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Abstract

Spatial understanding of the semantics of the surround-
ings is a key capability needed by autonomous cars to en-
able safe driving decisions. Recently, purely vision-based
solutions have gained increasing research interest. In par-
ticular, approaches extracting a bird’s eye view (BEV) from
multiple cameras have demonstrated great performance for
spatial understanding. This paper addresses the depen-
dency on learned positional encodings to correlate image
and BEV feature map elements for transformer-based meth-
ods. We propose leveraging epipolar geometric constraints
to model the relationship between cameras and the BEV by
Epipolar Attention Fields. They are incorporated into the
attention mechanism as a novel attribution term, serving
as an alternative to learned positional encodings. Exper-
iments show that our method EAFormer outperforms pre-
vious BEV approaches by 2% mloU for map semantic seg-
mentation and exhibits superior generalization capabilities
compared to implicitly learning the camera configuration.

1. Introduction

Robust perception of the surrounding environment is a
key component for enabling autonomous driving. Most au-
tonomous systems heavily rely on multi-modal sensor se-
tups to ensure the high safety demands. Recently, pure
camera-based perception for autonomous vehicles has been
a prominent research topic. Bird’s eye view (BEV) transfor-
mation methods using multiple cameras allow for a versa-
tile representation that can be used for various downstream
tasks such as map semantic segmentation [4,22, 36, 38,40]
or 3D bounding box detection [11,33,37]. The objective of
using BEV is to create a coherent and semantically mean-
ingful top-view representation of the environment by fusing
sensor features into a single representation with a shared
coordinate system [39].

One line of work for camera-only BEV perception di-
rectly projects [23] or samples [7] image features with the
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Figure 1. Our approach attends features of multi-view camera im-
ages to BEV features by computing Epipolar Attention Fields (top)
instead of leveraging learnable positional encoding for BEV se-
mantic segmentation (bottom), where we predict the drivable area
(dark grey) and vehicles (orange).

known camera parameters. In contrast, transformer-based
BEV projection approaches like CVT [40] and GKT [4]
learn the relationship between image features and BEV grid
elements by implicitly encoding camera parameters into the
positional embeddings.

For our approach, we propose to consider the BEV fea-
ture plane as an additional camera view and we reformulate
the mapping between image and BEV features as a multi-
view problem. A point projected onto the BEV grid plane
then corresponds to an epipolar line in the camera views.
We extend this explicit geometric relationship to epipolar
fields, which are a normal distribution imposed on the dis-
tance to the epipolar line. The epipolar fields allow us to
capture important neighboring features and to account for
the cell size of the BEV grid. We use the epipolar fields to



weigh the attention of the transformer and thus enable ex-
plicit geometric reasoning in the attention mechanism. This
eliminates the need for learning the geometric correlation
between BEV and image features as positional encodings.
Our approach is illustrated in Fig. 1.

As we do not rely on a learnable positional encoding,
our method can more easily adapt to new camera setups
and is more robust against changes in the camera param-
eters. This is advantageous as each vehicle model has a
slightly different camera setup. It is impracticable to retrain
the entire network from scratch but rather to fine-tune on
each camera setting. Experiments demonstrate that our ap-
proach significantly outperforms implicit positional encod-
ing for zero-shot transfer to a completely different camera
setting. Furthermore, the best-performing algorithms on re-
cent datasets do not necessarily generalize very well to se-
mantic map segmentation. As our experiments suggest, our
approach outperforms other transformer-based methods and
shows a strong generalization capability.

To summarize, our contributions are twofold:

e We leverage explicit geometric reasoning for
transformer-based BEV projection using Epipolar
Attention Fields (EAFs), eliminating the need for po-
sitional encodings. We integrate this idea into a BEV
semantic segmentation network called EAFormer.

* Experiments show that our approach outperforms
state-of-the-art approaches for semantic BEV predic-
tion and demonstrates strong generalization capabili-
ties on data collected with different camera setups.

2. Related Work
2.1. BEV-based Semantic Segmentation

Recent work on multi-view camera perception focuses
on projecting image features into a BEV representation,
which has been employed for different downstream tasks
such as map-based semantic segmentation.

To obtain a BEV representation, OFT [25] samples im-
age features for predefined 3D voxels and projects the
voxel volume by an orthographic transformation onto a
2D ground feature plane. Similarly, Simple-BEV [7] bi-
linearly samples image features for each voxel in an effi-
cient manner. Lift-Splat-Shoot (LSS) [23] and derivative
work [11,13,19,41] forward-project image features onto a
voxel volume using a categorical depth estimation and col-
lapse the accumulated features onto the 2D feature plane by
an efficient pooling operation. M?BEV [33] utilizes a uni-
form depth distribution and incorporates a joint training for
3D object detection. Further work extends the idea of LSS
to multiple timesteps and applies the view transformation to
perform motion forecasting [10, 39], incorporate paramet-
ric depth distribution [37] or employ residual graph con-
volutional networks [3]. Although depth uncertainty is ac-

counted for in the 3D-to-2D projection, forward-projecting
methods depend on the accuracy of depth estimation.
Other approaches project image features onto a BEV fea-
ture grid by computing attention [30] between BEV queries
and image features. To control the quadratic computation
demands, Saha et al. [26] attend the BEV queries to vertical
scanlines of the images. BEVFormer [14,36] leverages de-
formable attention to sparsely cross-attend BEV and image
features, while using past BEV queries for temporal fusion.
Cross-View Transformers (CVT) [40] utilize a
geometry-aware positional encoding to learn a corre-
spondence between camera coordinates and BEV grid
locations by computing cross-attention between BEV
queries and image features directly. Geometric-guided
Kernel Transformer (GKT) [4] limits the cross-attention
computation via a kernel function using the 2D projection
as prior. CoBEVT [34] extends the idea of CVT to
cooperative multi-agent map prediction and introduces a
hierarchical structure and a fused axial attention module.
BAEFormer [21] leverages early fusion of image and BEV
features by a bi-directional cross-attention mechanism.
For each hierarchical image feature map, the authors
cross-attend BEV queries with image features and, vice
versa, image queries with BEV embeddings. Although
PETR [17] employs instance queries in contrast to BEV
queries like CVT [40], it is important to note that PETR and
other approaches based on PETR [18, 35] also implicitly
encode the camera parameters into the positional encoding.
This is achieved by sampling a fixed number of 3D points
along the viewing ray for each image feature and feeding
these points to an MLP to compute the feature’s positional

encoding.
The idea of multi-view BEV transformation has been
further extended to a multi-modal setting [19,27,31,35,42]

as well as to multiple time steps toward temporal fu-
sion [6, 24]. In summary, attention-based methods aim to
leverage the superior modeling performance of transform-
ers. However, geometric relationships are often only im-
plicitly encoded, potentially leading to overfitting to the
camera setups. In contrast, this paper presents an approach
that explicitly encodes geometric relationships between the
image and BEV features.

Therefore, we combine the advantages of transformer-
based approaches with explicit geometric reasoning.

2.2. Epipolar Transformers

He et al. [9] leverage epipolar geometry in combination
with attention for multi-view 3D human pose and joint es-
timation. Given a 2D point p in a reference view, the aim
is to find the corresponding point p’ in a neighboring view.
The matching is obtained by computing attention weights
between the point p and sampled points p} along the pro-
jected epipolar line in the neighboring view. This is densely



repeated for all points p; in the reference view. As this work
only captures semantic information strictly along the epipo-
lar line, TransFusion [20] introduces the notion of epipolar
fields expressing a similarity based on the distance to the
epipolar line.

To the best of our knowledge, this paper is the first one
to leverage epipolar fields as an alternative to positional en-
coding and to exploit epipolar geometry for BEV perception
by guiding the attention with Epipolar Attention Fields.

3. Method

The goal of our multi-view BEV approach is to correlate
image features with BEV features to learn a versatile and
efficient representation for map-based semantic segmenta-
tion. As for CVT [40], we obtain image feature maps for
each camera and model the correspondence to BEV features
by iteratively aggregating image features using the cross-
attention mechanism. Instead of a learnable positional en-
coding, we employ Epipolar Attention Fields to explicitly
model geometric constraints and thus the spatial correlation.

To illustrate our idea, we will first introduce the multi-
view formulation for BEV settings in Sec. 3.1. Then, we
present our concept of attention weighting to attribute for
known relationships. As our main contribution for explicit
geometric modeling in transformers, we introduce Epipolar
Attention Fields in Sec. 3.3. We propose an architecture for
BEV-based semantic segmentation based on Epipolar At-
tention Fields, which we termed Epipolar Attention Field
Transformers (EAFormer), and which we explain in detail
in Sec. 3.4.

3.1. Multi-View Formulation

As our approach utilizes epipolar geometry [8] for atten-
tion weighting, we first provide a brief overview following
the notation introduced by Hartley and Zisserman [8]. We
denote the 2D BEV grid as an image plane of the 0-th view
with the projection center Op, which is infinitely far away
with parallel rays passing through the image plane. The
multi-view images are captured by IV cameras, each with a
projection center O,,,n € {1,...,N}.

Let x be a homogeneous representation of a 3D point
and xg be its 2D orthogonal projection onto BEV plane
respresented by homogeneous coordinates. Given the
height/depth ambiguity of this multi-view setting, all points
of the equivalence class of x, i.e., all points along the ray on
(Og,x), correspond to a line in the i-th image and can be
modeled by the essential matrix E;. A point x; in the i-th
view maps to point xg if

XiTEiX() =0 (1)

with 1; = E;x( being the epipolar line for the -th view and
point Xg.
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Figure 2. The BEV (grey) is considered the reference view for
epipolar geometry. We project each coordinate of the grid cell cen-
ter onto all other views. A given grid cell (red) thus corresponds to
the epipolar lines projected onto the source views 1 and 2. We im-
pose a normal distribution on the distance to the epipolar line and
obtain Epipolar Attention Fields, which are visualized as heatmaps
in the source views.

Thus, all points in 3D space that correspond to the point
Xo in the BEV plane, must project to a point on the epipolar
line 1; in view 4. Fig. 2 visualizes the multi-view formula-
tion.

3.2. Attention Weighting

As introduced by Vaswani et al. [30], the attention mech-
anism can be trained to learn the dependencies between
queries and keys/values. Since the attention computation
between queries () and keys K is permutation equivari-
ant, the position and sequence information is commonly en-
coded as positional encodings, which are added to the keys
and queries.

These positional encodings serve the purpose of learning
how positions of features correlate to each other yielding
high attention values for high correlation and accordingly
low attention values for little correlation. For BEV percep-
tion, physical or a priori knowledge about the correlation
between values/keys and queries can be incorporated into
the positional encoding implicitly [40].

We propose to eliminate the necessity of positional en-
codings for our multi-view setting and introduce attention
weighting as an alternative approach to explicitly ingest
known correspondence of values/keys and queries.

To this end, we introduce attention weights for the at-
tention computation. We define Q € R™*? and K,V €
R™ %4 where ng is the number of queries, ny, is the num-
ber of keys (which is equal to the number of values) and d
is the size of the keys, values and queries. Furthermore, we
define W € R™ %"k of which each element is the weight



for a query-key pair.
Then, we adapt the original attention function [30] by
incorporating the weights of W resulting in:

s gy Ly /Tk

where © is the Hadamard product. Rather than adding po-
sitional encodings to the keys K and queries (), we encode
the correlation between a key-query pair through the atten-
tion weights in matrix . Since a key corresponds to a
position in a camera image and a query corresponds to a
position on the BEV grid, we can use epipolar geometry to
express how well a key-query pair matches geometrically.

3.3. Epipolar Attention Fields

CVT [40] learns the matching between the keys and
queries by encoding the geometric information (i.e., extrin-
sics and intrinsics) into positional embeddings. However,
with multi-view geometry, we know an accurate correlation
between features in different views, as described in Sec. 3.1.
Features in one view must lie on or near the epipolar line in
the other view. To exploit this prior knowledge, we model
the geometric relationship with Epipolar Attention Fields,
which we use for attention weighting.

In this section, we describe how to compute the attention
weight matrix W based on Epipolar Attention Fields.

Consider the ¢’th query in @) and the k’th key in K. The
element W, ;. in matrix W represents the attention weight
for this query-key pair. Let ¢ denote the view from which
key k originates and x; denote the image feature position
(in homogeneous coordinates) corresponding to k. Given
the essential matrix E;, we project the BEV position corre-
sponding to query g onto the i-th view obtaining the epipo-
lar line 1;.

Ideally, a point in the i-th view must be exactly on the
epipolar line of a point from the BEV view if those two
points correspond to each other (i.e., Eq. (1) must hold).
However, similar to Epipolar Fields [20], we observe that
important features do not necessarily lie on the epipolar line
but in its vicinity. We, therefore, model the attention weight
Wy as a Gaussian over the distance between point x;
and epipolar line 1;. In this way, we impose high atten-
tion weights for x; near the epipolar line and low attention
weights for elements farther away. The distance between
point x; and line 1; can be computed by taking the dot prod-
uct of x; and 1;, where 1; is 1; after applying normalization
for homogeneous lines on it.

Based on the observations above, we propose the follow-
ing equation for the attention weight:

N2
Wik = exp (—()\/\q7i)2 (X,H) ) 3)

gL, oio

Figure 3. Epipolar Attention Fields for the front camera of
nuScenes. The grid (middle) visualizes the BEV cells that are visi-
ble to the front view camera. The imaginary location of the vehicle
is at the bottom center of the grid, facing upward. For illustrative
purposes, each BEV cell is visualized by the Epipolar Attention
Field heatmap of a corresponding query. Yellow indicates high at-
tention weights, while blue indicates low attention weights. For
three distinct BEV grid cells (red outline), we overlay the heatmap
with the actual input image showing the Epipolar Attention Field.

where A and A\, ; determine the width of the Gaussian dis-
tribution. The former, J, is a hyperparameter, which we call
the distance-strength parameter.

For the BEV cell corresponding to ¢ and an image fea-
ture map F, we define the Epipolar Attention Field (EAF)
to be the set of W, ;. weights for all £’s that correspond to
a feature in F. Fig. 2 visualizes the EAFs for a given BEV
cell and two different views/feature maps.

Due to the coarse BEV grid, cells of the BEV feature
map that are closer to the camera are farther apart from
each other than the epipolar lines of cells that are more dis-
tant from the camera. Our approach simplifies the mod-
eling of epipolar geometry. The projection of a BEV cell
to an epipolar line should be a projection to a line with a
certain width, rather than an infinitesimally wide line. For
autonomous driving, we assume that the camera’s principle
axis is approximately parallel to the BEV plane. Thus, the
projection of such a cell can be approximated by a line with
a constant width. The width of this line depends on the rel-
ative distance of the BEV cell to the camera, the cell’s size
and the camera calibration. Furthermore, the approxima-
tion with constant width can also account for minor inaccu-
racies, such as those encountered when driving uphill. For
this reason, parameter )\, ; is used to scale the width of the
Gaussian depending on the distance of the BEV cell corre-
sponding to query ¢ and the origin of the 7’th camera. We
can adjust the width of the relative distance by the A\, which
is either a pre-defined or a trainable parameter. This princi-
ple is shown in Fig. 3 for various locations in the BEV grid.

3.4. Architecture

Based on the idea of attention weighting and Epipolar
Attention Fields (EAFs), we propose EAFormer, which is
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Figure 4. An illustration of our EAFormer architecture. For each input image, we obtain multi-scale image feature maps. We compute the
Epipolar Attention Fields (EAF) based on the image feature coordinates, the BEV feature grid coordinates, and the camera parameters. The
Epipolar Transformer Encoder attends the BEV grid queries to the image feature iteratively over the multi-scale resolutions and weights
the output by the EAF. A semantic head (decoder) upsamples the output of this attention-based encoding and predicts the final output.

a network architecture that can solely rely on the EAFs for
spatial correspondence. The architecture of our network is
depicted in Fig. 4. For each image view, the image back-
bone outputs multi-scale image feature maps.

For each pair of BEV grid position and image feature
map, we compute the EAF. The Epipolar Transformer En-
coder iteratively attends the BEV grid queries to the multi-
scale feature maps and weights the attention output with the
EAF. The cross-attention does not rely on a positional en-
coding since the EAF encodes the spatial relationship. Fi-
nally, a decoder network upsamples the BEV feature map to
the final BEV grid resolution and outputs semantic masks.

4. Experiments

For the experiments, we consider the tasks of map and
vehicle segmentation. Map segmentation refers to predict-
ing a semantic mask for the drivable area, while vehicle
segmentation refers to segmenting the orthogonal projec-
tion of vehicles onto the ground plane. In line with pre-
vious work [10,23,40], our output BEV grid size is set to
200 x 200 cells with a resolution of 0.5m per cell, thus
corresponding to a 100 m x 100 m area around the vehicle.
The network performs a per timestep prediction without the
utilisation of past frames. The advantages of our primary
contribution, the Epipolar Attention Fields, are comprehen-
sively outlined in our ablation studies.

4.1. Datasets

Our experiments are performed on the autonomous driv-
ing datasets nuScenes [|] and Argoverse 2 (AV2) [32].

nuScenes contains 1,000 scenes with multi-modal (camera,
radar, LiDAR) measurements with 3D bounding box an-
notations and semantic maps. The scenes are captured in
Boston and Singapore. Each scene is approximately 20 sec-
onds long. Similarly, Argoverse 2 (AV2) [32] provides data
for 1,000 sequences, each composed of multiple timesteps.
It was recorded in six major cities in the US and contains
thirty object categories. For our experiments, we use the
data from the six cameras for nuScenes and the data from
the seven ring cameras for AV2. For the vehicle segmenta-
tion task, we follow Zhou and Krihenbiihl [40] and project
all 3D bounding boxes orthographically onto the ground
for all instances that belong to the superclass vehicle. The
ground truth is composed of a binary mask that segments
the map into foreground (vehicle) and background. This
mask is defined for the BEV area in ego vehicle coordi-
nates. As done for most of the previous work on nuScenes,
we only consider vehicles that have an appearance visibil-
ity >40% as annotated in the dataset. Inherent to vision-
based approaches is the correlation between the distance of
a vehicle to the ego vehicle and the accuracy of its esti-
mated location on the map. Furthermore, for the application
of autonomous driving, we may have stronger requirements
on the accuracy for near-distance vehicles than for vehicles
that are farther away. We therefore also evaluate the vehi-
cle segmentation task for different 10m-ranges of distance
to the ego vehicle.

Additionally, we conduct cross-dataset experiments, i.e.,
we train the model on one dataset and evaluate it in a zero-
shot transfer setting on data from another dataset. This



Table 1. Comparisons with state-of-the-art methods on the
nuScenes validation set. We report the mloU for semantic seg-
mentation of the drivable area (drivable) and the orthogonal ve-
hicle projection (vehicle). LSS uses visibility > 0%, all others use
visibility > 40%.

t: Approach uses additional sensors, temporal information and/or
a significantly larger backbone.

Drivable Vehicle
LSS [23] 72.9 32.1
FIERY static [10] - 35.8
CVT [40] 74.3 36.0
MZ2BEV [33] 77.2 -
GKT [4] - 38.0
BAEFormer [21] 76.0 38.9
EAFormer (ours) 78.0 39.0
BEVFormer (S) [14]f 80.7 432
BEVDepth [13]" 82.7 45.0
BEVFusion [19]" 85.5 -
PETRv2 [18]} 85.6 46.3

means that the model has not seen any samples from the
target dataset during training and therefore the model may
be exposed to a domain shift during cross-dataset evalua-
tion. Furthermore, recent research [15, 38] has shown that
the locations of nuScenes driving scenes used for training
and validation overlap by more than 80%. This data leak-
age stands in conflict with the common practice of having
disjoint sets of training and validation samples. To address
this issue, the authors propose new splits with a set of non-
overlapping locations. We conduct experiments with the
data split proposed by Yuan et al. [38].

4.2. Implementation Details

The input images are resized to 224 x 480 pixels in
line with GKT [4]. We maintain the image ratio by crop-
ping the image from the top accordingly. Images taken by
front camera of the AV2 dataset are in portrait mode and
thus we do not preserve its original aspect ratio for resizing.
As image backbone, we follow CVT [40] and make use of
EfficientNet-B4 [29]. By default, we use backbone image
feature maps at scales of 1/4 and 1/16 for training as done
by previous work [4]. We employ an Atrous Spatial Pyra-
mid Pooling (ASPP) [2] semantic segmentation head for the
map and vehicle prediction. The training and evaluation are
performed in the MMDetection3D [5] framework and we
selectively use pixel augmentation. Following CVT [40],
we use AdamW [12] optimizer with one-cycle learning rate
scheduling [28] and employ focal loss [16] for the segmen-
tation loss. The networks are trained on 4 GPUs with a
batch size of 4. If not otherwise mentioned, we train for
30 epochs. The Intersection-over-Union (IoU) between the

Table 2. Cross-dataset evaluation for AV2 and nuScenes. The
experiments show the influence of changes in camera parameters
for different camera setups in a zero-shot transfer setting. Meth-
ods are trained on the source dataset and then they are evaluated
on the target dataset without retraining. We denote the zero-shot
transfer from source dataset to target dataset as: source dataset
— target dataset. AV2* is the AV2 dataset where the front-left
stereo camera was used instead of the front ring camera.

Training EAFormer
Epochs CVT [40] (ours)
nuScenes 12 34.31 38.18
— nuScenes 30 36.69 38.98
AV2 12 38.00 38.66
— AV2 30 38.47 39.60
AV?2 12 30.92 32.99
— AV2* 30 31.21 33.91
nuScenes 12 7.78 19.72
— AV2 30 7.86 14.00
AV?2 12 3.07 12.17
— nuScenes 30 2.70 11.44

predicted and the ground truth semantic maps serves as the
evaluation metric. The hyperparameter A controls the dis-
tance strength of the epipolar fields, i.e., the width of the
distribution with respect to the distance to the ego vehicle.
In Sec. 4.4, we examine the influence of the choice of A and
different feature map resolutions. For all other experiments,
Ais set to 1.0.

4.3. Results

Tab. 1 compares our model to prior work on the original
dataset split. Our approach outperforms other camera-only
methods by over 2% mloU for semantic segmentation of the
drivable area. Our EAFormer surpasses the original CVT by
almost 4%. For vehicle segmentation, our method performs
on par with the recent work BAEFormer [21]. In addi-
tion, we present results for other approaches [13, 14,18, 19],
which leverage temporal and/or multi-modal data and em-
ploy significantly larger backbones and/or input resolution.

In Tab. 2, we present the cross-dataset evaluation for
our method and compare it to a re-implementation of CVT
with our settings to demonstrate the ability of the models
to transfer to unseen camera setups. As previously men-
tioned, the network is trained for the specified number of
epochs on the source dataset. Its performance is then eval-
uated in a zero-shot setting on the target dataset. After
training on AV2, CVT’s ability to segment vehicles de-
creases significantly compared to its performance on the
source dataset. This suggests that CVT does not adapt well
to different camera setups because the positional encod-
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Figure 5. Visualization of zero-shot transfer performance of EAFormer and CVT for vehicle segmentation. The models were trained on

Argoverse 2 (AV2) and evaluated on nuScenes.

Table 3. Performance comparison for different splits. We report
the mloU for semantic segmentation of the drivable area for the
original nuScenes data split and the disjoint split without data leak-
age [38]. Both models were trained for 30 epochs.

Table 4. Ablation about architecture components. A reimple-
mentation of CVT [40] serves as baseline. We report the perfor-
mance for drivable area and vehicle segmentation for the original
nuScenes split.

‘ CVT [40] EAFormer (ours) Vehicle Drivable
Original Split 76.02 78.04 Baseline 36.69 76.02
New Split 54.23 58.06 + ASPP 37.39 77.14
Diff. 2179 -19.98 + epipolar attention weighting 38.47 77.85
rerence ‘ — pos. encoding 38.98 78.04
+ different feature map scales 38.19 78.89
ing is learned for a fixed set of camera parameters. How- + learnable distance strength 38.25 79.28
ever, our approach also experiences a considerable reduc- + pixel augmentation 38.37 79.54

tion in performance for the cross-dataset evaluation. We
attribute the performance difference partially to the domain
shift of the data in the different datasets. When compar-
ing nuScenes as the source dataset and AV2 as the target
dataset, we also observe a substantial performance degra-
dation of CVT, while EAFormer retains a stronger perfor-
mance. In conclusion, our approach, EAFormer, demon-
strates approximately twice the performance for the trans-
fer from nuScenes to AV2 and approximately four times the
performance for the transfer from AV2 to nuScenes. Qual-
itative results for the zero-transfer for CVT and EAFormer
are depicted in Fig. 5. To assess the model’s adaptability
while avoiding domain shift between AV2 and nuScenes,
we evaluated models trained on the AV2 dataset using a
modified AV2* dataset. In this modified dataset, we re-
placed the front ring camera with the single front-left cam-

era from the two stereo cameras. The result can be found
in Tab. 2. As in the previous case, EAFormer demonstrated
superior performance compared to CVT.

We further compare the performance differences not
only for map segmentation on the original nuScenes data
split, but also report the performance for the new disjoint
split. Tab. 3 shows the results for the different splits. The
performance of both approaches is markedly diminished.
However, the decline in EAFormer is less severe, thereby
indicating superior generalization behavior. With these ex-
periments, we highlight the issue of outputting overconfi-
dent predictions for occlusions, e.g., due to densely pop-
ulated scenes. The vehicle-segmentation performance of
CVT and EAFormer for different distance-to-ego ranges is



Table 5. Distance-based evaluation (mloU) for vehicle segmentation on nuScenes.

‘ Epochs ‘ 0-10m 10-20m  20-30m 30-40m 40-50m ‘ mloU
CVT 12 67.28 53.01 37.42 22.60 11.02 34.02
EAFormer (ours) 12 68.59 55.33 40.93 27.54 16.42 36.70
CVT 30 68.62 55.38 40.37 26.85 15.44 36.69
EAFormer (ours) 30 71.53 57.64 41.76 30.8 18.71 38.98

Table 6. Ablations about the image feature map resolution scales.

Res. Scale Factors Vehicle Drivable
(1/8), (1/16) 37.62 76.98
(1/4), (1/16) 38.76 78.04

(1/4), (1/8), (1/16) 38.13 77.91

(1/8), (1/16), (1/32) 38.19 78.89

presented in Tab. 5. For both models, far-range perception
is inherently more challenging as the mloU decreases for in-
creasing distance. However, EAFormer demonstrates better
performance for far-range perception compared to CVT.

In summary, our evaluation suggests that our method
yields competitive results for BEV semantic segmentation
for drivable area and vehicles using Epipolar Attention
Fields. Moreover, it demonstrates better generalization
to unseen data and is more adaptable to new camera set-
tings. Further experiments for AV2 can be found in the sup-
plementary materials, where we additionally replaced the
front-view camera with the stereo camera.

4.4. Ablation studies

We employ CVT [40] as our baseline network to quan-
tify the improvements for the individual elements of our ap-
proach. Given the slight difference in image size, we repli-
cated better results for CVT that were reported in the origi-
nal publication.

Tab. 4 shows the influence of different design decisions
for both tasks. It shows that our main contribution, the use
of Epipolar Attention Fields to weight attention, results in
a significant performance boost. Additionally, removing
positional encodings from the training process further im-
proves performance. The results demonstrate the benefits of
explicitly modeling spatial relationships with Epipolar At-
tention Fields as part of our EAFormer architecture for this
application. The performance for segmentation of the driv-
able area can be improved by selecting the backbone image
feature maps of scales 1/8, 1/16, and 1/32. Additionally,
learning the distance strength parameter during training and
using pixel augmentation yield minor increases in perfor-
mance for drivable map segmentation. Despite this im-
provement, we emphasize that these minor model changes

Table 7. Ablations about the distance strength parameter \.

Distance Strength A Vehicle Drivable
1.0 38.76 78.04
1.4 38.00 77.65
learnable 38.77 78.10

may promote overfitting for map segmentation, as the per-
formance for vehicle segmentation decreases slightly. Vi-
sualizations for the qualitative differences in segmentation
performance of the same network trained on the two dif-
ferent splits are depicted in the supplementary materials.
The influence of the resolution scales of the image feature
maps is further illustrated in Tab. 6. Using more but smaller
feature map scales does not significantly change the perfor-
mance while using only smaller feature map scales degrades
segmentation performance.

We also ablate about the distance strength parameter A
in Tab. 7. Learning the distance strength leads to a minor
performance gain, while it will degrade the performance for
large values. If the distance strength is too small, the Epipo-
lar Attention Field will not capture all relevant semantic
content. If the value is too large, performance will degrade
due to imprecise spatial correlation.

5. Conclusion

In this paper, we presented a novel approach to en-
code the spatial relationship between images and BEV
grids with Epipolar Attention Fields. This allows us
to explicitly model known geometric correspondences
into a transformer-based BEV model, which we termed
EAFormer. The experimental evaluation indicates that
weighting the cross-view attention with Epipolar Attention
Fields outperforms methods that relate camera and BEV
features with learned positional encodings. The results also
support the claim that our method generalizes better, high-
lighting its capability to better transfer to entirely new cam-
era setups with different extrinsics and intrinsics. In future
work, we anticipate that the integration of temporal infor-
mation from sequences of camera images can be similarly
realized through the imposition of geometric constraints on
the location of cameras.
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