
A Comparison of Particle Filter and Graph-based Optimization for
Localization with Landmarks in Automated Vehicles

Daniel Wilbers1 Christian Merfels1 Cyrill Stachniss2

Abstract— It is an essential capability of mobile robots and
automated vehicles to localize themselves in a map. Multiple
state estimation techniques exist to this end, and it is often
unclear which one to employ. In this paper we compare two
prominent techniques in the context of automated vehicles:
particle filters and graph-based localization. The latter is
the state-of-the-art approach to simultaneous localization and
mapping, and is also superseding the particle filter as the state-
of-the-art for pure localization. We compare both algorithms to
show why. For both state estimation algorithms, we detect pole-
like objects in laser scanner data and compare them against
a prebuilt landmark map. The main novelty of this work
is the experimental comparison on a real prototype vehicle.
Furthermore, we discuss the different advantages of both
algorithms in the context of automated driving and additionally
show how both approaches can adapt their computational
demand to the available resources at runtime.

I. INTRODUCTION

Localization is a fundamental task for mobile robots.
Particle filter localization [1], [2] (often called Monte Carlo
localization) is a highly popular approach in the mobile
robotics community. For simultaneous localization and map-
ping (SLAM) approaches, the focus has clearly shifted in the
last years from using Rao-Blackwellized particle filters [3]
towards graph-based approaches [4], [5]. However, this can-
not be said for pure localization approaches. The majority
of these approaches seem to be implemented with either a
Kalman filter variant or a particle filter. Only recently a few
graph-based localization approaches were presented [6], [7].
The question is therefore: is it beneficial for pure localization
approaches to prefer the graph or particle filter paradigm?

In this paper we provide insights and experiments to
compare these two. Fig. 1 illustrates both concepts. Our
investigation focuses on the application in automated vehi-
cles. Nevertheless our findings are in principle transferable
to other domains.

Localization is a prerequisite for interpreting information
stored in maps. This information is beneficial for navigation,
path planning, and perception. If we want to be able to make
use of this map information, then we need to be able to
localize with respect to the map. Thus, in this paper we focus
on the problem of map-based self-localization in the context
of automated vehicles.

Nowadays, Global Navigation Satellite Systems (GNSS)
are commonly used for the localization in road vehicles. The

1Daniel Wilbers and Christian Merfels are with Volkswagen Group Re-
search, Wolfsburg, and Institute of Geodesy and Geoinformation, University
of Bonn, Germany.

2Cyrill Stachniss is with Institute of Geodesy and Geoinformation,
University of Bonn, Germany.

(a) Particle filter (b) Graph-based localization

Fig. 1: Localization problem in the same situation solved with
two different approaches. (a) Particle filter. The color of a particle
represents its current weight. If a weight is high the color ranges
from green to yellow. Recovery particles from GNSS receive a
low weight (red). (b) Sliding window graph. Finding matches
(red crosses) between landmark observations (green dots) and
map landmarks (blue crosses) allows us to constrain the vehicle
trajectory (black triangles). The connections (gray lines) illustrate
from which poses a landmark was observed. The current vehicle
pose is depicted as a gray rectangle.

most accurate of these systems combine Inertial Measure-
ments Units and Real-time kinematics to achieve centimeter-
level results. Besides their great costs, satellite based systems
suffer from strong multipath and blocked line of sight effects
especially in urban scenarios. A common approach for highly
available localization in scenarios without or limited satellite
reception is to use landmark-based localization techniques
which we investigate in this paper. We rely on pole-like ver-
tical objects as landmarks which are for example lampposts,
round pillars, vertical trees, and similar structures. Compared
to using raw sensor data maps (e.g., point clouds), semantic
landmark maps are easier to inspect for correctness, require
smaller storage and thus are faster to process. It is possible to
choose a different kind of landmark type for other domains
without contradicting the general findings of this paper.

The main contribution of this paper is a comparison of
particle filter and graph-based localization in the context of
automated vehicles. We discuss the characteristics of both
algorithms and investigate three key aspects in the context
of automated driving: (i) accuracy, (ii) adaptive behavior
in terms of computational resources, and (iii) benefit of
estimating old poses.

We experimentally evaluate these questions on data gath-
ered on a real prototype vehicle.



II. RELATED WORK

Map-based localization is typically either carried out as a
standalone approach by comparing sensor against map data
or as part of a SLAM approach. The usual state estimation
machinery for this encompasses extended Kalman filters
(EKFs) and their variants, particle filters, and graph-based
approaches, which nowadays can be considered state-of-the-
art. Stachniss et al. [5] review these three methodologies. We
also refer to the work of Cadena et al. [8] for a recent and
to Durrant-Whyte and Bailey [9] for a general overview.

Pure localization has also started off by being approached
with Kalman filters, and continues so successfully for certain
applications. Similarly to SLAM, particle filters have been
introduced and used in the last two decades. However, few
approaches propose map-based localization with graph-based
systems.

Lundgren et al. [10] use camera and radar detections
of landmarks for map-based self-localization with a par-
ticle filter. One of their main findings is that both sens-
ing modalities are needed for a robust and precise result.
Deusch et al. [11] focus on detecting lane markings and
road paintings in grayscale camera images and laser scanner
data. Their particle filter compares the detections to a self-
built map and computes a global pose estimate. Similarly to
Lundgren et al., they find that using both sensing modalities
increases robustness and reliability at the expense of a
higher computational cost. Spangenberg et al. [12] detect
poles in stereo camera images. These are used in a coupled
particle and Kalman filter setup to estimate the current
vehicle pose by comparing them against a prebuilt map.
They favor poles as type of landmark because they are
distinct and long-term stable. Moreover, they can be reliably
detected and efficiently stored. In a similar line of thinking,
Brenner [13] proposes to use pole landmarks for global
localization. Schlichting and Brenner [14] apply this system
on a vehicle with an automotive-grade lidar. Schindler [15]
approaches the localization problem by fusing camera-based
lane marking and lidar-based pole detections with a particle
filter. The measurement model employs prototype fitting to
estimate the likelihood of the detections given the map.
Interestingly, the approach by Levinson et al. [16] generates
maps with a graph-based SLAM system, while a particle
filter is employed for localization. Wu et al. [7] presented
a localization approach based on graph optimization using
camera and lidar data. In comparison to their work, our
graph-based approach benefits from a different association
strategy as well as grid independent landmark detections.
Recently, Harr et al. [6] presented a pose graph approach
using gray-scale cameras. Our graph-based approach uses a
different association strategy and relies on different sensors
resulting in a more accurate system.

An initial version of our particle filter is described by
Stess [17]. Our graph-based localization approach is built
on the foundation of a pose fusion system [18], [19] and
our related work et al. [20]. We briefly summarize both
approaches in Sec. III.

III. LOCALIZATION

Map-based localization aims to estimate the current pose
of the robot with respect to the map. The pose is defined as
the two-dimensional location and orientation xt = [x, y, θ]>

within the coordinate frame of the map. To this end, we
take the measurements zt = [zo, zg, zl]> into account. Here,
zo denotes the measured odometry. We assume that the
velocity and yaw rate measurements have already been
preprocessed with an appropriate motion model into a rel-
ative movement vector zo = [∆x,∆y,∆θ]>. The vector
zg = [xg, yg, θg]> denotes the global pose estimate from
the GNSS receiver. The landmark detections are stored in
the vector zl = {[xlk, ylk]>}Kk=1. We compare them against
the landmark map m = {[xmi , ymi ]>}, which is in world
coordinates. As each landmark is reduced to two coordinates,
the map can be stored efficiently. Its size remains small even
for large environments compared to typical feature or point
cloud methods.

The goal in vehicle localization is to estimate the most
likely vehicle pose x∗t given the measurements and the map.
Formally, we seek to compute

x∗t = argmax
x

p(xt|zt,m). (1)

While both estimation algorithms, the particle filter and the
graph-based localization, contribute to this goal, they employ
different methods to achieve it.

A. Particle filter

The particle filter is a nonparametric Bayesian filter that
represents its posterior distribution via a set of hypotheses.
Each of these hypotheses is called a particle and consists
of a weighted estimate of the vehicle’s location and orien-
tation. Therefore, the state is represented as a set of M
particles S = {〈xi, ωi〉}Mi=1, where each particle has a
weight ωi. The sum of all weights is equal to one. This
set of weighted samples can represent arbitrary probability
distributions given enough particles. We sample S0 initially
from a large Gaussian distribution around the pose estimate
zg computed by low-cost GNSS receiver. Subsequently, the
particle filter algorithm estimates St at time t based on its
previous estimate St−1. The main steps of a particle filter
are motion update, importance weighting, and resampling.

We refer to Thrun et al. [21] for a detailed derivation
of these steps. Important for our real-world application is
that we use 1% of the available particles to add recovery
particles sampled around the GNSS pose estimate. This
is, for example, useful when we drive for some time in
unmapped areas and reenter mapped areas.

An important design question is when to resample. The
naive approach to resample in every step can lead to issues
regarding state diversity and accidentally dropping good
hypotheses. One common idea to counteract this is to decide
when to resample based on the criterion of effective number
of particles [22]. While this yields reasonable results, we
have observed even better results with taking into account



the history of the particle weights. For this, we compute
with

ωi
t = α · p(zlt|xi

t,m) + (1− α) · ωi
t−1 (2)

the exponential moving average of the particle weight. The
idea is to prevent low weights for good particles at the
current time step due to false positive detections, if they have
obtained high weights in the past.

To obtain a single vehicle pose as output of our particle
filter, we fit a Gaussian distribution to the particle cloud,
i.e., we take the weighted mean of the particle poses. Other
choices, such as taking the particle with the maximum weight
or clustering the particle set, are also possible.

B. Sliding window graph-based localization

The optimization-based localization can be represented as
a factor graph. While measurements zi and their correspond-
ing covariance matrices Σi can be seen as factors, state
variables are denoted as nodes similar to e.g. [23]. In our
approach the state vector x̃ =

[
xp xl

]
is a sliding win-

dow with length n of vehicle poses xp
t−n+1:t. Additionally

it contains all landmark estimates xl. Although including
landmarks into the estimation is unusual in common pose
graph localization approaches, the benefits of our approach
are easy visual inspection and predominantly the ability to
refine landmark maps. As updating a map in the context
of automated driving may affect safety requirements, we
store the updates separately for later inspection. The update
process itself is not part of this paper as we focus on pure
online localization.

Assuming Gaussian distributions and i.i.d. measurements,
we represent (1) as a weighted least squares problem similar
to [24]. We omit the detailed description of our error func-
tions here and refer to our related work [20], [19]. We include
knowledge about our map by matching detected landmarks
against the map. The state of every matched landmark is
globally constrained by the error function

em(xl,mk) = x
l −mk, (3)

with map landmark position mk. By globally constraining the
landmarks we implicitly constrain the vehicle poses inside
the sliding window. This allows us to globally localize the
vehicle even if no GNSS is available.

The weighted least squares problem is nonlinear and is
solved iteratively. A common technique is to use the Gauss-
Newton or Levenberg-Marquardt algorithms, as explained by
Grisetti et al. [24]. In contrast to the particle filter, this opti-
mization approach searches for a single optimized estimate
rather than maintaining a set of weighted hypotheses.

C. Resource-adaptive localization

We turn our attention to the question what size of state
vector we can allow ourselves to choose. In case of the
particle filter, this is the number of particles that we choose to
represent the posterior. For the graph-based localization, it is
the length of the sliding window. We cannot set these values
arbitrarily large as we have finite computational resources

and need to deliver pose estimates at a fixed frequency f .
If the available CPU time changes over time we still want
to fully exploit the remaining CPU time to achieve the best
localization accuracy. Our solution is to use a proportional-
integral-derivative (PID) controller from linear control theory
as e.g., applied by Li and Nahrstedt [25] in a more general
domain. The specific controller used in this paper is similar
to the one described by Merfels and Stachnis [19]. For sim-
plification we assume linear runtime complexity in the size of
the state vector for both our algorithms. For the particle filter,
this is exactly true, and for the graph-based localization,
this is approximately true which we show empirically in our
experiments.

D. Deterministic vs. stochastic algorithm

Determinism is the property of an algorithm to always
produce the same output given a fixed input. In the context
of localization, this means that deterministic algorithms com-
pute the same trajectories if they are fed with the same stream
of input data. Stochastic algorithms are non-deterministic as
they involve some form of randomness.

Particle filter localization is a stochastic algorithm as
it is fundamentally based on randomly drawing samples
from a proposal distribution. The two steps motion update
and importance weighting are usually deterministic, but the
resampling step introduces randomness.

Graph-based localization relies on optimizing a set of con-
straints that are derived from the input data. The conventional
probabilistic interpretation of this step is that the maximum
likelihood of the set of robot poses is determined. However,
this probabilistic notion does not imply that it is a stochastic
algorithm. In fact, it is deterministic and produces the same
results if it is run repeatedly on the same data.

In the context of automated driving, localization plays a
safety-critical role as driving maneuvers are based on the
pose of the vehicle relative to the map. Therefore, functional
safety requirements need to be fulfilled. This is usually
significantly harder—if not impossible—for stochastic than
for deterministic algorithms which is why the graph-based
approach is preferable.

E. Unimodal vs. multimodal

Particle filter and graph-based localization differ in how
they represent their belief about their estimated poses. The
particle filter tracks a nonparametric distribution over time.
It can represent multimodal beliefs that are of non-Gaussian
nature. This is useful in situations of high ambiguity due to
perceptual aliasing or self-similar environments, for example.
The algorithm relies on having sufficient and well-distributed
samples to represent the belief about the current pose.

In graph-based localization under the conventional prob-
abilistic interpretation, the graph infers the set of most
likely poses given the measurements. As a graph is usually
built up by multiple poses, this is technically a multimodal
Gaussian distribution. However, each pose corresponds to
a single Gaussian that is being estimated. Therefore, the
expressiveness about the belief of the pose at a given point in



time is higher for particle filters, as they are not restricted to
parametric or Gaussian distributions. Depending on the use
case and subsequent software modules for which localization
is required both approaches are feasible.

F. Integration of outdated measurements

The integration of out-of-sequence or delayed measure-
ments is of practical importance for most state estimation
techniques. Out-of-sequence measurements describe data that
comes in the wrong order, i.e., newer data from that input
source has already been processed. Delayed measurements
refers to data that arrives later than usual and after the state
estimation has processed the data for the corresponding time
frame. Both types of behavior can be caused by sensors,
faulty network transmission, or sensor preprocessing and
have a similar effect on the state estimation process.

Particle filters struggle to integrate data from timestamps
that have already been processed. They would have to prop-
agate their state back in time and reperform all other steps
up the current point in time. As this is not straightforward
and computational expensive, delayed and out-of-sequence
measurements are usually simply discarded.

Graph-based approaches intrinsically keep some outdated
poses as nodes within their graph. As long as the delayed
or out-of-sequence measurements fall within the sliding
window of the graph, it is therefore straightforward how to
integrate this information. It is simply a matter of adding
new nodes and edges that reflect these measurements, and
the remaining graph structure stays untouched. Therefore
graph-based methods are preferable over particle filters when
integrating out-of-sequence or delayed measurements.

G. Estimating old poses

Graph-based approaches maintain a recent history of poses
within the state estimation problem while particle filters
only maintain the current pose. This allows graph-based
approaches to benefit from delayed data association and fre-
quent relinearization. Meaning that the past and present states
are simultaneously improved, when e.g., past associations
are revised. Additionally, this allows us to output a lagged
pose, i.e., a pose with a certain delay compared to the current
timestamp, that represents the current best estimate of the
past. Outputting a lagged pose can therefore be beneficial
for applications that can cope with older pose estimates in
favor of even higher estimation accuracy.

In comparison, Particle filters never change their past
beliefs about the robot poses. They only track the current set
of particles and thus lack the option of outputting a lagged
pose.

H. Ease of implementation

For the practictioner topics like ease of implementation,
software maintainability, ease of debugging and inspection
etc. play an important role. Though, these points are to a
certain degree subjective which makes it hard to judge them
objectively. Still, these are important topics and we think it
is safe to say that it is generally less complex to implement

0 500 1000 1500 2000 2500
0

250

500

750

x [m]

y
[m

]

Fig. 2: Map and trajectory of our real-world dataset. All pole-
like landmarks in the test area are denoted in blue. The 16 km
trajectory is denoted in red. It contains velocities between 0 km/h
and 70 km/h and covers typical urban scenarios like heavy and
light traffic, different street types, and different junction sizes.

a particle filter than a graph-based system. However, note
that many libraries ease the implementation of graph-based
systems substantially, e.g., g2o [26] or GTSAM [23].

IV. EXPERIMENTAL EVALUATION

Our experiments are designed to serve as a comparison
between the particle filter and graph-based localization ap-
proaches. Apart from our theoretical discussion in Sec. III,
we investigate three key aspects in the context of automated
driving: (i) accuracy, (ii) adaptive behavior in terms of
computational resources, and (iii) benefit of estimating old
poses.

We conduct a set of experiments in which we vary the
size of the state vector. In case of the particle filter we
directly control the state vector size by setting the number
of particles, whereas for the graph-based localization the
state vector size is only partly influenced by controlling the
number of poses. In the following, we study the effects and
focus on accuracy and computation time. Both approaches
are required to deliver a pose estimate at a fixed frequency
of 20Hz. The experiments are based on a 16 km long dataset
from a real prototype vehicle. The dataset of this evaluation
is based on Velodyne VLP-16 to detect pole-like landmarks,
wheel-tick and IMU based odometry, and a low-cost GNSS
receiver. The trajectory of our dataset is depicted in Fig. 2.
Our reference system is a high-frequency and post-processed
Real Time Kinematic (RTK) system with a location accuracy
specification of 2 cm. We interpolate the reference trajectory
to the timestamps of the resulting trajectories to compute the
errors.

A. Accuracy

Our first set of experiments compares the accuracy of
both localization approaches. For clarity, Fig. 3 shows the
empirical cumulative error distributions (CDF) only for a
selected number of experiments. The chosen experiments
represent the lower and upper bound of the CDFs for each
method. Our experiments show that in terms of accuracy the
graph-based localization (GBL) is superior to the particle
filter (PF) as the CDF accumulates faster. In both localization
approaches it is necessary to maintain at least a minimum
number of the states. This can be seen in the experiment



0 0.2 0.4 0.6 0.8 1
0

0.5

1

absolute error [m]

em
pi

ri
ca

l
C

D
F

PID GBL
PID PF
GBL poses: 100
GBL poses: 500
PF particles: 250
PF particles: 2000

Fig. 3: Empirical cumulative distribution function (CDF) for a
set of experiments, comparing particle filter (PF) vs. graph-based
localization (GBL).

Experiment abs. long. lat. heading
100 poses 0.221m 0.136m 0.143m 0.49°

GBL 500 poses 0.168m 0.116m 0.096m 0.39°
PID (1104) 0.150m 0.111m 0.078m 0.34°
250 particles 0.270m 0.196m 0.139m 1.46°

PF 2000 particles 0.237m 0.183m 0.105m 1.38°
PID (2160) 0.240m 0.176m 0.119m 1.42°

TABLE I: Absolute, longitudinal, lateral, and heading errors for
different configurations during a 16 km urban drive. For the PID
experiments we denote the average number of particles and poses
in the graph in brackets.

with 250 particles and respectively for the graph-based
approach with a sliding-window of 100 poses. Both are less
accurate than the experiments with the greater state vector
size. Additionally, Fig. 3 shows that our resource-adaptive
PID controller with a variable state vector size delivers
comparable accuracy results.

Tab. I shows the accuracy in terms of average trajectory
errors. The errors reflect that the PID controller works in
terms of accuracy for both approaches and achieves compa-
rable accuracy.

B. Runtime behavior and PID controller

Our second experiment is designed to show the relation
between computation time and the size of the state vectors.
Fig. 4 compares the runtime behavior between experiments
with a fixed number of particles and poses. The average
computation time for each experiment is denoted as a red
cross, with the single standard deviation in black lines. Both
approaches show a linear relation between computation time
and control variable. For the graph-based approach we rely
on the highly tuned g2o [26] framework for optimization
and apply sparse block matrices together with Cholesky
decomposition, which improves the runtime performance.

Additionally, Fig. 4 shows that our PID controller manages
to satisfy timing requirements by adjusting the number of
particles and number of poses in the graph. In both cases our
PID approach successfully provides pose estimates around
the set target frequency (setpoint). It exploits the complexity
of the problem, which depends on the number of visible
landmarks in each timestamp. When only a small number

0 1,000 2,000 3,000 4,000 5,000 6,000
0

100

200

number of particles

co
m

pu
ta

tio
n

tim
e

[m
s]

PID controller
mean of fixed
setpoint

(a)

0 500 1,000 1,500 2,000
0

50

100

number of poses

co
m

pu
ta

tio
n

tim
e

[m
s]

PID controller
mean of fixed
setpoint

(b)

Fig. 4: Relation between computation time and control variable. (a)
For the particle filter, we control the number of particles. (b) For
graph-based localization, we control the number of poses.

0 2,000 4,000 6,000 8,000 10,000
0

50

100

150

200

number of edges

co
m

pu
ta

tio
n

tim
e

[m
s]

poses: 2000
poses: 500
PID controller
setpoint

Fig. 5: Relation between computation time and the number of edges
in the graph-based localization. The number of edges represents the
number of measurements used in the graph.

of landmarks is visible, the complexity decreases and the
size of the state vector is increased. We show this behavior
in Fig. 5 for the graph-based localization. It shows that the
computation time for the experiments with a fixed number
of poses depends roughly linearly on the number of edges
in the graph. As the number of measurements itself is
not constrained, the number of measurements in the graph
depends on the environment structure. Due to our sliding
window approach, in which all poses have the same temporal
distance, the number of poses implicitly controls the number
of measurements in the graph. Our PID controller exploits
this fact and successfully provides pose estimates with the
set target frequency.

C. Estimating old poses

Our third experiment demonstrates the benefit of optimiz-
ing past poses in our graph-based approach. In contrast to
the particle filter, estimating the trajectory within the sliding
window is part of the graph-based optimization. Fig. 6 shows



0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

lag/age [s]

E
uc

lid
ea

n
di

st
an

ce
[m

]

Fig. 6: Accuracy within the trajectory of a graph. A lag of 0 s
represents the most recent pose at the head of the graph, whereas
a lag of 10 s denotes the oldest pose at the tail of the graph. This
plot corresponds to a graph with 500 poses, which are 20ms apart.
The figure shows that the most accurate poses are in the middle of
the graph.

box plots for the Euclidean errors within the trajectory of
the sliding-window graph. The accuracy in the middle of the
graph is better than at the head and tail. The reason for this
effect is that the poses in the middle of the graph are more
constrained than the poses at the ends of the graph. The
effect at the tail of the graph is caused by using truncation
instead of marginalization. Using lagged poses is especially
beneficial for non-timing-critical applications, for which a
more accurate but lagged pose is helpful.

V. CONCLUSION

In this paper we provided an argumentative and experi-
mental comparison between particle filter and graph-based
localization for automated vehicles. On the one hand, we
argued that particle filters have the advantage of being able
to represent multimodal distributions and are generally easier
to implement. On the other hand, graph-based approaches
as non-stochastic algorithms can fulfill functional safety
requirements more easily. Moreover, their sliding window
of the past allows them to easily integrate outdated mea-
surements, perform delayed data association, and optionally
output a lagged pose. We have experimentally shown that the
graph-based localization achieves a higher accuracy than the
particle filter, that outputting a lagged pose allows us to trade
estimation age versus accuracy, and that a PID controller is
able for both approaches to regulate the computation time to
not exceed a predefined setpoint.

Depending on the importance of these criteria, practi-
tioners can choose the best algorithm for their application.
In general we recommend using graph-based approaches as
they have proven to be of higher accuracy, which is usually
the most important property for localization. Most SLAM
approaches have switched from adopting the particle filter
to the optimization paradigm, and we believe that this is
similarly beneficial for many localization systems.

REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo local-
ization for mobile robots,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), vol. 2, 1999, pp. 1322–1328.

[2] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo
localization for mobile robots,” J. Artif. Intell., vol. 128, no. 1-2, pp.
99–141, 2001.

[3] C. Stachniss and W. Burgard, “Particle filters for robot navigation,”
Foundations and Trends in Robotics, vol. 3, no. 4, pp. 211–282, 2014.

[4] H. Strasdat, J. Montiel, and A. J. Davison, “Visual SLAM: Why filter?”
Image and Vision Computing, vol. 30, no. 2, pp. 65–77, 2012.

[5] C. Stachniss, J. J. Leonard, and S. Thrun, Springer Handbook of
Robotics. Springer, 2016, ch. Simultaneous Localization and Map-
ping, pp. 1153–1175.

[6] M. Harr, J. Janosovits, C. Stiller, and S. Wirges, “Fast and robust
vehicle pose estimation by optimizing multiple pose graphs,” in fusion,
2018.

[7] C. Wu, T. A. Huang, M. Muffert, T. Schwarz, and J. Graeter, “Precise
pose graph localization with sparse point and lane features,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS), 2017.

[8] C. Cadena, L. Carlone, H. Carillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

[9] H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and
Mapping: Part I,” IEEE Robot. & Automation Mag., vol. 13, no. 2,
pp. 99–110, 2006.

[10] M. Lundgren, E. Stenborg, L. Svensson, and L. Hammarstrand,
“Vehicle self-localization using off-the-shelf sensors and a detailed
map,” in IEEE Intell. Vehicles Symp., 2014, pp. 522–528.

[11] H. Deusch, J. Wiest, S. Reuter, D. Nuss, M. Fritzsche, and K. Di-
etmayer, “Multi-sensor self-localization based on maximally stable
extremal regions,” in IEEE Intell. Vehicles Symp., 2014, pp. 555–560.

[12] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization
for autonomous vehicles in urban scenarios,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Syst. (IROS), 2016, pp. 2161–2166.

[13] C. Brenner, “Global localization of vehicles using local pole patterns,”
in Lecture Notes in Computer Science. Springer, Berlin Heidelberg,
2009, vol. 5748.

[14] A. Schlichting and C. Brenner, “Genauigkeitsuntersuchung zur
Lokalisierung von Fahrzeugen mittels Automotive-Laserscannern,”
DGPF Tagungsband, no. 23, 2014.

[15] A. Schindler, “Vehicle self-localization with high-precision digital
maps,” Ph.D. dissertation, University of Passau, 2013.

[16] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision
vehicle localization in urban environments.” in Proc. Robotics: Science
and Syst. Conf. (RSS), 2007.

[17] M. Stess, “Ein Verfahren zur Kartierung und präzisen Lokalisierung
mit klassifizierten Umgebungscharakteristiken der Straßeninfrastruk-
tur für selbstfahrende Kraftfahrzeuge,” Ph.D. dissertation, Gottfried
Wilhelm Leibniz Universität Hannover, 2017.

[18] C. Merfels and C. Stachniss, “Pose fusion with chain pose graphs for
automated driving,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Syst. (IROS), 2016, pp. 3116–3123.

[19] ——, “Sensor fusion for self-localization of automated vehicles,” J.
Photogr. Remote Sensing & Geoinf. Sci., vol. 85, no. 2, pp. 113–126,
2017.

[20] D. Wilbers, L. Rumberg, and C. Stachniss, “Approximating marginal-
ization with sparse global priors for sliding window SLAM-graphs,”
in Proc. IEEE Int. Conf. Robotic Computing (IRC), 2019.

[21] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, 1st ed.
MIT Press, 2005.

[22] J. S. Liu, “Metropolized independent sampling with comparisons to
rejection sampling and importance sampling,” Stat. & Comp., vol. 6,
no. 2, pp. 113–119, 1996.

[23] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[24] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intell. Transp. Syst. Mag., pp. 31–43,
2010.

[25] B. Li and K. Nahrstedt, “A control theoretical model for quality of
service adaptations,” in Proc. Int. Workshop on Quality of Service,
1998.

[26] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), 2011, pp. 3607–3613.


