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Abstract

The ability to reliably detect vegetation is an important requirement for outdoor navigation with mobile robots as

it enables the robot to navigate more efficiently and safely. In this paper, we present an approach to detect flat

vegetation, such as grass, which cannot be identified using range measurements. This type of vegetation is typically

found in structured outdoor environments such as parks or campus sites. Our approach classifies the terrain in the

vicinity of the robot based on laser scans and makes use of the fact that plants exhibit specific reflection properties. It

uses a support vector machine to learn a classifier for distinguishing vegetation from streets based on laser reflectivity,

measured distance, and the incidence angle. In addition, it employs a vibration-based classifier to acquire training

data in a self-supervised way and thus reduces manual work. Our approach has been evaluated extensively in real

world experiments using several mobile robots. We furthermore evaluated it with different types of sensors and in the

context of mapping, autonomous navigation, and exploration experiments. In addition, we compared it to an approach

based on linear discriminant analysis. In our real world experiments, our approach yields a classification accuracy

close to 100%.

Keywords: Vegetation detection, laser reflectivity, self-supervised learning, terrain classification, autonomous

navigation

1. Introduction

Autonomous outdoor navigation is an active research

field in robotics. In most outdoor navigation scenarios

such as autonomous wheelchairs, surveillance robots,

or transportation vehicles, the classification of terrain

plays an important role as most robots have been de-

signed to drive on streets and paved paths rather than on

surfaces covered by grass or vegetation. Failing to stay

on paved roads introduces the risk of getting stuck and

additionally increases wheel slippage, which may lead

to errors in the odometry. Therefore, the ability to ro-

bustly detect vegetation is important for safe navigation

in any of the above-mentioned situations.

In this paper, we propose a novel laser-based terrain

classification approach that is especially suited for de-

tecting low vegetation. Such low vegetation typically

occurs in structured outdoor environments such as parks

or campus sites. Our approach classifies the terrain

based on laser scans of the robot’s surroundings in order

to allow the robot to take the classification result into ac-

count during trajectory planning. Low vegetation poses

a challenge for laser-based terrain classification since

the variance in the measured distances is often small

and thus it is hard to detect it from range measurements

alone. Therefore, our approach exploits an effect that is

well known from satellite image analysis: Chlorophyll,

which is found in living plants, strongly reflects near-IR

light [1]. Mobile robots are often equipped with laser

range finders such as the popular SICK LMS scanners.

These devices emit near-IR light and return the range to

the object they measure along with the reflectivity of the

surface. Our work formulates the detection of terrain as

a classification problem that uses reflectivity, incidence

angles, and the measured distances as inputs to identify

whether a measured surface corresponds to vegetation.

In addition to that, we provide a way to gather train-

ing data in a self-supervised way and thus eliminate the

cumbersome work of manually labeling training exam-

ples.

In this work, we evaluate two sensor setups: rotat-

ing laser scanners capturing 3D pointclouds and laser

scanners mounted at a fixed angle. We show that clas-

sifiers can be trained in a self-supervised way using a

vibration-based classification approach to label train-

ing data. To integrate classification results into a rep-

resentation of the environment, we apply a probabilistic

mapping method similar to occupancy grid mapping [2].
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Figure 1: A street and an area containing grass (top) and typical clas-

sification results obtained based on range differences (middle) and re-

mission values (bottom). Shown is a bird’s eye view of a 3D scan of

the area depicted at the top with a maximum range of 5 m. Whereas

points classified as street are depicted in blue, points corresponding to

vegetation are colored in green.

In our experiments, we illustrate that our approach can

be used to accurately map vegetated areas and do so

with a higher accuracy than standard techniques that are

solely based on range values (see Fig. 1). We further-

more present applications to autonomous navigation in

structured outdoor environments in which robots bene-

fit from the knowledge about the vegetation in their sur-

roundings.

This paper is organized as follows. After discussing

related work, we will briefly describe support vector

machines, which we use for classification. In Sec. 4, we

present our approach to terrain classification using laser

reflectivity. Sec. 6 describes the mapping approach used

to integrate multiple measurements of the same region.

Finally, in Sec. 9 we present the experimental results

obtained with real data and with real robots navigating

through our university campus and neighboring areas.

2. Related Work

There exist several approaches for detecting vegeta-

tion using laser measurements. Wolf et al. [3] use hid-

den Markov models to classify scans from a tilted laser

scanner into navigable (e.g., street) and non-navigable

(e.g., grass) regions. The main feature for classification

is the variance in height measurements relative to the

robot height. Other approaches analyze the distribution

of 3D endpoints in a sequence of scans [4, 5, 6]. These

algorithms are able to detect various types of obstacles

such as tree trunks, high grass, or bushes. However, flat

vegetation, such as a freshly mowed lawn, cannot be re-

liably detected using this feature alone.

It seems intuitive to use color cameras to detect vege-

tation in the environment. Manduchi, for example, uses

a combination of color and texture features to detect

grass in camera images [7]. The main drawback of us-

ing cameras is that they are sensitive to lighting condi-

tions. Shadows, for instance, can have a strong influ-

ence on the appearance of vegetation. A more robust

classifier can be derived using the Normalized Differ-

ence Vegetation Index (NDVI). This value is based on

the difference between red and near-infrared light re-

flectance and is a strong indicator for the presence of

vegetation, see [1] for a discussion on this topic. On a

mobile robot, the NDVI can be determined using a cal-

ibrated combination of a regular and an infrared cam-

era [8] or a single camera that uses a filter mask to cap-

ture both frequency bands at different positions on the

same sensor [9]. Unfortunately, such a sensor setup is

rarely available on a mobile robot and, being a passive

sensor, still depends on the presence of ambient light.

A combination of camera and laser measurements has

been used to detect vegetation in several approaches [8,

10, 11, 12]. In a combined system, Wellington et al. [12]

use the remission value of a laser scanner in addition to

density features and camera images as a classification

feature. However, they do not model the dependency

between remission, measured range, and incidence an-

gle. Probably due to this fact, they found the feature to

be only ”moderately informative”. In contrast to that,

we show in our work that remission is highly informa-

tive if it is considered jointly with the measured range

and the incidence angle of the individual laser beams.

The approach that is closest to our approach has been

proposed by Bradley et al. [8]. Vegetation is detected

using a combination of laser range measurements, regu-

lar and near-infrared cameras. Vegetation is recognized

using the NDVI computed from both camera images.

3D laser measurements of the environment are projected

into the camera images. A classifier is then trained us-

ing the vegetation feature and features from the distri-

bution of 3D endpoints. According to the authors, the

approach yields a classification accuracy of up to 95%

but requires sophisticated camera equipment. In con-

trast to such systems that consider cameras in combina-
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tion with laser range finders or infra-red cameras, our

approach uses a laser scanner as the sole sensor. Our

system is independent of lighting conditions and can be

used on a variety of existing robot systems that are often

already equipped with a laser range finder. We evaluated

our approach in the context of detecting flat vegetation

at ranges of up to 5 m. In this setting, we achieved clas-

sification results with an accuracy of over 99% in all our

experiments.

Terrain types have also been classified using vibration

sensors on a robot [13, 14, 15, 16]. In these approaches,

the robot traverses the terrain and the induced vibration

is measured using accelerometers. The measurements

are usually analyzed in the Fourier domain. Sadhukhan

et al. [15] presented an approach based on neural net-

works. A similar approach is presented by DuPont et

al. [14]. Brooks and Iagenemma [13] use a combina-

tion of principal component analysis and linear discrim-

inant analysis to classify terrain. More recently, SVMs

have been used by Weiss et al. [16, 17]. Vibration-based

approaches typically offer highly accurate classification

results. The drawback of such methods, however, is that

only the terrain the robot is moving on can be classified

and not the terrain in front of the robot. Thus, this infor-

mation cannot be integrated well into the path planning

system of a mobile robot.

There exist previous approaches that apply self-

supervised learning to classify terrain and detect ob-

stacles. In the context of the LAGR-program (Learn-

ing Applied to Ground Robots), a number of methods

were developed that exploit terrain knowledge in the

surrounding of the robot to predict surface terrain in the

far range. These near-to-far approaches use color infor-

mation [18, 19], 3D geometry information [20], or tex-

ture information [21, 22]. Self-supervised learning was

also used by Dahlkamp et al. [23] in a vision-based road

detection system. Here, laser measurements are used to

identify nearby traversable surfaces. This information is

then used to label camera image patches in order to train

a classifier that is able to predict traversability far away

from the robot. In our approach, we adopt the idea of

self-supervision to generate labeled training data. We

apply a vibration-based classifier to label laser mea-

surements recorded by the robot. This labeled dataset

is then used to train a laser-based vegetation classifier.

Both classifiers used in our approach have been imple-

mented using support vector machines, which will be

introduced in the following section.

This paper extends our previously published confer-

ence paper [24]. First, we provide an extended discus-

sion and evaluation including new experiments. Several

different sensor types are evaluated and additional large-

scale, autonomous navigation and mapping experiments

are presented. Second, we provide means for compu-

tationally efficient classification so that terrain classifi-

cation can be carried out on low-powered devices with

limited computational resources, which was not directly

possible with our previously presented system.

3. Support Vector Machines

The support vector machine (SVM) is a kernel-based

learning method which is widely used for classification

and regression problems [25]. The SVM learns a hy-

perplane in a higher-dimensional feature space. Two

classes of data points are separated by a hyperplane so

that the margin between training points and the plane is

maximized:

max
w∈H,b∈R

min
xi∈D
{||x − xi|| | x ∈ H, 〈w, x〉 + b = 0}, (1)

where H is some dot product space, xi ∈ D are train-

ing points, and w is a weighting vector. The following

decision function is used to determine the class label y:

f (x) = 〈w, x〉 + b (2)

y = sgn( f (x)) (3)

The hyperplane can be constructed by solving a

quadratic programming problem. To separate nonlin-

ear classes, the so-called kernel trick is applied. The

training data is first mapped into a higher-dimensional

feature space using a kernel function. A separating hy-

perplane is then constructed in this features space which

yields a nonlinear decision boundary in the input space.

In practice, the Gaussian radial basis function (RBF) is

often used as a kernel function. It is given by

k(x, x′) = exp

(

−
(x − x′)2

2l2

)

, (4)

where l is the so-called length-scale parameter.

There exist derivatives of the basic SVM-formulation

that are robust against occasional mislabeled training

points. Among those, C-SVM is a popular method that

uses a soft margin. An additional parameter commonly

denoted as C adjusts the trade-off between maximizing

the margin and minimizing the training error. Through-

out this work, we use the C-SVM implementation of

LibSVM [26].

3.1. Class Probabilities

The decision function of support vector machines, as

given in Eq. 3, yields a class label y which is not a prob-

ability: y is either -1 or 1. In many cases, however, it
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Figure 2: Left: typical remission measurements of a SICK LMS 291-

S05 for street (blue) and vegetation class (green). Right: mean remis-

sion values for both classes.

is desirable to know the uncertainty associated with the

output of a classifier. One of these cases is the terrain

classification approach discussed in this paper, in which

sensor measurements are uncertain and this uncertainty

is propagated to the classification results. Knowing the

uncertainty associated with classification results enables

us to use probabilistic model estimation methods as we

will discuss in Sec. 6.

Several methods have been proposed to map the out-

put of SVMs to posterior class probabilities [27, 28].

Among those a popular approach is Platt’s method [27].

It fits the posterior using a parametric model. The model

is given by

P(y = 1 | f ) = (1 + exp (A f + B))−1
, (5)

where f is the output of the function given in Eq. 2.

The parameters A and B are determined using maxi-

mum likelihood estimation from a training set {( fi, yi)}

consisting of outputs fi and the corresponding class la-

bels yi. For details on the optimization step, we refer the

reader to the work by Platt [27].

4. Terrain Classification Using Remission Values

The goal of our terrain classification algorithm is to

precisely identify those parts of the environment that

contain vegetation. The classification results have to

be obtained early enough so that the robot’s navigation

system can take it into account, for example, to avoid

traversing grass. For this reason, we focus on classi-

fying laser scans of the environment surrounding the

robot. We are interested in distinguishing flat vegeta-

tion, such as grass, from drivable surfaces such as streets

or paved paths. For the sake of brevity, we will call

those classes of materials ”street” and ”vegetation” in

the following sections.

Figure 3: Visualization of sensor data in the full 3D feature space.

The plot shows data recorded using a SICK LMS 291-S05.

Typical laser range fingers, such as the SICK LMS

scanners or the Hokuyo UTM, emit light at a wave-

length of 870 to 915 nm, which is within the near-

infrared range. Chlorophyll, which is found in living

plants, strongly reflects near-IR light [1]. We exploit

this effect to identify vegetation in measurements of the

robots surrounding. Compared to an approach based

purely on the scan point distribution, a far better clas-

sification accuracy can be achieved when the reflectiv-

ity of laser measurements, which is frequently referred

to as the remission value is used to classify endpoints.

This will be shown in the experiments, see Sec. 9.1.

The remission values returned by the scanner do not

only depend on the material of the measured surface,

but also on the distance at which it is hit, and on the

angle of incidence [29]. This can be seen from Fig. 2,

which shows the relation between the measured range

and the remission value for both classes. In addition

to that, a visualization of the three-dimensional feature

space consisting of remission value, distance, and inci-

dence angle is shown in Fig. 3. To obtain highly ac-

curate results, it is important to not only consider the

remission values alone. Averaging the remission val-

ues over all measured ranges and angles leads to wrong

classification results, especially in the near range of up

to three meters. This can be seen in Fig. 4. Here, the

scene from Fig. 1 was classified using only the mean

remission value for both classes ignoring the range and

incidence angle.

4.1. Robust Terrain Classification Using an SVM

In our approach, we apply a C-SVM to classify laser

beams depending on the measured range, incidence an-

gle, and remission using a RBF-kernel. The input to

the learning algorithm is a labeled set of laser measure-

ments. Each data point consists of a range measure-

4



Figure 4: Classification of the scene depicted in Fig. 1 using the mean

remission value (see Fig. 2, right) to distinguish both classes.

ment, incidence angle, and a remission value. By de-

termining the separating hyperplane between both data

sets, we implicitly model the reflectivity characteristic

for the street and vegetation class.

The training is done offline. To optimize the length-

scale parameter l of the kernel used in the SVM as well

as the soft-margin parameter C, we perform a system-

atic grid search on the grid log2 l ∈ {−15, ..., 3} and

log2 C ∈ {−5, ..., 15}. The optimal parameters are de-

termined using 5-fold cross validation. Once the clas-

sifier has been trained, the model can be used on any

robot that uses the same sensor in a similar configura-

tion. More specifically, the laser should be mounted so

that it measures the surface at angles and distances sim-

ilar to those observed during the training phase.

5. Training Data from Vibration-Based Terrain

Classification

In this paper, we propose a self-supervised training

method to avoid tedious hand-labeling of dense three-

dimensional data. We do so by utilizing the output of a

second, reliable and pre-trained classifier that uses dif-

ferent sensor modalities to label training data for our

laser-based classification problem.

While the robot is moving through the environment,

it generates a 3D model using the method described in

Sec. 6. To acquire the training set, the remission value,

incidence angle, and distance are stored along with each

measured scan point. As the robot moves through the

environment, it traverses previously scanned surface

patches. Those patches are labeled using the outcome

of a vibration-based classifier, which is described be-

low, and the labeled data are then fed to the SVM for

training. In our current system, training the laser-based

classifier is an offline step and we do not consider re-

training during runtime.

Since incidence angles cannot be measured directly,

they need to be estimated from the measurements. This

estimation, however, can be done in a straightforward

way. Given a 3D scan, one can group neighboring end-

points and compute the Eigenvalues of the covariance

matrix obtained from these points. The direction of the

Eigenvector that corresponds to the smallest Eigenvalue

is a good estimate of the surface normal. From the sur-

face normal as well as the angle of the laser beam rela-

tive to the robot, the incidence angle can be computed.

5.1. Terrain Classification Based on the Vibration of the

Vehicle

We use a vibration-based classifier to label training

data for the laser-based classification system. Differ-

ent types of terrain cause vibrations of different charac-

teristics. These vibrations can be measured, for exam-

ple, by an inertial measurement unit (IMU) and can be

used to classify the terrain the robot currently traverses.

Note that such vibration-based classifiers do not allow

the prediction of terrain classes in areas which have not

been traversed yet. Thus, it is useful for training, but

cannot be used for online classification of the area in

front of the robot.

In other works [13, 14, 15, 16], up to seven classes of

terrain have been successfully classified. In our system,

however, we only need to differentiate between vege-

tation and streets (non-vegetation) to generate training

data for the classifier. In our experiments, we use an

XSens MTi to measure the acceleration along the verti-

cal axis. We apply a Fourier transform to the raw accel-

eration data. In our algorithm, a 128-point FFT is used

to capture the frequency spectrum of up to 25 Hz.

The frequency spectrum also depends on the speed

of the robot. To account for this dependency, it has

been suggested to train several classifiers at different

speeds [17]. In our system, however, we decided to treat

the forward velocity as a training feature instead. In ad-

dition to this, we also use the rotational velocity as a

feature to account for vibrations which result from the

skid-steering of our robot.

To classify the acceleration and velocity data, we

again use a C-SVM with a RBF-kernel. Our feature

vector x consists of the first 32 Fourier magnitudes |Fm|,

the mean forward velocity v̄t, and the mean rotational

velocity v̄r of the robot over the sample period

|Fm| =
√

(Re Fm)2 + (Im Fm)2,m ∈{0,...,31} (6)

x = {|F0|, ..., |F31|, v̄t, r̄t}, (7)

where Fm denotes the m-th Fourier component. The

classifier is trained by recording short tracks of about

50 m at varying speeds both on streets and on vegeta-

tion. Parameter optimization was done using grid search

and 5-fold cross validation. In our experiments, we

achieved an almost perfect classification accuracy with

this vibration-based approach and thus this data is well
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Figure 5: Visualization of a 3D model with vegetation highlighted in

green.

suited to label the training data for the laser-based clas-

sification.

6. Mapping Vegetation

We use multi-level surface maps [30] to model the

environment. This representation uses a 2D grid and in

each cell stores a set of patches representing individual

surfaces at different heights. In our approach, we main-

tain the probability of vegetation for each surface patch.

Let P(vi) denote this probability for patch i. In general,

surface patches will be observed multiple times. For

this reason, we need to probabilistically combine results

from several measurements. In this way, the uncertainty

in classification is explicitly taken into account.

Let zt be a laser measurement at time t. Analogous

to Moravec [2], we obtain an update rule for P(vi | z1:t).

First, we apply Bayes’ rule and obtain

P(vi | z1:t) =
P(zt | v

i
, z1:t−1)P(vi | z1:t−1)

P(zt | z1:t−1)
. (8)

We then compute the ratio

P(vi | z1:t)

P(¬vi | z1:t)
=

P(zt | v
i
, z1:t−1)

P(zt | ¬vi, z1:t−1)

P(vi | z1:t−1)

P(¬vi | z1:t−1)
. (9)

Similarly, we obtain

P(vi | zt)

P(¬vi | zt)
=

P(zt | v
i)

P(zt | ¬vi)

P(vi)

P(¬vi)
,

which can be transformed to

P(zt | v
i)

P(zt | ¬vi)
=

P(vi | zt)

P(¬vi | zt)

P(¬vi)

P(vi)
. (10)

Applying the Markov assumption that the current obser-

vation is independent of previous observations given we

know that a patch contains vegetation gives

P(zt | v
i
, z1:t−1) = P(zt | v

i), (11)

Figure 6: Sensors used in the evaluation.

and utilizing the fact that P(¬vi) = 1 − P(vi), we obtain

P(vi | z1:t)

1 − P(vi | z1:t)
=

P(vi | zt)

1 − P(vi | zt)

P(vi | z1:t−1)

1 − P(vi | z1:t−1)

1 − P(vi)

P(vi)
. (12)

This equation can be transformed into the following up-

date formula:

P(vi | z1:t) =
[

1 +
1 − P(vi | zt)

P(vi | zt)

1 − P(vi | z1:t−1)

P(vi | z1:t−1)

P(vi)

1 − P(vi)

]−1

(13)

To perform the update step, we need an inverse sensor

model P(vi | z). This, however, can directly be obtained

from the estimated class probabilities of the classifier.

During the training phase, we apply Platt’s method as

discussed in Sec. 3.1. The posterior class probabili-

ties computed using Eq. 5 constitute an inverse sensor

model and in this way the uncertainty in classification is

explicitly taken into account.

The prior probability of a patch to contain vegetation

P(vi) clearly depends on the environment that the robot

is operating in. In our system, it was set to 0.5 to not

preference any class. This seems reasonable in an envi-

ronment such as the one depicted in Fig. 12 but can be

adapted if this is needed.

7. Comparison of Different Sensors

Most laser range finders that are used on mobile

robots are able to provide range and remission infor-

mation and all of these sensors measure surfaces using

near-infrared light. Thus our approach can be applied to

data from any such sensor as long as it provides remis-

sion values. We evaluated three different laser scanners

under comparable conditions. The sensors we evaluated

were the SICK LMS 291-S05, the SICK LMS 151, and
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Figure 7: Comparison of remission values of a SICK LMS 291 (top),

SICK LMS 151 (middle), and a Hokuyo UTM 30LX (bottom). Please

note that these are projections of the full three-dimensional data sets

since incidence angles are not shown.

the Hokuyo UTM 30LX (see Fig. 6). Each scanner was

mounted on a mobile robot at a fixed angle of 70 degrees

relative to the ground and was mounted at a height of

approximately 0.6 m. We recorded range and remission

data by moving the robot so that the sensors were swept

over a street and areas that contained vegetation.1

Example data from the sensors of both classes (pro-

jected into the two dimensional space for a better visu-

alization) is depicted in the plots in Fig. 7. It can be seen

that all sensors report a considerably higher reflectivity

for vegetation than for the street. In this projection, the

LMS 291 offers the best separation of the classes, es-

1Data available at:

http://ais.informatik.uni-freiburg.de/remission-data

Figure 8: Left: remission values of a SICK LMS 151 measuring veg-

etation, light tiles, and an asphalt street. Right: examples of the mea-

sured surfaces.

pecially in the near range, followed by the LMS 151.

Using the Hokuyo UTM, measurements of both classes

are not well separated in the near range of up to approx-

imately one meter.

It is worth mentioning that the measured difference

in the reflectivity is not due to the lighter color of grass

compared to a dark street. In Figure 8, remission data

from a surface covered with light tiles is shown. These

tiles exhibit a visual brightness similar to grass. It can be

seen that the measured infrared reflectivities are higher

than those of an asphalt street but still considerably

lower than those of vegetation.

From the examples shown above, one can see that all

three sensors can be used for vegetation detection, but

the classification accuracy may vary. Depending on the

type of sensor, a minimum distance to the ground should

be kept for reliable results since in this area, it may be

challenging to separate the classes.

8. Classification for Resource Constrained Systems

On systems with limited computational resources,

such as embedded systems, the SVM classifier can be

computationally too demanding to be used online. The

computational complexity of the SVM results from the

evaluation of the kernel and the potentially high num-

ber of support vectors that are needed to appropriately

separate the classes. For each laser scan, assuming a

frequency of 36 Hz and 180 laser beams per scan, 6,480

classifications per second need to be performed.

To reduce the computational complexity, we apply

linear discriminant analysis [31] to project the three-

dimensional feature space (range, incidence angle, re-

mission) down to one dimension such that the two

classes are best separated. Given this projection, we

can then apply an efficient linear classifier to separate

the classes and to compute class probabilities for laser
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data points

of class 2

axis selected by LDA

of class 1

data points

Figure 9: Reduction from R
2 to R using LDA. LDA seeks to separate

the two classes (illustrated by green and blue) as well as possible.

measurements based on a Gaussian assumption. The

individual steps are explained in the remainder of this

section.

8.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a supervised

dimensionality reduction technique that is similar to

PCA. In contrast to PCA, LDA allows to exploit the la-

bels of the datapoints and seeks to estimate a reduced

space so that the classes are best separated. Reducing

the space to a one-dimensional one, then allows to sep-

arate the classes with a naive Bayesian classifier. An

illustration of a reduction from R
2 to R is shown in Fig-

ure 9. We refer to Alpaydin [31] for more details.

LDA works as follows. Let K be the number of

classes Ck and xi the d-dimensional inputs, here K = 2

and d = 3. Let furthermore t be the dimensionality of

the target space, in our experiments we found a one-

dimensional target space to be sufficient. The objective

is to find a d× t matrix W so that vi = WT xi with vi ∈ R
t

and so that the classes Ck are separated best in terms of

distances between the vi.

Let rk,i be an indicator variable with rk,i = 1 if xi ∈ Ck

and 0 otherwise. Let mk be the mean of d-dimensional

vectors xi ∈ Ck. Then, the so-called total within-scatter

matrix is given by

S W =

K
∑

k=1















∑

i

rk,i(xi − mk)(xi − mk)T















, (14)

and the between-class scatter matrix by

S B =

K
∑

k=1















∑

i

rk,i















(mk − m)(mk − m)T
, (15)

with

m =
1

K

K
∑

k=1

mk. (16)

Now let us consider the scatter matrices after projection

using W. The between-class scatter matrix after projec-

tion is WT S BW, and the within-scatter matrix accord-

ingly, both are t×t dimensional. The goal is to determine

W in a way that the means of the classes WT mk are as

far apart from each other as possible while the spread of

their individual projected class samples is small. Simi-

lar to covariance matrices, the determinant of a scatter

matrix characterizes the spread and it is computed as the

product of the eigenvalues specifying the variance along

the eigenvectors. Thus we aim at finding the matrix W

that maximizes

J(W) =
|WT S BW |

|WT S WW |
. (17)

The largest eigenvectors of S −1
W

S B are the solution to

this problem.

8.2. Classification Using Linear Discriminant Analysis

Given the projection computed by LDA, we use an

efficient linear classifier to compute class probabilities

for laser measurements. For each class Ck, our method

fits a Gaussian distribution, p(x | Ck), to the one-

dimensional data using maximum likelihood estimation.

Using Bayes’ theorem, we obtain the posterior probabil-

ities

p(Ck | x) =
p(x | Ck)p(Ck)

∑

i p(x | Ci)p(Ci)
, (18)

where p(Ci) is the class prior for class Ci. Since in our

case, we have two classes and a uniform prior, this turns

into

p(Ck | x) =
p(x | Ck)

p(x | C1) + p(x | C2)
, (19)

with k ∈ {1, 2}, referring to the classes vegetation and

streets. Note that this simplified classification approach

is significantly faster than the SVM, but it is also less

powerful. Our evaluation in Sec. 9.6 shows that the re-

sulting error depends on the type of sensor and the mea-

surement range. In our experiments, we observed that

the precision dropped from 99% down to 96% in the

worst case compared to the SVM-based classifier while

LDA-based system was around two orders of magnitude

faster than the SVM in our settings.

9. Evaluation

Our approach has been implemented and evaluated

in several experiments. The experiments are designed

to demonstrate that our approach improves navigation
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Figure 10: Robots used in our experiments. Left: An ActiveMedia

Powerbot (yellow) and a Pioneer2 AT (red). Right: the EUROPA

platform.

in structured outdoor environments by enabling robots

to reliably detect vegetation.

We used three different robot systems (see Fig. 10).

The self-supervised learning approach is evaluated us-

ing an ActivMedia Pioneer2 AT, which is able to tra-

verse low vegetation. For mapping large environments

and for an autonomous driving experiment, we use

an ActivMedia Powerbot platform. This robot cannot

safely traverse grass since its castor wheels will block

the robot due to its weight. Both robots are equipped

with SICK LMS S291-S05 laser scanners on pan-tilt

units. In addition to that, the Pioneer robot carries

an XSens MTi IMU to measure vibrations. Three-

dimensional scans are gathered by tilting the laser scan-

ner from 50 degrees upwards to 30 degrees downwards.

To evaluate classification on a SICK LMS 151 sensor

mounted at a fixed angle, we use the custom-made EU-

ROPA robot platform depicted in Fig. 10 (right). Just as

the Powerbot, this platform cannot safely traverse vege-

tation.

We limit the classification to scans with a range

smaller than 5.0 meters. The approach itself is not lim-

ited in range. However, due to the coarse angular reso-

lution of the laser scanners and a low mounting height

of the sensor relative to the ground (approximately 0.5-

0.6 m), long range data is too sparse both to gather train-

ing data and to reliably detect drivable surfaces and ob-

stacles.

In our current implementation, structures that can be

reliably detected as obstacles are not considered in the

classification step. This decision is made based on the

height difference between potential obstacles and their

surrounding. In our experiments, we set this threshold

to 0.1 m. Such obstacles are not traversable regardless

of whether they are covered by vegetation or not. Note

that the classification approach itself would even work

on arbitrary surfaces given the approximate knowledge

of the surface normal.

9.1. Comparison to Vegetation Detection Using Range

Differences

In a first experiment, we implemented a vegetation

detection algorithm based purely on the range differ-

ences of neighboring laser measurements similar to the

one proposed by Wolf et al. [3]. This method is only

used as a comparison with our proposed classification

approach. Three-dimensional data are acquired by gath-

ering a sweep of 2D scans. For each 2D scan, the 2D

endpoints pi = 〈xi, yi〉 are computed from the range and

angle measurements 〈ri, αi〉. A local feature di is then

determined for every scan point

di = xi − xi−1. (20)

This feature captures the local roughness of the terrain.

To cope with flat but tilted surfaces, we classify scans

based on the absolute difference in di between adjacent

range measurements, as suggested in [11]. Furthermore,

we also use the measured range as a training feature to

account for the varying data density from near to far

scans. We use an SVM to train a classifier based on

these features.

In our experiments, we achieve a classification ac-

curacy of about 75% using the described method. An

example of the classification results can be seen in

Fig. 1. Similar results have been reported by other re-

searchers [8]. While this result certainly shows that

geometric features are useful to detect vegetation, we

will show that a substantially higher accuracy can be

achieved in case of detecting flat vegetation in the sur-

rounding of the robot.

9.2. Self-Supervised Learning

To train our remission-based classifier, we joysticked

the Pioneer AT robot through an outdoor environment

consisting of a street and an area covered with grass.

We acquired 3D scans approximately every 4 m. While

the robot was driving, the IMU measured the vibration

of the robot. To correct odometry errors of the robot,

we employed a 2D SLAM approach [32] and its freely

available implementation [33] in combination with 3D

scan-matching. We trained our classifier using the self-

supervised approach described in Sec. 4.1. The train-

ing set is visualized in Fig. 11a. The data recorded at

the border region between street and vegetation were ig-

nored since the precise location of the border cannot be

determined using the vibration sensor. The model for

the laser-based classifier was trained using 19,989 veg-

etation and 11,248 street samples.

To evaluate the precision of the classifier, we

recorded separate test data at a different location (see

9



Figure 11: Self-supervised learning. Left: the data set which is used

to train the classifier. Right: test set recorded at a different location.

Table 1: Confusion matrix for Exp. 9.2 (number of data points)

vegetation street

vegetation 36,300 4

street 138 28,745

Fig. 11b and Fig. 12). The test set contains 36,304

vegetation and 28,883 street measurements. Again,

the labeling of the data was carried out using the

vibration-based classifier. The previously trained classi-

fier reached a recall of 99.6 % and a precision of 99.9 %

on the test data. The confusion matrix is given in Ta-

ble 1. Note that such accurate classification results are

not due to overfitting and very similar results are also

obtained on other test sets.

9.3. 3D Mapping

In this experiment, we steered the Powerbot robot

across the computer science campus at the University

of Freiburg. The scanning laser of the robot was tilted

to a fixed angle of 20 degrees downwards. In this way,

a fairly large area could be mapped in less than 15 min-

utes. The length of the trajectory is 490 m. The vegeta-

tion classifier was used to map vegetation in the three-

dimensional model of the environment. To properly in-

tegrate multiple measurements, we used the mapping

approach described in Sec. 6 with a cell size of 0.1 m.

Due to a significantly different hardware setup as

compared to the Pioneer AT, we were not able to use

the model generated in Sec. 9.2. Instead, we recorded

a training set of 12,153 grass and 10,448 street samples

by placing the robot in front of flat areas containing only

street and only vegetation. This method is only applica-

ble if such training data can be gathered and thus should

be considered inferior to the self-supervised approach

described in Sec. 4.1.

Compared to the aerial image of the campus site in

Fig. 12, the mapping result shown in Fig. 13 is highly

accurate. Even small amounts of vegetation, for exam-

ple between tiles on a path, can be identified. To eval-

uate the accuracy of the map created during this exper-

Figure 12: Aerial view of the computer science campus in Freiburg.

Estimated robot trajectories are shown for the training (top, yellow)

and the test set (bottom, red). Courtesy of Google Maps, Copyright

2008, DigitalGlobe.

Figure 13: Mapping a large outdoor environment. The laser was tilted

at a fixed angle of 20 degrees while the robot was moving. The figure

shows a 2D projection of the 3D map.

iment, we manually marked wrongly classified cells in

a 2D projection of the 3D map using our knowledge of

this environment. Of a total of 271,638 cells (75,622

vegetation, 196,016 street), we found 547 false positives

and 194 false negatives. This corresponds to a precision

of 99.23 % and a recall of 99.74 %.

9.4. Autonomous Navigation Using a 3D Scanner

As mentioned above, the Powerbot cannot safely tra-

verse vegetated areas. In the experiment depicted in

Fig. 14, the robot was told to navigate to a goal position

80 m in front of it while avoiding vegetation. Since the

robot did not have a map, it explored the environment in

the process of reducing its distance to the goal location.

Thereby, it used the vegetation classifier to detect veg-

etation. The environment was represented as described

in Sec. 6. Without knowledge about the specific ter-

rain, the shortest obstacle-free path would have led the
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Figure 14: Autonomous navigation experiment. Although the shortest

obstacle-free path from the start to the goal position led over grass,

the robot reliably avoided the vegetated areas by using our vegetation

classifier and traveled over the paved streets to reach its goal.

robot across a large area containing grass. By consider-

ing the classification results in the path costs, however,

the planner chose a safe trajectory over the street.

9.5. Autonomous Navigation Using a Fixed-Angle Sen-

sor

To obtain a map of the campus surroundings, the

custom-made EUROPA platform depicted in Fig. 10

(right), equipped with a SICK LMS 151 mounted at

a fixed angle, was steered along a 7,500 m trajectory

through the campus and parts of Freiburg. Addition-

ally, the data collected by a horizontally mounted range

finder are considered for building a 2D occupancy grid.

The mapped area combines the computer science cam-

pus, urban areas, and the park area of a Freiburg Uni-

versity hospital.

We trained the classifier using data recorded by plac-

ing the robot in front of grassland and on a street. Using

the collected data, our mapping approach presented in

Sec. 6 was able to obtain a map in which the drivable

street and non-traversable vegetation were accurately la-

beled. Fig. 15 visualizes the resulting map which was

used to carry out an autonomous navigation experiment.

At the beginning of the experiment, the robot was lo-

cated on the campus in the top left of the map. The

goal location was within the park area in the lower right

part of the map. By taking into account the classifica-

tion result of our approach, the robot was able to plan a

feasible and safe path towards the goal location. While

navigating along the planned path the robot used its hor-

izontally mounted range finder to localize itself given

the occupancy map. The robot autonomously traveled

a total distance of approximately 1,120 m and success-

fully reached the goal location. The trajectory that the

robot followed is shown as a red line in Fig. 15. Without

Figure 15: Autonomous navigation experiment. The robot planned a

path on a map annotated by our approach. The robot autonomously

traveled a distance of approximately 1,120 m. Each black rectangle

shows a magnified view of a particular area of the environment.

classifying the vegetation the shortest path would have

led partially across large areas covered with vegetation

which induces a high risk of getting stuck.

9.6. Resource-Friendly Classification with Linear Dis-

criminant Analysis

In this section, we compare the accuracy of the SVM

and linear discriminant analysis. The LDA approach

is less computationally demanding and thus is useful

for resource-constraint systems or for robots that run a

fairly large number of processes. We evaluated both ap-

proaches on data that we recorded with three different

laser scanners, i.e., SICK LMS 151, SICK LMS 291,

and Hokuyo UTM 30LX.

We divided each dataset into a training dataset con-

taining 2,000 randomly sampled data points and a test

dataset containing all the remaining data points. The re-

sults are depicted in Tab. 2. Using the LDA approach
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Table 2: Comparison between the SVM-based and the LDA-based

classifiers
precision recall precision recall

(SVM) (SVM) (LDA) (LDA)

LMS 151 99.7% 100% 99.1% 99.8%

LMS 291 99.9% 100% 99.4% 100%

UTM 99.9% 99.9% 96.3% 99.8%

on the SICK LMS 151 dataset resulted in a recall of

99.1% and a precision of 99.8%, whereas the SVM-

based classifier gave a recall of 99.7% and a precision of

100.0%. Using the SICK LMS 291 dataset, the LDA-

based approach yielded a recall of 99.4% and a preci-

sion of 100.0%, whereas the use of the SVM resulted in

a recall of 99.9% and in a precision of 100.0%. When

applied to the Hokuyo UTM 30LX dataset, the LDA-

based approach reached a recall of 96.3% and a preci-

sion of 99.8%, while the SVM-based classifier gave a

recall of 99.9% and a precision of 99.9%.

These results show that both approaches achieve a

highly accurate classification. In all cases, the SVM-

based approach outperforms the LDA-based method.

The relative difference, however, is small. When an-

alyzing the errors, we observed that most of the mis-

classification of the LDA-based classifier occur at range

measurements below 2 m. This means that the system

potentially makes poor predictions when classifying ar-

eas close to the robot, which may cause the navigation

system to stop the vehicle to avoid potential obstacles.

Therefore, the highly accurate results of the SVM-based

system are preferable for online navigation tasks.

We also compared the runtimes of the SVM and the

LDA-based approach. In our experiments, the LDA-

based approach was around 400 times faster than the

classification using the support vector machine on a reg-

ular desktop computer. The SVM used 21 support vec-

tors to separate the training data in this evaluation.

10. Conclusion

In this paper, we presented a novel approach to veg-

etation detection that uses the remission values of laser

scanners. Laser remission values depend on the surface

reflectivity as well as on the distance and the angle of

incidence. This dependency has not been considered by

previous methods that detect vegetation. Our approach

trains a classifier based on individual laser measure-

ments consisting of the remission value, the distance to

the surface, and the angle of incidence. Our method

is able to distinguish vegetation from drivable surfaces

such as streets. To predict the terrain type, we use a

support vector machine (SVM). We avoid the need to

label training data manually by labeling sets of example

measurements in a self-supervised fashion by means of

a pre-trained vibration-based terrain classifier. In addi-

tion to the system based on support vector machines,

we presented a classification approach based on linear

discriminant analysis (LDA). This system is around 400

times faster than the SVM-based approach and is es-

pecially designed for robots with limited computational

resources. Both approaches have been implemented and

evaluated in various real-world experiments. Our ex-

periments show that the SVM-based approach is able

to accurately detect low, grass-like vegetation with an

accuracy of close to 100%. The classification method

based on LDA achieves accurate predictions, but in our

experiments they were up to 4% worse than results of

the SVM-based approach. In further experiments, we

demonstrated that autonomous robots are able to navi-

gate efficiently and safely in structured outdoor environ-

ments using our terrain classification method.

11. Future Work

In our experiments, training and testing data were

collected on clear days by measuring try surfaces. Rain

water or snow might affect the reflectivity – to what ex-

tent water affects classification results and how this can

be detected is subject to future work.

The experiments presented in this paper were per-

formed in early spring and in summer. Our approach

was able to detect grass that was yellowed from being

covered by snow in the preceding days. Future work

could provide a more thorough evaluation of the impact

of reduced chlorophyll on laser reflectivity.

The vibration-based classifier provided accurate

training data in our experiments. If the training signal

contained considerable noise, it might be possible to use

the probabilistic output of the SVM-classifier to avoid

uncertain training data.
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