Global Localization on OpenStreetMap
Using 4-bit Semantic Descriptors

Fan Yan

Abstract— Localization is an essential capability of mobile
vehicles such as robots or autonomous cars. Localization
systems that do not rely on GNSS typically require a map of the
environment to compare the local sensor readings to the map. In
most cases, building such a model requires an explicit mapping
phase for recording sensor data in the environment. In this
paper, we investigate the problem of localizing a mobile vehicle
equipped with a 3D LiDAR scanner, driving on urban roads
without mapping the environment beforehand. We propose an
approach that builds upon publicly available map information
from OpenStreetMap and turns them into a compact map
representation that can be used for Monte Carlo localization.
This map requires to store only a tiny 4-bit descriptor per
location and is still able to globally localize and track a vehicle.
We implemented our approach and thoroughly tested it on
real-world data using the KITTI datasets. The experiments
presented in this paper suggest that we can estimate the vehicle
pose effectively only using OpenStreetMap data.

I. INTRODUCTION

Long-term operation is an important requirement for mo-
bile robots to be considered as truly autonomous. One of the
prerequisites for reliable navigation is the ability to correctly
localize the robot. Typical robot operation routines consist of
building a map of the environment with the robot’s sensors
and then localizing with respect to that map. Collecting
this map data, however, can be tedious work, especially
for outdoor robot localization, since the mapping procedure
needs to cover a vast area to support continuous localiza-
tion. Moreover, it is also a time- and resource-consuming
operation.

Recently, different researchers proposed approaches that
use the publicly available maps, like Google Maps or Open-
StreetMap (OSM), to perform the robot localization [1],
[5], [19]. The main advantage of these maps is that they
already exist for a large portion of the world and are already
available, partially free of charge. The disadvantage is that
they were made to be human-readable and are not directly
suitable in the robotics context.

Several approaches propose ways to incorporate the infor-
mation from publicly available maps into a robot’s simultane-
ous localization and mapping pipelines. For example, Floros
et al. [5] extract the road network as a graph of line segments
and use it as an additional cue in the observation model of the
Monte Carlo localization framework. Afterwards, the robot

All authors are with the University of Bonn, Germany.
This work has partly been supported by the German Research Foundation
under Germany’s Excellence Strategy, EXC-2070 - 390732324 (PhenoRob).

978-1-7281-3605-9/19/$31.00 ©2019 IEEE

Olga Vysotska

Cyrill Stachniss

Fig. 1: Compact feature descriptor used for localization on OSM
data without requiring an explicit mapping phase using the robot’s
sensors. Given robot pose (circle center) and sensor visibility range
(circle radius), the extracted descriptor shows if the intersection is
detected in front (F) and back (B) area, yes (red) / no (white), and
if the building gap was detected in right (R) or left (L) section, yes
(green) / no (white).

pose estimates are tracked by a Kalman Filter for consis-
tency of the visual odometry estimates. Vysotska et al. [18]
propose to use buildings information from OpenStreetMap to
correct the drift accumulated within 2D graph-based SLAM
in outdoor environments.

In this paper, we propose a novel global localization algo-
rithm that uses building and road information extracted from
OSM data to estimate the robot’s pose. In our map represen-
tation, the estimated robot’s pose can be directly converted to
the GPS coordinates given the georeferenced OSM data and
thus result in global positioning. The main novelty of our
paper lies in deploying a 4-bit semantic descriptor originally
proposed by Panphattarasap et al. [13] within the particle
filter framework and not requiring a mapping phase, instead,
using OSM data. This compact 4-bit descriptor indicates if
a street intersection can be detected in the front or behind
the robot as well as if there are any gaps in between the
buildings to the right or to the left from it, see Fig. 1
for an illustration. We furthermore propose an algorithm to
detect street intersections and building gaps from LiDAR
range images. Different from the work of Panphattarasap
et al. [13], who train a specific neural network that detects
intersections and gaps from image data, we rely on semantic
labels obtained from existing networks trained for semantic
segmentation [12] as well as cost-efficient geometric checks.

In sum, we make the following key claims: Our approach

is able to (i) perform global localization using publicly
available data, (ii)) while being computationally efficient,
since the building gap and intersection detection need to
be done once per scan and all further comparison involves
only 4-bit descriptors, (iii) and requires a small amount of
memory to store the environment model. These three claims
are backed up by the paper and our experimental evaluation.

II. RELATED WORK

Localizing a robot in the environment is one of the fun-
damental problems for autonomous navigation and has been
extensively studied in the past [4], [3], [9], [8]. Most of these
approaches, however, require a precomputed map built by a
robot. Only recently, we see the emergence of approaches
that use publicly available information to facilitate the robot
localization. For example, Floros et al. [5] propose to use
the information from street graphs in OpenStreetMap in the
form of edge maps to perform robust localization. Their
main idea is to accumulate the robot’s measurements from
a continuous acquisition until a robot’s trajectory forms a
particular 2D pattern and align this pattern to the edge
map using Champfer matching. In our approach, we form
a descriptor from a single measurement and thus are able
to perform global localization from the first measurement.
Suger et al. [17] deploy the road and trail information
from the OpenStreetMap to localize a robot in outer-urban
environments. They use semantic terrain information to align
the robot’s pose to the tracks extracted from OpenStreetMap
using the particle filter framework.

The work that gave inspiration to our approach is the work
of Panphattarasap et al. [13], in which the authors propose a
simplistic binary semantic descriptor that can be efficiently
used in the urban areas with OpenStreetMap for global local-
ization. The authors extract the descriptors from the visual
input by training the neural network to recognize intersection
and gaps between the buildings whereas in our approach we
deal with 3D LiDAR data from KITTI datasets [6]. In our
approach, we deploy an existing, publicly available network
for semantic point cloud segmentation by Milioto et al. [12]
to eliminate the need to train a specific network and perform
simplistic geometric checks to determine road intersections
and building gaps. Further approaches for semantic seg-
mentation are also evaluated by Behley et al. [2]. Another
approach that also uses 3D laser scanners is proposed by
Ruchti et al. [14]. Here, the authors detect the road surface in
the 3D scans and align their observations to the road network
of OpenStreetMap using the particle filter approach. Further
applications of OpenStreetMap data include correcting the
drift of the 2D graph-based slam approaches as in [18] as
well as using further features as poles from OpenStreetMap
to perform robust localization in urban environments [15].
Another advantage of using the 4-bit semantic descriptor is
its small size, which results in efficient memory usage, the
problem also addressed by Milford et al. [11]. Another group
of researcher use imagery from publicly available sources to
perform robust localization [1], [10].

III. OUR APPROACH

The main focus of our approach lies in performing
global localization on OpenStreetMap using the particle filter
framework in combination with a compact 4-bit semantic
descriptor. In the remainder of this section, we first briefly
discuss general Monte Carlo localization before explaining
the detail of our approach. We describe how to obtain 4-
bit semantic descriptors from the OSM as well as from
the LiDAR range images and how this information can be
incorporated into an MCL sensor model.

A. Monte Carlo Localization

To estimate the pose x; of the vehicle at time ¢, we rely
on Monte Carlo localization or MCL, originally proposed by
Dellaert ef al. [4]. The key idea of MCL is to represent the
belief about the robot’s pose by a set of weighted particles,
which enables arbitrary distributions rather than restricting
the belief to be a Gaussian distribution, as assumption a
Kalman filter does. MCL recursively estimates the posterior
about the robot’s pose:

bel(z,) = np(z | 1) / (@ | Tt ue)bel (@1)dwir, (1)

with 1 being the normalizer from Bayes’ rule. The term
u1.¢ denotes the sequence of motion commands and z7.; is
the sequence of observations. The term p(x; | x¢—1,us) is
the motion model describing the uncertainty of the motion
execution. The observation model p(z; | x;) refers to the
likelihood of obtaining the observation z; given the robot’s
current pose x;. This work differs in comparison to most
MCL realizations as we reduce the observations to 4-bit
descriptor vectors and are still able to localize in an Open-
StreetMap network.

For resampling, we use low variance resampling (also
called stochastic universal resampling) in combination with
adaptive resampling using the effective number of particles,
see [7], [16], to reduce the risk of particle depletion. To do
that, we compute

1
Nefr = v 2)
>icy (w®)
where N is the number of particles and w(?) the weight of
sample 7. N.g estimates how well the current particle set
represents the true posterior and, thus, we resample only if
N.g drops below a given threshold (here 3N /4).

As an initial distribution, we sample particles uniformly on
the streets with uniformly distributed orientation. If further
prior knowledge about the robot’s pose is available, this can
be considered in the initial belief.

B. Computing an Expected Observation Given the Map

One of the key steps to realizing the particle filter is to
define the suitable expected observation. We estimate the
expected observation from an OpenStreetMap representation
given a pose and orientation of the robot. A particular part
of the world can be exported from the OpenStreetMap web
interface as a simple XML file where every road is stored as

PSR
L

i g
s

Fig. 2: Upper row: robot pose overlaid onto the map, arrow indicates
the heading. Bottom row: corresponding descriptor: Robot (a)
approaches the intersection, (b) at the intersection, (c) leaving the
intersection. The red sector of the descriptor corresponds to the
detected intersection.

(a) (b)

a way element and a building is stored as a closed polygon.
By parsing the XML file, we render roads and buildings onto
an orthophoto-style 2D image. In this way, every pixel in the
map directly corresponds to a global world coordinate, e.g.,
a GPS coordinate, and thus localizing a robot on such an
image results in obtaining the geo-referenced position of the
robot.

Our semantic binary descriptor encodes information about
the visibility of road intersections and building gaps. Thus,
we need to construct a corresponding expected observation
given a possible position and orientation of the robot (a
particle) and the sensor range. As a preprocessing step,
we estimate the road intersections by checking for every
GPS street coordinate if in its vicinity there exists a GPS
coordinate from another street. The resulting intersections
are marked as red circles in Fig. 2.

1) Road Intersections: Given a robot location and the
visibility range of the sensor, we check for every pixel in
front (F) and back (B) sector if it belongs to the intersection
in the map. Whenever the number of pixels in the corre-
sponding sector reaches a threshold 6;;.,.s, we consider the
intersection to be seen and set the corresponding bit of the
descriptor to 1, illustrated with red color in the sectors F
and/or B in Fig. 2 (bottom), cases (a) and (c). When the
robot is located within the intersection both, front and back
sectors, are getting activated, thus both bits get the value 1
as in case (b) in Fig. 2. In our experiments, we set the radius
of the visibility circle on the map to be 25m.

2) Building Gaps: A building in the real world is rep-
resented by a polygon in the OpenStreetMap map as well
as in our map image, see Fig. 3 blue polygons. When
parsing the XML file, we assign an individual index to each
separate building stored in OpenStreetMap. This allows us
to efficiently detect building gaps within the side sector of
the descriptor, since we only need to check whether there
exist two different building IDs in the corresponding sector
of the visibility circle, as is the case for Fig. 3 (a) and
(b). Sometimes due to the properties of the cities, several
buildings can be connected together, but are represented
as individual elements in OpenStreetMap as in Fig. 3 (c).

(b) (e (d)

Fig. 3: Building gap information generated from the map: (a) R
sector gap is occluded (a) L sector gap is visible. The images (c)
and (d) illustrated the absence of observable building gaps.

M sidewalk

M road
M vegetation

fence car
M traffic-sign [l unlabeled

parking building

terrain |l trunk pole

Fig. 4: Semantic range image. Roads are visualized in purple and
buildings in yellow.

This leads to the fact that the descriptor for the expected
observation would show a building gap, although there is no
visible gap observable in the real world. To robustly deal with
such a situation, we assign the same ID to both buildings,
whenever they share common polygon points given the
OpenStreetMap data. As a result of this, the corresponding
side sectors stay inactive, as depicted in Fig. 3 (d).

We furthermore distinguish if a building within the visibil-
ity circle is occluded by another building by performing ray
casting between the robot’s location and the building pixel.
Whenever the ray crosses another building a corresponding
part is considered unobservable and the corresponding bit
stays inactive, as in Fig. 3 (a) right sector.

C. Descriptor from a Labeled Range Image

In addition to computing the descriptor for the expected
observation, we also need to define how to obtain the
descriptor from the sensor readings. The combination of
expected and real observation is then used to define the
observation model for MCL.

In this work, we rely on a 3D LiDAR as the robot’s sensor
that provides a 360-degree scan of the surroundings. Each
scan is reduced to a 4-bit description, which is then in turn
used for localization. Since our descriptor requires a basic
notation of semantics (buildings and street intersections), we
first deploy the approach of Milioto et al. [12] for semantic
point cloud segmentation to obtain a semantic mask for a
range image, an example is given in Fig. 4. For our purposes,
we are only interested in roads, marked in purple, and
buildings, marked in yellow. We use this approach as a black
box, for further detail, see the work by Milioto et al. [12],
and process the labeled range image to extract building gaps
and street intersections as outlined below.

1) Road Intersections: For detecting intersections, we
start with analyzing a labeled range image that contains road
pixels only, as depicted in Fig. 5. Analogously, to the sectors
of the descriptor, we divide a range image into four parts,

(@)

<

(b)

(©)

&X@@,

Fig. 5: Four possible patterns of intersection bits: (a) Robot is on a
straight road; (b) approaching an intersection; (c) at the intersection;
(d) leaving the intersection. Point clouds in the left column show the
ground truth. Road range images in the right column are divided
into F, R, B and L sections, where F and B sections are further
divided into three sub-parts in order to detect the possible branch.

i.e. sets of range image columns, representing the front view
(F), right side (R), back part (B) and left part (L) of the
robot respectively. Then, we consider four different robot’s
location types with respect to a road network.

First, the robot is located on the street with no intersec-
tions, see Fig. 5 (a). The corresponding road pattern in the
range image only shows road pixels in the top area (first 25
of 64 rows of the range image) of the front and back view.
Since no intersection is detected in F or B area, these sectors
of the descriptor stay inactive.

Second, the intersection appears ahead of the robot, see
Fig. 5 (b). Then multiple roads form a different pattern
scattered further away from the front part (F) in comparison
to the first case. To detect multiple roads in the front part,
we further subdivide it into three sub-parts: front-left, front-
middle, and front-right. Whenever the number of road pixels
in the top area of at least two subparts becomes larger than
a threshold 6,,,4, We consider an intersection to exist and
set the front bit of a descriptor to 1. In our experiments, the
threshold 6,,,4 was set to 100 pixels.

Third, the robot is at the intersection as in Fig. 5 (c). In
this case, we check whether there exist road pixels in the
top of either right (R) or left (L) part. Whenever the 0,,,4 is
reached and there also exist road pixels in the bottom area,
we set both front and back descriptor bits to 1.

Forth, in case the robot is leaving an intersection as in
Fig. 5 (d), multiple roads can be seen in the back part of the
range image. Analogously to the second situation, we check
if there is more than one road in the back and in this case
set the back descriptor bit to one. To perform these checks,
we only need to iterate once over the range image, which
results in an efficient street intersection detection approach.

A potential weak point of this counting scheme, however,
can be wrong intersection detections whenever we encounter

Fig. 6: Two examples of building gap detections. From top to
bottom: Semantic range image, corresponding buildings mask, a
row measurement composed by storing the minimum depth value
along the respective column.

a strongly curved street within one scan. If a street has a
high curvature, a number of pixels may land not only in the
front-middle part but also the front-left or front-right part,
causing an intersection detection in the front to be triggered,
although in reality there is none. This situation, however,
happens rarely and is successfully covered by the considered
noise model in the observation model of the particle filter.
2) Building Gaps: To detect the gaps between the build-
ings from a 3D laser scan, we analyze the semantic range
image in a similar manner as for the intersection detection,
but in this case, we only look at the pixels that are labeled
as buildings, see yellow pixels in Fig. 6. As before, we
consider the range image to be divided into four parts (F,
B, L, R). Since the descriptor only considers gaps to the
sides of the robot, we further analyze only the left (L) and
right (R) parts. As can be seen from the figure, parts of
buildings are often hidden behind the obstacles, like tree
trunks, vegetation, or cars. To robustly deal with these types
of occlusions, we project 2D building range image to 1D
“row-like” representation, by iterating over every column
of the L and R area of the range image. Whenever pixels
of a column are labeled as building, the corresponding row
entry is labeled as building, all other entries correspond to
the potential gaps. Simultaneously, we associate with every
row pixel the minimum depth of the building seen in the
corresponding column. An example of a 1D representation
extracted from a labeled range image is depicted in Fig. 6.
To detect the building gaps, we iterate over each pixel of
the row representation and count the number of consecutive
buildings and gaps pixels. This results in obtaining potential
hypothesis for the gaps. If the gap size is less than a threshold
Ogap, the gap is considered to be a sensor noise and is
neglected, as in Fig. 6 (top) left sector. In general, we
consider a potential gap to be a building gap if there exists
a consistent gap, i.e., gap larger than 0,4,,, between two
building components in the row measurement, as is the case
in Fig. 6 (bottom) left sector. The presence of the obstacle
in front of a building also generates a potential gap in row
measurement. To deal with this situation, we can further
inspect the semantic label of a gap. If it has a consistent label

of an obstacle, e.g., tree trunk, we further neglect this gap,
as depicted in Fig. 6 (top) right sector. We simultaneously
track the depth consistency of the pixels in a building com-
ponent. The depth is consistent whenever the depth change
between the adjacent pixels is less than a threshold gepen.
Whenever a building stands behind another building from a
scanner perspective, the gap between the buildings cannot
be detected solely based on semantic information. However,
this situation shows a rapid depth change and violates the
depth consistency assumption. In this case, we also consider
the gap to exist, see Fig. 6 (bottom) right sector.

D. Observation Model for MCL

In previous sections, we described how to compute the
4-bit descriptors from OpenStreetMap as well as from an
individual LiDAR scan. In this section, we describe how to
obtain particle weights given a pair of descriptors, e.g., real
and expected. The observation model is central in MCL as it
computes particles weight given a particular pose. Overall, it
is used to estimate which particle is more likely to represent
the true position of the robot. To compute this likelihood, we
compare the descriptor obtained from sensor readings with
the expected descriptor from the map by estimating their
Hamming distance dj,q,-

Since our compact descriptor contains only 4 bits, there are
five possibilities of descriptor distances, from zero to four,
where zero results from perfectly similar descriptor and four
corresponds to complete opposite descriptor. The weight of
every particle w,, then can be computed as:

wp =1—0.2dpam. 3)

The particle with the largest distance gets the weight 0.2. In
this way, we ensure that particles with higher Hamming dis-
tance are penalized more but are not eliminated completely.

IV. EXPERIMENTAL EVALUATION

Our evaluation is designed to illustrate the properties of
our proposed approach for localization on OpenStreetMap
data. We support our claims by providing experiments in
simulations as well as using real world data. To evaluate the
accuracy of the particle filter, we compute mean localization
error as a distance from the mean particle to the ground
truth estimate for each individual step of the filter. For the
real world experiments, we used the LIDAR measurements
and ground truth poses from the KITTI dataset.

A. Simulated Data

The first experiment is designed to show the performance
of our global localization system in a controlled, simulated
environment. We computed a map of the city of Bonn,
Germany, from the OpenStreetMap and generate a potential
robot trajectory within this map as shown in Fig. 7a. The size
of the map corresponds to around 500 m by 700 m and the
trajectory is 767 m long. By using the simulated trajectory,
we obtain noise-free measurements as well as ground truth
poses. This allows us to confirm that the compact binary
descriptor is powerful enough to perform global localization,

Ground truth
Estimated path

(a) Global localization paths

300 T T
10

E 200 6 1

po 2

g

«

100 | 300 320 340 360 8

0 I L
0 100 200

&UU 400 500 600 700 800

step

(b) Localization error

Fig. 7: Localization paths and errors using noise-free measurements
for illustration purposes. Localization is achieved with an accuracy
of 12m after around 300 steps. The red trajectory illustrates the
weighted mean of the particles. During the first 250 steps, the filter
was not converged yet and thus the weighted particle poses are a
suboptimal estimate trajectory and do not overlay with the roads.
After convergence, however, the pose can be tracked well.

as can be seen from Fig. 7b. For the simulations, we
added Gaussian noise with mean zero and standard deviation
0.01 deg for rotation and 0.2 m for translation to the motion
model. Real world data will impose perceptual aliasing for
such simplistic descriptors since there are a lot of places in
the 2D map that generate the same descriptors and it is hard
within one observation to disambiguate the poses—even if
the measurements would be noise-free, which they never are
in reality. Nevertheless, as can be seen in Fig. 7b, by using
the semantic descriptor within the particle filter framework,
the robot is successfully localized within approx. 300 steps
with a mean localization error reduced to 12 m.

The second experiment is designed to show that the
proposed system provides robust global localization under
added random as well as systematic noise. Here, we use the
same trajectory with noise-free measurements and the same
motion noise from the previous experiment. We randomly
flip 10, 20, 25, 30, 40 and 50 percent of all the bits in the
measurement descriptors. As Fig. 8 suggests, we are able
to globally localize the robot with an accuracy of 30 m for
noise levels up to 30%.

To model more realistic noise scenarios, we furthermore
added systematic noise to the measurements. This situation
typically occurs in the real world whenever the detection
algorithm fails for several continuous frames to detect an
intersection or a building gap. Such a systematic noise can
be simulated by flipping the totally perfect 4-bit descriptors
for several continuous steps. Note that the influence of

noise percentage
0%

L L llh\\]
il P :

300 F TVl "8 1 i
s Ry i

200 4 ‘\ 50%

100 - \\‘A
30 ! ! il £)
0 100 200 300 400 500 600 700 800

step

error [m]

Fig. 8: Localization error using measurements with random noise.

nolse length [steps]
o

10

—_20

30
Y.

50

error [m]

400 500 600 700 800
step

Fig. 9: Localization error using measurements with systematic
noise. Systematic noise is added from the first step.

the systematic noise depends not only on its length but
also where the noise is added. Since at the initial steps
there are fewer particles nearby the true pose, this makes
the localization more prone to fail. So we chose to add
a systematic noise with the length of 10, 20, 30, 40 and
50 meters starting from the first step. As Fig. 9 shows, a
systematic noise with length up to 30m at the first step
shows a similar, solid localization performance. From our
experience adding similar noise after the filter convergence
has little influence on localization result.

B. Real-World Data from KITTI

This experiment is designed to show the similarity of the
descriptors extracted from the map and from the real world
scans. For that, we use the KITTI dataset, sequence 00,
which contains 4541 Velodyne LiDAR observations. Every
observation leads to a descriptor with 4 bits. We compare all
bits from real observations against bits extracted from the
map and estimate the percentage of different bits. As Tab. I
shows, by applying our descriptor extraction scheme from
Sec. III-C, the bits difference for the intersection detection
is 16.8% and 28.9% for detecting building gaps. The total
difference in bits is 22.8%, which is according to previous
experiments in a tolerable noise level for our particle filter
to deal with. Among the different bits, we also distinguish
between the false negative observations and the false positive
ones. As we can see, there are more undetected building
gaps (22.6%) than the wrongly identified ones (6.3%). This
might be because some occluded building pixels on the map
are detected as observable from the perspective of the laser
scanner, and thus, there are more building gaps detected from
the map than from the range images.

The next experiment is designed to show the localization
accuracy on real world data. Fig. 10 depicts the map of the
KITTI sequence 00 generated from OpenStreetMap with 1
meter per pixel resolution with the ground truth path and our

TABLE I: Total bit difference between descriptors detected from

real data (KITTI 00) and extracted from the map.

Type Different bits | False negatives | False positives
Intersection 16.8% 9.3 % 7.5%
Gap 28.9% 22.6% 6.3%
Total 22.8% 15.9% 6.9%
’ AR S
o G 4 7
NE o /
Gondd]
SR Y
{{,7 bn.- ‘ #
i~y

Fig. 10: Global localization paths. Green: sequences starting frames.
Yellow: Area in which the OSM data is inconsistent. Red: weighted
mean of the particles. During filter initialization, the weighted
particle poses are a suboptimal estimate trajectory and do not
overlay with the roads. After convergence, however, the pose can
be tracked well.

15
E 200 10 8
2 s -
ko)

100 500 550 600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
step

Fig. 11: Localization for KITTI sequence 00 is achieved within
20m accuracy after approximately 500 steps. Yellow corresponds
to the divergence points as in Fig. 10.

estimated path. As the corresponding error curve in Fig. 11
shows, our approach converges at around 500 steps with the
localization accuracy of 20 m. The localization accuracy of
our system degrades around timestamp 3200 — 3500 since
the sidewalk segments are marked as roads. This leads to
inconsistencies between the expected and real descriptors.
Nevertheless, our system is able to recover in subsequent
time stamps.

To provide a more quantitative evaluation, we subdivide
this sequence into 10 parts with the starting points from
the 200%" time step with the length of 2000 steps and then
creating new sequences with a start increment of 200 steps,
which are marked as the green asterisks in the Fig. 10. When
starting from different points our localization system is able
to localize the robot with 50 m accuracy within 500 frames,
with 20 m within 600 frames and with 10m within 1000
frames on average as shown in Fig. 12.

We have further conducted experiments on more KITTI

200 L ! ! ! ! ! ! ! L
5 10 15 20 25 30 35 40 45 50 55

accuracy [m]

Fig. 12: Global localization accuracy versus the required number
of steps. 95% confidence intervals are indicated by the bars.

400

w
S
=

error [m]
o
5
5

= : ,
0 500 1000 1500 2000 2500 3000
step

Fig. 13: Localization results of several KITTI sequences.

sequences that run in residential areas (05, 06, 07, 09, 10).
The results are displayed in Fig. 13. Localization is achieved
after around 500 to 800 steps within an accuracy of 50 m for
most sequences. Howeyver, the reduction of measurement into
such a simple feature comes at a price of lower accuracy
and longer convergence time when compared to the result
of [14], where the authors take advantage of full laser scans
and successfully localize a robot with an accuracy of 10
meters after around 250 steps.

C. Computational Efficiency

In the last experiment, we show that by deploying the
compact binary descriptor, we need only a small amount of
memory for storage. We can furthermore precompute all pos-
sible expected observations for a given map for all possible
robot locations with 5 degrees angular resolution. This results
in 5.02 MB of space for an area of approx. 650 x 600 m in
Karlsruhe and 2.64 MB for an area of approx. 500 x 700 m
in Bonn, both with a map resolution of 1 m per pixel. Due
to the small size of the descriptors, the particle filter update
can be performed efficiently. The descriptor from the real
observation should only be computed once per measurement
which takes around 232ms on an intel core i7 notebook.
Afterwards, updating the weight of each particle involves
only comparing two descriptors from real and expected
observations, which is done highly efficiently by computing
the Hamming distance between the two 4-bit vectors.

V. CONCLUSION

In this paper, we presented a novel approach for global
robot localization to estimate a robot’s pose given publicly
available maps using a compact semantic 4-bit descriptor.
Our method exploits the results of a semantic segmentation
system and detects intersections and building gaps from a
range image using a set of geometric checks. This informa-
tion is then integrated into the observation model used for

localization. We implemented and evaluated our approach in
simulations as well as on real world datasets and illustrated
the localization performance of our approach. We show that
it is possible to localize a robot in publicly available maps
using MCL requiring only a compact 4-bit descriptor to
describe a place as well as an observation.

REFERENCES

[1] P. Agarwal, W. Burgard, and L. Spinello. Metric Localization using
Google Street View. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 2015.

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. arXiv, 2019.

[3] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric Local-
ization with Scale-Invariant Visual Features using a Single Perspective
Camera. In H.I. Christiensen, editor, European Robotics Symposium
2006, volume 22 of STAR Springer Tracts in Advanced Robotics, pages
143-157. Springer Verlag, 2006.

[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA), May 1999.

[5] G. Floros, B. van der Zander, and B Leibe. Openstreetslam: Global
vehicle localization using openstreetmaps. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2013.

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages
3354-3361, 2012.

[71 G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Trans. on
Robotics (TRO), 23(1):34, 2007.

[8] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi.
Speeding-up rao-blackwellized SLAM. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), pages 442-447, Or-
lando, FL, USA, 2006.

[9] R. Kiimmerle, M. Ruhnke, B. Steder, C. Stachniss, and W. Burgard.
A Navigation System for Robots Operating in Crowded Urban Envi-
ronments. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), Karlsruhe, Germany, 2013.

[10] R. Kummerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and
W. Burgard. Large scale graph-based slam using aerial images as
prior information. Autonomous Robots, 30(1):25-39, Jan 2011.

[11] M. Milford. Vision-based place recognition: how low can you go?
Intl. Journal of Robotics Research (IJRR), 32(7):766-789, 2013.

[12] A. Milioto and C. Stachniss. RangeNet++: Fast and Accurate LIDAR
Semantic Segmentation. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2019. Accepted for publication.

[13] P. Panphattarasap and A. Calway. Automated Map Reading: Image
Based Localisation in 2-D Maps Using Binary Semantic Descriptors.
arXiv preprint, 2018.

[14] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard. Localization on
OpenStreetMap Data Using a 3D Laser Scanner. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2015.

[15] R. Spangenberg, D. Goehring, and R. Rojas. Pole-Based Localization
for Autonomous Vehicles in Urban Scenarios. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[16] C. Stachniss, G. Grisetti, N. Roy, and W. Burgard. Analyzing Gaussian
Proposal Distributions for Mapping with Rao-Blackwellized Particle
Filters. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), San Diego, CA, USA, 2007.

[17] B. Suger and W. Burgard. Global Outer-Urban Navigation with
OpenStreetMap. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2017.

[18] O. Vysotska and C. Stachniss. Exploiting building information from
publicly available maps in graph-based slam. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[19] O. Vysotska and C. Stachniss. Effective Visual Place Recognition
Using Multi-Sequence Maps. IEEE Robotics and Automation Letters
(RA-L), 2019.

