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Joint Intrinsic and Extrinsic Calibration of Perception Systems
Utilizing a Calibration Environment

Louis Wiesmann Thomas Läbe Lucas Nunes Jens Behley Cyrill Stachniss

Abstract—Basically all multi-sensor systems must calibrate
their sensors to exploit their full potential for state estimation
such as mapping and localization. In this paper, we investigate
the problem of extrinsic and intrinsic calibration of perception
systems. Traditionally, targets in the form of checkerboards or
uniquely identifiable tags are used to calibrate those systems.
We propose to use a whole calibration environment as a target
that supports the intrinsic and extrinsic calibration of different
types of sensors. By doing so, we are able to calibrate multiple
perception systems with different configurations, sensor types,
and sensor modalities. Our approach does not rely on overlaps
between sensors which is often otherwise required when using
classical targets. The main idea is to relate the measurements for
each sensor to a precise model of the calibration environment.
For this, we can choose for each sensor a specific method that best
suits its calibration. Then, we estimate all intrinsics and extrinsics
jointly using least squares adjustment. For the final evaluation
of a LiDAR-to-camera calibration of our system, we propose an
evaluation method that is independent of the calibration. This
allows for quantitative evaluation between different calibration
methods. The experiments show that our proposed method is
able to provide reliable calibration.

Index Terms—Calibration and Identification; Mapping; Sensor
Fusion

I. INTRODUCTION

CALIBRATING the sensors of any robotic system is
key for obtaining reliable measurements and crucial for

sensor fusion. This is a key prerequisite for tasks such as
mapping, localization, or SLAM. Each sensor has typically its
own coordinate system, therefore knowing the relative trans-
formations (extrinsics) between those, allows for combining
the measurements in a common frame. Intrinsic calibration, on
the other hand, is important to have a correct model between
the measurements of a sensor and the corresponding object
properties in the physical world.

In this paper, we investigate the problem of extrinsic cali-
bration, i.e., estimating the rigid body transformation between
the sensors, as well as the intrinsics of each sensor.
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Fig. 1: Having a system that uses multiple sensors requires cali-
bration. Our approach calibrates different perception sensors, like
LiDAR sensors or cameras, by utilizing a calibration environment.
Jointly optimizing the intrinsics and extrinsics of the sensors allows
for different applications, such as sensor fusion. In this application,
the scan of the horizontal LiDAR is projected into the left camera,
where the colors denote the distance to the sensor.

Sensor calibration is a common problem in robotics [3],
[20], [22] and crucial for nearly all multi-sensor systems.
Depending on the sensor setup, i.e., the type of sensors, their
arrangement, and the required accuracy, one can choose from
different calibration procedures. Commonly used sensors for
perception platforms are cameras and LiDAR. Having a system
comprising multiple cameras allows using a checkerboard
or AprilTags [17] for calibration. Depending on the config-
uration, however, the procedure needs to be adapted, e.g.,
for a stereo camera system one can exploit the overlapping
field of view (FoV) [29], while a multi-camera configuration
without overlapping FoVs is likely to require the use of bundle
adjustment [23] where for at least some timestamps, multiple
cameras see control points. When adding LiDAR sensors into
the system, one has further possibilities: (1) operating on the
spectral level exploiting the returned intensity values [13], or
(2) exploiting the geometric information about the scene it
provides [16]. Calibrating a system with a profile scanner [9]
might look different from one with a multi-beam LiDAR.

One multi-sensor system that we aim to calibrate is shown
in Fig. 1, which consists of four wide-angle cameras and two
multi-beam LiDAR. Other robotic systems that we will look at
have, e.g., four RGB-D cameras, one RGB camera and two 2D
profile LiDARs.The main challenges of these systems are no or
limited overlap between cameras and limited overlap between
the LiDAR sensors. Furthermore, some of the cameras have a
fisheye lens; therefore, we need the calibration able to work
for different projection models (projection on a plane or a



sphere) as well. Additionally, we are interested in a calibration
procedure that works with multiple sensor setups, is easy-to-
extend, and requires minimal user input. We aim at millimeter
accuracy and thus to be more precise than the sensors noise.

The main contribution of this paper is a flexible calibration
procedure that allows to estimate the intrinsics and extrinsics
of a combination of different sensors. Instead of directly
estimating the relative transformation between the sensors, we
use an external high-accuracy sensor, a terrestrial laser scanner,
as a target, we do this once, as a preprocessing step, to measure
our calibration environment. For the actual calibration, the
multi-sensor setup only needs to be brought into the calibration
environment. This allows us to reliably estimate the poses of
each sensor in an efficient manner. By doing so, we can exploit
the strengths of each sensor individually, making it suitable
across varying sensors with different configurations without
the need for overlap between the sensors’ field of views.

In sum, we make three key claims: Our approach is able to
(i) reliably estimate the intrinsics and extrinsics of perception
systems; (ii) operate with different sensor types (e.g., LiDAR,
and camera) and modalities (e.g., profile scanner vs. multi-
beam LiDAR; wide-angle vs. fisheye cameras); (iii) calibrate
different perception systems with varying sensor configura-
tions. The implementation of our approach is available at:
https://github.com/PRBonn/ipb_calibration

II. RELATED WORK

Approaches for calibration can be divided into two cat-
egories: Methods using natural scenes, mostly outdoor, and
methods using scenes with specific targets.

Early target-less approaches measured the correspondence
between LiDAR and camera image points manually [22].
Recently, LiDAR intensity was used and compared with the
camera image intensity for calibration [12], [13], [19]. We aim
for an automated approach without manual measurements and
do not want to rely on the quality of the LiDAR intensity.
Geometrical approaches [11], [16] for natural scene-based
calibration utilize the onboard sensors to first estimate the
vehicle’s trajectory or build a map, which can then be taken
for localizing the other sensors. We believe that the calibration
using natural scenes require a lot of user input and experience
to make it work for different sensors and perception platforms.

Target-based approaches can be characterized by their tar-
gets: Planes with black rings [20], trihedrons [8], two planar
triangles [5], and spheres [14] are among the less often-
used objects. Some works [1], [31] define special objects
that have different properties to support the different sensor
characteristics. One of the most commonly used calibration
targets is the checkerboard. While for the detection in the
image standard tools exist [3], for the detection in the LiDAR,
the approaches usually vary. Some approaches [10], [28], [34]
try to estimate the full geometry of the board while others [18],
[25], [27], [32] only use the plane normal and the center
point to estimate the transformation since the edges themselves
are too inaccurate. Verma et al. [27] use a genetic algorithm
for the estimation, while Tsai et al. [25] introduce a quality
measure to select a subset of frames used in the estimation

procedure. All these approaches have the restriction that the
board must be seen completely in both, the LiDAR and the
camera, which reduces the possible positions and angles of the
board and limits the calibration to systems that have overlap
between those sensors. Only a small fraction of the LiDAR
point cloud, usually significantly below 25%, can be used to
estimate the transformation between the LiDAR and the target.
As our target is a 3D terrestrial laser scan of a whole room (cf.
Fig. 1), we are able to use nearly all points (except for some
very small amount of outliers) of a LiDAR scan to estimate
the transformation between the LiDAR sensor and the target.

Some approaches [6], [26], to which we would also asso-
ciate our approach, do not only rely on targets that need to be
moved, but rather use an infrastructure-based calibration where
the whole environment is the target. The most similar approach
compared to ours is the work by Xie et al. [26]. Like us, they
use a room with coded targets (AprilTags) on the walls and
perform camera-to-camera and camera-to-LiDAR calibration,
but they only estimate extrinsic calibration parameters and as-
sume known intrinsics. We estimate all calibration parameters
in a joint adjustment instead of separating the estimation for
the sensors and estimate the intrinsics. Our calibration room is
additionally equipped with pyramids to have additional planes
at different angles (c.f., Fig. 1) for a reliable estimation of all
6 extrinsic parameters between point clouds.

III. MULTI-SENSOR CALIBRATION
USING A PRECISE CALIBRATION ENVIRONMENT

In this section, we explain our multi-sensor calibration
approach for perception platforms. The main idea for the cali-
bration is to relate the measurements of each sensor to a once
created, precise reference map of the calibration environment.
The advantage of this is, that we can exploit the strengths of
each sensor, do not rely on high FoV overlap between the
sensors, and it is applicable to different sensor configurations
and types. It substantially simplifies obtaining a high-quality
calibration, especially when using multiple different robots
or perception platforms. In this work, we look at robots
and sensor systems consisting of a combination of different
cameras and/or LiDAR sensors.

Our calibration procedure can be summarized in five steps:
1) Generating a reference map of the calibration environ-

ment.
2) Defining for each sensor an error function between

the observations and the reference map based on the
intrinsics and extrinsics of the respective sensor.

3) Collecting measurements from the sensors in the cali-
bration environment.

4) Estimating initial values for the parameters as needed.
5) Performing a joint optimization to obtain the extrinsics

and intrinsics of the whole sensor system.
Note that step 1 needs to be done only once for every
calibration environment, and step 2 once for each sensor. In
the following, we will describe the steps in more detail.

A. Generating a Reference Map
Calibrating sensors with respect to a reference leads to some

requirements on the sensor(s) and the target(s). In our case

https://github.com/PRBonn/ipb_calibration


the reference is a map of the calibration environment. The
reference map should cover most of the scene that will be
seen by each individual sensor in the calibration process. We
do not rely on overlap in the FoV between the sensors of the
multi-sensor system, but between the sensors and the reference
map (a complete room in our case) instead. Additionally, the
reference map should be as accurate as possible, since errors in
the map could propagate into the parameters of the calibration.

Our idea is to rely on transformation estimation between
the sensors and the reference map. For the LiDAR, we utilize
ICP to the reference map and for the camera images rely on
automatically extracted coded targets with given 3D coordi-
nates, i.e., AprilTags [17]. A dense 3D map with the possibility
to extract the AprilTag positions is required. Therefore, we
propose to use a terrestrial laser scanner (TLS) as sensor to
obtain the reference point cloud map. The TLS can produce
point clouds with millimeter accuracy, 360◦ FoV, and with a
high density. The 3D coordinates of the coded targets must be
in the same reference frame. Thus, we extract them from the
reference point cloud map.

For calibrating the LiDAR sensors, the target point cloud
needs to have enough geometric structure to reliably fix the 6
degree of freedoms (DoF) of the pose. Since we use an empty
room for the calibration, we added some structural elements in
the form of pyramids to the wall. By doing so, we can ensure
that we have enough information to fix the degrees of freedom
along the wall surfaces.

Given the 3D coordinates of AprilTags and their corre-
sponding image coordinates, one can directly use them in a
bundle adjustment to obtain accurate poses and intrinsics of
the cameras. We directly use the positions of the AprilTags
that can be extracted from the TLS point cloud. As this point
cloud is highly dense, the code of the AprilTags is clearly
visible in the intensity channel of the scan. Thus, we create
an image with orthographic projection (also called orthophoto)
of each wall in the room using the intensity channel. Then,
we use the standard AprilTag library [24] to extract the 2D
subpixel-accurate image coordinates of the AprilTag corners
in the orthophotos. As every pixel in the orthophoto has its
corresponding 3D coordinate in the TLS cloud, we can easily
extract the 3D coordinates of the AprilTag corners by bilinear
interpolation at high precision.

Thus, our reference map consists of a point cloud
M = {(mpi,

mci)} with i = 0, . . . , I points pi ∈ R3 in Eu-
clidean coordinates with their associated intensity ci ∈ R
and a set of J AprilTag corner coordinates, both located in
the coordinate frame of the reference map m. The coordinate
frame of m can be chosen freely, and might be the origin
defined by the terrestrial laser scanner’s internal frame.

B. Define Error Functions

To calibrate the sensor setup, we need to define the error
function that we want to optimize. Generally spoken, we want
to minimize for all sensors, at each timestamp, the errors
between their observations and the reference map. In this
work, we will focus on LiDAR, and camera sensors, but the
procedure can be used for different sensors as long as one

can relate the sensor measurements to the reference map. The
relation is usually simply transforming sensor observations or
their corresponding part from the reference map in a same
frame and computing the deviation between those.

In the following, we will denote the transformation of the
frames by the right subscript and left superscript as commonly
used in physics, e.g., the transformation of a point from the
frame i to frame j would be jp = jRi

ip+ jti, where jRi ∈
R3×3 is the rotation matrix and jti ∈ R3 the translation vector.
3D point coordinates will be denoted by p ∈ R3, while image
coordinates have the variable x ∈ R2.

1) Camera: For calibrating the cameras, we relate the
sensor observations to the reference map by using AprilTags.
For the camera c we extract for a specific timestamp t the
corners {itxj} of all AprilTags that are visible in the current
image i. As an error metric, we use the reprojection error
ecamera(i, t, j) of the AprilTag coordinates, such that for the
jth observation, we yield

ecamera(i, t, j) =
i
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Namely, we transform the AprilTag coordinate mp̂j ∈ R3

in Eq. (6) first from the frame of the reference map m over
the base-link b (a local coordinate system on the robot) into
its camera frame c using Eq. (5). From there, we project the
point in Eq. (4) depending on the type of camera into a unified
intrinsic free camera frame u in which we apply the non-linear
camera distortions, i.e., as seen in Eq. (3). After the distortion,
we obtain in Eq. (2) the AprilTag coordinate u

tx̂j ∈ R2 in the
image frame i by applying the focal length F c ∈ R2×2 and
the principal point itd ∈ R2. The focal length matrix F c is
a diagonal matrix with [fx, fy] on the main diagonal. For the
distortion, we use tangential and radial distortions similar to
OpenCV [3]:

d
tx̂j = distort(utx̂j) (7)
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with the radial coefficients {kn,c}, and the tangential coeffi-
cients pc = [p2, p1]

⊤. The parameter τ can be changed for
different radial distortion modeling, i.e., the classical Brown’s
distortion model has τ = 1, while the division model has
τ = −1. For the projection, we either use the classical pinhole
or equidistant model [30] as follows:
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(9)
with the Euclidean distance in the image rxy =

√
x2 + y2.



Additionally, we add a prior on the AprilTag coordinates p̂j ,
defined by:

eprior(j) = p̂j − p
(0)
j , (10)

where p
(0)
j denotes the initially extracted AprilTag coordinates

from the TLS map. By this, we can incorporate the uncertainty
in the AprilTag extraction without giving too much freedom
for pushing errors from the camera model into the AprilTag
coordinates.

2) LiDAR: For estimating the extrinsics and intrinsics of the
LiDAR sensors, we try to align the point clouds as good as
possible with the reference map. Therefore, this part is similar
to classical point cloud registration methods [2]. We use the
classical point-to-plane error function, as often used in ICP [4].
For this, we compute for the dense and accurate reference map
the normals for each point based on the local neighborhood of
each point, respectively. The key difference from most ICP-
based methods is, that we do not try to independently align
each point cloud with the reference, but jointly optimize all
sensors and scans together. Thus, we optimize not only one
pose per scan, but the whole kinematic chain. This results in

eLiDAR(l, t, j) =
m
n⊤

k (
m
tRb

bp̂j +
m
ttb − mpk) (11)

bp̂j =
bRl

lpj

(
sl +

ol
∥lpj∥

)
+ btl, (12)

where mpk and mnk are the corresponding points and normals
of the jth source point lpj .

We estimate as intrinsics a scale factor sl and offset ol
for each LiDAR to address systematics in the range measure-
ments. The correspondences are obtained by searching for each
LiDAR point lpj the closest point in the reference map M .
Due to structural elements, like the pyramids in our reference,
we are able to use this procedure not only for 3D multi-beam
LiDAR sensors, but also for the commonly used 2D profile
LiDAR.

C. Collecting Measurements

For our calibration setup, the measuring process is easy:
we only assume that the measurements from each sensor are
obtained at discrete points in time. By this, we can optimize
the pose of the sensor system rt based on all the observations
taken at the same timestamp t from all sensors. This does not
necessarily mean that all the sensors need to be hardware-
triggered at the exact same time and with the same frame
rate; we only need to keep the scene and sensors static while
taking the measurements. We strongly suggest recording in
a stop-and-go manner, i.e., (1) move the sensor system, (2)
measure with each sensor while standing still, and (3) repeat
steps 1 and 2 as much as needed. Thereby, we also avoid the
motion distortion in the measurements, e.g., motion blur in
the cameras, rolling shutter effects, or motion distortion in the
LiDAR scans.

For an optimal calibration result, the observations should
cover the full field of view of the sensor. For example for a
camera, one should not have only observations in the center
but rather distributed over the whole image. In our room,

this recommendation is more or less fulfilled automatically,
because all walls, including the ceiling have a sufficient
coverage of AprilTags.

Since we do not rely on any human interaction like mov-
ing checkerboards, but only on a static environment (like a
separate calibration room), this method is well suited for full
automation, e.g., in an industrial production line.

D. Estimate Initial Guess

Using the Gauss-Newton model to solve the non-linear
optimization problem requires initial values for the param-
eters. As parameters, we have the 6 DoF pose parameters
{(mtRb,

m
ttb)∀t}, i.e., the transformation parameters from

the frame of the base-link b to the frame of the reference
map m, as well as the extrinsics, i.e., the transformations
{(bRs,

bts)∀s} from the sensor frame s into the base-link
frame b. We choose the first camera as base-link, but this
choice is arbitrary. Additionally, we need for each sensor the
intrinsics, e.g., focal length, principal point, and distortion
coefficients for each camera, as well as scale and offset
for each LiDAR. The offset can model a bias in the range
measurements, while the scale can compensate when the Li-
DAR sensor systematically over or underestimates the ranges
proportional to the distance.

As initial guess for the intrinsics of the LiDAR sensors, we
assume sl ≈ 1 and offset ol ≈ 0. The intrinsics of the cameras
are estimated by the well-established method by Zhang [33].
Since this requires all points to lie on a plane, we only use
the AprilTags from the wall, which has the most visible tags.
We use multiple frames with at least 3 visible tags to ensure a
reliable estimation. The initial extrinsics {(bRs,

bts)∀s} can
be taken using construction plans of the multi-sensor system,
measuring by hand, or computing the relative transformation
between the sensors and the base-link from a direct solution. In
our experiments, it was sufficient to provide the extrinsics with
a couple of centimeters and degrees accuracy, i.e., a simple
ruler is sufficient.

We obtain the poses {(mtRb,
m
ttb)∀t} by estimating inde-

pendently for each timestamp the pose of one of the sensors in
the reference map. We use the Perspective-n-Point (PnP) [15]
algorithm when taking one/ multiple cameras to estimate the
poses of the base-link sensor in the reference map. In the
upcoming experiments (Sec. V), we take for each timestamp
the camera with the most visible AprilTags to estimate the
pose. In the case of calibrating only multiple LiDAR sensors,
we can also use global registration techniques. We used, for
example, the approach by Rusu et al. [21] that uses feature-
based correspondences with FPFH features, and searches for
the best fit using RANSAC, which provided a sufficient
estimation for an initial guess.

E. Joint Optimization

To obtain the statistically optimal solution for the calibration
parameters, we optimize all the sensors in a joint least squares
adjustment. Each sensor is rigidly connected to the platform
and thus correlated to the other sensors. We use the Gauss-
Newton-Model for optimization. We obtain an estimate of the



(a) Camera image (b) LiDAR point cloud

Fig. 2: Measurement of cube corners for evaluation. In the camera
image (a) the corner point (yellow) is the intersection of the image
edges (green). In the point cloud (b), the corner (yellow) is the
intersection of 3 planes estimated using RANSAC on basis of the
red, green and blue points.

accuracy of the parameters using the inverse of the normal
equation system. The covariances of the observations should
be chosen such that the standardized residuals are approxi-
mately standard normal distributed.

In each iteration of the Gauss-Newton algorithm, we update
the correspondences for the point clouds to ensure always
having the closest points, as also done in ICP. Errors in the
initial parameters can lead to wrong associations. Therefore,
we use the Geman-McClure robust kernel to reduce the impact
of those points.

Once the Gauss-Newton method is converged, we disable
the robust kernel and optimize a second time without the robust
kernel, removing outliers that are further away than three times
the specified sensors standard deviation (3σ bound).

IV. LIDAR-TO-CAMERA EVALUATION METHOD

Estimating all parameters in a joint least squares adjustment
allows for obtaining the analytical covariances, especially
when choosing realistic covariances in the optimization. But
due to imperfect assumptions about the model, covariances,
correlations, and linearization, the estimated covariances might
be too optimistic. Thus, we evaluate the system separately. Ad-
ditionally, it allows us to perform an independent comparison
to other calibration methods.

Since we are interested in using the camera data in com-
bination with the LiDAR sensors, for example, to project
the points into the images (as shown in Fig. 1), we focus
on the analysis of the calibration between these sensors. We
propose an evaluation method for the independent assessment
of the accuracy between LiDAR sensors and cameras. Finding
reliable corresponding points in both sensors allows us to
compute the reprojection error.

Throughout our experiments, we saw that picking distinct
points in the point cloud or range image of the LiDAR sensors
was not precise enough. This is due to the limited resolution
of the LiDAR, for an accurate evaluation, the resolution of
the evaluation method should be higher than the accuracy of
the calibration, otherwise aliasing effects can occur. Therefore,
we propose to use a cube to find distinct corners in the image
and in the point cloud. By extracting three visible planes of
the cube from the point cloud, we can compute the point of

(a) Calibration room (b) Reference point cloud

Fig. 3: The calibration environment is equipped with AprilTags for the
camera calibration and structural elements for the LiDAR. (a) shows
a picture of the room, and (b) shows the corresponding point cloud
that is used as a reference target. The point cloud is obtained by a
Faro Focus3D-X130 terrestrial laser scanner.

intersection. We guide this process by manually selecting a
point near the cube corner. The corresponding point in the
image can be extracted by finding the three edges between the
three planes. One can compute the accuracy of the image by
projecting the detected corner from the LiDAR into the image
and computing the residual at the intersection point of the three
image edges. As another metric, we use the distance between
the estimated point in the LiDAR and the viewing ray to the
corner in the image. The first gives a residual in pixels, while
the latter provides a metric error in 3D space. A visualization
of the cube measurements are depicted in Fig. 2. Note that
the cube is not needed for calibration, only to evaluate the
calibration results independently.

V. EXPERIMENTAL EVALUATION

The main focus of this work is a calibration procedure that
reliably works for different sensor setups. In the following, we
will first look at the main sensor setup and the used calibration
environment. Afterward, we evaluate our proposed method and
compare it to other approaches. In the end, we will look at
the calibration results of different sensor setups to show that
our method is of general use.

A. Experimental Setup
In this work, we aim at calibrating multi-sensor perception

systems with the help of a specifically designed calibration
environment. The calibration environment is depicted in Fig. 3
and the main sensor system we will look at can be seen in
Fig. 5 (a). It is equipped with four Basler Ace cameras facing
the front, left, right and to the rear of the vehicle. Additionally,
the system has an Ouster OS1-128 LiDAR scanner with 128
beams and a 45◦ vertical field of view that is mounted hori-
zontally. A second Ouster OS1-32 is mounted vertically and
has 32 vertical beams. All sensors are PTP time-synchronized.

As calibration environment, we place 119 AprilTags at the
four walls and the ceiling in an otherwise empty room. The 3D
coordinates of the tags are extracted as described in Sec. III-A.
We mounted structural elements in the shape of pyramids to
the walls to fix all DoF of the pose for the LiDAR scan.

B. Calibration Evaluation
The main goal of this work is to provide a reliable calibra-

tion method for multi-sensor perception systems. Therefore,



TABLE I: Calibration evaluation

Model RMSE [pix] RMSE [m]

Scene-based [13] 30.71 0.064
Ca2Lib [7] 11.13 0.024
CV2O3D 4.17 0.010

Ours 2.51 0.007

we look in this experiment into the accuracy of our method
and compare it to other approaches. We will compare our
calibration environment-based approach against Ca2Lib [7],
a LiDAR-to-camera calibration approach using a chessboard
for calibration, and a natural scene-based approach [13].
Since the approaches calibrate one laser with one camera,
we perform this four times to obtain the calibration between
all the sensors. Additionally, the approach assumes the cam-
eras to be intrinsically calibrated; therefore, we provide the
necessary intrinsics. Multi-sensor calibrations in a specially
designed calibration environment are very rare; therefore, we
implemented a baseline using standard tools provided by
OpenCV [3] and Open3D [35], which we will denote as
CV2O3D. For this, we register each sensor to the reference
map. The extrinsics between the sensors can be obtained by
computing the relative pose between the sensors. We can do
this for each timestamp independently, and after removing
outliers, estimate the mean transformation. For the camera,
we first estimate the intrinsics using Zhangs method [33],
followed by estimating the pose in the map using the classic
PnP algorithm using the AprilTag coordinates. The poses of
the LiDAR in the map can be estimated using a RANSAC-
based global registration, followed by a point-to-plane ICP
for fine registration between the scans and the reference point
cloud map. The difference between our approach is that the
standard tools only allow for independent estimation of the
sensor states, while our approach is optimizing all the poses,
extrinsics, and intrinsics jointly.

We evaluated all approaches using the same cube dataset
(see Sec. IV) with 34 measured cube corners using the
horizontal OS1-128 LiDAR and all cameras. The position and
distance to the cube varies such that we have a high FoV
coverage. Tab. I shows the RMSE errors. Our approach is
outperforming the scene-based calibration [13], checkerboard
baseline Ca2Lib [7] as well as CV2O3D, which uses exactly
the same data as our approach. We believe that our config-
uration in the calibration environment is more stable since
we take in each timestamp the observations of all sensors
into account and thus obtain better results. Additionally, with
the checkerboard, one is only taking the few observations
that lie on the board. The scene-based approach has a lot
of potential correspondences, but finding the correct ones,
especially based on the not so reliable intensity, might be hard
without incorporating at least some outliers. In the calibration
environment, on the other hand, we can use all the points for
the ICP, and due to the AprilTags have fixed correspondences
for the cameras.

C. Model Analysis
In this experiment, we want to show the impact of different

parameterizations of the sensor models to validate our design

TABLE II: Ablation of different models

Camera LiDAR Metric
Model Degree Bias Scale RMSE [pix] RMSE [m]

[A] D 3 ✗ ✗ 3.91 0.008
[B] D 3 ✗ ✓ 3.22 0.009
[C] D 3 ✓ ✗ 2.62 0.008
[D] B 2 ✓ ✓ 2.72 0.008
[E] B 3 ✓ ✓ 2.54 0.008
[F] D 1 ✓ ✓ 4.89 0.013
[G] D 2 ✓ ✓ 2.75 0.008
[H] D 3 ✓ ✓ 2.51 0.007

TABLE III: Synthetic dataset: RMSE of the parameters

Sensor Parameter CV2O3D Ours

C
am

er
as

Translation [mm] 4.11 0.79
Rotation [◦] 0.255 0.010

Principal Point [pix] 3.74 0.60
Focal Length [pix] 1.32 0.31

Distortion [pix] 0.94 0.11

L
iD

A
R

Translation [mm] 8.32 0.85
Rotation [◦] 0.524 0.010
Bias [mm] N/A 2.82

Scale N/A 0.0011

choices. Note, that this should be done for each sensor system
to choose the right model for each sensor. The results are
depicted in Tab. II. When looking at the configurations [A]-
[C], and [H] one can see the impact of estimating intrinsics of
the LiDAR. The results without estimating a scale and offset
parameter [A] are notably worse than estimating either of those
([B] or [C]). While the best is achieved when estimating both,
see [H]. When further analyzing the residuals between the
LiDAR points and the reference map after optimization, as
depicted in Fig. 4, one can observe systematic errors when
optimizing without the intrinsics (blue). The residuals should
be normal distributed around zero, but both seem to system-
atically measure around 2 centimeters too short. Additionally,
the distributions of the residuals are not completely symmetric.
When optimizing with the intrinsics (green), the residuals look
normal distributed around zero, therefore, indicating that no
further systematics (like beam-wise intrinsics) are needed.

Different image distortion parameterizations are depicted
in [D] - [H], where model B depicts Brown’s distortion
model and D the division model as discussed in Sec. III-B1.
The degree column denotes the degree of the polynom used
to model the radial distortion. In summary, the first-degree
polynomial is substantially worse than the second or third
polynomial. Brown’s and the division model evaluate quite
similarly for same degrees.

D. Evaluation on Synthetic Data

To validate our method, we evaluate our method on a syn-
thetic dataset. This enables ground-truth reference parameters
to which we can compare. For generating realistic synthetic
data, we utilize the terrestrial laser scan by rendering images
and LiDAR scans from the dense point cloud (see Fig. 3b)
given a predefined set of poses, extrinsics and intrinsics of
all the sensors. Those values where chosen to be like [H]
from Tab. II to have a realistic parameter set and trajectory.
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Fig. 4: Histograms of point-to-plane residuals between the LiDAR
points and the reference map after adjustment with or without
estimating the LiDAR intrinsics (range scale and offset). The vertical
lines denote the mean. Without calibrating the range measurements,
one can see a constant offset off around 2 cm; both LiDAR sensors
underestimate the range.

We add 2 cm of isotropic Gaussian noise to the points of
the LiDAR scan. In Tab. III the RMSE’s of the individual
parameters w.r.t the ground-truth parameters over all cameras
and LiDAR sensors are displayed. Our approach is able to
outperform CV2O3D, the best performing baseline in the
previous experiments. This shows the advantage of a combined
adjustment over an individual calibration.

E. Calibration of different Perception Systems
To show the versatility of our system, we will show the

calibration results for different perception systems with dif-
ferent sensors and configurations. For this, we will provide
quantitative results in the form of the analytical covariances
for the relative and absolute poses, as well as qualitative results
to provide a more intuitive way to see how well the sensors
are calibrated and the observations are aligned to the map. The
analytical standard deviations of the relative poses between the
sensors (extrinsics), as well as the standard deviation of the
absolute poses are shown in Tab. IV. Both show that the trans-
lation can be estimated with below millimeter accuracy, while
the rotation angles have standard deviations of around 0.06◦.
Propagating these errors into the image leads to errors with
around 2.6 pix standard deviation, which is in line with the
measured 2.51 pix RMSE from Sec. V-B; indicating that our
system can obtain realistic covariances. Qualitative results can
be found in Fig. 5. For each sensor, the observations from
one timestamp can be seen in the calibration environment.
The point clouds from the LiDAR are well aligned with the
walls. The camera observations of the AprilTag coordinates
are visualized by the corresponding ray in the reference map
frame. One can see that the camera rays intersect the AprilTag
coordinates of the reference point cloud M . Note that for the
estimation, not only the observations from one timestamp, but
from around 50 timestamps at different positions are used for
a reliable estimation.

TABLE IV: Standard deviation of the relative and absolute poses

Pose Platform x
[mm]

y
[mm]

z
[mm]

rx
[◦]

ry
[◦]

rz
[◦]

re
la

tiv
e IPB Car 1.26 1.24 1.04 0.0575 0.0578 0.0574

Youbot 1.06 1.06 1.06 0.0583 0.0594 0.0585
Dingo 1.07 1.06 1.08 0.0592 0.0634 0.0601

ab
so

lu
te IPB Car 1.01 1.0 1.02 0.0575 0.0578 0.0574

Youbot 1.03 1.03 1.06 0.0585 0.0592 0.0574
Dingo 1.04 1.03 1.03 0.0597 0.0621 0.0574

VI. LIMITATIONS AND FUTURE WORK

In this chapter, we briefly want to discuss the advantages
and disadvantages of our proposed method, as well as possible
future research directions that can emerge from here. The main
disadvantage we can see is that the setup can be quite costly;
we rely on a precise high-resolution point cloud obtained by a
terrestrial laser scanner (but needed only once) and have, in the
best case, a dedicated room that we can modify to be a good
calibration environment. A great advantage however is that
once the calibration environment is prepared, the calibration
does not require any special knowledge, and the whole process
can be completely automated. One interesting future direction
is to investigate how to reduce the costly hardware without
compromising on the calibration quality.

In this work, we are restricted to calibrating perception
sensors. Odometry sensors, inertial measurement units (IMU),
or global navigation systems (GNSS) are harder to incorporate
into the pipeline since our approach relates the measurements
to the reference map and not between the poses of the system
at different timestamps. Incorporating an odometry sensor, or
IMU, probably requires the integration of the measurements
between two timestamps and relating the measured movement
to the poses of the system, while for GNSS one would need
a globally referenced outdoor environment.

VII. CONCLUSION

In this paper, we presented an approach for calibrating
the intrinsics and extrinsics of perception sensors for robotic
systems. The main idea is to exploit a precise reference map
as a target for all the sensors. We equipped the environment
with structural elements and uniquely identifiable targets to
ensure correct correspondences and resolving ambiguities for
the calibration. A joint least-squares adjustment of all the
sensor observations is used to estimate the statistically optimal
solution. This allows us to successfully calibrate different
multi-sensor systems. We calibrated different modalities of
multi-beam LiDAR, profile scanners, wide-angle cameras, as
well as fisheye cameras. For evaluating camera-to-LiDAR
calibration, we propose an independent method to compare
different calibration approaches. Our experiments suggest that
our proposed approach provides accurate extrinsic and intrinsic
calibration.
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(a) IPB Car (b) Youbot (c) Dingo

Fig. 5: Visualization of the LiDAR scans and image rays to the reference map for different sensor setups. (a) IPB Car mount is a roof-top
mount equipped with 4 Basler Ace wide-angle cameras and 2 Ouster OS1 multi-beam LiDAR. (b) The Youbot is a ground vehicle equipped
with 2 Hokuyo UTM-30LX profile scanners and one Realsense T265 that has 2 fisheye lenses. (c) Our robot “Dingo” is equipped with 2
SICK TIM781S profile scanners and one FLIR Blackfly S fisheye camera. Both, the Dingo and the Youbot have 4 Realsense D435 facing
front, left, right, and rear. The point clouds are well aligned with the reference scan. The camera rays corresponding to the detected pixels
as corners of the AprilTag intersect the corners of the reference point cloud.
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