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Abstract— Most autonomous vehicles rely on some kind of
map for localization or navigation. Outdated maps however
are a risk to the performance of any map-based localization
system applied in autonomous vehicles. It is necessary to update
the used maps to ensure stable and long-term operation. We
address the problem of computing landmark updates live in
the vehicle, which requires efficient use of the computational
resources. In particular, we employ a graph-based sliding
window approach for simultaneous localization and incremental
map refinement. We propose a novel method that approximates
sliding window marginalization without inducing fill-in. Our
method maintains the exact same sparsity pattern as without
performing marginalization, but simultaneously improves the
landmark estimates. The main novelty of this work is the
derivation of sparse global priors that approximate dense
marginalization. In comparison to state-of-the-art work, our
approach utilizes global instead of local linearization points,
but still minimizes linearization errors. We first approximate
marginalization via Kullback-Leibler divergence and then re-
calculate the mean to compensate linearization errors. We
evaluate our approach on simulated and real data from a
prototype vehicle and compare our approach to state-of-the-
art sliding window marginalization.

I. INTRODUCTION

Maps are a central ingredient for most navigation and
trajectory planning systems. Updating and refining these
maps is a fundamental task for robust long-term operation
of autonomous vehicles. Any localization system that relies
on a pre-built landmark map suffers from maps getting
outdated over time. In the case of automated driving, these
changes are for example caused by roads being modified or
built completely new. In order to allow stable and steady
vehicle operation, a localization and mapping system must
be able to refine its map on-the-fly without relying on back-
end updates. Although updates via back-end may provide
validated information, they are not available in real-time,
which makes it necessary to handle environment changes
initially in the vehicle. Furthermore, any localization system
that is able to update its map can be bootstrapped with a
limited number of landmarks and then incrementally add
more features to its map, which increases scalability and
modularity for initial systems.

In this paper, we focus on the problem of estimating the
positions of previously unmapped landmarks on-the-fly in the
vehicle based on a state-of-the-art graph-based localization
and mapping approach [1]. In particular, we make use of a
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Fig. 1: The influence of marginalization on the graph structure.
The illustration shows that our approach does not suffer from
fill-in, which reduces computational complexity and thus is faster
to compute. Simultaneously, our approach provides a comparable
accuracy of the resulting estimate.

sliding window formulation as in [2] to keep the problem
size computationally tractable. We present a novel approach,
which approximates marginalization without inducing any
fill-in, as shown in Fig. 1.

In comparison to nonlinear factor recovery [3] and generic
linear constraints [4], we focus on the special case of
sliding window graphs for which different assumptions hold.
On the one side we do not need to cope with the deficient
rank problematic, on the other we target for the special
approximation topology with individual priors for each state.

The main contribution of this paper is a novel sparsifica-
tion scheme for marginalization in sliding window graphs.
We achieve this by deriving individual global priors for all
states involved in marginalization. This allows us to estimate
incremental map updates in the context of automated driving.
In sum, we make four key claims that our approach

(i) approximates sliding window marginalization with
sparse global priors,

(ii) utilizes global linearization points and thus does not
require local optimization,

(iii) computes conservative landmark positions for incre-
mental map refinement,

(iv) has exactly the same sparsity pattern compared to
using no marginalization, but provides more accurate
estimates.



II. RELATED WORK

In the last decades a wide range of research has been done
in the field of localization and mapping [5]. Cadena et al. [6]
provide a general overview of the open challenges in the
field, whereas Bresson et al. [7] focus on the current state of
the art with respect to automated driving. The predominant
methods for solving the SLAM problem are particle methods,
extended Kalman filter (EKF), and graph-based approaches.
We refer to Stachniss et al. [8] for a comparison of these
methods. In this paper, we apply graph-based optimization
for vehicle localization and incremental map refinement.

Focused on the special needs in automated driving, map-
ping companies are working on creating maps, which can be
used for vehicle localization. Further work on using pre-built
maps is presented by Roh et al. [9], in which the integration
of shapefile data is shown and Kümmerle et al. [10], who use
aerial images for the derivation of pose-graph constraints.
Vysotska and Stachniss [11], [12] show how to include
data from Open Street Map for improving localization. A
fundamental challenge to all approaches relying on pre-built
maps is that the maps are getting outdated over time. For
example in automated driving temporary construction sides
and newly built streets have a direct impact on the correctness
of the map and thus localization. This makes it necessary to
refine the pre-built map if changes occur. In this paper, we
investigate how to refine the map by adding missing features
to it. We especially focus on how to compute the positions
of these features online while simultaneously localizing the
vehicle. Similar to our prior work [13] we employ a sliding-
window filter over poses and landmarks. We make use of
delayed marginalization similar to Sibley et al. [2], but here
show how to apply a further sparsification step Compared
to full-graph solutions, marginalization allows to preserve
information, while limiting the state dimension. The latter
is necessary to ensure computational tractability in online
scenarios. The common drawbacks of marginalization are
the missing option of relinearization and induced fill-in. The
latter one negatively influences the sparsity pattern and thus
increases computation costs. For the case of pose graphs
Merfels et al. [14] presented in their work how to compute
priors that approximate pose graph marginalization. Several
research focuses on reducing the number of constraints
induced by marginalization for general graphs. This step
is commonly called sparsification. The Sparse Extendend
Information Filter (SEIF) by Thrun et al. selectively deac-
tivates constraints between robot pose and landmarks, but
keeps intra-landmark constraints [15]. Vial et al. present a
technique for conservative graph sparsification via Kullback-
Leibler Divergence (KL) minimization [16]. Kretzschmar
et al. use a Chow-Liu tree to approximate marginalization
and maintain a sparse graph [17]. Carlevaris-Bianco and
Eustice extend this work by introducing a conservative tree
approximation [18], [19]. Using more complex topologies
than trees is suggested by Vallvé et al., who present an
optimization technique for sparsification [20], [21]. Without
explicit marginalization Choudhary et al. reduce poses and

landmarks based on expected information gain [22]. Ta
et al. present a near optimal method for pose marginalization
by re-parameterizing to local spaces [23]. Recently, Hsiung
et al. [24] investigated how to approximate marginalization
with sparse priors. While their work focuses on localization
errors in the visual-inertial odometry domain, we focus on
the estimation of landmark positions for automated driving.
Additionally, they do not cover the effects of different lin-
earization points and rely on suboptimal global linearization
points. Eckenhoff et al. provide a derivation that suggests
to use local linearizations points for marginalization, but re-
quires local optimization of the marginalization blanket [25].
Mazuran et al. show how to recover artificial measurements
from marginalized information, which allows for relineariza-
tion and further argue that local linearization points provide
superior results in incremental mapping scenarios [26], [3].
Compared to such prior work, we show how to avoid using
local linearization points and derive how to utilize global
linearization points by respecting gradient effects inside our
sparse priors. We study the effects for the case of sliding
window incremental map refinement.

III. GRAPH-BASED SLIDING WINDOW LOCALIZATION

In the following, we explain our sliding window graph-
based framework, which uses the graph formulation and
notation of Grisetti et al. [1]. We estimate a set of vehicle
poses xp = {xp

tS , . . . ,x
p
tN } and landmarks xl, where tS is

the time of the first pose and tN the time of the last pose
in the sliding window. The landmarks xl are measured in
between tS and tN . For clarity reasons, we omit the time
subscripts in the following. We represent the optimization
problem of finding the most likely states x =

[
xp xl

]
over a set of measurements z as the maximum a posteriori
problem

x∗ = argmax
x

p(z | x)p(x). (1)

Assuming Gaussian noise and independent measurements,
the optimization problem is equivalent to minimizing a sum
over individual cost functions

x∗ = argmin
x

∑
k

ek(x, zk)>Ωkek(x, zk), (2)

with ek(x, zk) being the error function between measure-
ment zk and state vector x, and the corresponding informa-
tion matrix Ωk. In detail, we estimate

x∗ = argmin
x

∑
i

eodo(xp, zodo
i )>Ωodo

i eodo(xp, zodo
i )

+
∑
i

eabs(xp, zabs
i )>Ωabs

i eabs(xp, zabs
i )

+
∑
i

elm(xp,xl, zlm
i )>Ωlm

i elm(xp,xl, zlm
i )

+
∑
i

emap(xl, zmap
i )>Ωmap

i emap(xl, zmap
i )

+Fmarg(x), (3)

with the superscripts odo for odometry measurements between
subsequent poses, abs for absolute pose measurements from



for example GNSS, lm for relative landmark measurements,
map for map matches, and the term Fmarg(x) which captures
the cost of marginalized measurements outside the sliding
window. A description of the error functions is not part of
this paper as they are similar to state-of-the-art graph-based
optimization techniques [11], [1], [27]. We use Levenberg-
Marquardt to solve the nonlinear optimization problem by
linearizing (3) and computing iterative updates

H∆x∗ = −b. (4)

We refer to Grisetti et al. [1] for a detailed derivation.
Important for this work is that the sparsity of the matrix
H is strongly related to how fast the linear system can be
solved. The sparser the matrix, the lower the computational
cost. The sparsity of H depends on the Jacobians of the
error functions, which are determined by how we design the
structure of the graph. The problem with sliding window
graphs is that marginalization induces fill-in in H and thus
destroys the sparsity pattern. In the following we tackle
exactly this problem.

IV. SLIDING WINDOW MARGINALIZATION

In this section we describe how to preserve the infor-
mation of measurements outside of the sliding window
through marginalization. A difference to many graph-based
approaches is that our temporal sliding window guaran-
tees by design that there are always global factors in the
marginalization blanket. We ensure this by including global
information from previous time steps. Because of that, there
is no need to use relative formulations as in e.g., [3], [25]
and we avoid any deficient rank problematic in cases where
only relative measurements are marginalized.

A. Calculating the Marginalization Prior

Our sliding window approach is based on marginalizing
out the oldest pose and adding a new pose to the front of
the graph in every timestep. As a consequence the number
of poses in the graph is constant, whereas the number of
landmarks is naturally bounded by the environment. Addi-
tionally, we marginalize out landmarks, as shown in Fig. 2, if
the only connected pose is the last one in the sliding window
and subject to marginalization.

We divide the set of all states x = {xm,xn,xr}
into marginalization nodes xm, directly connected neighbor
nodes xn, and the remaining states xr. In the following we
call the set {xm,xn} the marginalization blanket. Consid-
ering these definitions we rewrite the general optimization
problem (2) as

x∗ = argmin
x

∑
j

ej(xm,xn, zj)
>Ωjej(xm,xn, zj)

+
∑
i\j

ei(xr, zi)
>Ωiei(xr, zi)

= argmin
x

Fm,n(xm,xn) + F r(xn,xr), (5)

where i\j denotes the absence of any measurement con-
nected to the marginalization nodes, Fm,n is the cost of

the marginalization blanket, and F r captures the cost of the
rest of the graph. Following the argumentation of Eckenhoff
et al. [25], we write (5) as a cost function problem

C = min
x

(Fm,n(xm,xn) + F r(xn,xr))

= min
xn,xr

(
min
xm

Fm,n(xm,xn) + F r(xn,xr)

)
. (6)

We minimize the cost of the marginalization blanket
Fm,n(xm,xn) via Taylor approximation and solve for the
optimal marginalization state x∗m(xn, x̌m, x̌n) with lin-
earization points x̌m and x̌n in the following. The Taylor
approximation is given by

Fm,n(xm,xn) (7)

≈ Fm,n(x̌m, x̌n) + b>∆x+
1

2
∆x>H∆x,

where the Hessian H , gradient b, and ∆xm,n are defined as

H =

[
Hm Hmn

H>mn Hn

]
, b =

[
bm
bn

]
, (8)

∆x =

[
xm − x̌m
xn − x̌n

]
=

[
∆xm
∆xn

]
. (9)

Solving (7) for the optimal marginalization state x∗m results
in

x∗m(xn, x̌m, x̌n) = x̌m −H−1m (bm +H>mn∆xn). (10)

By substituting (10) back into (7), we render the cost of
the marginalization blanket independent of the marginalized
states xm, such that

Fm,n(xm,xn) ≈Fm,n(xn, x̌n)

=
1

2
∆x>nHt∆xn + b>t ∆xn + c, (11)

with Ht = Hn −HmnH
−1
m H>mn,

bt = bn −HmnH
−1
m bm,

and c being a constant that is omitted when applying the
argmax operator. The interpretation behind (11) is that
we have performed marginalization over the marginalization
nodes xm resulting in

p(xn) =

∫
p(xn,xm)dxm = N (x̌n,H

−1
t ). (12)

We call the distribution p(xn) the marginalization prior.
Compared to using the Schur complement of (8) to compute
Ht and bt, (11) emphasizes the effect of the gradient bt on
the optimization problem. Eckenhoff et al. [25] argue that the
performed marginalization is only optimal if the linearization
point x̌n is the local optimum of the marginalization blanket
and thus the gradient bt vanishes. Extending their argumen-
tation we show in Sec. V-B how to use a linearization point,
that is not the local optimum.
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Fig. 2: Illustration of our approach for computing global priors in order from left to right. All z are measurements, whereas xp are poses
and xl are landmarks in the sliding window graph. (a) The highlighted nodes and factors are part of the marginalization blanket involved
in our marginalization and sparsification process. (b) Graph after marginalizing out the oldest pose xp

0 . The dense factor p represents the
marginalized information. (c) The result of our sparsification step. We compute an individual global prior for each remaining state of the
marginalization blanket.

V. GLOBAL PRIOR SPARSIFICATION

In the following we show how to derive sparse global
priors that approximate dense marginalization in closed form.
Our sparsification scheme is designed to have the exact same
sparsity pattern compared to using no marginalization. This
means that our approach does not suffer from fill-in and si-
multaneously computes more precise estimates than without
using marginalization. As we derive individual global priors
for each involved state, we can visually draw them similar
to other measurements. This is not only beneficial for data
inspection, but also helps to understand the effect of our
approximation.

A. Sparsifying the Marginalization Prior

Instead of applying the marginalization prior directly in the
next sliding window we first sparsify the distribution p(xn)
to avoid fill-in and ensure sparsity in the graph. By design we
compute a global prior for each state xn inside the marginal-
ization prior. We formulate the sparsification problem as a
minimization of the Kullback-Leibler divergence (KL) as

min
µa,Ωa

DKL
(
N (x̌n,H

−1
t ) ‖ N (µa,Ω

−1
a )
)
, (13)

with N (µa,Ω
−1
a ) =

∏
i

N (µai ,Ω
−1
ai ),

where N (µai ,Ω
−1
ai ) is the approximated prior for each

individual neighbor state in the marginalization blanket. In
the multivariate normal case the KL-divergence reaches its
minimum if both means are equal (µa = x̌n). Thus, the
approximation problem reduces to

min
µa,Ωa

DKL = min
Σ

(
tr(ΩaH

−1
t )− ln

(
det(ΩaH

−1
t )
))

=
∑
i

(
tr(Ωai)− ln

(
det(Ωai{H−1t }i)

))
, (14)

where we have applied the definition of N (µai ,Ω
−1
ai ) and

use the notation {H−1t }i to reference the i-th block diagonal
entry of H−1t . Deriving (14) with regard to Ωai yields for
each individual prior the optimal information matrix

Ω∗ai = {H−1t }−1i . (15)

Given our specific topology in form of absolute priors (15)
shows that we can simply ignore the covariances between
states to get the optimal approximation. We denote the
sparsified distribution as p̃(xn) = N (x̌n,Ω

−1
a ), where Ω−1a

is block-tridiagonal. Inserting the approximation into (11)
yields

Fm,n(xm,xn) ∝ 1

2
∆x>nΩa∆xn + b>t ∆xn, (16)

which is used in the following.

B. Computing Sparse Global Priors

By extending the proof of Eckenhoff et al. [25], we now
show that we must not necessarily use the local optimum
of the marginalization blanket as the linearization point x̌n.
Instead we utilize the previous global estimate by including
the gradient term inside the quadratic term. We first note that
any cost term independent of the state variable is constant
and neglected during optimization. This allows us to add the
constant term c = Ω−1a btΩaΩ

−1
a bt to (16). By rearranging

and completing the square, we obtain

F p(xn, x̌n) ∝
1

2
(∆xn +Ω−1a bt)

>Ωa(∆xn +Ω−1a bt) =

1

2
(xn − (x̌n −Ω−1a bt)︸ ︷︷ ︸

=̂µp

)>Ωa(xn − (x̌n −Ω−1a bt)︸ ︷︷ ︸
=̂µp

). (17)

We refer to the distribution

p̂(xn) = N (µp,Ω
−1
a ) =

∏
i

N (µpi ,Ω
−1
ai ) (18)

as the sparse global prior distribution. It consists of individ-
ual prior terms for each state in xn. By including the gradient
term inside the quadratic term we compensate the effects of
the gradient term without using the local optimum of the
marginalization blanket as linearization point. Therefore our
approach renders local optimization of the marginalization
blanket unnecessary. Returning to our original sliding win-
dow optimization problem in (3) our sparse global prior
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Fig. 3: Map and trajectory of our simulated dataset. All blue land-
marks are used for localization, whereas the red crosses represent
the ground truth for the estimated landmarks, which are shown in
green. The notation is similar to Fig. 4.

distribution is included as the marginalization cost

Fmarg(x) =
∑
i

(xn − µpi)>Ωai(xn − µpi), (19)

which concludes our derivation.

VI. EXPERIMENTAL EVALUATION

The main focus of this paper is a sparsification scheme
for marginalization in sliding window graphs in the context
of automated driving. Our experiments are designed to show
the capabilities of our method and to support our key claims,
that our approach

(i) approximates sliding window marginalization with
sparse global priors,

(ii) utilizes global linearization points and thus does not
require local optimization,

(iii) computes conservative landmark positions for incre-
mental map refinement,

(iv) has exactly the same sparsity pattern compared to
using no marginalization, but provides more accurate
estimates.

Our evaluation is based on simulated data, which allows us
to use error-free ground truth data as reference, and real
world data collected with a prototype vehicle. The datasets
are illustrated in Fig. 3 and Fig. 4. As landmarks we use pole-
like objects similar to Brenner [28]. We randomly delete in
both datasets 20% of the map landmarks, which are then
re-estimated with our approach. These re-estimations are the
basis for our evaluation.

A. Sparse Global Priors

The first experiment is designed to show that we are
able to approximate marginalization with our sparse global
prior distribution. Therefore we calculate the Euclidean
distance between the optimized landmark positions, which
are added to the map, and the corresponding full graph
solution based on simulated data. We compare our sparse
approach (18) to dense marginalization as in (12), and no
marginalization at all. We use the latter as a baseline and
normalize all errors with its mean. Tab. I highlights the bene-
fits of dense marginalization with a local linearization point,
as described in [25], with 53.4% of the errors compared
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Fig. 4: Map and trajectory of our real world dataset. We randomly
remove 20% of the landmarks from the map to evaluate our method.
The map was recorded several month before the actual test drive.
The trajectory and pole-like landmark measurements were recorded
with a prototype vehicle. Shown in green are all the landmarks
which are re-estimated for our evaluation.
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Fig. 5: Normalized Euclidean distances for landmarks compared to
the full graph solution based on our simulated dataset.

to no marginalization. Its approximation with our sparse
global prior approach performs with 48.2% even slightly
better. The effect that the sparse variant performs better
than the dense one consistently occurs in all experiments
shown in Tab. I regardless of the chosen linearization point.
Besides numerical errors, we explain this positive effect by
linearization errors, which for our sliding window setting
have a stronger impact in the dense case. Our approach is
explicitly designed to neglect dependencies between states,
whereas for the dense case inaccurate dependencies induced
by marginalization accumulate. The comparable results show
that we are successfully able to approximate marginalization
with sparse global priors.

B. Global vs. Local Linearization vs. Our Approach

Our second experiment supports the claim that our ap-
proach utilizes global linearization points and does not

global linearization local linearization ours
dense 73.5 % 53.4 % 46.7 %
sparse 61.1 % 50.9 % 48.2 %

TABLE I: Normalized average errors expressed as percentages. The
baseline is the average error without marginalization (100%), such
that lower is better in this table. The results are based on our
simulated dataset.



require local optimization of the marginalization blanket. We
compare the use of global and local linearization points for
x̌m and x̌n to our method of utilizing global linearization
points and including a gradient term as shown in (17). The
comparison for the dense and sparse case is shown in Fig. 5.
It can be seen that using naive global linearization points still
performs better than no marginalization, but yields the worst
performance of all marginalization approaches. Considering
the sparse case, the figure shows that our approach performs
even slightly better than local linearization. We contribute
this effect to our sparsification scheme, in which we first
approximate marginalization with a sparse distribution and
afterwards include a gradient term in our distribution and not
the other way around. By doing so we avoid the effect of
inaccurate dependencies induced by marginalization between
states on the gradient. Additionally, our experiment suggests
that even in the dense case it is beneficial to use the global
linearization point and consider the gradient term, as we
suggest in Sec. V-B, rather than using the local linearization
point. Although this might not generalize to arbitrary graphs,
it is beneficial for our sliding window case. Overall, the
comparison shows that our approach provides comparable
results to local linearization and successfully utilizes global
linearization points.

C. Conservative Estimates

The third experiment is to support our claim that our
approach estimates conservative landmark positions. Based
on our simulated world dataset we calculate the Mahalanobis
distance between the estimated landmark with its covariance
and the artificially removed landmark position from the map.
Fig. 6 shows the result for the different marginalization and
sparsification variants. If the given percentile levels from a
specific experiment are above the given percentile boundaries
the covariances are overconfident (too small) and vice versa
if the levels are below the boundaries the variances are
underconfident (too large). In our case it is favorable to
underestimate the covariances in order to be more robust
against outliers. The figure shows that simply using the
global linearization point without considering the gradient
term, as described in Sec. V-B, is suboptimal. Instead our
approach provides underconfident estimates, which is what
we desire.

D. Sparsity and Accuracy

Finally, we show that our approach has exactly the same
sparsity pattern compared to no marginalization, but provides
more accurate estimates. The results of this experiment
are based on the Euclidean distance between the estimated
landmark positions and the deleted ones from the map.
Fig. 7 compares our approach to dense marginalization
and shows that our system matrix H achieves a better
sparsity pattern. In fact, it is by design exactly similar to
using no marginalization. Together with Fig. 8, which shows
that our approach achieves better accuracy than using no
marginalization and is comparable to dense marginalization,
the experiment supports our claim.
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Fig. 6: Based on our simulated dataset the figure shows how the
estimated covariances fit to the errors between estimated landmark
positions and artificially removed landmarks of our map. The plot
compares (a) global linearization, (b) local linearization, (c) our
approach. Our approach provides the most conservative estimates.
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Fig. 7: Based on our real world dataset, the figure shows the sparsity
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sparse approximation has the exact same sparsity pattern as without
marginalization.
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Fig. 8: Results for our real world data set. The plots compare (a) no
marginalization, (b) dense marginalization with local linearization
points, and (c) our method with sparse globals priors. The plots
show that our approach provides similar performance to dense
marginalization. Considering that our approach has a favorable
sparsity pattern, it is clear that our approach is superior to standard
dense marginalization.



In summary, our evaluation suggests that our method pro-
vides competitive results to dense sliding window marginal-
ization. At the same time, our method retains the same
sparsity pattern as without marginalization and is thus faster
to compute. Hence, we supported all our claims with this
experimental evaluation.

VII. CONCLUSION

In this paper, we presented a novel approach for approx-
imating sliding window marginalization. It computes sparse
global priors for each state involved in the marginalization
and exploits the special structure of sliding window graphs
to avoid rank deficiency problems. Our method first uses the
Kullback-Leibler divergence to establish sparsity and then
adjusts the global linearization points to overcome lineariza-
tion errors. This allows us to optimally estimate landmark
positions while not influencing the problems sparsity pat-
tern and thus keeping computational costs tractable. The
computed landmark positions are then utilized to extend a
localization map used in autonomous vehicles. We evaluated
our approach on simulated and real world data and provided
comparisons to state-of-the-art sliding window marginaliza-
tion. Our experiments showed that our sparsification scheme
provides a favorable sparsity pattern and simultaneously
achieves comparable accuracy of the resulting landmark
estimates.

REFERENCES
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