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Abstract The efficient coordination of a team of heteroge-

neous robots is an important requirement for exploration,

rescue, and disaster recovery missions. In this paper, we

present a novel approach to target assignment for hetero-

geneous teams of robots. It goes beyond existing target as-

signment algorithms in that it explicitly takes symbolic ac-

tions into account. Such actions include the deployment

and retrieval of other robots or manipulation tasks. Our

method integrates a temporal planning approach with a tra-

ditional cost-based planner. The proposed approach was im-

plemented and evaluated in two distinct settings. First, we

coordinated teams of marsupial robots. Such robots are able

to deploy and pickup smaller robots. Second, we simulated

a disaster scenario where the task is to clear blockades and

reach certain critical locations in the environment. A simi-

lar setting was also investigated using a team of real robots.

The results show that our approach outperforms ad-hoc ex-

tensions of state-of-the-art cost-based coordination methods

and that the approach is able to efficiently coordinate teams

of heterogeneous robots and to consider symbolic actions.
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Köhler-Allee 079, 79110 Freiburg, Germany E-mail:

(wurm|stachnis|burgard)@informatik.uni-freiburg.de

C. Dornhege, and B. Nebel

University of Freiburg, Dept. of Computer Science, Georges-
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1 Introduction

One of the fundamental problems in mobile robotics is the

task of autonomously navigating in an environment. In most

realistic settings, a robot only has partial knowledge about

its environment. For example, the blueprint of a building

may be known to the robot but furnishing and other obsta-

cles are usually not known beforehand. Furthermore, there

are applications in which the environment is entirely un-

known to the robot, for example during planetary explo-

ration and disaster recovery missions.

In many applications, a coordinated team of robots offers

advantages over a single robot. Multi-robot systems have the

potential of being more fault tolerant and of reducing the

overall time to complete a given task [Dudek et al., 1996;

Cao et al., 1997]. A well-studied problem is the explo-

ration of an unknown environment with a cooperative team

of robots. Previous approaches often addressed the prob-

lem of exploring an environment with groups of robots that

have identical capabilities. To coordinate such homogeneous

teams, popular approaches determine a set of exploration

targets and assign robots to them numerically [Zlot et al.,

2002; Ko et al., 2003; Berhault et al., 2003; Burgard et al.,

2005; Stachniss, 2009]. These approaches consider the cost

and the expected information gain of each exploration tar-

get.

In this paper, we address the problem of coordinating

exploring teams of robots with differing capabilities. The

robots in such heterogeneous teams may differ in their phys-

ical properties such as their sensor setup, their size and pay-

load, their maximum traveling speed, or the type of terrain

they are able to traverse. In our approach, we especially con-

sider robots that differ in the actions they are able to per-

form. For instance, robots might be equipped with manip-

ulators, they could be able to deploy localization beacons,

or they could even deploy other robots. Numeric, cost-based
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coordination approaches are able to consider differing prop-

erties of robots that affect navigation costs. For example, the

cost of reaching a target depends on the travel speed of a

robot and it is also possible to encode that a robot cannot

reach a target due to constraints on the size of the robot or

the type of terrain it can traverse. However, it is not straight-

forward to take into account actions other than navigating

to exploration targets since there is no efficient mapping of

such actions to cost or utility measures. While we can usu-

ally specify the time it takes to perform an action such as

deploying a robot, it is not meaningful to compare this cost

to the cost of exploring a given frontier target. The reason

for this incompatibility lies in the fact that performing an

action that does not explore parts of the environment has no

apparent immediate reward to an exploration system but it

effects its performance in the future.

From a conceptual point of view, the ability to perform

actions that go beyond navigating to goal positions intro-

duces corresponding symbolic actions. This term is com-

monly used in classical planning approaches that encode the

state of a system using logical symbols. Classical planning

approaches execute symbolic actions to change the state of

the system towards a pre-defined goal state. In the context

of multi-robot exploration, we define a symbolic action as

any action that does not explore parts of the environment

directly. Examples of such actions include opening doors,

operating elevators, moving obstacles, and deploying other

robots. There exist relatively few approaches that coordinate

teams of robots and take into account symbolic actions. One

specific set of actions that has previously been considered

is the deployment and retrieval of robots by other robots.

To execute symbolic actions, previous approaches rely on

manually designed strategies [Singh and Fujimura, 1993;

Murphy et al., 1999; Dellaert et al., 2002]. One strategy,

for example, is to deploy a smaller robot whenever a large

robot cannot reach a given goal. These strategies, however,

are specific to a certain type of robot and environment and

it is unclear whether they are able to efficiently coordinate

large teams of robots.

The approach presented in this paper considers sym-

bolic actions explicitly by applying symbolic planning tech-

niques. In the context of multi-robot exploration our goal is

to explore all exploration targets as fast as possible. We as-

sume that to reach some targets it is necessary to execute

additional symbolic actions such as removing an obstacle

or operating an elevator. The key idea of our approach is

to integrate a symbolic planning system and a robotic path

planner. Since it is unclear how we can translate symbolic

actions into a cost measure as it is used in numeric coordi-

nation approaches, we instead treat navigating to an explo-

ration target as an action in a symbolic planning system. We

generate a symbolic formulation of the coordination prob-

lem that includes navigation goals as well as symbolic ac-

tions that have to be executed. This description serves as the

input to a symbolic planning system that solves the coordi-

nation problem. However, classical planning approaches do

not consider the execution cost of the solutions they gener-

ate. Adding costs measures to actions turns the coordination

problem into a temporal planning problem and there exist

efficient algorithms to solve such problems [Gerevini et al.,

2008; Eyerich et al., 2009]. We estimate execution costs for

each navigation action using a robotic path planner.

In contrast to cost-based coordination approaches, our

system is able to explicitly plan for the execution of sym-

bolic actions. Still, the use of action costs that are deter-

mined by the robotic path planner allows us to generate

time-efficient solutions. In this way, our approach combines

the strength of cost-based coordination approaches with the

flexibility of symbolic planning systems. To evaluate our co-

ordination approach, we apply our framework to two popu-

lar multi-robot applications: exploration of unknown envi-

ronments with heterogeneous teams of robots and disaster

recovery with heterogeneous teams.

An interesting coordination problem arises when a team

of robots includes members that are able to deploy and

retrieve other, smaller robots. For a task such as the au-

tonomous exploration of lunar craters, one can imagine

robots that approach the crater and then deploy a specialized

robot which descents into the crater [Cordes et al., 2011;

ESA, 2008]. Such systems are frequently referred to as mar-

supial robots [Murphy et al., 1999]. The coordination of

marsupial teams generally requires to carefully plan deploy-

ment and retrieval actions, both are symbolic actions ac-

cording to our definition. In addition, one has to take into

account the different properties of the robots such as their

sensor setup, their size and payload, their maximum travel-

ing speed, or the type of terrain they are able to traverse. The

coordination framework proposed in this paper is applied to

the exploration of an unknown environment using marsupial

teams of robots.

A further class of applications for teams of heteroge-

neous robots is centered around the scenario that important

parts of an environment have collapsed after a natural dis-

aster. In such a setting, teams of robots can, for instance,

be used to perform search and rescue missions. We consider

the task of carrying out pre-defined actions at certain criti-

cal locations in the collapsed structure, for example, to re-

establish safe operation of a failed power station or chemical

plant. Such a disaster recovery task requires robots with di-

verse capabilities. First of all, robots are required to clear

collapsed paths throughout the structure. At the same time,

there is a need for robots with good sensors or precise ma-

nipulation skills to open doors, operate valves, closely in-

spect parts of the building, or repair damage. A heteroge-

neous team of specialized robots can be used to provide

these capabilities in a flexible way. We apply our proposed
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framework to coordinate a team of exploring and clearing

robots in a simulated disaster scenario. In addition to ex-

ploratory navigation actions, we explicitly plan for symbolic

clearing actions.

Both application scenarios serve as motivating examples

for this work. We developed and implemented a coordina-

tion approach for both applications and compared our ap-

proach to ad-hoc extensions of cost-based numeric coordi-

nation approaches. As we will show in the evaluation, our

approach produces significantly better plans leading to a de-

crease in both the overall runtime and the sum of traveled

distances. Additionally, we applied our approach to coordi-

nate a real-world heterogeneous robotic system.

This paper extends our previous work [Wurm et al.,

2010] in several ways. First, it provides an additional appli-

cation of our approach in the context of disaster recovery. It

furthermore contains an extended experimental evaluation.

Additionally, we describe an application realized with a real-

world heterogeneous robotic system. We finally include a

description of temporal planning from a robotics perspec-

tive and discuss strengths and limitations of its application

in robotics.

The remainder of this paper is organized as follows. Af-

ter discussing related work, we give a short introduction to

temporal planning. In Section 4, we give a general descrip-

tion of our coordination framework and its components. We

describe a specific application for exploration with marsu-

pial robots in Section 5. In Section 6, we present a further ap-

plication of our framework in the context of disaster recov-

ery. Our experimental evaluation is presented in Section 7.

Finally, strengths and limitations of the proposed approach

are discussed in Section 8.

2 Related Work

When multiple robots explore an unknown environment the

coordination strategy has the biggest influence on the per-

formance of the system. Coordination methods for homo-

geneous teams, in which all members are equipped equally,

have been studied extensively in the past. In those cases, the

coordination task is often formulated as an assignment prob-

lem. Such approaches assign robots to exploration targets

based on a suitable cost measure.

Several methods have been presented to determine an as-

signment of robots to exploration targets. Most methods de-

termine targets by extracting the frontier between explored

and unexplored areas. This target generation approach was

introduced by Yamauchi [1997] who also proposed a decen-

tralized multi-robot coordination technique that assigns each

robot to the nearest frontier [Yamauchi, 1998]. The draw-

back of this coordination method is that several robots can

be assigned to the same target.

To improve the overall performance, later approaches in-

troduced techniques to avoid redundant work. Zlot and col-

leagues [2002] proposed an architecture in which the ex-

ploration is guided by a market economy. They consider se-

quences of potential target locations for each robot and trade

tasks between the robots using single-item first-price sealed-

bid auctions. Such auction-based techniques have also been

applied by Berhault et al. [2003] to assign robots to bun-

dles of targets so that synergy effects between targets are

exploited.

Burgard et al. [2005] presented an iterative assignment

method based on the estimated cost of reaching a target. It

additionally considers visibility constraints between targets.

Ko et al. [2003] and Stachniss [2009] presented algorithms

that use the Hungarian method to compute the assignments

of robots to exploration targets. In a previous work, we pre-

sented approaches that use semantic information [Stachniss

et al., 2009] and segmentations of the environment [Wurm et

al., 2008] for improving coordinated exploration. By assign-

ing robots to unexplored segments instead of frontier targets,

a more balanced distribution of the robots over the environ-

ment is achieved and the overall exploration time is reduced.

Heterogeneous teams of robots consist of robots with

different abilities. An early approach towards coordination

of heterogeneous robot systems during exploration was pre-

sented by Singh and Fujimura [1993]. In this approach, if

a robot is too big to pass through a narrow passage, other

robots are informed about this task. A system for mapping

with heterogeneous robots was introduced by Grabowski

and Navarro-Serment [2000]. Coordination, however, is per-

formed manually in their approach. Howard et al. [2006]

presented an approach to coordinate large teams of hetero-

geneous robots. In their experiments, a small number of so-

phisticated robots explored an environment and a large num-

ber of simple sensor robots was then deployed to serve as a

distributed sensor network.

Whenever small robots with low traveling speeds or

limited power resources are used in a heterogeneous robot

team, it is advantageous to have larger robots transport the

smaller ones to avoid a serious penalty in exploration time or

power consumption [Murphy et al., 1999]. The larger carrier

robots are frequently referred to as marsupial robots. One

of the first physical implementation of a marsupial system

was presented by Murphy et al. [1999] who also described

ad-hoc methods to deploy the smaller robot. Kadioglu and

Papanikolopoulos [2003] presented a further physical im-

plementation of a marsupial system. Rybski et al. [2000]

developed strategies to use marsupial systems for surveil-

lance. In their approach, small scout robots are deployed by

the marsupial robot to monitor individual rooms. Dellaert et

al. [2002] deployed a team of legged robots using a car-

rier robot in a rescue scenario. Denner and Papanikolopou-

los [2007] presented a deployment method for marsupial



4 Kai M. Wurm et al.

teams that explicitly considers power constraints. In all of

the previously described exploration systems, deployment

and retrieval of robots in marsupial teams is determined by

handcrafted methods. In contrast to that, the approach pre-

sented in this chapter explicitly takes these symbolic actions

into account when coordinating the exploration.

The approach presented in this paper employs domain

independent planning techniques to coordinate multiple

robots. Domain independent planning is a sub-field of artifi-

cial intelligence that has been investigated thoroughly [Fikes

and Nilsson, 1971; Bylander, 1994; Erol et al., 1995] using

methodes like action graphs [Gerevini and Serina, 1999],

planning as satisfiability [Kautz and Selman, 1992] and

heuristic state-space search [Bonet and Geffner, 2001].

A classical planning problem consists of a set of state-

variables with finite domains, an initial state, a set of actions

and a goal condition. An action is defined by a precondition

and its effects, which is a set of variable assignments. A so-

lution for a classical planning problem is then defined as a

finite sequence of actions that leads from the initial state to a

goal state. There exist several efficient planning systems for

classical planning problems [Bonet and Geffner, 2001; Hoff-

mann and Nebel, 2001; Chen et al., 2006; Helmert, 2006;

Richter and Westphal, 2010].

In multi-robot coordination, actions need to be executed

concurrently and they usually have variable durations. These

temporal constraints cannot be handled by classical plan-

ning approaches and constitute a new class of problems. The

task of finding solutions to these problems is known as tem-

poral planning and several efficient approaches have been

presented [Gerevini et al., 2008; Eyerich et al., 2009]. The

predominant approach of solving temporal planning prob-

lems is forward search with a search guidance function us-

ing A∗ or similar algorithms. Most approaches support the

use of numerical state variables. In contrast to binary and

multi-valued state variables, numeric state variables have an

infinite continuous value domain. While numeric state vari-

ables lead to undecidability even when used in a very lim-

ited form [Helmert, 2002], they are considered to be of high

importance when modeling real world domains. Temporal

planning is more complex than classical planning, which

is PSPACE-complete [Bylander, 1994]. Although the gen-

eral problem of temporal planning is EXPSPACE-complete,

wide classes are still in PSPACE [Rintanen, 2007].

While temporal planners generate sequences of abstract

actions, most real-world applications in robotics require ex-

plicit motion commands that can be executed by the robots.

For this reason, a number of approaches have been pro-

posed that integrate other reasoners, such as motion plan-

ners, to generate low-level actions. The work by Cam-

bon et al. [2009] focuses on the integration of manipulation

planning with a symbolic planner. Kaelbling and Lozano-

Perez [2011] address the problem of successor generation

c

e

Fig. 1 An exploring robot (e) has to explore both targets t1 and t2.

The path to t1 is blocked at b1 (dashed line). A clearing robot (c) can

clear the blockade.

during planning. They use so called suggesters that provide,

for example, new motion paths or goal locations. The work

described in this chapter uses the planner TFD/M [Dornhege

et al., 2009], a variant of the temporal fast downward plan-

ning system originally developed by Eyerich et al. [2009].

TFD/M provides a generic interface for the integration of

external modules that compute the values of state variables,

action costs, and numerical effects during the planning pro-

cess using sub-processes. By means of these sub-processes,

we combine temporal planning with path planners tradition-

ally used for robot navigation and coordination. The work by

Gregory et al. [2012] uses modules during planning to eval-

uate not only predicates, but also terms in first order logic.

Autonomous disaster recovery in partially known envi-

ronments, as introduced in this chapter, has not been studied

in depth. An auction-based coordination method as well as a

method based on genetic algorithms is presented by Jones et

al. [2011]. In their work, they coordinate a simulated team

of fire trucks and bulldozers leading to a coordination prob-

lem that is similar to the disaster recovery domain consid-

ered in this chapter. In contrast to our approach, however,

blockades are assumed to be known beforehand. It is un-

clear, how this approach can be extended to partially known

environments. Koes et al. [2005] described an approach that

employs mixed integer linear programming (MILP) to coor-

dinate a heterogeneous team in a search and rescue scenario.

In this domain, disaster victims need to be found and iden-

tified in a known environment. This task involves assigning

robots with different capabilities to appropriate tasks. Simi-

lar to our approach, path costs between target locations are

explicitly taken into account using a robotic path planner.

The static nature of the environment, however, allows all

paths to be pre-computed for the entire runtime. Such a pre-

computation is not possible in the case of partially known

environments.

3 Temporal Planning

Our approach employs a symbolic planning system to com-

pute actions for a team of robots. Algorithms for classical

domain independent planning generate plans that consist of

sequences of actions. There is a substantial body of literature
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on this topic and a description of planning algorithms can,

for example, be found in [Russell and Norvig, 2010]. In con-

trast to these classical planners, temporal planning systems

explicitly allow for concurrent actions. Consider the initial

state of the simple planning problem shown in Fig. 1. The

environment contains two targets t1 and t2 and two robots

e and c. The task is to explore both targets using robot e.

Robot c can clear the blockade b1 using the action (clear

c b1) and robot e can explore targets using, for example,

the action (explore e t2). Target t1 is blocked by b1

and cannot be explored initially.

A classical planner is able to produce a sequence of ac-

tions that solves the problem of exploring all targets. For

example the following plan is a valid solution:

(clear c b1)

(explore e t2)

(explore e t1)

This, however, is not the best solution to the task. The first

two actions are not dependent on each other, so they can be

executed in parallel. Temporal planning allows to express

such concurrent actions and would result in the following

exemplary plan

0.0: (clear c b1) [1.2]

0.0: (explore e t2) [2.0]

2.0: (explore e t1) [1.8],

where the actions are preceded by the start time and the du-

rations of actions are given in square brackets. For example,

(explore e t2) starts at time 0.0 and takes 2.0 time

units to complete.

In our approach, we define temporal planning problems

using PDDL 2.1 [Fox and Long, 2003], which is a language

for defining planning problems and allows for durative ac-

tions. Durative actions are an extension of classical plan-

ning actions. In addition to conditions and effects they allow

the problem description to specify an execution time. Note

that solutions to temporal planning problems do not define a

strict sequence of actions but merely a partially ordered set

and especially that actions might be executed in parallel.

In realistic planning problems, there will be restrictions

on which actions can be executed in parallel and which ac-

tions have to be completed before another action can be

started. These restrictions are modeled as conditions. More

precisely, a condition is defined as a tuple (C⊢,C↔,C⊣),

where C⊢ is a start condition that must hold at the start time

of the action, C⊣ is an end condition that must hold at the

end of the action and C↔ is an overall condition that must

hold during the execution of the action.

The effects of durative actions are specified in a similar

way. An effect is defined as a tuple (E⊢,E⊣), where E⊢ is a

start effect that is applied at the start of the action and E⊣

is an end effect that is applied at the end of the action. For

more details on the definition of temporal planning tasks we

refer to the work of Eyerich et al. [2009].

When coordinating a cooperative team of robots, spe-

cific tasks are assigned to individual robots. In most do-

mains, robots work in parallel. Still, their actions might de-

pend on each other, for example, when a robot is clearing a

path for another robot. Coordination problems that include

such cases can only be solved efficiently when the concur-

rency of the domain, but also interdependencies of robot

tasks, are accounted for. Temporal planning allows for the

specification of such conditions and is therefore well suited

for multi-robot coordination.

3.1 Planning Domain Definition Language

A wide range of problem types can be modeled as a gen-

eral planning problem, ranging from transportation prob-

lems and single-player games to general combinatorial prob-

lems. In recent years, the Planning Problem Definition Lan-

guage (PDDL) [Fox and Long, 2003] has been established

as the prevalent planning language.

To generate a PDDL task description, one needs to de-

fine (i) the objects involved in the planning process, (ii) the

predicates that define the state of the planner, (iii) actions

that change the state, and (iv) a start state and a goal con-

dition. We will give several examples of PDDL statements

in the following sections. The PDDL description then forms

the input to symbolic planners.

In our approach, PDDL is used to encode the coordi-

nation problem that has to be solved in a multi-robot sys-

tem. Based on this description, the temporal planner com-

putes concurrent actions for the team of robots. We use

PDDL/M [Dornhege et al., 2009], an extension to PDDL

that allows for the definition of external module calls. Using

this method, we combine symbolic planning and a robotic

path planner in our approach (see Section 3.3).

3.2 The TFD/M Planning System

TFD/M is a domain-independent progression search planner

developed by Dornhege et al. [2009]. It extends the tempo-

ral planner framework Temporal Fast Downward (TFD) by

Eyerich et al. [2009]. TFD in turn is based on a classical

planning system called Fast Downward that was developed

by Helmert [2006]. TFD extends the original system to sup-

port durative actions and numeric expressions while TFD/M

adds support for external modules.

TFD/M solves a planning problem in three phases: First,

the PDDL planning task is translated from its original

encoding into a more concise representation using finite-

domain variables. This is used by the planner to guide

the search by employing hierarchical dependencies between
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state variables and leads to an increased search performance.

In the second step, efficient internal data structures are

generated that are used by the search component and the

search guidance function. The most important ones are do-

main transition graphs for each variable that encode how

state variables can change their values and the causal graph

that represents the hierarchical dependencies between dif-

ferent state variables. Finally, a best-first progression search

is performed, guided by a numeric temporal variant of the

context-enhanced additive method [Helmert and Geffner,

2008].

In contrast to several other temporal planning systems,

TFD/M does not decompose the search into an action selec-

tion phase and a scheduling phase but searches directly in

the space of time-stamped states. This usually leads to plans

of significantly higher quality [Eyerich et al., 2009]. Note,

however, that the first plan that is generated by this method

is not necessarily optimal. This is because the search guid-

ance function is inadmissible, in other words, it does not

guarantee an underestimation of the true execution cost of a

plan.

TFD/M is implemented as an anytime algorithm that

does not terminate after the first solution is generated. It pro-

duces a potentially non-optimal solution quickly and then

prunes the search space to those time-stamped states which

can potentially be extended to solutions with a lower over-

all duration. If all states in the resulting state space are ex-

panded, the produced solution is guaranteed to be optimal.

3.3 Semantic Attachments in TFD/M

TFD/M features semantic attachments that are a means of

evaluating components of the planning task externally. This

is implemented as a module interface for predicates, numer-

ical effects, and durations. In our coordination algorithm, se-

mantic attachments are used to specify durations of actions

in the planning task description. Consider, for example, the

following module specification:

(costClear ?r - robot ?b - blockade cost

costClear@libcost module.so)

This defines a semantic attachment for cost computation (in-

dicated by the cost keyword) and is used to specify the

duration of actions. It has two parameters, a robot r and a

blockade b. To define a semantic attachment, a function call

is provided that performs the actual computation externally

(here, costClear@libcost module.so).

We can now use the semantic attachment defined above

to specify the duration of actions. The clear action in the

initial problem (see Fig. 1), for example, can be defined in

the following way:

(:durative-action clear

:parameters (?c - clearer ?t - blockade)

:duration (= ?duration [costClear ?c ?t])...

Note that the use of a semantic attachment is indicated by

squared brackets in the definition. For further details on the

implementation of semantic attachments in forward chain-

ing state space planners such as TFD/M, we refer the reader

to our previous work [Dornhege et al., 2009].

When the planner expands actions in the planning phase,

it detects semantic attachments and executes the associated

dynamic library calls. These external calls compute the ap-

propriate action costs. They are made exaclty at the same

time that a planner without modules would acquire the value

from the internal state. In our approach, for example, the

cost of navigation actions are computed by a robot path plan-

ner.

In the general case, those module calls can influence the

complexity of the system. Wide classes of temporal plan-

ning problems lie in PSPACE, while temporal planning is

EXPSPACE-complete [Rintanen, 2007]. The scenarios in

this paper belong to those classes, as they do not allow

the same action to overlap with itself. This means, that as

long as the sub-problem solved by a single module call is

in PSPACE, the complete system will retain its complex-

ity. This is due to the fact that module calls depend only

on the planner state, but not on other module calls. Thus,

once a module call is finished, its memory can be freed and

therefore no space is accumulated in memory. The numeric

planner used in this work fulfills this condition as it only

accumulates a polynomial amount of states – the grid cells.

4 Coordination of Heterogenous Teams of Robots Using

Temporal Planning

In the following, we will describe our coordination frame-

work for heterogeneous teams of robots. We assume that

to solve a given task, the robots have to move in the envi-

ronment and additionally need to perform symbolic actions.

In this context, symbolic actions are defined as actions that

change the state of the overall system but whose primary

purpose is not to change the position of the robots. Numeric

coordination approaches usually consist of a method to eval-

uate the utility of navigation goals and a target assignment

technique. Since it is unclear how we can translate symbolic

actions into a utility measure as it is used in numeric coordi-

nation approaches, we instead treat navigating to an explo-

ration target as an action in a symbolic planning system. In

our approach, the target evaluation and assignment modules

of numeric approaches are replaced by a temporal symbolic

planner, a method to generate a problem description for this
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Fig. 2 This figure shows an overview of the coordination system. Solid

arrows mark the control flow and dashed arrows represent data passed

between modules.

planner and a numeric path planner that is used to estimate

the path costs of navigation actions.

The architecture of our system is illustrated in Fig. 2. In

our approach, we assume global and unlimited communica-

tion between the robots and thus employ a centralized co-

ordination approach. Furthermore, all robots are assumed to

know their individual position. The team of robots provides

the sensor data and states of the platforms, such as their posi-

tions, current actions and navigation goals, to our centralized

coordination system. We use the sensor measurements and

poses of the robots to build a grid map of the environment.

From this map, we extract locations that are relevant for co-

ordination. In an exploration task, relevant locations would

be exploration targets that can, for example, be determined

using the frontiers approach [Yamauchi, 1997]. To execute

symbolic actions we furthermore extract positions at which

the actions need to be executed. If some of the robots were

able to open doors, for example, we would determine the

positions of doors in the map.

We solve the coordination problem of assigning actions

to the robots using the temporal symbolic planning system

TFD/M. From the current state of the robots and the lo-

cations we extracted from the map of the environment we

generate a problem description in PDDL. This description

serves as the input for the planner. Since the goal is to solve

the given task as fast as possible, we need to consider the

costs of traveling to navigation goals. To this end, we make

use of the modular interface of TFD/M to call a numeric

path planner for mobile robots. The numeric planner returns

the estimated path cost of reaching a goal position from a

given start position. Based on these estimates, the tempo-

ral planner is able to compute an efficient plan that solves

Fig. 3 Example of a marsupial robot team. A versatile but slow legged

platform is deployed by a faster wheeled robot. Courtesy of DFKI

Robotics Innovation Center.

Fig. 4 An exploring robot (white circle) has to choose between three

possible actions: explore target t1, explore target t3, or deploy a smaller

robot at m1 to let it explore t2 in the red area that it cannot explore

itself.

the mission goal. From the solution of the symbolic planner,

we extract actions and send them to the robots. The loop

depicted in Fig. 2 is executed constantly: Whenever new in-

formation about the environment arrives, for example, new

sensor data is perceived or one of the robots reaches a target,

we replan.

Some of the modules in our coordination framework are

specific to the application. Depending on which actions the

robots are able to perform, we need to adapt the PDDL de-

scription of the coordination problem. The possible actions

furthermore influence which locations we need to extract

from the map. In the following, we will present two applica-

tions and describe how to adapt the framework to them.

5 Coordination of Marsupial Teams

In the first application, we use our planning framework to

coordinate a team of marsupial robots. In such a team, one

group of robots, the carriers, are able to carry, deploy and

retrieve a group of other robots, the rovers. An example of

a real carrier and rover robot is depicted in Fig. 3. Here, a

versatile but slow legged platform is deployed by a faster

wheeled robot.

We assume that carriers and rovers have different navi-

gation capabilities and that certain areas of the environment

can only be explored by the rovers and others only by the

carriers. We furthermore assume that the robots are able to
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Fig. 5 Example of the costs that have to be considered. Dotted lines

illustrate the estimated path costs between the robot at position p and

the different target positions ti, the costs between meeting points mi

and robot or targets positions, and costs between target positions. For

the sake of better visibility, we did not display all costs in this figure.

determine which areas are traversable by which robot based

on their sensor observations, for example based on tech-

niques developed in our previous work [Wurm et al., 2009].

In our experiments, a marsupial team consists of n

carrier robots, where each carrier initially carries m rover

robots. The goal is to completely explore the environment,

that is, to cover the traversable area with the sensors of

the robots. Fig. 4 depicts a situation where a carrier has

to choose between exploring the environment itself and de-

ploying a rover in an area that it cannot reach. This illus-

trates the key challenges that the coordination method faces:

It needs to generate exploration targets, to assign robots to

those targets, and to schedule deployment and retrieval ac-

tions.

5.1 Target Locations and Cost Estimation

To identify potential target locations, a set of exploration tar-

gets T is generated from the partially explored grid map. In

addition to this, a set of meeting points M is determined.

These meeting points are situated at the border between

those parts of the environment that can only be traversed

by the rovers and the parts that can only be traversed by

the carriers. They are used for deployment and retrieval of

the rovers (see Fig. 5 for an illustration). To determine the

targets and meeting points a frontier extraction algorithm is

used as first described by Yamauchi [Yamauchi, 1997].

There are two basic types of actions a carrier can per-

form: exploring a target or visiting a meeting point to de-

ploy or retrieve a rover (see Fig. 4). While deployment and

retrieval are assumed to have constant costs, the cost of trav-

eling between two locations in the environment is defined as

the estimated travel time of a given robot. This cost depends

on the path length as well as on the traversability constraints

and travel speed of the corresponding robot. Let type be a

robot type (here: carrier or rover), x a location in the envi-

ronment and t ∈ {T ∪M} a target. We define the cost for

reaching t as:

Ctype(x, t) (1)

=







est. path cost(x, t) , if robots of type type

can reach t from x

∞ , otherwise.

Finally, the exploration task is assumed to be completed as

soon as the set of exploration targets T is empty.

5.2 Formulating the Exploration Problem as a Temporal

Planning Problem

To apply the coordination approach described above, we

need to encode the coordination problem that arises in a

given situation as a PDDL description. First, we define

which types of objects are involved. In the exploration sce-

nario, possible objects are robots that can be either rovers

or carriers and locations that can be meeting points or ex-

ploration targets. The corresponding PDDL statements are

given in Fig. 6 (left). Second, we specify the predicates that

are used to define the state. The major predicates we use to

describe the exploration problem are

(at ?r - robot ?x - location),

which describes that the robot r is at position x and

(on ?e - rover ?c - carrier)

which is used to determine whether a rover e is docked at a

carrier c. For each target t ∈ T , we also define if it has been

explored

(explored ?t - target).

Additionally, we use a numeric state variable

(num docked ?c - carrier)

that keeps track of the number of rovers that are docked at a

carrier c.

Third, the actions that change the state are provided.

We define four actions, namely dock, undock, move, and

explore. The actions dock and undock are used to de-

ploy or pick up a rover. They require that the carrier and

the rover are at the same meeting point, which is ensured

using the at predicate. For docking, the number of docked

rovers has to be lower than the carrier’s capacity and the ac-

tion changes a rover’s state from being at a meeting point to

being on a carrier (encoded using the on predicate).

The other two actions move and explore model the

possible motions of the robots. The move action moves a

robot to a meeting point for deployment or retrieval while

the explore action moves the robot to a target and ex-

plores it. To define the duration of the move and explore

actions, we employ the module interface of the temporal

planner. Instead of specifying a constant duration or a fixed

formula, we call an external module that determines the du-

ration of the action. In our setting, the external module is
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(:types

robot

carrier rover - robot

location

target meeting - location )

(:predicates

(at ?r - robot ?x - location)

(on ?e - rover ?c - carrier)

(explored ?t - target)

(can_explore ?r - robot ?t - target))

(:durative-action explore

:parameters (?r - robot

?s - location ?g - target)

:duration (= ?duration

[pathCost ?r ?s ?g])

:condition (and (at start (at ?r ?s))

(at start (not (explored ?g)))

(at start (can_explore ?r ?g)) ... )

:effect

(and

(at start (not (at ?r ?s)))

(at end (at ?r ?g))

(at start (explored ?g))

... ))

(:init

(at robot0 p)

(on robot1 robot0)

(can_explore robot0 t1)

(can_explore robot1 t2)

(can_explore robot0 t3)

)

(:goal (and

(explored t1)

(explored t2)

(explored t3)

))

Fig. 6 Examples of PDDL definitions. Left: definition of the types and predicates used in the coordination domain. Middle: definition of the

explore action. Right: example that shows how to specify the current state of the world for the TFD/M planner (see illustration shown in Fig. 4).

realized by an efficient path planner for mobile robots that

plans the optimal trajectory of the robot to the given tar-

get location based on the current occupancy grid map con-

structed by the robots so far. Fig. 6 (middle) depicts the

PDDL statements that describe the action explore. The

term[pathCost ?r ?s ?g] represents the call to the

external module. In our current implementation, we use Di-

jkstra’s algorithm for cost estimation as it allows to effi-

ciently compute the path cost from a given start position to

all goal positions. Finally, the initial state of the current plan-

ning procedure and the goal state are specified. For the situ-

ation depicted in Fig. 4, this is exemplified in Fig. 6 (right).

6 Coordinated Disaster Recovery

As a further application of the coordination approach de-

scribed in Section 4, we investigate teams of robots that op-

erate in a disaster recovery scenario. More specifically, we

assume that a known building is partially collapsed so that

paths within the building are blocked at unknown positions.

The goal is to visit a given set of targets in the building us-

ing a team of robots. In a real world application, the robots

could, for instance, provide high-resolution views of the sit-

uation, close a set of valves, or deploy a set of beacons. We

assume that there are two types of robots: exploring robots

that visit targets by performing a specific action at a given

location and clearing robots that are able to clear blocked

paths. Both types of robots are able to detect blockades using

their sensors. All robots are provided with a map of the en-

vironment that includes the mission targets. This prior map

does not, however, include blocked paths.

The key challenge in this scenario is to coordinate the

team of robots so that the exploring robots do not waste time

by waiting for blocked paths to be cleared. An illustration of

a typical situation in this problem domain is given in Fig. 1.

6.1 Target Locations and Cost Estimation

The initial mission map includes all target locations that

have to be visited. These locations are extracted by the coor-

dination module and stored in a set T = {t1, . . . , tn}. When-

ever a target is visited by one of the exploring robots, it is

removed from the set T and the mission map.

While the robots navigate in the environment they up-

date their maps using their sensors. Whenever a blockade b

is sensed, this information is distributed to all other robots.

The central coordinator keeps track of blockades in a set

B = {b1, . . . ,bm} which is used to coordinate the clearing

robots.

Furthermore, the coordination system maintains a repre-

sentation of the environment that is composed of the prior

building map and the set of blockades sensed by the robots.

This map is used by the robot path planner to plan collision

free paths for the team of robots and to estimate travel costs

during target assignment. It estimates path costs from a lo-

cation x to a target t ∈ {T ∪B} according to

C(x, t) (2)

=

{

est. path cost(x, t) , path from x to t traversable

∞ , path blocked.

This is an optimistic estimate, as we do not assume any

knowledge about where blockades may appear. When a

probabilistic model of blockades is given the path planning

problem can be formulated as the Canadian Traveller’s Prob-

lem [Papadimitriou and Yannakakis, 1991]. There exist ef-

ficient methods to solve this problem [Eyerich et al., 2010]

that can be used for the path cost estimation. Note, however,

that in our formulation blockades can be cleared and thus

this estimate would also not be optimal.

A disaster recovery mission is considered completed as

soon as the set of targets T is empty, that is, all of the targets

have been visited by an exploring robot.

6.2 Formulation as a Temporal Planning Problem

To apply our coordination approach to the disaster recov-

ery problem described above, we encode the system’s state

and possible actions using PDDL statements. This PDDL

description then serves as input to our coordination algo-

rithm as depicted in the system overview in Fig. 2.
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(:types

robot - object

clearer explorer - robot

location - object

free_location - location

mission_target - free_location

blockade - location)

(:predicates

(at ?r - robot ?x - location)

(cleared ?t - blockade)

(explored ?t - mission_target))

(:durative-action explore-from-blockade

:parameters (?r - explorer ?s - blockade ?g - mission_target)

:duration (= ?duration [pathCost ?r ?s ?g])

:condition (and (at start (at ?r ?s)) (at start (not (explored ?g)))

(at start (not (= ?s ?g))) (at start (cleared ?s)) )

:effect

(and

(at start (not (at ?r ?s)))

(at end (at ?r ?g))

(at start (explored ?g)) ))

Fig. 7 Examples of PDDL definitions used in the disaster recovery domain. Left: definition of the types and predicates. Right: definition of the

explore-from-blockade action.

First, we define which types of objects are involved. In

this scenario, the relevant objects are the robots that can be

either exploring robots or clearing robots and the map loca-

tions that can be mission targets or blockades. Fig. 7 (left)

shows the corresponding PDDL statements. Second, we

specify the predicates that we use to define the problem

states. The state in the disaster recovery problem can be

specified using

(at ?r - robot ?x - location)

which describes that the robot r is at position x,

(cleared ?b - blockade)

which describes that blockade b has been cleared, and

(explored ?t - mission target)

which describes that mission target t has been visited by an

exploring robot.

Third, we provide the actions that change the state of

the system. There are four kinds of movement actions: We

distinguish between actions that explore a mission target

and actions that have a goal position other than a mission

target. We furthermore differentiate actions whose start lo-

cation is a blockade and actions that start at a location in

free space. As an example, the PDDL definition given in

Fig. 7 (right) defines a movement action that explores a tar-

get starting from a blockade. It can be seen, that movement

actions which start at a blockade require the blockade to be

cleared before execution. All movement actions require the

robot to be at the start location and result in the robot be-

ing at the goal location. The costs of these actions are de-

fined as the estimated path costs and are determined via the

modular interface much the same as in the marsupial explo-

ration scenario. The goal location of all exploration actions

is a mission target t. Once such an action is executed, the

current state is changed so that the corresponding predicate

(explored t) is set to true.

Movement actions that start at a blockade have the addi-

tional precondition that the blockade is cleared.

In addition to exploration actions, we define a clear

action to coordinate the group of clearing robots. This action

expresses that a given blockade b is cleared by a clearing

robot that is positioned at the corresponding location. The

duration of the action is defined by the time the robot takes

to clear the blockade. In our experiments we assume that this

value depends on the size of the blockade. After the action is

executed, the predicate (cleared b) is set to true in the

current state. Finally, the initial and goal state are defined.

In the initial state, no blockades have been discovered and

none of the mission targets have been explored. The goal

state is defined as the state that describes all mission targets

as explored.

The coordination loop depicted in the system overview

(see Fig. 2) is executed continuously until the goal state is

reached. While the description of the actions remain un-

changed during consecutive planning cycles, the current

state of the system is updated to reflect the current state of

the system and the environment. The updated state descrip-

tion defines all robots to be at their specific locations and

blockades are added to the state whenever they are discov-

ered. Previously cleared blockades or targets that have been

explored are irrelevant to the current problem and thus are

ignored in the problem description.

7 Evaluation

The approach described in this paper has been implemented

and evaluated thoroughly using a multi-robot simulation

system. The experiments are designed to show that explicitly

planning symbolic actions leads to a significantly more effi-

cient coordination than using a heuristic extension of previ-

ous coordination approaches. We evaluated our coordination

framework in the two problem domains introduced in Sec-

tion 5 and Section 6. In addition, we show that our approach

is able to produce efficient coordination plans in reasonable

time and thus can be employed in a real-world system.

7.1 Simulation System

To evaluate our coordination approach quantitatively, we de-

veloped a simulation system that is able to simulate large

teams of heterogeneous robots. In our current system, we

also simulate laser range sensors. Sensor and odometry

noise are not considered since we focus on the coordination

aspects of the problems. The environment is modeled using
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Fig. 8 Simulated environments in the marsupial exploration experi-

ments: office (left) and maze (right). White areas can only be traversed

by carriers while red (dark) areas can only be explored by rovers.

Fig. 9 Visualization of a simulated run in the maze environment.

Robots are depicted as disks with id numbers and carriers are marked

by a white dot. Small circles depict exploration targets (red) and meet-

ing points (green). In this situation, rover 3 could be retrieved by carrier

0 or carrier 2 at any of the three meeting points in its vicinity.

a grid map with additional traversability information and se-

mantic annotations such as mission targets or blockades.

7.2 Exploration with Masupial Teams

We simulated teams of marsupial robots to evaluate our ap-

proach introduced in Section 5. The simulated environments

contain areas that can only be traversed by rovers and areas

that can only be traversed by carriers. The rover robots in

most real marsupial systems are considerably slower than

the carrier robots. In the evaluation we account for this dif-

ference by simulating carrier robots that are twice as fast

as rovers. Furthermore, the maximum sensor range of the

carriers is also twice as far as the sensor range of the rover

robots.

We evaluated robot teams of varying sizes and differ-

ent environments have been used in the simulation. Two of

the environments we used in our experiments can be seen

in Fig. 8. The office environment resembles a typical office

building with two corridors and a number of rooms. Some

of the rooms can only be explored by rovers, those are de-

picted as red areas in the maps. The second environment, in

the following referred to as the maze environment, features a

central area that can only be explored by rovers. In contrast

to the areas in the office environment, it has multiple meet-

ing points that can be used for deployment. A visualization

generated by the simulator is depicted in Fig. 9. It shows a

representative coordination problem where exploration tar-

gets as well as symbolic actions need to be considered.

To get an intuition of the extend of the environment, one

can look at the ratio between the size of the environment and

the maximum sensor range of the robots. In many real office

buildings, such as building 079 on the Freiburg campus, this

ratio is around 10 for a maximum sensor range of 4 m. The

ratio for the maze environment is 10.2 for rovers and 5.1 for

carriers. In the considerably bigger office environment the

ratio increases to 23.8 and 11.9 respectively.

In both environments, we simulated 30 exploration runs

with random initial robot positions. Exploration targets were

determined using the frontiers approach and neighboring ex-

ploration targets were clustered using visibility constraints

similar to the approach proposed by Burgard et al. [2005].

7.3 Baseline Approach

We compared our coordination algorithm to a heuristic ex-

tension of a method that assigns robots to target locations

based on cost estimates [Stachniss, 2009]. In this approach,

the Hungarian method is used to compute the cost-optimal

assignment of robots to exploration targets. To adapt this

method to the problem of exploration with marsupial teams,

we first assign the carriers to exploration targets independent

of whether they can access those targets or not. The assign-

ment is solely based on the estimated travel cost of the carri-

ers, ignoring traversability constraints in the estimation. The

rovers are then deployed as follows: Whenever a carrier is

assigned to a target that it cannot explore itself, it will move

to the nearest connecting meeting point and deploy a rover

there. This rover then explores the targets reachable from the

meeting point. As soon as it has finished exploring them, it

returns to the meeting point. In our experiments, we assume

a limited number of rovers per carrier. This will lead to situ-

ations in which a carrier needs to deploy a rover but has none

available. The baseline approach then requires the carrier to

first retrieve a rover.

The baseline approach as described above closely re-

sembles heuristic deployment rules that have been applied

in previous marsupial systems [Murphy et al., 1999]. Note

that the baseline approach could be improved by introducing

more complex reasoning. For example, it could anticipate

cases in which no rovers are available to a carrier and then

avoid assigning this carrier to targets that are only reach-

able by rovers. This would introduce additional state vari-

ables that the coordination system would need to maintain.

In fact, this kind of reasoning would approximate a planning

method such as the one we apply in our approach.
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Fig. 10 Exploration time obtained with our approach compared to the ad-hoc method in the maze environment (top) and in the office environment

(bottom) for varying team sizes (number of carriers and number of rovers per carrier). The error bars indicate the 95% confidence intervals.

7.4 Results

An overview of the results obtained in the experiments is

given in Fig. 10. It can be seen that our approach explores the

environment significantly faster than the baseline method in

all configurations. By considering deployment and pick-up

actions explicitly, our approach avoids long travel paths and

detours that result from the pick-up heuristic in the base-

line. In addition, it uses its larger planning horizon to plan

sequences of actions while the baseline approach computes

exactly one action per robot. Even though we execute only

the first action in the sequence, robots often are in a good

initial position for the next action.

Especially smaller teams of up to six robots profit con-

siderably from our coordination method. Larger teams can,

to some degree, compensate inefficiencies of the coordina-

tion when a good distribution in the environment is achieved

and many targets can be approached simultaneously. In the

settings we evaluated, this effect can be noticed when more

than three carriers are used. The number of robots for which

this effect occurs clearly depends on the structure and size

of the environment.

To evaluate the amount of unnecessary movement in

larger teams, we evaluated a further benchmark. We com-

puted the exploration quality according to [Zlot et al., 2002]

as

Q =
1

A

n

∑
i=1

di, (3)
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Fig. 11 Exploration quality in the office environment over 30 runs us-

ing two rovers per carrier. The higher the value, the better the coordi-

nation. The error bars indicate the 95% confidence intervals. Note that

similar results were obtained for the maze environment.

where A is the total area of the environment and di denotes

the distance traveled by robot i. This measure can intuitively

be understood as the average area each robot explores per

movement.

The results given in Fig. 11 show that our approach

reaches a significantly higher exploration quality. Especially

larger teams of robots are coordinated more efficiently, so

that unnecessary movements are avoided. The reason for this

improvement lies in the larger planning horizon of our ap-

proach compared to the baseline. Our approach anticipates

future states of the system, especially the position of the

robots, while the baseline approach computes actions solely

on the basis of the current state of the system. Avoiding un-

necessary movements is a significant advantage on its own



Coordinating Heterogeneous Teams of Robots using Temporal Symbolic Planning 13

since there usually is a direct correlation between the dis-

tance traveled and the power consumption of the vehicles. In

this way, our approach will save resources in larger teams.

7.5 Coordinated Disaster Recovery

To evaluate the performance of our coordination approach

in the disaster recovery domain, we simulated teams of ex-

ploring and clearing robots. While the exploring robots are

able to visit mission targets, the clearing robots are able to

clear blocked paths in the environment.

Several environments have been evaluated and two of

those can be seen in Fig. 12. The first environment resembles

a hospital with long corridors and a large number of rooms.

A set of 15 mission targets and 18 blockades are distributed

throughout the building. The ratio between the size of the

environment and the maximum sensor range of the robots is

27.05. The second environment is based on the blueprint of

a nuclear power plant. Here, 13 targets are grouped around

the two reactor cores and control rooms. Paths are blocked

at 58 locations throughout the building. The sensor ratio in

this fairly large environment is 65.9.

We simulated teams of one to four exploring robots that

are accompanied by one to four clearing robots. Simulated

clearing robots and exploring robots have the same maxi-

mum sensor range and driving speed. The time to clear a

blockade depends on its size and can be determined by the

robots using their sensors. For each team size, we simulated

30 runs starting at random positions.

7.6 Baseline Approach

We compared our coordination approach to an ad-hoc ex-

tension of a cost-based coordination method. In this base-

line approach, the exploring robots are assigned to mission

targets using the Hungarian Method similar to the approach

proposed by Ko et al. [2003]. Intuitively, this method as-

signs each exploring robot to the closest mission target while

avoiding to assign multiple robots to the same target. The

assignment process is repeated whenever one of the robots

reaches a target, a path is sensed blocked, or a blockade has

been cleared.

As soon as blockades are discovered in the environ-

ment, clearing robots are assigned to clear those blockades.

This assignment is determined using the Hungarian Method

based on the estimated travel time to the blockades. Note

that in the baseline approach, the coordination of the clear-

ing robots does not depend on the mission targets or the as-

signment of the exploring robots.
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Fig. 14 Time to visit all mission targets using our approach compared

to the result using the baseline method in the power plant environment

with 20% fewer blockades. The error bars indicate the 95% confidence

intervals.

7.7 Results

The results obtained in the evaluation of the disaster recov-

ery experiments are shown in Fig. 13. In the hospital envi-

ronment, our approach performed significantly better in all

simulated settings. By planning sequences of clearing and

exploration actions our approach is able to minimize the

time that clearing robots spent waiting for blockades to be

cleared.

Similar results could be obtained in the power plant

map. Due to the large extent of this map and the random

placement of start locations, there is a higher variance in

the overall runtimes. Using the paired t-test, however, a sig-

nificant improvement of our approach over the baseline ap-

proach could be shown in this map, too.

It is worth mentioning that a significant improvement

could not be shown for all simulated team sizes in the power

plant map when the number of blockades was reduced by

20% and the team size was small (in our experiments: one

explorer and two clearing robots). In this special case, the

independent assignment of clearing and exploring robots us-

ing the Hungarian method provided comparable overall run-

times (see Fig. 14). The low number of blockades enables

the baseline approach to simply clear all blockades indepen-

dent of whether the exploring robot needs a particular path

cleared. For this reason, our coordination approach does not

profit from its additional lookahead and the ability to plan

sequences of actions to the same degree as it does in the

more complex settings.

7.8 Planner Runtime

As TFD/M, the temporal planner used in our approach, can-

not guarantee optimality, we seek to determine close-to-

optimal plans. To analyze the tradeoff between planner run-

time and plan quality, we simulated a recovery mission us-
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Fig. 12 Simulated environments in the disaster recovery experiments: hospital (top) and power plant (bottom). Mission targets are visualized by

red dots, blockades are shown as blue lines. Gray areas can not be accessed by the robots. In the experiments, blockades were not known to the

robots a priori but could be detected by their sensors.
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Fig. 13 Runtime until all mission targets are visited using our approach compared to the result using the ad-hoc method in the hospital environment

(top) and in the power plant environment (bottom) for varying team sizes (number of exploring and clearing robots). The error bars indicate the

95% confidence intervals.
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Fig. 15 Average runtime until a plan is computed that is at most 5%

worse than the best plan computed until a timeout of 900 s is reached.

For this evaluation, three exploring and two clearing robots were coor-

dinated in the power plant map.

ing a team of three exploring and two clearing robots in the

power plant map. In this experiment, the planner was given a

maximum planning time of 900 s and we measured the time

until a plan was generated that was at most 5% worse than

the best plan found until the timeout was reached. The ex-

periment was performed on a 2.7 GHz AMD Opteron 2384

system using one core per task.

The result of this evaluation is shown in Fig. 15. It can be

seen that the number of planning targets (exploration targets

and blockades combined) has a dominant influence on the

planning time. It can also be seen that for a team size of

five robots the close-to-optimal plan can be found in less

than around 10 s as long as there are less than ten planning

targets. Note however that a feasible plan is usually found

much faster than the best plan and in all our experiments, it

was found within a 30 s planning limit.

7.9 Real World Application

In this experiment, we applied our approach to coordinate a

real team of robots. The team consisted of an ActiveMedia

Pioneer 2AT equipped with a tilting laser scanner (the ex-

plorer) and of a Telemax mobile manipulation platform (the

manipulation robot). The goal of the robots was to explore

an area which was reachable through a narrow passage that

only the exploring robot could traverse. In our experiments,

the passage could be free or it could be blocked by movable

obstacles. The explorer was able to detect such obstacles and

to inform the coordination module about the blockade. The

manipulation robot was able to grasp detected obstacles and

to remove them from the passage. Once the goal area was

reached by the exploring robot, it was explored by sweep-

ing its sensor to acquire a 3D scan and the mission was then

considered completed.

We solved the coordination problem using the approach

described in the disaster recovery application in Section 6.

A sequence of actions that was planned in a particular sit-

uation can be seen in Fig. 16. Here, the passage was first

blocked by an obstacle. The obstacle was then detected by

the exploring robot. The coordination approach assigned the

manipulation robot to clear the passage. After the passage

was cleared and the manipulation robot moved to a waiting

position, the exploring robot was able to reach the goal area

and complete the task.

8 Discussion

In this paper we presented a novel technique to coordinate

heterogeneous teams of exploring robots. We assumed that

to explore the environment, the robots have to move in the

environment and additionally are required to execute actions

such as removing an obstacle or operating an elevator. These

so-called symbolic actions stand in contrast to navigation

actions that move robots to a given goal position in order to

explore target locations. Our method integrates a symbolic

temporal planning system and a robotic path planner. This

combination allows our system to consider planning prob-

lems that include symbolic actions. To coordinate a team

of robots, we generate a symbolic description of the cur-

rent state of the system and of the goal state. These descrip-

tions serve as input to the symbolic planner. To solve the

coordination problem, the symbolic planner uses the path

planner to efficiently estimate travel costs for the robots. In

contrast to cost-based coordination approaches, our system

is able to explicitly plan for the execution of symbolic ac-

tions. Still, the use of action costs that are determined by

the robotic path planner allows us to generate time-efficient

solutions. In this way, our approach combines the strength

of cost-based coordination approaches with the flexibility of

symbolic planning systems. By planning symbolic actions

explicitly, the system is able to take into account actions

such as manipulation actions or deployment and retrieval of

robots.

The approach was implemented and evaluated exten-

sively in simulated environments. We evaluated two distinct

settings. First, we coordinated teams of marsupial robots

that were able to deploy and pick up smaller robots. Sec-

ond, we simulated a disaster scenario in which the task was

to clear blockades and to perform pre-defined actions at cer-

tain critical locations in the environment. A similar setting

was also investigated using a team of real robots.

The experimental results demonstrate that our approach

can effectively coordinate large teams of robots and sig-

nificantly outperforms handcrafted strategies. In addition to

that, our planning framework adds a substantial degree of

flexibility to the system. For example, additional constraints
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Fig. 16 Sequence of actions in real-world environment. The goal is to explore the area to the right of the robots. A narrow passage connects both

areas but is blocked by an obstacle. From left to right: the obstacle is detected by the wheeled robot, the obstacle is removed by the manipulation

robot, the manipulation robot returns to its initial position and the wheeled robot traverses the narrow passage to explore the target area.

such as power constraints for individual robots can be spec-

ified by adding adequate predicates to the problem descrip-

tion. Furthermore, other symbolic actions such as recharg-

ing batteries or deploying sensor nodes can be integrated in

a straightforward way.

8.1 Limitations of the Approach

The planning system described in this paper generates tem-

poral plans for the robots based on the current knowledge

about the world. We do not assume a model of the unknown

information and thus rely on an optimistic problem formu-

lation. While the robots move, their state changes and new

information about the environment is perceived. Therefore,

we execute the planning cycle (illustrated in Fig. 2) in a con-

tinuous loop. The symbolic planer is implemented as an any-

time algorithm that does not terminate after the first solution

is generated. It produces a potentially non-optimal solution

quickly and then improves upon this solution. If more than

one solution is found, we set the planning timeout to 30 s.

In the marsupial coordination setting, we evaluated our ap-

proach with up to 24 robots (6 carriers plus 18 rovers). For

significantly larger teams, however, the problem complex-

ity increases substantially and the solution reported by the

anytime planner after 30 s may be suboptimal.

The exact problem size that can be solved close-to-

optimally in a given planning time depends on the structure

of the problem and on the team size. The evaluation of the

planning time presented in Section 7.8 shows that the best

plan will usually be found in less than 10 s when coordinat-

ing a team of five robots in a disaster recovery mission with

up to ten mission targets. Many real-world scenarios will

feature a similar complexity.
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