During this experiment, the robot autonomously
followed the tracked person. Fig. 6 shows the trajectory of the
tracked person estimated by our approach (blue) and estimated
by the Xsens MVN suit (red). In all of our experiments, our
approach never lost the person that it followed, which suggests
that our approach operates robustly.
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Fig. 4: A person walked on a 300 m loop ten times. After every
round, we calculated the error of the pose estimate of the Xsens
MVN suit with respect to a known position, which we had marked
on the ground. In contrast to the Xsens MVN suit estimate that
drifts, the error of our tracking system is significantly lower and
stayed always below 20 cm during the entire experiment.
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Fig. 5: The error of the estimate of the Xsens MVN suit (red) and
of our tracker (blue) at predefined checkpoints along a 300 m loop
(10 runs).

C. Optimization of the Person’s Trajectory

The particle filter-based tracking approach described in
Section III is well suited for online person tracking. In
certain situations, however, the estimate of a particle filter is
non-smooth, which is suboptimal for our application. When
rendering animated characters in virtual games or movies,
we do not only require the person’s trajectory estimate to be
globally consistent but also locally accurate and smooth. In
this section, we evaluate our optimization procedure presented
in Section IV.

To analyze the local smoothness of the trajectory obtained
by our approach, we used the dataset from the previous
experiment (see Fig. 6). In this experiment, we selected
two relevant situations to analyze the smoothing. In the first
situation, there was an error in the leg detection, which
caused a local jump in the trajectory estimate of the person,
as shown in Fig. 7. In animations, these jumps are undesirable.
Fortunately, our smoothing approach is able to compensate for
that by exploiting the high local accuracy of the estimate of the
inertial motion capture suit. In other words, the determinant
of Ωut

is bigger than the one of Ωzt .
The second situation illustrates that the optimization

preserves local movements of the person, as seen in Fig. 8.
The MVN suit estimate (red) and the estimate of our
approach (blue) exhibit the same local behavior (apart from
the global displacement), which suggests that local motions
are appropriately conserved by the least squares optimization.

meters
30150

MVN suit estimate
our approach

Fig. 6: Trajectory estimated while multiple people were walking
close to the person to be tracked causing substantial occlusions. The
black rectangle at the bottom corresponds to the magnified view
shown in Fig. 8.

Fig. 7: Comparison of three trajectory estimates of a person, walking
roughly on a straight line. The image on the left shows a part of the
trajectory in the map whereas the right plots show the trajectories
given the different estimation approaches. Top: particle filter-based
tracker, Middle: Xsens MVN suit, Bottom: our approach using
smoothing. The estimates of our approach preserve the local accuracy
of the inertial motion capture suit estimate but are located correctly
in the global reference frame.

Note that our smoothing approach can be implemented very
efficiently. For instance, the dataset shown in Fig. 6, which
comprises 5343 nodes and 7158 constraints, was optimized
by our approach in around 45 ms per iteration. Given the
good initial guess of the tracker, typically 2-3 iterations are
sufficient for convergence.

D. Comparison to Other Motion Models

This final experiment illustrates that a standard motion
model, such as a constant velocity motion model or a
Brownian motion model, is not sufficient for robust person
tracking in crowded scenes. This motivates the usage of the
inertial motion capture suit (or something similar).

In this experiment, the robot aims to track one specific
person of a walking group of three people. We initialized the
tracker with the correct person and evaluated the tracking
performance of three different motion models, i.e., the inertial
motion capture suit motion model, a constant velocity motion
model, and a Brownian motion model. As can be seen in
Figure 9, the Brownian motion as well as the constant velocity
motion model fail to keep track of the person. Both filters
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Fig. 8: The smoothed estimate (blue) preserves local movements
in the trajectory (red) such as small loops (no differences in local
shape).

0 5 10 15 20 25 30 35 40

0

2

4

6

8

time [s]

er
ro

r
[m

]

Brownian noise motion model
constant velocity motion model

MVN suit motion model

Fig. 9: Performance of the tracker using alternative motion models
(Brownian motion and constant velocity) in the presence of a second
person in the scene. As can be seen, the Brownian noise motion
model and the constant velocity motion model fail to accurately
track the person. In contrast to that, the error of the inertial motion
capture suit motion model stays close to zero.

failed when other people came too close to the person to
track. Once the filter diverged to a wrong person, it has no
means to realize its error. In contrast, the motion model using
the inertial motion capture suit data is able to correctly track
the right person.

VI. CONCLUSION

In this paper, we addressed the problem of accurately and
consistently tracking the full body posture of a person in large-
scale environments over longer periods of time. Our approach
relies on the locally accurate full body posture estimates of
an inertial motion capture suit and tracks the position of the
person in the environment using an autonomously navigating
robot equipped with a laser range finder. To provide a smooth
estimate of the person’s trajectory, we formulate a joint least
squares optimization problem that computes a maximum
likelihood trajectory estimate given all measurements. We
implemented our approach and exhaustively tested it in real
world scenarios. As shown in our experiments, our algorithm
yields smooth, consistent, and globally aligned estimates of
the full body posture of the person.

Our method can be applied in areas which are too large for
tracking systems based on static cameras and in which IMU-
based systems suffer from substantial drift. It thus overcomes
the key limitations of today’s commercially available motion
capture systems.

Note that our approach is not restricted to a single robot.
Multiple robots or multiple static laser scanners can be used

with only marginal changes. In such a case, every robot
introduces nodes for its own poses (rt). Static sensors are
a special case of mobile robots. Instead of multiple nodes
representing the different robots’ locations, a single node (r)
is sufficient for each sensor. As a result, the optimization
approach automatically calibrates the sensors in the global
coordinate frame.
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