
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022. 1

KPPR: Exploiting Momentum Contrast
for Point Cloud-Based Place Recognition

Louis Wiesmann Lucas Nunes Jens Behley Cyrill Stachniss

Abstract—Place recognition plays an important role in robot
localization and SLAM. Being able to retrieve the current position
in a given map allows, for instance, localizing without relying on
GPS reception. In this paper, we address the problem of point
cloud-based place recognition, we especially focus on reducing
the often significant training time needed by learning-based
approaches. We propose a novel neural network architecture that
first extracts local features using a pre-trained encoder network
plus a stem architecture. The local features are aggregated to
a global descriptor, which allows us to compute the similarity
between locations. In line with with several existing approaches,
we target the generation of descriptors, which are similar for
spatially near locations and dissimilar to other places. By exploit-
ing the recent success of feature banks, we are able to bypass
the computation of the negative examples, which enables faster
training, bigger batch sizes, or the use of more sophisticated
networks. As a key result, able to speed up the training process
by a factor of 17 against the most common training procedure
while increasing also the performance.

Index Terms—Localization, Deep Learning Methods

I. INTRODUCTION

GLOBAL localization is a common component in many
robotic systems and autonomous driving. Place recogni-

tion allows for finding loop closures for SLAM systems [35] or
to localize in a given prerecorded map without relying on GPS
reception. In this work, we address the problem of point cloud-
based place recognition where we want to retrieve our current
location in a given map. LiDAR-based place recognition is
often solved by comparing a global descriptor from the query
location to the descriptors in a database [14], [20], [49]. The
descriptors are usually generated by aggregating information
of local features which themselves are computed by neural
networks. The training of those networks is typically done by
maximizing the descriptor similarity between spatially near lo-
cations and minimizing the similarity of different locations [4],
[10], [14], [19], [20], [41], [46].

Finding hard cases, i.e., those observations/places that look
very similar but are in fact far away from each other, is key

Manuscript received: Aug 24, 2022; Revised: Oct 28, 2022; Accepted: Nov
25, 2022. This paper was recommended for publication by Editor Sven Behnke
upon evaluation of the Associate Editor and Reviewers’ comments.

This work has partially been funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy, EXC-2070 – 390732324 – PhenoRob, by the European
Union’s Horizon research and innovation programme under grant agreement
No 101070405 (DigiForest).

All authors are with the University of Bonn, Germany. Cyrill Stachniss is
additionally with the Department of Engineering Science at the University of
Oxford, UK, and with the Lamarr Institute for Machine Learning and Artificial
Intelligence, Germany.
Corresponding author: louis.wiesmann@igg.uni-bonn.de

Digital Object Identifier (DOI): see top of this page.

1 3 5 7 9 11 13 15 17

Number Negatives in Contrastive Training

80.0

82.5

85.0

87.5

90.0

92.5

95.0

A
v
e
r
a
g
e
 R

e
c
a
ll
 @

1

without feature bank

with feature bank (size: 15,000)

1 3 5 7 9 11 13 15 17

0

10

20

30

40

50

T
r
a
in

in
g
 T

im
e
 [

h
]

without feature bank

with feature bank (size: 15,000)

b
e
t
t
e
r

b
e
t
t
e
r

Number Negatives in Contrastive Training

be
tte

r
be

tte
r

Fig. 1: The performance of learning-based place recognition systems
often scales with the number of negatives used for the contrastive
training. Here, we show the place recognition performance with
(red dashed) and without (blue solid) the usage of a feature bank
while training. The more negatives, the better the performance in
terms of average recall (top), but notably the training increases
disproportionally with respect to the gain in performance (bottom).

for obtaining competitive performance. Usually, most of the
compute is spend to find those hard negatives and to avoid
training on trivial examples. Many approaches look for each
query position up to eighteen other point clouds [24], [41], [46]
and therefore sacrifice over 80% of their training time to search
for hard examples. The performance usually increases with the
amount of negatives used for training (as illustrated in Fig. 1
for our approach in blue). However, the training time increases
disproportionally with respect to the gain in performance.
Avoiding the computation of the negatives has the potential to
allow for faster training, bigger batch sizes, more sophisticated
networks, or simply for more efficient research cycles.

The main contribution of this paper is a novel approach for
point cloud-based place recognition, called Kernel Point Place

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022.

Recognition (KPPR), which is a novel architecture for point
cloud-based retrieval. We set a special focus on efficient train-
ing and inference which will be reflected in the choice of our
architecture as well as in the training procedure. To the best of
our knowledge, we are the first that utilize momentum contrast
and feature banks in the context of point cloud-based place
recognition. This allows us to achieve higher performance and
faster training (as depicted in Fig. 1, red dashed line). The
source code of our implementation as well as the pretrained
models are available at https://github.com/PRBonn/kppr.

II. RELATED WORK

Place recognition tackles the problem of retrieving the
current position based on observations (so-called queries) in
a given map (also called database). Images have often been
used to represent the local surrounding of the query position
and the entries in the database [27], [30], [32], [43], [44],
[45]. Nowadays, more and more point cloud-based approaches
emerge, which are usually less prone to appearance changes
caused by illumination conditions or seasonal changes [41].

The similarity between positions is often computed based
on the similarity of global descriptors. Those descriptors can
be computed by aggregating local features through bag of
words [8], [33], [34], vector-of-locally-aggregated-descriptors
(VLAD) [17], or the differentiable version NetVLAD [1] for
learning-based approaches [41]. The local features can be
computed using classical handcrafted methods [2], [26], [31],
[36], [37] or learned by neural networks [4], [6], [10], [15],
[21], [49]. Most of the learning-based approaches utilize con-
volutional networks, which typically operate on graphs [22],
[38], sparse voxel grids [4], [20], range images [6], or directly
on the points [40]. The performance can be additionally
improved by taking sequential information into account to
resolve ambiguities [23], [28]. Networks that are pre-trained on
different tasks can provide useful features, which can then be
used not only for place recognition [11], [39], [50], but also for
other tasks. Similar to our prior work [46], we use a compres-
sion encoder [47] for feature enhancement, which allows us to
retrieve our position directly in a compressed map. In contrast
to our prior work [46], we use in this work a convolutional
stem architecture instead of attention [16], [42], [45].

Training such networks can be very compute intensive
due to the amount of negative examples [24], [41], [46].
Komorowski et al. [20] try to avoid unnecessary computations
by mining over the whole batch and dynamic batching to
prevent the descriptors to collapse. Hui et al. [14] on the
other hand focus on efficient inference by training a smaller
student network with a bigger teacher model. We on the
other hand, exploit feature banks and a momentum encoder
from momentum contrast [13] which allows us to use an
arbitrary number of negatives that comes at basically no cost.
Other contrastive learning approaches focus on large batch size
training [5], online clustering [3], or mining strategies [48] to
deal with negatives. In contrast, Zbontar et al. [51] does not
need any of those techniques, but rather simple introduces a
loss based on the cross correlation. A different direction in
the unsupervised domain is to train entirely without negatives.

To optimize for only positive examples one either uses a
momentum encoder [12] or stopping certain gradients [7].
Since in the unsupervised domain, the positive examples are
usually only augmented views and the negatives are different
images, not pushing away negatives that might actually be
structural similar might be an advantage. In the case of place
recognition, which is usually done supervised, we know which
ones are positives and which ones are negatives, therefore the
risk is smaller to optimize for false negatives.

III. OUR APPROACH FOR PLACE RECOGNITION

In this work, we propose a novel neural network architecture
for point cloud-based place recognition with special focus
on efficient training and inference. We follow the common
paradigm [4], [20], [41], [46] of first computing local features,
which are then aggregated into a global descriptor. A query
location can in the end be retrieved by comparing its descriptor
to the ones in the database. The point clouds are first fed into
a compression encoder to create a compact representation. A
convolutional stem enhances the features by increasing the
receptive field, which are then aggregated by NetVLAD [1]
into the global descriptor. For the training, we use use a
contrastive loss with entropy-based regularization and utilize
feature banks to increase the number of negatives we can use.
The network architecture is illustrated in Fig. 2 (a) and will
be explained in more detail in the following.

A. Compression Encoder
Local point clouds, as they are commonly used in the

domain of autonomous vehicles and mobile robotics, can
easily contain hundred thousands of points. To deal with these
amount of points, we utilize a frozen pretrained convolutional
encoder from a compression network [47], which provides us
with multiple benefits, such as a reduced number of points with
descriptive features, but also the ability to efficiently store the
compressed point clouds.

The encoder E generates for a given point cloud X ∈ RN×3

a sparse representation consisting of points Xc ∈ RM×3 with
their associated features Fc ∈ RM×Dc . Here, N is the number
of input points, M the number of compressed points with
N < M and Dc is the dimensionality of the compression
features. By training directly on the compressed representa-
tion, we can bypass the biggest computational part of the
early convolutions, but due to the additional features we do
not lose so much of the fine grained information compared to
simple downsampling. The input can be reconstructed from the
compressed representation {Xc,Fc}, which will be preserved
through freezing the encoder while training.

The features Fc from the compression encoder are not
necessarily well suited for our task. Therefore, instead of
fine-tuning the weights of E, we use a small shared multi-
layer perceptron (MLP) S : RM×(3+Dc) → RM×Do to
transform the compression specific features into a features
space, which is better suited for place recognition. This MLP S
consists of three layers with ReLu as non-linearity and layer
normalization. The input to the the MLP are not only the
features Fc but also the points Xc which can be seen as a
learned positional encoding.

https://github.com/PRBonn/kppr

WIESMANN et al.: KPPR: EXPLOITING MOMENTUM CONTRAST FOR POINT CLOUD-BASED PLACE RECOGNITION 3

N
et

VL
AD

KP
C

on
v

Sh
ar

ed
Li

ne
ar

C
om

pr
es

si
on

En

co
de

r

Convolutional
Stem

Stem Block
Descriptor

(a) Network Architecture (b) Convolutional Stem Block

Legend
Coordinates

Features
KPConv Influence h

M
LP

Po
in

t C
lo

ud

Fig. 2: Our proposed architecture (a) consists of a compression encoder to create a sparse lightweight representation which will be enhanced
by a convolutional stem. The resulting local features will be aggregated by NetVLAD into one global descriptor. The inputs to our networks
are the coordinates of a point cloud. The descriptors can be used to compare point clouds in the descriptor space using the cosine similarity.
The Convolutional stem consists of ResNet-like KPConv blocks (b) with precomputed neighborhoods and weights for faster inference.

B. Convolutional Stem

The features from the encoder contain local information but
lack a broader context due to the small receptive field of the
encoder. Therefore, we propose to use a convolutional stem
to increase the receptive field of view. The convolutional stem
consists of J ResNet-like KPConv blocks K : RM×Do →
RM×Do , which do not further subsample the already sparse
point cloud.

In the following, we will first briefly revisit the concept of
KPConv [40], to then show how we can disentangle it into
a block dependent and a block-independent part. We will use
the superscript to denote block-dependent variables, e.g., Fj

are the features in the jth block.
For a point x ∈ Xc, the convolution of the features Fj−1

with the convolutional kernel g is defined as

f j = (Fj−1 ∗ gj)(x) =
∑

xi∈N j(x)

g(xi − x)jf j−1i , (1)

where N j(x) = {xi ∈ Xj | ‖xi−x‖ < rj} are all the points
in the neighborhood within the radius rj ∈ R. The kernel g is
defined by a linear combination of the weights {Wj

k | k < K}
of the K kernel points {xj

k | k < K}:

h(xi − x,xj
k) = max

(
0, 1−

‖xi − x− xj
k‖

σ

)
(2)

g(xi − x)j =
∑
k<K

h
(
xi − x,xj

k

)
Wj

k, (3)

where its coefficients h decrease linearly with the distances
from the neighbors to the kernel points.

In contrast to the original KPConv implementation, we
can make the following simplifications due to the stem ar-
chitecture. First, we do not further subsample the points,
therefore the coordinates in the point cloud stay the same,
i.e., Xj = Xj−1 = X. Second, the neighborhoods will
remain the same by always using the same radius r ∈ R.
Third, we arrange the kernel points always in a grid structure
such that the coefficients are independent of the block. Hence,
h(xi−x,xj

k) = h(xi−x,xk), which allows us to precompute

the term for all J blocks. This includes the quite costly kNN
search for the neighborhoods.

Consequently, the only variables that are changing in each
block j ∈ {1, . . . , J} are the kernel weights Wj

k and the
features of the target point cloud Fj−1. All KPConv blocks are
implemented in a ResNet-styled fashion (as illustrated in Fig. 2
(b)) with ReLu activation and layer normalization, similar to
Thomas et al. [40].

C. Feature Aggregation

The result of the convolutional stem is a point cloud Xc

with their associated local features Fs. In the end, we want
one single global descriptor d, that we can use to compare with
the descriptors of other point clouds to search for the closest
match. Therefore, we need to aggregate the local features
into one descriptor vector d ∈ RDo . For this, we use the
standard NetVLAD [1] A : RM×Do → RDo layer which
modifies VLAD to be fully differentiable and learnable by
introducing a soft assignment between the centroids and the
local features F. Notably, our descriptors get normalized such
that ‖d‖ = 1. Without the normalization, we could observe
the same behavior as training without the momentum encoder:
the vectors diverge.

D. Loss Function

The global descriptors that we extract from the point clouds
should have the properties that descriptors from the same
location (positives) should be similar while being dissimilar to
descriptors from other locations (negatives). To optimize for
this objective, we use the additive supervised contrastive loss
with differential entropy regularization similar to El-Nouby et
al. [9]. For a query descriptor, q ∈ RDo , a set of positive
descriptors P and the feature bank B the contrastive part Lc

is defined as

Lc(q,P,B) =
1

|P|
∑
p∈P

(
1− q>p

)
+

1

η

∑
b∈B

1bq
>b, (4)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022.

Siamese
Encoder shared shared

Key

Loss

Update

Fe
a
tu

re
 B

a
n
k

.

.

.

no
grad

no
grad

Positives Queries Negatives Positives Queries

Siamese
Encoder

Siamese
Encoder Encoder Encoder

Momentum Query

Attraction Repulsion
Loss

Attraction
Loss Loss

Repulsion

Fig. 3: Training procedures without (a) and with (b) using a feature bank. Both methods use an attraction loss to make descriptors from
the queries Q to the corresponding positives P similar while repulsing the negatives N away from Q. When using the classical training
procedure (a) one computes the queries Q, positives P , and negatives N all with the same siamese network. The network is trained by
backpropagation through all the descriptors. With the feature banks (b) a second network (query encoder) is introduced to compute the
positives P . This network gets updated using a momentum update rather than backpropagation. the negatives are not computed per query
but are taken from the past positives. The superscript denotes the index at which time the descriptors are computed.

where 1b indicates whether b is in the negatives N of q and
is within the margin β, i.e.,

1b =

{
1 , if b ∈ N and q>b > β

0 , otherwise,
(5)

and η =
∑

b∈B‖1b‖1 is the number of times, where 1b is 1.
The regularization loss is an entropy-based repulsion loss

Lr to prevent descriptors to collapse

Lr(q,d∗) = − log

(
1− q>d∗

2

)
, (6)

where d∗ = {argmax(q>d) | d ∈ P ∪ B} is the most similar
descriptor. In contrast to El-Nouby et al. [9], we use the cosine
distance instead of the Euclidean distance to reuse intermediate
results of Lc. The final loss L = Lc +αLr is the sum of both
loss terms with α to weight them accordingly.

E. Feature Banks and Momentum Encoder

The recent success of momentum contrast [13] in the
domain of unsupervised representation learning motivated us
to apply the ideas of a feature bank and momentum encoder
to the field of point cloud-based place recognition.

Traditionally, the positives P and negatives N are computed
by the same network as the query q, as visualized in Fig. 3
(a). Due to the huge amount of negatives, this requires a lot
of compute time. In contrast, when using the feature banks,
the negatives do not have to be computed online, but rather
the former positives get recycled. The feature bank B is a
queue of descriptors, buffering the latest ∆ descriptors from
the previous positive examples P . By this, the computation
of the negatives can be bypassed and therefore saves a lot of
compute.

The loss Lc tries to maximize the similarity between the
positives and minimize it for the negatives. By rapidly chang-
ing the weights of the network, the positive descriptors can
simply diverge from the negatives, just learning that the current
descriptors should be different from the negatives. To prevent
this, He et al. [13] introduced a second encoder, the so-called

key encoder, for computing the positives P . The weights wkey
of the key encoder are not updated by backpropagation but
with a momentum update of the weights wquery from the query
network:

wt
key = γ wt−1

key + (1− γ)wt
query. (7)

The superscript denotes the index of the batch. The weights
will be updated at the beginning of the forward pass of each
batch. Only slowly updating the key encoder shall prevent the
divergence of the positives with respect to the negatives [13].
The gradients from the feature bank are disabled, which
additionally saves compute and memory. Backpropagating
through tenth of thousands of descriptors would be infeasable,
even for most modern accelerators. The pipeline for training
with the feature banks is illustrated in Fig. 3 (b). In contrast to
He et al. [13], our approach is supervised, therefore allowing
us to only use descriptors of the feature bank as negatives
when they are true negatives. For this, we additionally store
the indices of the point clouds in the feature bank, and check
for each query which descriptors belong to point clouds from
negative positions, which will then be accounted for in the
loss, see Eq. (5). By using the feature banks, we are able to
increase the number of negatives drastically without scaling
up in compute and memory. We discard the key encoder after
training and we only use the query encoder for the online
inference.

IV. EXPERIMENTAL EVALUATION

The main focus of this work lies on point cloud-based place
recognition. In the following, we will evaluate the performance
of our approach and its great benefits for point cloud-based
place recognition in terms of recognition accuracy and training
efficiency. Furthermore, we show ablation studies to validate
our design choices.

A. Experimental Setup

The aim of our approach is to reliably retrieve the posi-
tion in a given map based on the point cloud of the local

WIESMANN et al.: KPPR: EXPLOITING MOMENTUM CONTRAST FOR POINT CLOUD-BASED PLACE RECOGNITION 5

0 5 10 15 20 25
in top N

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Av

er
ag

e
Re

ca
ll

@
N

KPPR (Ours)
SOE-NET
HiTPR
LPD-Net
Retriever
DH3D
PCAN
PointNetVLAD

Fig. 4: Average recall @N on the Oxford Robocar dataset. Our
approach is able to reliably retrieve the position of query point clouds
in a given database.

surrounding. For the evaluation, we use the classic datasets
Oxford Robocar [29] and the three In-House datasets [41]. We
follow the common train/test splits and the evaluation metric
average Recall R at a specific threshold τ as in [41]. The recall
will be denoted as R@τ , e.g., R@1 is how often a positive
database descriptor is within the top-1 most similar descriptors
while R@1% denotes within the top-1%. Additionally, we
will provide the training time for the ablation studies, since
one of our key aims is to reduce the training time. We use
the following parameters unless stated differently. The output
feature size of the shared MLP and the Stem blocks, as well
as for the global descriptor are set to Do = 256, while the
intermediate kernel point convolution outputs 128-dimensional
features (similar to [40]). We normalize the input coordinates
to lay within -1 and 1. The radius for the convolution is set
to r = 0.05. We use J = 7 stem blocks and a Feature Bank
size of |B| = 15, 000. The weights wq get updated with a
momentum of γ = 0.999 and for the loss, we use α = 0.3
as well as β = 0.5. To enable batched training, we pad the
compressed point clouds to always have the same number of
points. Padded points get masked out in the blocks accordingly
to not affect the training. We use ADAMw [25] with a learning
rate of 10−5, which will be reduced to 10−8 in a cosine
annealing schedule. When training with the feature bank, we
use a batch size of 32 while only being able to use a batch
size of 16 for batch negative mining and a batch size of 3
when training without the feature bank. All our experiments
are trained on the same machine with an Nvidia RTX A6000
for a fair comparison.

B. Place Recognition Performance

In the first experiment, we analyze the performance of our
approach with respect to the baselines. In Fig. 4, we show
the results on the Oxford Robocar dataset [29]. We are able

1Approach has been retrained using own implementation. Due to better
results, we report those numbers rather than the original ones from the paper.

2Numbers provided by the authors or from the original repositories.
3Numbers from the original papers.

Method Oxford U.S. R.A. B.D

PointNetVLAD1 [41] 85.21 74.80 73.39 71.96
PCAN2 [52] 83.81 79.05 71.18 66.82
Retriever2 [46] 92.22 91.88 87.44 85.53
HiTPR2 [46] 94.64 94.01 89.11 88.31
LPD-Net2 [24] 94.92 96.00 90.46 89.14
SOE-Net2 [49] 96.40 93.17 91.47 88.45
SVT-Net3 [10] 97.80 96.50 92.70 90.70
MinkLoc3D3 [20] 97.90 95.00 91.20 88.50
KPPR (Ours) 97.08 98.01 95.10 92.09

TABLE I: Average recall for finding the queries within the top-
1% of the databases. All models have only been trained on the
Oxford Robocar dataset to show their generalization capabilities. Our
approach outperforms the baselines on three out of four datasets and
is not far from the best one in the first dataset (Oxford).

Northing

E
a
st

in
g

1

3

5

7

9

11

13

15

S
im

ila
ri

ty
 R

a
n
k

Fig. 5: Qualitative results for our approach on the B.D. dataset. The
color of the points denote at which position the most similar positive
was ranked within the database (the brighter the better). Most of
the positions are successfully retrieved by only looking on the most
similar descriptor.

to outperform all other methods throughout the different recall
rates. To evaluate the generalizability, we show the results (see
Tab. I) on different datasets while the networks are only trained
on Oxford Robocar [29]. We are able to outperform all the
approaches on three out of four datasets. We are between 2.0
and 3.6 percent points better than the second best approaches
on those datasets, while only being 0.8 percent points worse
than MinkLoc3D [20] on Oxford. In Fig. 5 are our results for
the B.D. dataset visualized, while in Fig. 6 we visualize some
succeeding and failure cases.

C. Ablation Studies

In the following, we will show ablation studies to show the
impact of the proposed design choices and provide deeper
insights. The ablation studies have been evaluated using a
second feature bank of size |B| = 500 on the validation dataset
on Oxford Robocar [29].

1) Negative Mining and Loss Function: In this experiment,
we analyze the impact of different mining strategies. The first
part focuses on the performance and how it is affected by the
choice of the loss function, while the second part focuses on
the impact on the training time. In Tab. II are the results for
our network trained with different loss functions and under

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022.

Queries Top 1 Top 2 Top 3 Top 4 Top 5

dist: 0.520 dist: 0.731 dist: 0.804 dist: 0.857 dist: 0.860

dist: 0.767 dist: 0.780 dist: 0.795 dist: 0.804 dist: 0.826

Fig. 6: Top 5 database results for the provided query point clouds. A green border denotes a correct match while a red border is from
a different location. Additionally, the Euclidean distance between the descriptors are provided. In the top row our approach successfully
retrieved both True positives. In the second row we have shown a failure case where the closest descriptor does not correspond to the same
location. We can see, that in the succeeding case the positives have a substantially smaller distance, while in the failure case the distances
are more similar.

different mining strategies. Namely, first the classical method
of computing for each query 18 negatives ([A] - [C]). The
second method is batch negative mining (similar to [20]) where
the negatives are searched within the positives of the batch
([D] - [F]). For a batch size of 16 with two positives per query,
we have 32 negatives. False negatives are masked out in the
same way as for the feature banks (see Eq. (5)). Finally, using
the feature banks (FB) as descriped in Sec. III-E ([G] - [I]).
For the loss functions, we evaluate with the lazy Triplet [41],
lazy Quadruplet[41], and additive contrastive loss [9] with
(here denoted as Entropy) and without (denoted as Contrastive)
entropy regularization. Notably, the Quadruplet loss cannot
be trained with the feature bank since the descriptors of the
negatives do not have gradients.

Independently of the mining strategy, we can see that
the contrastive loss with the entropy regularization ([C], [F],
[I]) outperforms the networks trained with different losses.
Batch negative mining outperforms the classic method but
is throughout worse than using the feature bank. From the
training time perspective, we see the huge impact of using
a mining strategy rather than computing the negatives classi-
cally. Additionally, the performance increases, which is likely
due to the higher amount of negatives (FB: 15,000, Batch: 32,
Classic: 18) as well as a bigger batch size (FB: 32, Batch:
16, Classic: 3), therefore compensating for the problem of
comparing descriptors that got computed at different stages in
the training. The training time using the feature banks is lower
than the batch negative mining, even though the substantially
larger amount of negatives. The reason for this is that the
gradients are not computed for the negatives in the feature
bank but are still needed for the batch negative mining. When
comparing the contrastive loss with entropy regularization [I]
against the training without the regularization [H], we can see
that the regularization boosts the performance. Throughout our
experiments, we did not see that the regularization also helps

TABLE II: Ablation: Negative Mining and Loss Function

Loss Mining

[A] Triplet Classic
[B] Quadruplet Classic
[C] Entropy Classic

[D] Triplet Batch
[E] Contrastive Batch
[F] Entropy Batch

[G] Triplet FB
[H] Contrastive FB
[I] Entropy FB

R@1 R@1% Time

85.49% 93.59% 95.36h
84.94% 93.74% 102.06h
86.07% 94.63% 96.50h

86.41% 93.96% 6.68h
85.69% 93.68% 6.93h
89.04% 95.74% 7.71h

89.91% 95.71% 5.49h
88.73% 95.51% 5.50h
91.53% 97.08% 5.05h

TABLE III: Ablation: Feature Bank Size

#FB Size

[J] 10,000
[K] 15,000
[L] 20,000

R@1 R@1% Time

91.05% 96.66% 4.91h
91.53% 97.08% 5.05h
90.44% 96.15% 4.91h

for the other losses. Training with the exponential contrastive
loss [18] was more unstable and led to worse results in our
experiments.

2) Feature Bank Size: In Tab. III are the results with
respect to varying feature bank sizes. The best result can be
achieved by a feature bank with 15,000 descriptors [K], which
corresponds to 2/3 of the size of the training set. As we can
see the training time does not vary a lot for changing feature
bank sizes. Throughout the experiments, where we not use the
feature banks, i.e., when computing the negatives explicitly, it
scales linearly with the number of negatives (as in Fig. 1).
Training with more negatives is not feasible due to limiting
memory resources of the GPU.

3) Architecture: In this section, we analyze different parts
of our network architecture. In Tab. IV are the results for
different numbers of blocks in the convolutional stem as
well as the network without using the pre-trained compres-
sion encoder. Seven convolutional blocks provide the best

WIESMANN et al.: KPPR: EXPLOITING MOMENTUM CONTRAST FOR POINT CLOUD-BASED PLACE RECOGNITION 7

TABLE IV: Ablation: Architecture

#Blocks Compr.

[M] 7 7
[N] 0 3
[O] 5 3
[P] 7 3
[Q] 9 3

R@1 R@1% Time

88.99% 95.66% 10.87h
68.00% 82.04% 0.21h
89.83% 95.92% 3.69h
91.53% 97.08% 5.05h
90.73% 96.39% 7.02h

TABLE V: Ablation: MinkLoc3D Backbone

Loss Mining

[R] Triplet Classic
[S] Triplet Batch
[T] Triplet FB

[U] Entropy Classic
[V] Entropy Batch
[W] Entropy FB

R@1 R@1% Time

71.05% 86.71% 30.07h
73.94% 88.66% 2.72h
77.47% 89.96% 2.17h

73.41% 89.14% 30.14h
73.58% 88.86% 2.75h
78.07% 90.97% 2.15h

performance, additionally one can see that the training time
increases with the number of blocks. Not having any further
convolutional blocks [N] provides the worst results, showing
that the convolutional stem is necessary to yield good results.
On the other hand, it can be trained in under 13 min and
already has a top 1 recall of 68%. We can see that using
the compression encoder [P] provides better results and trains
faster than without [M]. The slowing down of the training
process can be explained by the increasing number of points
in the point cloud. The decreasing performance shows that
the features computed by the compression encoder are more
valuable than the higher number of points. The inference of a
single compressed point cloud runs at 95 Hz. Precomputing the
neighborhoods N and h in the convolutional stem speeds-up
the inference by 44.8%, i.e. being almost twice as fast.

4) Backbone: In this section, we investigage if we are able
to apply the proposed methodology to a different backbone.
For this experiment, we exchange the compression encoder
plus the stem architecture with the sparse convolutional feature
pyramid network from MinkLoc3D [20]. For the network
architecture, we use the same hyperparameters as used in the
original work [20] and also train for the suggested 50 epochs.
Based on a parameter sweep, we use a learning rate of 10−4

and a batch size of 32 for these experiments. Additionally,
we report the results for different negative mining techniques
as in Sec. IV-C1. The results are depicted in Tab. V. First
of all, we can see the same behaviors as for our network,
i.e., using the feature banks ([T], [W]) improves both training
time and performance. The entropy loss outperforms the triplet
loss (as used in the original work [20]) also for this network
architecture. When comparing the performance of our network
Tab. II [I] with the feature pyramid network Tab. V [W], we
see that our network provides substantially better results at
the cost of training time. Our proposed network has roughly
twice the amount of parameters, explaining the difference
in runtime and performance. The results suggest that the
proposed methodology might also increase the performance of
other networks. Notably, the results with the feature pyramid
network do not perform as well as in Komorowski et al. [20].
Likely due to the lack of data augmentation and using a
different feature aggregation head, which we did not apply

for comparability to isolate the impact of the backbone.

V. FUTURE WORK AND EXPECTED BROADER IMPACT

In this work, we have utilized the ideas of feature banks in
the context of place recognition. For us, this led to a significant
reduction of the training time by a factor of up to 17 times,
which enabled us to run more experiments and have faster
research cycles. The presented experiments with the feature
banks took around 47 h of training. If we would have done
those experiments with computing the classical 18 negatives
for each query as in [24], [41], [46], it would have taken
us around 800 h. Our network architecture is designed for
efficient inference and training but did not need to specially
account for using the feature banks. Our experiments suggest
that the advantage of the feature banks (more negatives with
less compute) can be applied also for other kinds of place
recognition architectures and approaches.

VI. CONCLUSION

In this paper, we presented a novel architecture for point
cloud-based place recognition. Due to a pre-trained com-
pression encoder, we not only save computational time but
also create an intermediate memory efficient representation
that can later be used for other downstream tasks such as
decompression. Additionally, this enables us to perform place
recognition directly on the compressed representation. For the
feature enhancement, we propose to use a convolutional stem
architecture. We disentangled some of the formulations in
KPConv for our stem architecture to bypass redundant com-
putations. Our method exploits feature banks and momentum
contrast for efficient training and to improve performance.
The usage of feature banks by recycling previously computed
positives led to a speed up of up to 17 times compared to
recomputing descriptors and hard negative mining. This allows
us to successfully retrieve point clouds in a given database. We
implemented and evaluated our approach on different datasets
and provided comparisons to other existing techniques and
supported all claims made in this paper.

REFERENCES

[1] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2016.

[2] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool. Speeded-up robust features
(SURF). Journal of Computer Vision and Image Understanding (CVIU),
110(3):346–359, 2008.

[3] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin.
Unsupervised Learning of Visual Features by Contrasting Cluster As-
signments. In Proc. of the Conf. on Neural Information Processing
Systems (NeurIPS), volume 33, pages 9912–9924, 2020.

[4] M. Chang, S. Yeon, S. Ryu, and D. Lee. SpoxelNet Spherical Voxel-
Based Deep Place Recognition for 3D Point Clouds of Crowded Indoor
Spaces. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2020.

[5] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. In Proc. of the
Int. Conf. on Machine Learning (ICML), 2020.

[6] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss. OverlapNet: Loop Closing for LiDAR-
based SLAM. In Proc. of Robotics: Science and Systems (RSS), 2020.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2022.

[7] X. Chen and K. He. Exploring Simple Siamese Representation Learning.
In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021.

[8] L. Di Giammarino, I. Aloise, C. Stachniss, and G. Grisetti. Visual
Place Recognition using LiDAR Intensity Information. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2021.

[9] A. El-Nouby, N. Neverova, I. Laptev, and H. Jégou. Training Vision
Transformers for Image Retrieval. arXiv preprint arXiv:2102.05644,
2021.

[10] Z. Fan, Z. Song, H. Liu, Z. Lu, J. He, and X. Du. SVT-Net: Super Light-
Weight Sparse Voxel Transformer for Large Scale Place Recognition.
In Proc. of the Conf. on Advancements of Artificial Intelligence (AAAI),
2022.

[11] S. Garg, N. Snderhauf, and M. Milford. Don’t look back: Robustifying
place categorization for viewpoint and condition-invariant place recogni-
tion. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
2018.

[12] J.B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al. Bootstrap
Your Own Latent - A New Approach to Self-Supervised Learning. In
Proc. of the Conf. on Neural Information Processing Systems (NeurIPS),
2020.

[13] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[14] L. Hui, M. Cheng, J. Xie, J. Yang, and M.M. Cheng. Efficient 3D
Point Cloud Feature learning for Large-Scale Place Recognition. IEEE
Trans. on Image Processing, 31:1258–1270, 2022.

[15] L. Hui, H. Yang, M. Cheng, J. Xie, and J. Yang. Pyramid Point
Cloud Transformer for Large-Scale Place Recognition. In Proc. of the
IEEE/CVF Intl. Conf. on Computer Vision (ICCV), pages 6098–6107,
2021.

[16] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisserman, and J. Car-
reira. Perceiver: General Perception with Iterative Attention. In Proc. of
the Int. Conf. on Machine Learning (ICML), 2021.

[17] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating Local
Descriptors into a Compact Image Representation. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2010.

[18] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan. Supervised Contrastive
Learning. In Proc. of the Conf. on Neural Information Processing
Systems (NeurIPS), 2020.

[19] J. Knights, P. Moghadam, M. Ramezani, S. Sridharan, and C. Fookes.
Incloud: Incremental learning for point cloud place recognition. arXiv
preprint arXiv:2203.00807, 2022.

[20] J. Komorowski. Minkloc3d: Point cloud based large-scale place recog-
nition. In Proc. of the IEEE Winter Conf. on Applications of Computer
Vision (WACV), 2021.

[21] X. Kong, X. Yang, G. Zhai, X. Zhao, X. Zeng, M. Wang, Y. Liu, W. Li,
and F. Wen. Semantic Graph based Place Recognition for Point Clouds.
In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), 2020.

[22] L. Landrieu and M. Simonovsky. Large-scale Point Cloud Semantic
Segmentation with Superpoint Graphs. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[23] C. Li, F. Yan, and Y. Zhuang. Sequence matching enhanced 3D place
recognition using candidate rearrangement. IET Cyber-Systems and
Robotics, 4(3), 2022.

[24] Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li, and Y.H. Liu.
LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition
and Environment Analysis. In Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision (ICCV), 2019.

[25] I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization.
arXiv preprint arXiv:1711.05101, 2017.

[26] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
Intl. Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[27] S. Lowry and H. Andreasson. Lightweight, Viewpoint-Invariant Visual
Place Recognition in Changing Environments. IEEE Robotics and
Automation Letters (RA-L), 3:957–964, 2018.

[28] J. Ma, X. Chen, J. Xu, and G. Xiong. SeqOT: A Spatial-Temporal
Transformer Network for Place Recognition Using Sequential LiDAR
Data. arXiv preprint arXiv:2209.07951, 2022.

[29] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year, 1000 km:
The oxford robotcar dataset. Intl. Journal of Robotics Research (IJRR),
36(1):3–15, 2017.

[30] T. Naseer, W. Burgard, and C. Stachniss. Robust Visual Localization
Across Seasons. IEEE Trans. on Robotics (TRO), 34(2):289–302, 2018.

[31] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient
alternative to sift or surf. In Proc. of the IEEE Intl. Conf. on Computer
Vision (ICCV), 2011.

[32] M. Shakeri and H. Zhang. Illumination Invariant Representation of
Natural Images for Visual Place Recognition. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2016.

[33] T. Shan, B. Englot, F. Duarte, C. Ratti, and D. Rus. Robust Place
Recognition using an Imaging Lidar. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2021.

[34] J. Sivic and A. Zisserman. Video Google: A Text Retrieval Approach
to Object Matching in Videos. In Proc. of the IEEE Intl. Conf. on
Computer Vision (ICCV), 2003.

[35] C. Stachniss, J. Leonard, and S. Thrun. Springer Handbook of Robotics,
2nd edition, chapter Chapt. 46: Simultaneous Localization and Mapping.
Springer Verlag, 2016.

[36] B. Steder, G. Grisetti, and W. Burgard. Robust Place Recognition for 3D
Range Data Based on Point Features. In Proc. of the IEEE Intl. Conf. on
Robotics & Automation (ICRA), 2010.

[37] B. Steder, M. Ruhnke, S. Grzonka, and W. Burgard. Place Recognition
in 3D Scans Using a Combination of Bag of Words and Point Feature
Based Relative Pose Estimation. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2011.

[38] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.H. Yang,
and J. Kautz. SPLATNet: Sparse Lattice Networks for Point Cloud
Processing. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018.

[39] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford. On
the Performance of ConvNet Features for Place Recognition. In Proc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[40] H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and
L. Guibas. KPConv: Flexible and Deformable Convolution for Point
Clouds. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2019.

[41] A. Uy and G. Lee. PointNetVLAD: Deep point cloud based retrieval for
large-scale place recognition. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 4470–4479, 2018.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is All You Need. In Proc. of
the Conf. on Neural Information Processing Systems (NeurIPS), 2017.

[43] O. Vysotska and C. Stachniss. Lazy Data Association For Image
Sequences Matching Under Substantial Appearance Changes. IEEE
Robotics and Automation Letters (RA-L), 1(1):213–220, 2016.

[44] O. Vysotska and C. Stachniss. Effective Visual Place Recognition Using
Multi-Sequence Maps. IEEE Robotics and Automation Letters (RA-L),
4:1730–1736, 2019.

[45] R. Wang, Y. Shen, W. Zuo, S. Zhou, and N. Zheng. TransVPR:
Transformer-Based Place Recognition with Multi-Level Attention Ag-
gregation. In Proc. of the IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 13648–13657, 2022.

[46] L. Wiesmann, R. Marcuzzi, C. Stachniss, and J. Behley. Retriever:
Point Cloud Retrieval in Compressed 3D Maps. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2022.

[47] L. Wiesmann, A. Milioto, X. Chen, C. Stachniss, and J. Behley.
Deep Compression for Dense Point Cloud Maps. IEEE Robotics and
Automation Letters (RA-L), 6:2060–2067, 2021.

[48] C.Y. Wu, R. Manmatha, A.J. Smola, and P. Krahenbuhl. Sampling
Matters in Deep Embedding Learning. In Proc. of the IEEE/CVF
Intl. Conf. on Computer Vision (ICCV), pages 2840–2848, 2017.

[49] Y. Xia, Y. Xu, S. Li, R. Wang, J. Du, D. Cremers, and U. Stilla. SOE-Net:
A Self-Attention and Orientation Encoding Network for Point Cloud
Based Place Recognition. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021.

[50] J. Yue-Hei Ng, F. Yang, and L.S. Davis. Exploiting Local Features from
Deep Networks for Image Retrieval. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2015.

[51] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow Twins:
Self-Supervised Learning via Redundancy Reduction. In Proc. of the
Int. Conf. on Machine Learning (ICML), pages 12310–12320, 2021.

[52] W. Zhang and C. Xiao. PCAN: 3D Attention Map Learning using
Contextual Information for Point Cloud based Retrieval. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2019.

	Introduction
	Related Work
	Our Approach for Place Recognition
	Compression Encoder
	Convolutional Stem
	Feature Aggregation
	Loss Function
	Feature Banks and Momentum Encoder

	Experimental Evaluation
	Experimental Setup
	Place Recognition Performance
	Ablation Studies
	Negative Mining and Loss Function
	Feature Bank Size
	Architecture
	Backbone

	Future Work and Expected Broader Impact
	Conclusion
	References

