
Localization with Sliding Window Factor Graphs
on Third-Party Maps for Automated Driving

Daniel Wilbers1 Christian Merfels1 Cyrill Stachniss2

Abstract— Localizing a vehicle in a map is essential for
automated driving and various other robotic applications. This
paper addresses the problem of vehicle localization in urban
environments. Our approach performs a graph-based sliding
window optimization over a set of recent landmark and odom-
etry measurements for fast and accurate vehicle localization
on third-party maps. Our work incorporates landmark priors
from third-party maps into the estimation problem and shows
how to exploit the sliding window formulation for revising data
associations. We describe how to construct our factor graph and
derive its necessary factors to model the information from the
map as a prior over the landmark detections. We implemented
our approach on an automated car and thoroughly tested it on
real-world data. The experiments suggest that the approach
provides highly accurate pose estimates, is fast enough for
automated driving applications, and outperforms localization
using particle filters.

I. INTRODUCTION

Localization is a fundamental task for automated vehicles.
Localization computes the vehicle position given a map,
which may store additional information that the vehicle
might not be able to infer from its sensors. Thus, precise
localization with respect to a map is a prerequisite to exploit
the map information. In this paper we focus on the problem
of map-based self-localization in the context of automated
vehicles.

In map-based localization, the vehicle pose is inferred by
aligning the current sensor readings to the map of the envi-
ronment. Most maps for vehicles are globally georeferenced.
Therefore, localization often includes a global navigation
satellite system (GNSS). However, standard GNSS systems
alone are often not accurate enough or not reliably available
in regions with degraded or missing satellite reception.
Furthermore, high-precision systems combining RTK-GNSS
and IMUs are often expensive and thus are not used in
series production cars. In contrast, map-based approaches,
including ours, are able to compute a global pose with
the help of a map in such regions and therefore increase
availability while at the same time increasing accuracy.

The localization information in our commercially avail-
able, third-party maps consists of landmarks. In contrast
to raw sensor data maps, such as point clouds, landmark
maps are easier to inspect by a human for correctness and
to maintain. Landmark maps also require smaller storage
and memory capacities. Most landmarks are at least to some
degree sensor-independent as they can generally be detected

1Daniel Wilbers and Christian Merfels are with Volkswagen Group Re-
search, Wolfsburg, and the University of Bonn, Germany. 2Cyrill Stachniss
is with the University of Bonn, Germany.

found match
map landmark
detected landmark

Fig. 1: Matches between landmark observations and map landmarks
constrain the vehicle trajectory (black triangles). The connections
(gray lines) illustrate from which poses the landmark were observed.
The current vehicle pose is depicted as a gray rectangle.

by different sensors. This is important for sharing maps
between multiple vehicles that have different sensor setups.

The contribution of this paper is an approach to accurate
localization on third-party maps for automated vehicles. It
formulates localization as a sliding window factor graph
problem, which is closely related to modern simultaneous
localization and mapping (SLAM) systems. We consider
detections of pole-like objects as landmarks and match them
to an existing third-party map, not built by the vehicle. The
strength of our approach comes from integrating a third-
party map as prior knowledge about the states of the detected
landmarks. This allows us to localize the vehicle within a few
centimeters of its actual pose without building own maps. See
Fig. 1 for an example.

For addressing the state estimation problem, we build up a
factor graph with poses and landmarks and in this sense, the
approach can be classified as a combination of localization
and SLAM: We locally estimate landmark locations as in
SLAM but keep a localization map that is not globally
updated as in localization. The reason for this procedure
is that detecting changes in the landmark locations could,
instead of being beneficial, potentially degrade the accuracy
of the verified prior map and thus should be executed with
care. We therefore avoid updating our map on the fly but
estimate updated landmark positions to store them for a later
verification step.

In sum, we make four key claims: Our approach (i)
provides accurate pose estimates for automated driving based
on third-party maps, (ii) allows the vehicle to continuously
localize globally accurate, (iii) can successfully revise map
associations to increase the localization quality, and (iv) is
fast enough for application in an automated vehicle.



II. RELATED WORK

Over the last 30 years extensive research has been done
in the field of mapping and localization [1]. We refer to the
work of Cadena et al. [2], which provides a broad overview
over the challenges and open questions in the field. A recent
overview with a special focus on autonomous driving is
given by Bresson et al. [3]. Localizing vehicles in an urban
environment has been tackled with various combinations of
algorithms, sensors, and types of landmarks. Predominantly,
the methods of choice for pure localization are either particle
or Kalman filters, while SLAM is usually solved by graph-
based optimization, see Stachniss et al. [4] for a review of
these three methodologies.

The approach by Levinson et al. [5] uses 2D dense lidar
reflectivity maps which are generated using graph-based
SLAM, while the localization is carried out with a particle
filter. They extend their approach to use probability maps
and a two-dimensional histogram filter for localization [6]. In
contrast, Ziegler et al. [7] use visual features and a Kalman
filter for localization on a point feature map, whereas Schus-
ter et al. [8] apply graph-based SLAM using radar sensors for
mapping and use random sample consensus map matching
for localization. Instead of relying on dense map represen-
tations, Brenner [9] proposes the use of pole landmarks for
global localization, which is from the application point of
view similar to our work. The approach by Spangenberg
et al. [10] uses pole landmarks from camera for localization
with a coupled particle and Kalman filter. In this paper, we
rely on pole landmarks extracted from lidar data and use
sliding window graphs. We follow the paradigm that all of
the above approaches separate mapping and localization. But
instead of building the required maps ourselves, we rely on
maps from a third-party distributor.

From a mathematical point of view, our localization
approach is closely related to graph-based SLAM [11].
Nowadays, graph-based optimization is considered the de-
facto standard for SLAM. However, graph-based approaches
for map-based localization applied in urban scenarios still
need investigation. Wu et al. [12] contribute to that by
investigating the suitability of point and lane features for
automated driving. Although their approach uses a similar
lidar setup and additionally incorporates camera features,
our evaluation suggests that our technical approach provides
better results. A difference is that we directly detect poles in
the lidar scans without using a grid map, which depends
on odometry data and thus propagates odometry errors.
Additionally our data association strategy (see Sec. IV-C)
benefits from temporal filtering.

For automated driving, our localization algorithm must be
computationally efficient as the car requires pose estimates
in (near) real-time. One way of limiting the size of the
state vector or the number of constraints is to sparsify
landmarks and poses in the graph based on information-
theoretic metrics [13], [14]. Another one is relying on sliding
windows, which can either discard data or use marginal-
ization [15]. While the first one might ignore important

xp
0 xp

1 xp
2 xp

3 xp
4 xp

5 xp
6

o0 o1 o2 o3 o4 o5

xl
0 xl

1 xl
2

m∗
0 m∗

1

l0 l1 l2 l3 l4

g0 g1

Fig. 2: Exemplary factor graph representation with consecutive
pose states xp, landmark states xl, odometry factors o, landmark-
observation factors l, GNSS pose factors g, and temporally
smoothed map factors m∗. Each factor has a corresponding mea-
surement zi and information matrix Ωi. Using map factors allows
us to constrain landmarks such that their estimated position is
globally bounded. As a result, we can implicitly determine a
globally accurate vehicle pose.

data and correlations, the latter suffers from linearization
errors, which accumulate over time. Another advantage is
that sliding windows ease the integration of out-of-sequence
measurements compared to filter approaches [16]. While we
presented in our previous work how to synchronize odometry
and pose measurements [17] we highlight here different
options for landmark measurements. The approach presented
in this paper is also used in our other work [18], [19].

Recent research targets on leveraging information from
existing maps. The approach by Vysotska and Stach-
niss [20], [21] derives pose-graph constraints from Open
Street Map data to improve mapping and localization. Sim-
ilarly, Kümmerle et al. [22] derive pose-graph constraints
from aerial images. The integration of data based on shape-
files is shown by Roh et al. [23]. Lee et al. [24] show how to
incorporate road network maps as priors into particle filters.
More close to our work is the integration of point features
shown in [12]. As recently stated by Bresson et al. [3],
current localization approaches based on prebuilt maps are
not yet suitable for automated driving. With respect to auto-
mated driving, mapping companies are working on closing
this gap by providing highly accurate maps. We therefore
especially investigate how to use such a third-party map as
prior knowledge for localization.

III. GRAPH-BASED SLIDING WINDOW LOCALIZATION

In the following, we explain our sliding window graph-
based localization and show how to use third-party maps in
form of priors in the graph representation. Our formulation
to localization is similar to SLAM as landmarks are part
of the state vector and we refine their locations based on
observations within the sliding window graph. The updated
landmark locations are, however, not immediately fed back
into our prior map to avoid that a localization error compro-
mises the map. We store the computed landmark updates
separately in order to refine the prior map only if the
update is confirmed over multiple, independent runs. We
consider this design decision essential for fulfilling safety
requirements in automated driving.

A. Graph-based Optimization
We formulate the problem of determining vehicle poses

and landmarks based on a set of measurements as an



optimization problem. Here, we use a similar notation to
Grisetti et al. [11]. In general, we want to find the maximum
a posteriori solution x∗ which maximizes the probability
p(x | z) with states x and measurements z. In our case,
the state vector x =

[
xp xl

]
is divided into poses xp =[

xp
1 , . . . ,x

p
T

]
and landmarks xl =

[
xl
1, . . . ,x

l
K

]
. We define

the poses as xp
t ∈ SE(2) and landmark positions as xl

k ∈
R2. The number of poses T defines the size of the sliding
window, whereas K represents the number of landmarks.
Using Bayes rule, we write the optimization problem as

x∗ = argmax
x

p(x | z) = argmax
x

p(z | x)p(x), (1)

with z capturing all measurements inside the current sliding
window. We separate the prior term into priors over vehicle
poses and landmark positions as p(x) = p(xp)p(xl). As the
priors on the vehicle pose are unknown we assume a uniform
distribution for p(xp) and drop the term in the following.
Assuming Gaussian distributions and independent and iden-
tically distributed measurements, we transform Eq. (1) to

x∗ = argmin
x

∑
i

ei(x, zi)
>Ωiei(x, zi) + Fmap(xl), (2)

with error function ei, information Ωi of the measurement
related to measurement zi, and prior knowledge about
the landmarks Fmap. Defining the error functions ei and
corresponding information matrices Ωi is one of the core
aspects of any graph-based approach. We can view each error
function together with the corresponding information matrix
as a factor and each state variable as a node of a so-called
factor graph. We illustrate such a factor graph in Fig. 2.
Each factor constrains the states based on the corresponding
error function ei and information matrix Ωi. We distinguish
between the functions for odometry errors of subsequent
states eodo(xp), absolute pose errors eabs(xp) (e.g., from
GNSS), landmark observation errors eobs(xp,xl), and map
errors emap(xl).

A main aspect of our approach is to apply prior knowledge
about the landmark states xl through the map factors m. We
incorporate the prior information Fmap as

Fmap(xl) =
∑
k

emap
k (xl)>Ωke

map
k (xl). (3)

This form allows us to investigate the effect of the map
factors on our optimization. As estimated landmarks and the
priors from the map both live in the same coordinate system
the error function is simply

emap
k (xl) = xl

k −mk, (4)

with the global position mk of the landmark in the map.

B. Using Third-Party Maps

Nowadays third-party maps used in the automotive do-
main are often created in a semi-automatic way, which still
requires a lot of manual work. The covariances for landmarks
created in such a process are often not reliable or simply not
available.We now show how to substitute the unknown map

information matrix Ωk with an educated guess based on the
overall map quality.

In general we assume that in a 2D global reference frame
the quality of both coordinate directions is similar. Hence,
we assume an isotropic covariance for all map factors and
rewrite the map factor summands as

Fmap(xl) =
1

σ2
m

∑
k

emap
k (xl)>emap

k (xl). (5)

Depending on the assumed map quality we compute the
constant variance of the map factors as

σ2
m =

1

γ(c)
r2, (6)

with γ being the two-dimensional inverse-chi-squared cu-
mulative distribution function, confidence c, and radius r.
To illustrate this, consider the following example. If we are
confident that 95% (c = 0.95) of our landmarks in the map
were measured within an error radius of r = 0.02m, then
Eq. (6) helps us to make an educated guess for the variance
constant, which is σ2

m ≈ 6× 10−5. We use this value in our
experiments.

C. Iterative Optimization

Solving the nonlinear optimization problem given in
Eq. (2) can be done with an iterative algorithm like Gauss-
Newton or Levenberg-Marquardt. As derived by Grisetti
et al. [11], we split the problem into linearizing Eq. (2) and
computing an iterative update ∆x∗ by solving the linear
system

H∆x∗ = −b. (7)

The structure of H is directly determined by the graph struc-
ture and Jacobians of the error functions. The Jacobian of our
map error function emap is the identity matrix Jk = I and
consequently the corresponding Hessian block and system
vector are

Hmap
k =

1

σ2
m

I, (8)

bmap
k =

1

σ2
m

Iemap
k . (9)

This stems directly from the fact that the map error function
is linear. We calculate the complete system as

H =
∑
i

J>i ΩiJi +
∑
k

1

σ2
m

I (10)

b =
∑
i

J>i Ωiei +
∑
k

1

σ2
m

Iemap
k (11)

respecting the correct rows and columns of the summands.

D. Limiting the State Dimension

Using a sliding window approach instead of a full batch
solution limits the dimension of the state vector such that it
can be computed efficiently. One way of limiting the size
of the graph is to marginalize out old information with
the Schur complement [15]. The idea of marginalization



landmark detector

local association

map matching

temporal smoothing

lidar

odometry

map

map factors

Fig. 3: Overview of the steps for deriving map factors from detected
and mapped landmarks.

is to preserve information while simultaneously keeping
the state dimension fixed. Marginalized states, however,
introduce linearization errors that accumulate over time. It
can happen that linearization errors yield incorrect marginal
distributions, which might cause a lock-in [15]. Additionally,
marginalization causes fill-in in the system matrix H .

Another way of limiting the graph size is to simply
truncate old states and ignore the data outside the current
sliding window. Although this approach forgets information,
it does not accumulate linearization errors and avoids fill-in
without additional computational effort. Moreover, marginal-
ization has the drawback that faulty data-associations would
still have an effect even if the decision has been revised.
By truncating the graph we avoid this behaviour. While
marginalization serves to constrain the vehicle pose based
on old data, using high information map landmarks as priors
sufficiently constrains the vehicle pose. That is, provided that
enough landmarks in the current sliding window could be
associated with the map. As a result, truncation is in our case
favorable over marginalization. In our approach, we limit the
number of poses in the graph. The poses are generated at
a fixed frequency such that we get a steady estimate of the
vehicle pose. Contrary to the poses, the number of landmarks
in the graph is not limited. It is already naturally bounded
by the structure of the environment.

IV. DATA ASSOCIATION FOR USING PRIOR MAPS

One of the major aspects which affect the performance
of graph-based approaches is how data association is han-
dled during graph construction. In our case, we distinguish
between finding out if multiple detections from different
timestamps belong to the same landmark (local association)
and matching the identified landmarks of the local map to the
third-party map (map matching). Furthermore, we robustify
the map matching step by taking decisions from previous
sliding windows into account, an approach we refer to as
temporal association smoothing.

Our association approach is feedback-free as it does not
rely on previous graph optimizations. This contributes to the
reliability of our system. In the following, we discuss each
of the three steps separately. See Fig. 3 for an illustration
of the overall process. Afterwards, we describe the required
time synchronization between all measurements when con-
structing the graph.

A. Local Association

As a first step, in every sliding window, we associate new
landmark measurements to previous ones. We call this step

local association as we project landmark measurements into
a local map based on odometry data. Similar to a nearest-
neighbor approach, we compute the Euclidean distance be-
tween each new detection and its surrounding detections.
Afterwards, we decide based on a threshold if they belong
to the same object. The identified objects correspond to the
landmarks which are optimized in the graph. We compute
an initial position for each identified object in the local
map by averaging over the locally projected measurements
and reuse it during map matching. Compared to iterative
closest point (ICP) approaches our odometry-based algorithm
reliably works if the landmarks are not steadily detected in
every time step and even handles situations with very few
and noisy detections.

B. Map Matching

As a second step, we match the local map to the third-
party map, which consists of point coordinates in a global
reference frame. We start by projecting the local map into the
global frame by using a previous pose estimate. This projec-
tion limits the search area and must only be approximate. By
doing so we are left with the task of finding the translational
and rotational offset between both maps. We use a variant of
ICP to search for associations between landmark detections
and mapped landmarks. Coping with false positive and false
negative landmark detections is one of the main challenges
during this step. These errors either depend on the detector
performance or are due to physical reasons (e.g., line of
sight is blocked). Therefore the overlap between detected
and map landmarks might be small. The cost function of our
ICP-variant penalizes non-matches and rates the quality of
possible associations to find the best alignment and deal with
the possibly small overlap. Based on the found alignment, we
compute a set of map matches Mt = {m1, . . . ,mN}, with
the individual matches mi. The matches in the set Mt are
only based on the measurements inside of the current sliding
window. As we repeat this map matching process once for
every sliding window, we get different proposed sets M1:T

over time. These sets are not directly used in the graph, but
contribute to the next step.

C. Temporal Association Smoothing

As a third step, we compute a temporally consistent set
of associations M∗ = {m∗1, . . . ,m∗N}. To do so we consider
all map matches found for previous sliding windows M1:T .
An important factor during this step stems from the fact that
each set of map matches Mt is estimated only based on
the measurements inside the corresponding sliding window.
By looking at previous matching results, we can overrule
current results and filter out outliers. This is done on an
individual level for each landmark in the graph. Furthermore,
if the map matching step for the current sliding window
missed some landmarks we still include the map match based
on previous findings. The temporal smoothing even helps
in ambiguous situations for which the map matching step
produces varying results. Our strategy allows us to always
add the most probable map associations to the graph. In cases



where we found at a later point in time that a map match
is likely to be wrong, the temporal smoothing automatically
revises the association and chooses the more likely option.
We represent the temporal smoothing as an optimization
problem for each individual landmark xl

k in the graph as

m∗i = argmax
mi

p(mi|M1:T ) = argmax
mi

∑
t ρk(Mt,mi)∑
t,j ρk(Mt,mj)

ρk(Mt,mi) =

{
1 mi matched to xl

k in Mt

0 mi not matched to xl
k in Mt

,

(12)

where m∗i is the optimal association for landmark xl
k, and

ρk(Mt,mi) is an indicator function. An important point in
our strategy is that the associations are not based in any
way on the results of the graph optimization. By avoiding
this feedback loop, we prevent the feedback propagation of
errors and are not prone to errors like early convergence to
local optima.

At this point we have clustered landmark measurements
to landmark objects and found out if there is a correspond-
ing match to the third-party map. Overall, our association
strategy allows us to introduce the concept of temporal
consistency for map matches, handles delayed associations
decisions, and enables us to revise associations.

D. Time Synchronization
The input to our graph consists of odometry, GNSS data,

landmark detections, map landmarks, and map associations.
Generally, this data is not synchronized to our pose estimates.
There are three different options to cope with this problem.
The first option is to interpolate between two subsequent
measurements. Second, we utilize highly frequent odometry
data to project measurements to the required timestamp. This
option is only advisable if the measurements are within the
vehicle frame. Third, it is also possible to simply ignore
the timestamp misalignment and connect the measurement
to the next best node. Which of theses three methods is
favorable depends on the type of sensor and the frequency at
which nodes are generated. In our case, we use option one
for landmark and odometry measurements, and option two
for GNSS pose estimates.

V. EXPERIMENTAL EVALUATION

Our experiments are designed to support our key claims
and illustrate the suitability of our method for automated
driving. These key claims are that (i) sliding window graph-
based localization on landmark maps provides highly accu-
rate pose estimates for automated driving based on third-
party maps, (ii) we continuously localize globally accurate
even though GNSS is only used for initialization, (iii) our
approach successfully revises map associations to increase
the localization quality, (iv) and that our approach is fast
enough for application in an automated vehicle. Our ex-
periments are based on an urban drive of 16 km with a
prototype vehicle, which detects pole-like landmarks in lidar-
scans from Velodyne VLP-16 sensors. See Fig. 4 for the
trajectory. We rely on g2o [25] for graph optimization.

0 500 1,000 1,500 2,000 2,500
0

250

500

750

x [m]

y
[m

]

0 0.5 1
translational error [m]

Fig. 4: Trajectory of our 16 km dataset. It contains a variety of
typical urban scenarios like stop-and-go traffic, heavy and light
traffic, junctions and streets of different sizes, and covers vehicle
velocities between 0 km/h and 70 km/h. The color of the trajectory
shows the euclidean position error achieved by our GBL approach.

A. Graph-based Localization for Automated Driving

Our first experiment is designed to show that our approach
provides accurate pose estimates. We test our method in
a real-world urban scenario and compare the localization
results against a state-of-the-art particle filter (PF), which
operates on the same map and detections. Using a post-
processed RTK-GPS solution with an estimated accuracy
of 2 cm as a reference allows us to compute global errors
instead of map-relative ones. To show the potential of our
approach, GNSS was only used for initialization and not used
later during pose estimation. This corresponds to a complete
GNSS outage after initial startup. The PF operates in the
same setting. Additionally, this demonstrates the capability
of our approach in GNSS-denied regions. Fig. 5 compares the
lateral and longitudinal error distributions of our experiment.
It shows that our approach, called GBL, has less outliers
than the particle filter in both distributions. Comparing
the variances of the error distributions highlights that our
approach is more accurate than the particle filter and thus
favorable.

B. Influence of a low-cost GNSS

Our second experiment is designed to show the global
accuracy of our approach. We compare in Tab. I the perfor-
mance in terms of absolute trajectory error (ATE), average
lateral error, and average longitudinal error of a standard-
consumer GNSS and a particle filter to two variations of
our system. To compute the ATE, a ground truth trajec-
tory is registered to the timestamps of the vehicles pose
estimates and afterwards, the mean Euclidean distance for
each estimate is computed. Including GNSS data in our
graph-based localization (variant 1, named GBL + GNSS)
slightly decreases the performance, whereas using GNSS
only for initialization (variant 2, named GBL) provides the
best results. We attribute this effect to the Kalman-filter based
preprocessing inside the GNSS-receiver. Usually, this prepro-
cessing handles multipath effects insufficiently. As a result
the GNSS-based estimates are biased. Incorporating this
biased data into our sliding window graph, likewise results
in biased pose estimates and therefore in less accuracy. The
problematic is discussed in more detail by Noack et al. [26].



−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.00
0.05
0.10
0.15
0.20

lateral error [m]

pr
ob

ab
ili

ty PF
GBL

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.00
0.05
0.10
0.15
0.20

longitudinal error [m]

pr
ob

ab
ili

ty PF
GBL

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

heading error [deg]

pr
ob

ab
ili

ty PF
GBL

Fig. 5: Comparing the empirical error distributions of our graph-
based localization (GBL) against a particle filter (PF) shows the
gain in accuracy of our method under full GNSS outage.

error GNSS PF GBL + GNSS GBL
lateral 0.948m 0.101m 0.152m 0.075m

longitudinal 1.000m 0.225m 0.124m 0.057m
heading 5.539◦ 1.369◦ 0.418◦ 0.252◦

ATE 1.530m 0.267m 0.218m 0.103m

TABLE I: Absolute mean errors during a 16 km urban drive. Our
GBL approach shows the lowest localization errors if neglecting
the low-cost GNSS.

Despite this effect, GNSS is still useful in scenarios without
a map at all and provides an option for recovery.

C. Impact of our Data Association Strategy

Our third experiment demonstrates the ability of our
system to revise associations between detected and map
landmarks. An example of such a revision is shown in Fig. 6.
Additionally, Fig. 7 depicts another example where addi-
tional landmark detections over time are helpful. During our
16 km test drive, the map associations were revised by our
system 35 times. In an additional experiment the ability to
revise associations was turned off. The ATE increased from
10.3 cm to 20.1 cm. This highlights the need for subsequent
verification of previous map associations. Therefore our strat-
egy for revising associations inside the graph construction
based on subsequent additional information is beneficial for
the performance of our system.

D. Runtime

Our fourth experiment serves to support our claim that our
system is fast enough for usage in a prototype vehicle, which
requires pose updates every 50ms (20Hz) for automated
driving. In our experiments, we limited the number of poses
inside the sliding window to 500. The poses inside the sliding

(a)

initial wrong
association

(b)

correctly
revised
association

(c)

Fig. 6: Illustration of a situation in which a map association is
revised after receiving additional landmark detections. For clarity
we only show the connections (gray lines) to the revised landmark.
(a) Initial unclear situation in which the landmark detection is
not associated to the map. (b) An additional inaccurate landmark
detection induces a false map association. (c) The situation is
revised after additional landmark detections were made.

(a) (b)

Fig. 7: An ambiguous situation is resolved over time. (a) The vehicle
pose (gray) is undetermined as it could either be in the left or in the
right side of the image. The correct map associations between map
landmarks (blue) and observations (green) are unclear. (b) With an
additional landmark detection over time (purple circle) the setting
is correctly assessed such that all true map associations (red) are
found.

window are 50ms apart. In contrast, the number of land-
marks in the sliding window is generally unlimited but is in
practice bounded by the structure of the environment. During
the test drive our system aims to compute a vehicle pose
every 50ms. It successfully provided the required frequency
within a standard deviation of 1.2ms. The small deviations
are a side-effect caused by our software framework. The time
needed for an optimization of one sliding window graph
is approximately 14.1ms ± 3.8ms. This means that our
approach is sufficiently fast for automated driving.

VI. CONCLUSION

In this paper we presented a sliding window factor graph
approach for localization. It uses pole-like landmarks de-
tected with a lidar and matches them against an existing map
from a third-party distributor. We showed how to incorporate
the map as prior information about landmarks and evaluated
our approach with a prototype vehicle in a real-world urban
scenario. The vehicle can accurately localize itself even
under complete loss of GNSS. A comparison to a state-of-
the-art particle filter illustrates the gain in accuracy of our
approach. Especially, the ability to revise map associations
makes our approach favorable. Our experiments suggest that
our approach is fast and accurate enough for the localization
of automated vehicles.



REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and
Mapping: Part I,” IEEE Robot. & Automation Mag., vol. 13, no. 2,
pp. 99–110, 2006.

[2] C. Cadena, L. Carlone, H. Carillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Trans. Robot., vol. 32, no. 6, pp. 1309–1332, 2016.

[3] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
tion and mapping: A survey of current trends in autonomous driving,”
IEEE Trans. Intell. Vehicles, 2017.

[4] C. Stachniss, J. J. Leonard, and S. Thrun, Springer Handbook of
Robotics. Springer, 2016, ch. Simultaneous Localization and Map-
ping, pp. 1153–1175.

[5] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision
vehicle localization in urban environments.” in Proc. Robotics: Sci.
and Syst. (RSS), 2007.

[6] J. Levinson and S. Thrun, “Robust vehicle localization in urban
environments using probabilistic maps,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2010, pp. 4372–4378.

[7] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller, et al., “Making
bertha drive – an autonomous journey on a historic route,” IEEE Intell.
Transp. Syst. Mag., 2014.

[8] F. Schuster, C. G. Keller, M. Rapp, M. Haueis, and C. Curio,
“Landmark based radar SLAM using graph optimization,” in IEEE
Trans. Intell. Transp. Syst., 2016.

[9] C. Brenner, “Global localization of vehicles using local pole patterns,”
in Lecture Notes in Computer Science. Springer, Berlin Heidelberg,
2009, vol. 5748.

[10] R. Spangenberg, D. Goehring, and R. Rojas, “Pole-based localization
for autonomous vehicles in urban scenarios,” in Proc. IEEE/RSJ Int.
Conf. Intelligent Robots and Syst. (IROS), 2016, pp. 2161–2166.

[11] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intell. Transp. Syst. Mag., pp. 31–43,
2010.

[12] C. Wu, T. A. Huang, M. Muffert, T. Schwarz, and J. Graeter, “Precise
pose graph localization with sparse point and lane features,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Syst. (IROS), 2017.

[23] H. Roh, J. Jeong, Y. Cho, and A. Kim, “Accurate mobile urban
mapping via digital map-based SLAM,” Sensors, vol. 16, no. 8, p.
1315, 2016.

[13] M. Mazuran, G. D. Tipaldi, L. Spinello, and W. Burgard, “Nonlinear
graph sparsification for SLAM,” in Proc. Robotics: Sci. and Syst.
(RSS), 2014, pp. 1–8.

[14] N. Carlevaris-Bianco and R. M. Eustice, “Conservative edge sparsi-
fication for graph SLAM node removal,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2014, pp. 854–860.

[15] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with
application to planetary landing,” J. Field Robot., vol. 27, no. 5, pp.
587–608, 2010.

[16] A. Ranganathan, M. Kaess, and F. Dellaert, “Fast 3d pose estimation
with out-of-sequence measurements,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Syst. (IROS), 2007.

[17] C. Merfels and C. Stachniss, “Sensor fusion for self-localization
of automated vehicles,” J. of Photogrammetry, Remote Sensing and
Geoinformation Sci., vol. 85, no. 2, pp. 113–126, 2017.

[18] D. Wilbers, L. Rumberg, and C. Stachniss, “Approximating marginal-
ization with sparse global priors for sliding window SLAM-graphs,”
in Proc. IEEE Int. Conf. Robotic Computing, 2019.

[19] D. Wilbers, C. Merfels, and C. Stachniss, “A comparision of particle
filter and graph-based optimization for localization with landmarks
in automated vehicles,” in Proc. IEEE Int. Conf. Robotic Computing,
2019.

[20] O. Vysotska and C. Stachniss, “Improving SLAM by exploiting
building information from publicly available maps and localization
priors,” J. of Photogrammetry, Remote Sensing and Geoinformation
Sci., vol. 85, no. 1, pp. 53–65, 2017.

[21] ——, “Exploiting building information from publicly available maps
in graph-based SLAM,” in Proc. IEEE/RSJ Int. Conf. Intelligent
Robots and Syst. (IROS), 2016, pp. 4511–4516.

[22] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and
W. Burgard, “Large scale graph-based SLAM using aerial images as
prior information,” Auton. Robots, vol. 30, no. 1, pp. 25–39, 2011.

[24] K. W. Lee, S. Wijesoma, and J. I. Guzman, “A constrained SLAM
approach to robust and accurate localisation of autonomous ground
vehicles,” J. Robot. Auton. Syst., pp. 527–540, 2007.

[25] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), 2011, pp. 3607–3613.

[26] B. Noack, S. J. Julier, and U. D. Hanebeck, “Treatment of biased
and dependent sensor data in graph-based SLAM,” in Proc. IEEE Int.
Conf. Inform. Fusion (FUSION). IEEE, 2015, pp. 1862–1867.


