
Efficient Localisation Using Images and OpenStreetMaps

Mengjie Zhou1, Xieyuanli Chen2∗, Noe Samano1∗, Cyrill Stachniss2, and Andrew Calway1

Abstract— The ability to localise is key for robot navigation.
We describe an efficient method for vision-based localisation,
which combines sequential Monte Carlo tracking with matching
ground-level images to 2-D cartographic maps such as Open-
StreetMaps. The matching is based on a learned embedded
space representation linking images and map tiles, encoding the
common semantic information present in both and providing
potential for invariance to changing conditions. Moreover, the
compactness of 2-D maps supports scalability. This contrasts
with the majority of previous approaches based on matching
with single-shot geo-referenced images or 3-D reconstructions.
We present experiments using the StreetLearn and Oxford
RobotCar datasets and demonstrate that the method is highly
effective, giving high accuracy and fast convergence.

I. INTRODUCTION

Autonomous localisation and pose tracking are fundamen-
tal capabilities for mobile robots. Multiple approaches exist
using a variety of different sensors and there have been
significant advances over recent years. This is especially true
for vision-based techniques, which are now key to emerging
applications such as self-driving vehicles and autonomous
drones. The majority of approaches in this category match
online images with either geo-referenced ground level im-
ages, point or dense 3-D reconstructions, or satellite imagery
in the case of aerial applications.

However, maps based on images or 3-D reconstructions
have two main drawbacks. First, they are difficult to scale
up, requiring significant amounts of data storage even for
relatively small areas. Second, they represent a single snap-
shot of the environment and thus online matching becomes
problematic when dealing with changes in appearance and
3-D structure over short and long timescales and in the
presence of dynamic objects. Although these challenges can
be addressed to some extent, the inherent dynamic nature
of natural environments suggests that more invariant map
representations would be more effective.

One approach is to use semantic representations defined
by objects and ‘things’, rather than storing structure and
appearance. This can lead to more compact vector maps
and hence increase the potential for scalability. Furthermore,
semantic representations are likely to be more invariant to
viewing conditions than those based on structure or appear-
ance. One example, and the one that we adopt, is to use
2-D cartographic plan-view maps, such as OpenStreetMaps,

1 Mengjie Zhou, Noe Samano and Andrew Calway are with the Univer-
sity of Bristol, UK. [mengjie.zhou, obed.samanoabonce,
andrew.calway]@bristol.ac.uk.

2 Xieyuanli Chen and Cyrill Stachniss are with the
University of Bonn, Germany. [xieyuanli.chen,
cyrill.stachniss]@igg.uni-bonn.de.

*Indicates equal contributions.

Embedded space

FG

…

Training set

(a) (b)

Fig. 1: We use a learned embedded space representation (a) linking
map tiles to ground level 4-images extracted from panoramas, which
allows localisation using a particle filter (b).

which are ubiquitous and freely available in various forms
for most of the planet. Defined by the spatial arrangement
of semantic entities, such as roads, buildings, and rivers, etc,
they provide compact and effective representations suitable
for human wayfinding.

We are motivated by previous work on using cartographic
maps for localisation, such as [1] and [2], and in particular
the recent approaches described by Panphattarasap and Cal-
way [3] and Samano et al. [4]. These latter works linked
semantic features in 2-D maps to ground level images,
either via hard-wired features [3], or more effectively, by
learning an embedded space [4]. Crucially, when that link-
age is combined over routes, it proves highly effective for
localisation. However, in both [3] and [4], localisation was
implemented using a brute-force search approach, relying on
pre-computed descriptors along all possible but constrained
routes (excluding loops, for example) defined over discrete
locations, making it impractical for many applications.

The main contribution of this work is to address this limi-
tation by combining the embedded representation in [4] with
a sequential Monte Carlo tracking framework, to provide an
efficient method for localisation, as illustrated in Fig. 1. We
use a particle filter implementation with 2-D location and
yaw in the state and use comparisons between embedded
features from ground level images and map-tiles as the like-
lihood. The tracking framework is similar in form to that used
in [5], although that used an adaptation of the hard-wired
features in [3] estimated using LiDAR depth measurements.
Experiments on the StreetLearn [6] and Oxford RobotCar [7]
datasets, using OpenStreetMap (OSM) [8], demonstrate that
the approach is highly effective, giving fast convergence and

low error rates. Moreover, we also demonstrate successful
localisation for far more complex routes than that presented
in [4], and for urban areas significantly different from those
used to train the learned representation.

II. RELATED WORK

There has been a large amount of previous work on
autonomous localisation using a variety of different maps and
sensors. That using vision falls broadly into two categories:
indirect methods, which match online images with geo-
referenced images [9], with resolution dependent of image
density; and direct methods, typically based on dense 3-D
models, as in [10], [11], [12], for example, which provide
accurate full metric pose estimates. As noted above, these
methods are difficult to scale and lack invariance to changing
conditions, although work has been done to address the latter
using appearance and semantic techniques [13].

A category of approaches which falls somewhere between
are those developed for aerial applications, in which online
images are aligned with dense satellite imagery, see for ex-
ample [14] and more recently, [15] and [16]. These methods
can provide high resolution localisation and yaw estimates
and are related in some respects to our use of 2-D maps
in using plan view reference data. Also related is work on
learning embedded spaces to achieve ground-to-aerial cross-
view matching [17], [18], [19], which have similarities with
that used in [4]. However, being based on snapshot satellite
data, all these approaches are still difficult to scale and are
dependent on viewing conditions.

More directly related to our work are those approaches
that use 2-D maps or similar representations. Much of this
has been in the context of self-driving vehicles. For example,
visual odometry is combined with road topology in [1], [2]
to track map location, and extended by Ma et al. [20] to use
semantic cues such as road junctions. Seff and Xiao [21]
also used semantic features detected in images to correct
GPS measurements based on classifiers trained on coupled
ground-level images and map tiles and Pauls et al. [22] use
semantic segmentation on a monocular camera to localise
directly in an HD map. Semantic information from maps
such as the location of buildings has also been used in direct
methods for estimating metric pose [23], [24]. Other relevant
approaches include aerial geolocation using GIS [25] and
localisation based on floor plans [26].

Our approach is based on forming direct linkage between
ground level imagery and 2-D maps, motivated by the work
described in [3] and [4]. The former demonstrated that
localisation could be achieved using images alone when
coupled with semantic features from maps. They used mini-
mal 4-bit Binary Semantic Descriptors (BSD) indicating the
presence or not of junctions and gaps between buildings
and showed that combining such features over routes gave
reliable localisation. The same features were used by Yan
et al. [5] for localisation based on LiDAR measurements
and implemented within a sequential Monte Carlo framework
similar to that used in this work.

Linking images to 2-D maps was generalised in [4] by
learning an embedded space in which co-located images
and map tiles are close and demonstrated significantly better
performance than using BSDs, again by concatenating em-
bedded descriptors over routes. The method gave improved
generalisation, relying less on the presence of specific seman-
tic features. Vojir et al. [27] coupled similar semantic features
to BSDs with single image detection of both buildings and
depth to generate an embedded space of descriptors that
avoided the need for co-located image-map tile pairs as
required in [4]. However, the reliance on specific semantic
features means that the approach lacks the generality of the
latter and limits its application to urban environments with
sufficient building presence.

III. METHODOLOGY

Our approach aims at image-based localisation on Open-
StreetMap data in an efficient and scale-able way. The key
idea is to exploit the neural network proposed in [4], which
embeds images and map tiles into a low dimensional vector
space, to build an observation model which is then integrated
with a motion model to estimate the global geographic
location and yaw. The integration between the observation
and motion model is done using sequential Monte Carlo
Localisation (MCL) in the form of a particle filter, giving
highly efficient localisation. This resolves the limitations of
the search method used in [3], [4]. In the next section, we
provide an overview of the embedded space representation,
followed by details of the particle filter implementation.

A. Embedding Images and Maps

To link images to maps and vice versa, deep learning
is used to train a network to embed images and map tiles
(regularly spaced blocks from an RGB rendered version of
the map) into a shared low dimensional vector space where
they can be compared using Euclidean distance. We refer to
this as the embedding space (ES) and the vectors within
as ES descriptors. Locations are represented as 4-images
cropped from panoramas in the front, left, right and rear
facing directions. In the map domain, places are represented
as RGB map tiles centred in the location coordinates.

The architecture of the network has a Siamese-like form,
with two independent sub-networks, one to process location
images and one for map tiles. Each branch has a feature
extractor and a projection module. The output of each branch
is a 16-D vector normalized and scaled to live in a hyper-
sphere with a radius equals to 32. These form the ES descrip-
tors. The network was trained in an end-to-end way using
panoramas from the StreetLearn dataset [6] and map tiles
from OSM [8]. Weighted soft margin triplet loss [28] was
used in the training with the aim of projecting corresponding
image-map pairs near each other inside the embedding space.

To illustrate the performance of the network, Fig. 2 shows
examples of query images and the top-5 retrieved map tiles
from different datasets, where the correct map tile is outlined
in green. Note that the model has learned to relate semantics
of the two domains, e.g. buildings, parks and junctions.

(a)

(b)

Front Left Right Back Top 1 Top 2 Top 3 Top 4

Query Images Retrieved Maps

Top 5

Fig. 2: Top-5 retrieved examples (right) given a query 4-image (left) from (a) StreetLearn dataset and (b) Oxford RobotCar dataset. The
green frame encloses the true map location and the blue arrow in the center of the map tile represents the location and yaw.

Full details of the network structure, training procedure and
model performance can be found in [4].

B. Monte Carlo Localisation

Monte Carlo Localisation (MCL) is commonly imple-
mented using a particle filter [29]. We seek to estimate
2-D position and yaw, and thus each particle represents a
hypothesis of the robot’s 2D pose xt = (x, y, θ)t at time t,
i.e., 2-D position (x, y) and yaw θ. When the robot moves,
the pose of each particle is updated based on a motion model
with the control input ut. The expected observation from the
predicted pose of each particle in the map is then compared
to the actual observation zt acquired by the robot to update
the particle’s weight based on an observation model.

Specifically, MCL via a particle filter realizes a recur-
sive Bayesian filter estimating a probability density p(xt |
z1:t,u1:t) over the pose xt given all observations z1:t and
motion controls u1:t up to time t. This posterior is updated
as follows:

p(xt | z1:t,u1:t) = η p(zt | xt)·∫
p(xt | ut,xt−1) p(xt−1 | z1:t−1,u1:t−1) dxt−1, (1)

where η is a normalization constant, p(xt | ut,xt−1) is
the motion model, p(zt | xt) is the observation model, and
p(xt−1 | z1:t−1,u1:t−1) is the probability distribution for
the prior state xt−1.

In our case, as illustrated in Fig. 3, the expected obser-
vation is the ES descriptor for the map tile at the particle
position, with the tile oriented according to the yaw θ, and
the actual observation is the ES descriptor for the panoramic
4-images captured at the current location. The Euclidean
distance between the descriptors is then used to update the
particle weights. We adopt low variance resampling in com-
bination with adaptive resampling using the effective number
of particles to reduce the risk of particle depletion [30], [31].
To do so, we use Neff = 1/

∑N
i=1 (w

i)2 to estimate how well
the current particles set represents the true posterior, where
the wi are the particle weights. The resampling is performed
only if Neff drops below a given threshold (we used 3N/4
in the experiments).

ES

Sim

ESES

ES Sim Sim

Posterior 𝑝(𝒙!|𝒛":!, 𝒖":!)

ES Embedded space

Sim Similarity metric

Prior 𝑝(𝒙!|𝒖!, 𝒙!$")

Fig. 3: We implement MCL using a particle filter in which embed-
ded space (ES) descriptors for map tiles corresponding to expected
observations (the prior p(xt | ut,xt−1)) and panoramic 4-images
are compared using Euclidean distance (Sim) and used to update
the posterior.

In the following sections, we focus on the representation
of the map we use and on the observation model for the
filter, i.e., p(zt | xt). For the motion model, we use either
noisy versions of the ground truth or visual odometry directly
provided by the datasets (see Sec. IV).

C. Map Generation

To achieve localisation, a map representation of the envi-
ronment is needed. Inspired by the grid representation used
in [32], we quantise the OSM maps into a regular grid
of locations and generate ES descriptors for map tiles in
a set of different orientations around each location, where
the different orientations will enable us to estimate yaw
alongside 2-D position as described in Sec. III-D. This
has the advantage of reducing the computational cost of
implementing the filter, since particles are assigned to their
nearest grid location and thus the observation update needs
only be computed once for all particles associated with
the same grid location. The choice of grid and orientation
resolution therefore represents a trade-off between accuracy,
storage and computational cost.

In the experiments, we used a regular grid with locations
spaced at intervals of 1 m in each direction, map tiles
corresponding to size 76×76 m2 and orientations between
0 and 360 degree at intervals of 10 degrees. Note that we
only need to store the set of 16-D ES descriptors for each
grid location, providing a compact map representation. To
further reduce map size, we restrict the map to locations
nearby roads (within 5 m distance), on the assumption that
we are localising a robot using the road network.

D. Observation model

When the robot senses the surrounding environment, it
updates the weights of particles to gradually determine its
position and yaw. Each particle i represents a pose hypoth-
esis of the robot xi

t = (x, y, θ)it at time t. We use the
nearest map ES descriptor in position and orientation as the
expected observation of the particle and compare it to the ES
descriptor of the current query panoramic zt generated by
the embedded network (see Fig. 3). Let f i

t and gt denote the
former and latter, respectively, the weight of the i-th particle,
wi

t, is then proportional to the likelihood p (zt | xt) derived
from a Gaussian observation model, i.e.,

p
(
zt | xi

t

)
∝ wi

t = exp

(
−
d
(
f i
t, gt

)2
2σ2

)
, (2)

where d (,) denotes the Euclidean distance and σ2 controls
the sensitivity of the observation.

As previously noted, we assume that the robot is located
on a road and only store map descriptors for locations on
or nearby roads. We thus penalize particles that fall beyond
a threshold distance from the nearest map location with an
associated descriptor by assigning small weights to them.
After updating the weights of all the particles according to
the observation, we normalise them in the usual manner using
ŵi

t = wi
t/max(wt) and at the end of each iteration, the

estimation of the current robot state x̃t is calculated by the
weighted mean of all the particles, i.e.,

x̃t =
1

S

N∑
i=1

ŵi
t x

i
t (3)

where S =
∑N

i=1 ŵ
i
t and N is the number of particles.

IV. EXPERIMENTS

We carried out localisation experiments to assess the
performance of the proposed method using geo-referenced
image datasets StreetLearn [6] and the Oxford RobotCar
Dataset [7]. We used OSM data as the cartographic map
reference and rendered RGB map tiles at required scales us-
ing Mapnik [33]. Embedded space descriptors for panoramic
4-images and map tiles were generated using the ES network
trained on co-located StreetLearn-OSM pairs, as described in
Section III-A and in [4].

(a) (b) (c)

F L

R B

Fig. 4: The observation model with embedding space features (b)
and binary semantic descriptors (c), illustrated by the location prob-
ability distribution (first row) and the yaw probability distribution
(second row), given current panoramic 4-images (a), whose ground
truth pose is shown in the map.

A. BSD Comparison

We also compared localisation performance when using
the BSDs described in [3] within the observation model,
instead of the ES descriptors. The former are 4-bit descriptors
indicating the presence or not of junctions in the front and
rear directions and gaps between buildings in the left and
right directions. These were derived deterministically for
each map tile from vectorised OSM data and using CNN
classifiers trained on StreetLearn data [4] applied to the
panoramic 4-images to detect junctions and building gaps
in the different viewing directions.

Since these are binary descriptors indicating the presence
or otherwise of features in the four directions, we base
the support for particles on the Hamming distance between
descriptors and use the following observation model

p(zt|xi
t) ∝ wi

t = 1− 0.2 dH(ait, bt) (4)

where ait is the BSD corresponding to the map tile of the
ith particle and bt is the BSD derived from the panoramic
4-image. All other elements in the filter were kept the same.

To illustrate the difference between the ES descriptors and
the BSDs, Figs. 4b and 4c show observation model values
for position and yaw samples for ES descriptors and BSDs,
respectively, given the panoramic 4-image observation shown
in Fig. 4a corresponding to the location at the centre of
a crossroads. Note that for both position and yaw, the ES
descriptors give significantly greater discrimination, which
as we show next, leads to better localisation performance
when incorporated within the filter.

B. StreetLearn Dataset Evaluation

The StreetLearn dataset [6] contains 113,767 panoramic
images extracted from Google StreetView in the cities of
New York (Manhattan) and Pittsburgh, U.S. Metadata is
provided for all images, including geographic coordinates,
neighbours and yaw. The average distance between each
location in this dataset is around 10 m. Using breadth-first
search and the same central panoramic image identifiers as
used in [6], three testing subsets were generated, Union
Square (US), WallStreet (WS), and Hudson River (HR),
each with 5000 panoramic images, covering around 75.6

km, 73.1 km, and 69.3 km trajectories, respectively. The
remaining locations in Manhattan, together with all locations
from Pittsburgh, were used for training the embedded space
network and the BSD classifiers [4].

In the first experiment, we generated 50 random routes in
each of the three areas, each route consisted of 40 locations
corresponding to approximately 400 m and constrained to
contain no loops or direction reversals. For each route, we
ran the particle filter on the panoramic 4-images along the
route to get successive estimates of the location and yaw
according to (3). We used the ground truth positions and yaw
angles to simulate motion control ut between locations and
used a Gaussian motion model with mean ut and standard
deviations of 1 m in translation and 5 degrees in rotation.
To initialise the filter, a particle was allocated to each central
grid location of road in the map and its yaw set to align with
the road direction (recall from Sec. III-C that map locations
are restricted to those in the vicinity of roads). The initial
number of particles for the three regions US, WS and HR
was 75615, 73052 and 69308, respectively. To speed up the
operation of the filter, once the number of grid locations
containing particles reduces to 2% of the initial number of
particles, we reduce the number of particles to 1000.

TABLE I: Comparison of location and yaw errors and convergence
time using embedded space descriptors (ES) [4] and binary semantic
descriptors (BSD) [3] for Union Square (US), Wall Street (WS) and
Hudson River (HR) testing datasets.

Obs US WS HR

Location ES 4.35±1.69 4.36±1.28 3.65±1.14
RMSE [m] BSD 4.31±1.47 5.04±2.02 4.40±1.92

yaw ES 6.75±0.78 6.84±0.80 6.45±0.82
RMSE [deg] BSD 7.09±1.76 6.67±0.95 7.09±1.19

Convergence ES 9.83±3.51 9.49±4.24 11.31±4.15
Time [steps] BSD 23.38±9.65 19.88±7.73 22.13±9.46

(a)

(b)

(c)

Fig. 5: Number of filter steps before convergence and mean success
rates taken over 50 sequences from US(a), WS(b) and HR(c).

(a) (b) (c)

1 1

Fig. 6: Grid occupancy values as a function of filter step for (a)
steps 1-30 and (b) steps 31-40, for one of the test routes in Union
Square when using ES descriptors (red) and BSDs (blue) in the
observation model.

Table I shows RMSE results for location and yaw and av-
erage convergence time when using the ES and BSD descrip-
tors in the observation model. The location and yaw RMSE
values were only computed once the filter was deemed to
have successfully converged, which we defined to be once
the absolute location error was below 10 m (difference
between StreetLearn locations). These results demonstrate
that the use of both types of descriptors leads to successful
estimations of location and yaw, with RMSE values below 5
m and 10 degrees, respectively, and both approaches give
similar accuracy. The key difference, however, is in the
convergence time (expressed in terms of the number of steps
along a route), which are significantly lower when using the
ES descriptors. This reflects the greater discrimination and
generalisation afforded by the embedded space descriptors,
compared with the specific hard-wired features used in the
BSD. This is further confirmed in Fig. 5 which shows the
distribution of convergence time and average success rates
for both methods and in Fig. 6, which shows the number of
grid locations containing one or more particles as a function
of the filter steps for one of the routes in US area. Note
that as well as faster convergence, the proportion of cases
with successful convergence is significantly greater using ES
descriptors and that the grid occupancy is also significantly
smaller, indicating tighter clustering of the particles.

Comparison with localisation results reported in [4] is not
straightforward, given the significant difference in approach.
The localisation approach taken in [4] is essentially a brute-
force search method over all possible constrained routes
defined over discrete locations, with each route being tested
using all the ES descriptors along the route, and assuming
that the yaw of each observation is known. Using the same
StreetLearn testing subset as used here, localisation success
rates of over 90% are reported once approximately 200 m of
a route has been completed. However, the method becomes
impractical for large areas and when arbitrary routes are
allowed due to the number of routes that would need to be
stored and tested. In contrast, although area size impacts on
computational cost prior to convergence in our method, once
convergence has started we make no assumptions about route
complexity and we are not constrained to discrete locations,
providing continuous estimates of both position and yaw.
Moreover, we rely on the observations to focus the particles

Fig. 7: The trajectory of ground truth (GDT), odometry (OD), odometry with road restriction (OD-RD) and our approach (ES-OD-RD)
converge at different step (CVG) for (a) Union Square (3 km, location RMSE = 3.9494, yaw RMSE = 8.5245) (b) Wall Street (2 km,
location RMSE = 4.3949, yaw RMSE = 7.5571) and (c) Hudson River (1.5 km, reverse driving at 1 km, location RMSE = 5.0154, yaw
RMSE = 7.8919). Noted: In order to show the route more clearly, we zoomed in on these areas.

on the most likely routes and the inherent ‘memory’ of
observations within the filter, rather than a brute-force search
over all possible routes. This yields a practical solution in
contrast to that in [4]. Given this, the success rates of 82%,
77% and 70% reported in Fig. 5 represent a good outcome
and demonstrate the potential of the approach.

C. Complex Routes and Different Cities

To investigate the performance when dealing with more
complex routes, we generated 3 long routes within each of
the areas US, WS and HR, of length 3 km, 2 km and 1.5
km, respectively. The WS route contained several loops and
the HR route contained multiple random direction reversals.
Localisation results in terms of position estimates are shown
Fig. 7, with position and yaw RMSE values given in the
caption. The ground truth is shown in black and the estimates
are in red. Note that in all cases convergence is fast (the step
at which successful convergence occurs is shown on each
plot) and the estimates follow the ground truth accurately.

To illustrate the significance of using the ES descriptors,
we also show the trajectories obtained when only using the
noisy odometry derived from the simulated motion control,
starting from the ground truth initial position, i.e. using only
the prior without incorporating observations. We show the
odometry trajectory with (cyan) and without (blue) restric-
tions to road locations. The deviation from the ground truth
in both cases illustrates that the observations via the ES
descriptors play a dominant role in maintaining accurate
localisation. For a more detailed analysis of location and
yaw accuracy, Fig. 8 shows the variation of absolute latitude,
longitude and yaw error over the US test route following
successful convergence at step 8.

Finally, we also tested the method on routes taken from
the Oxford RobotCar dataset [7] to demonstrate the general-
isation capability of the ES descriptors, which were trained
on data from US cities in the StreetLearn dataset. The dataset
provides sequences of images taken from 4 cameras mounted
on a car pointing in the forward, rear, left and right directions,
along with ground truth values for position and yaw. We used
the 4 images to derive the ES descriptors at regular intervals
over each route and visual odometry estimates also provided

Fig. 8: The latitude, longitude and yaw error after convergence on
sequences from Union Square (top) and Oxford (bottom) using our
approach.

with the dataset as the motion control. Localisation results
for the two sequences, which were of length 1 km and 1.4
km, are shown in Fig. 9, along with the ground truth and
trajectories obtained using only the visual odometry, with and
without constraining routes to roads. Our method provides
good estimates of both position and yaw compared to the
ground truth, as confirmed by the error plots in Fig. 8 for
one of the sequences. Although at the beginning, where the
location error decrease to 10 m, the yaw error is still slightly
high. After several more steps, the error falls quickly below
20 degrees. These results are especially encouraging since
the appearance of the Oxford locale is significantly different
from that of data from New York and Pittsburgh in the
StreetLearn dataset, which was used to train the embedded
space, as can be seen from the example images in Fig 2.

V. CONCLUSIONS

We have presented a novel approach to vision based
localisation in urban environments. The method combines
a trained embedded space (ES) representation linking map
tiles to ground level images from [4] with an efficient particle
filter tracking framework. In addition to estimating 2-D

Fig. 9: The trajectory of ground truth (GDT), odometry (OD),
odometry with road restriction (OD-RD) and our approach (ES-
OD-RD) converge at different step (CVG) for (a) Oxford-Area1 (1
km, location RMSE = 4.69, yaw RMSE = 9.71) (b) Oxford-Area2
(1.4 km, after 22 step: location RMSE = 8.85, yaw RMSE = 18.99;
after 100 step: location RMSE = 5.60, yaw RMSE = 2.96).

position, the filter also provides estimates of yaw angle. The
method provides an efficient implementation with potential to
scale, in contrast to the brute-force search over discrete routes
adopted in [4]. We compared performance between using
ES descriptors and BSDs [3] in the observation model and
demonstrated that the former provides superior convergence.
We also showed that the method generalises well to environ-
ments with characteristics significantly different from those
used to train the ES descriptors. Future work will focus on
exploring in more in-depth the scalability of the method and
its performance in comparison with previous appearance and
3-D structure approaches, as well as extending its generality,
especially to non-urban areas.

REFERENCES

[1] M. A. Brubaker, A. Geiger, and R. Urtasun, “Map-based Probabilistic
Visual Self-Localization,” IEEE Trans. on Pattern Analalysis and
Machine Intelligence (TPAMI), vol. 38, no. 4, pp. 652 – 665, 2016.

[2] G. Floros, B. van der Zander, and B. Leibe, “Openstreetslam: Global
vehicle localization using openstreetmaps.” in Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2013.

[3] P. Pilailuck and A. Calway, “Automated map reading: Image based
localisation in 2-d maps using binary semantic descriptors,” in Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS),
2018.

[4] N. Samano, M. Zhou, and A. Calway, “You are here: Geolocation
by embedding maps and images,” in Proc. of the Europ. Conf. on
Computer Vision (ECCV), 2020.

[5] F. Yan, O. Vysotska, and C. Stachniss, “Global Localization on
OpenStreetMap Using 4-bit Semantic Descriptors,” in Proc. of the
Europ. Conf. on Mobile Robotics (ECMR), 2019.

[6] P. Mirowski, A. Banki-Horvath, K. Anderson, D. Teplyashin,
K. Moritz, Hermann, M. Malinowski, M. Koichi, Grimes, K. Simonya,
K. Kavukcuoglu, A. Zisserman, and R. Hadsell, “The streetlearn
environment and dataset,” arXiv:1903.01292, 2019.

[7] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:
The Oxford RobotCar Dataset,” The International Journal of Robotics
Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017.

[8] Open Street Map. [Online]. Available: https://www.openstreetmap.org
[9] S. Lowry, N. Sunderhauf, P. Newman, J. Leonard, D. Cox, P. Corke,

and M. Milford, “Visual place recognition: A survey,” IEEE Trans. on
Robotics (TRO), vol. 32, pp. 1–19, 2016.

[10] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized
matching for large-scale image-based localization,” IEEE Trans. on
Pattern Analalysis and Machine Intelligence (TPAMI), vol. 39, no. 9,
pp. 1744–1756, 2016.

[11] L. Svärm, O. Enqvist, F. Kahl, and M. Oskarsson, “City-scale local-
ization for cameras with known vertical direction,” IEEE Trans. on
Pattern Analalysis and Machine Intelligence (TPAMI), vol. 39, no. 7,
pp. 1455–1461, 2016.

[12] X. Chen, I. Vizzo, T. Läbe, J. Behley, and C. Stachniss, “Range Image-
based LiDAR Localization for Autonomous Vehicles,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2021.

[13] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Hammarstrand, E. Sten-
borg, D. Safari, M. Okutomi, M. Pollefeys, J. Sivic, F. Kahl, and
T. Pajdla, “Benchmarking 6dof outdoor visual localization in changing
conditions,” in Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

[14] D. Sim, R. Park, R. Kim, S. Lee, and I. Kim, “Integrated position
estimation using aerial image sequences,” IEEE Trans. on Pattern
Analalysis and Machine Intelligence (TPAMI), vol. 24, no. 1, pp. 1–18,
2002.

[15] A. Shetty and G. X. Gao, “Uav pose estimation using cross-view ge-
olocalization with satellite imagery,” in Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2019, pp. 1827–1833.

[16] B. Patel, T. D. Barfoot, and A. P. Schoellig, “Visual localization with
google earth images for robust global pose estimation of uavs,” in
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), 2020,
pp. 6491–6497.

[17] S. Hu and G. Lee, “Image-based geo-localization using satellite
imagery,” Intl. Journal of Computer Vision (IJCV), vol. 128, 06 2019.

[18] T. Lin, Y. Cui, S. Belongie, and J. Hays, “Learning deep representa-
tions for ground-to-aerial geolocalization,” in Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

[19] S. Workman, R. Souvenir, and N. Jacobs, “Wide-area image geolo-
calization with aerial reference imagery,” in Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), 2015.

[20] W. Ma, S. Wang, M. Brubaker, S. Fidler, and R. Urtasun, “Find your
way by observing the sun and other semantic cues,” in Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA), 2017.

[21] A. Seff and J. Xiao, “Learning from Maps: Visual Common Sense for
Autonomous Driving,” arXiv:1611.08583, 2016.

[22] J. Pauls, K. Petek, F. Poggenhans, and C. Stiller, “Monocular local-
ization in hd maps by combining semantic segmentation and distance
transform,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2020.

[23] T. Cham, A. Ciptadi, W. Tan, M. Pham, and L. Chia, “Estimating
camera pose from a single urban ground-view omnidirectional image
and a 2d building outline map,” in Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2010.

[24] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit,
“Instant outdoor localization and slam initialization from 2.5d maps,”
IEEE Trans. on Visualisation and Computer Graphics, vol. 21, no. 11,
pp. 1309 – 1318, 2015.

[25] F. Lindsten, J. Callmer, H. Ohlsson, D. Törnqvist, T. B. Schön, and
F. Gustafsson, “Geo-referencing for uav navigation using environmen-
tal classification,” in Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2010, pp. 1420–1425.

[26] R. Maffei, D. Pittol, M. Mantelli, E. Prestes, and M. Kolberg, “Global
localization over 2d floor plans with free-space density based on depth
information,” 2020.

[27] T. Vojir, I. Budvytis, and R. Cipolla, “Efficient large-scale semantic
visual localization in 2d maps,” in Proc. of the Asian Conf. on
Computer Vision (ACCV), 2020.

[28] S.H., M. Feng, R. Nguyen, and G. Lee, “Cvm-net: Cross-view
matching network for image-based ground-to-aerial geo-localization.”

[29] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localiza-
tion for mobile robots,” in IEEE International Conference on Robotics
and Automation (ICRA), May 1999.

[30] C. Stachniss, G. Grisetti, N. Roy, and W. Burgard, “Analyzing gaussian
proposal distributions for mapping with rao-blackwellized particle
filters,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2007.

[31] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Trans. on
Robotics (TRO), vol. 23, no. 1, p. 34, 2007.

[32] X. Chen, T. Läbe, L. Nardi, J. Behley, and C. Stachniss, “Learning
an Overlap-based Observation Model for 3D LiDAR Localization,” in
Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2020.

[33] Mapnik. [Online]. Available: https://mapnik.org

