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Abstract—Mapping an environment is essential for several
robotic tasks, particularly for localization. In this paper, we
address the problem of mapping the environment using LiDAR
point clouds with the goal to obtain a map representation that is
well suited for robot localization. To this end, we utilize a neural
network to learn a discretization-free distance field of a given
scene for localization. In contrast to prior approaches, we directly
work on the sensor data and do not assume a perfect model of
the environment or rely on normals. Inspired by the recently
proposed NeRF representations, we supervise the network by
points sampled along the measured beams, and our loss is
designed to learn a valid distance field. Additionally, we show
how to perform scan registration and global localization directly
within the neural distance field. We illustrate the capabilities to
globally localize within an indoor environment utilizing a particle
filter as well as to perform scan registration by tracking the pose
of a car based on matching LiDAR scans to the neural distance
field.

Index Terms—Localization, Mapping, Deep Learning Methods

I. INTRODUCTION

APPING the environment is a crucial building block for

many robotic applications, each with different require-
ments and needs to the map. Some tasks like reconstruction
try to replicate the scene as accurate as possible. For other
tasks like localization, pose tracking, or path planning the map
is just a means to an end: The map is only as good, as it is
useful to solve the actual task. At the same time, simultaneous
localization and mapping (SLAM) reqiures to update the map
incrementally and has to operate in real-time. Here, for many
on board or on-demand applications the memory footprint can
be a limiting factor.

We address the problem of representing the environment
using point clouds from sensor data to improve the localization
performance of a robot in the proposed map representation.
Common map representations in mobile robotics are occu-
pancy maps [18]], surfels [2], [35]], distance fields [14], [30],
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Fig. 1: In this paper, we will show how to learn a neural distance
field from point cloud data. Using this neural distance field as a map
representation enables scan registration and localization.

NDTs [34], or raw point clouds [40], [42]. These represen-
tations are often combined with data structures for efficient
management: octrees, kD-trees, grid maps, or hash maps just
to name a few. In this work, we will take a closer look at
representing the scene with a distance field. The advantage of
this representation for mobile robotics is that the distance it
provides can be used for common tasks like scan registration,
Monte Carlo localization (MCL), path planning, and even for
reconstruction.

Recent works in computer vision train neural networks to
learn the distance field for a given scene. This so-called neural
distance field (NDF) is usually modeled by a simple multi-
layer perceptron, which returns for each point in space the
distance to the closest surface. The advantage over the com-
mon grid-based distance fields is the continuity of the network,
therefore, it is not limited by a grid resolution. Additionally,
a network has the ability to represent low-dimensional infor-
mation efficiently, whereas grid-based representations spend a
lot of cells to store low-dimensional objects like walls or a
ground plane. In computer vision, the training of the NDFs
is usually done by either the usage of high-resolution ground
truth meshes, normal information, or is directly supervised by
a given distance field. So far, it has been rarely investigated
how the NDF can be trained from raw sensor data, such as
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raw LiDAR data. Additionally, it is not clear how well those
NDFs are suited to tackle mobile robotic tasks.

In this work, we will learn neural distance fields (NDFs)
based on point cloud data as commonly obtained from real
LiDAR sensors. Additionally, we will show how to localize
in a given NDF, as visualized in Fig. In the domain of
autonomous driving, we look at pose tracking for odometry
estimation in a given map. For indoor environments, we will
look at global localization using MCL. In sum, we make
three key claims: (1) Our proposed loss function enables us to
learn a neural distance field, which (2) is well suited for scan
registration and (3) allows for localization within MCL. We
plan to release the code, as well as the pre-trained models at
https://github.com/PRBonn/LocNDF

II. RELATED WORK

1) Map Representations: Many different map represen-
tations have been used in the robotic context. The point
cloud representation is quite common since it can represent
directly the sensor observations. Acceleration structures like
octrees [3]], [24], hash maps [27], [40], or kD-trees [4] can
speed up accessing certain points and can help to reduce
redundancy in the data. Different ways to explicitly represent
the surface are to use meshes [38], or surfels [2l], [35].
Occupancy fields have the notion of free and occupied space
and can also be extended to represent unknown space in a
probabilistic fashion [18]]. These occupancy fields are often
stored in image-like grids for 2D [15] and classically in
octrees for 3D [18]]. neural radiance fields (NeRF) [25] use
most commonly an MLP to learn the occupancy of a scene.
Instead of storing the occupancy of a scene, another common
representation is to store for each position the distance to
the closest surface [9]. A Euclidean distance transform can
be used to transform an occupancy grid [30] into a distance
field. Traditionally, the distance values are stored in a grid.
Nowadays, more learning-based approaches emerge, which
use neural networks to learn the so-called neural distance
fields. Such NDFs are usually supervised either by density
fields [37], normals [33]], [43]], or directly the distance field [,
[28]. Learning them directly from sensor observations is just
rarely exploited [[1], [45]]. Instead of learning the whole scene
by one MLP, some approaches learn local MLPs or embedding
vectors [29], [45]. Our goal is to learn an NDF directly from
sensor observations, where we use a simple compact MLP as
a representation.

2) Scan Registration: Scan registration is a common prob-
lem in robotics and the most common method is the iterative
closest point (ICP) algorithm [3]]. It usually, consists of two
steps: first finding correspondences between the two point
clouds, which can then be used to estimate the pose by
optimizing an error metric. For finding correspondences, one
can search for the closest point [5], use projective data associa-
tions [2]], [26], or do feature-based matching [17]], [41]]. Point-
to-point [Sl], point-to-plane [7], or even plane-to-plane [31],
[32] metrics are minimized for computing an alignment. Plane-
based metrics are often based on point normals or triangle
meshes. Robust kernels and correspondence thresholds are

used to reduce the impact of outliers, low overlap, and dynamic
objects [I13], [19]. We are directly registering the point clouds
in the NDF, which leads to a similar optimization as for point-
to-plane ICP.

3) Monte Carlo localization: MCL is a method to localize
a mobile robot in a given map using a particle filter [10],
[L1]]. Tts key idea is to represent the posterior belief about
the robot’s pose by a set of weighted samples, so-called
particles. Each particle weight represents the likelihood of the
corresponding pose hypothesis, and we can compute it through
sensor observations. The basic idea is to compare the current
sensor reading at the particle location with the map, using the
so-called observation model [36].

In the context of 2D global localization, the map is often
represented as an occupancy grid [10] or a floor plan map [6],
[46]. Although effective, the usage of such maps limits the
accuracy of the localization to the grid resolution. Kuang et
al. [20] propose a neural occupancy field as a map for MCL
to overcome this limitation and improve localization accuracy.
However, their approach requires computationally demanding
ray casting-based rendering to evaluate the observation model
and thus has to reduce the usable number of beams per
scan for online localization. Conversely, using our NDF, we
predict the distances to the closest surface directly and use it
in the observation model without relying on compute-heavy
rendering. In the image domain, NeRFs have been used to
localize [23]].

III. LEARNING NEURAL DISTANCE FIELDS
FOR ROBOT LOCALIZATION

In this paper, we aim at learning a neural distance field from
point cloud data, acquired by sensors, like LiDAR sensors,
or RGB-D cameras as a representation to explicitly support
localization. We do not rely on point cloud normals, since
normal estimation heavily relies on the type of sensor and is
prone to errors. The above-mentioned range sensors have in
common that they measure the distance from the sensor origin
to the surface. The only assumption we make is that the space
in between is free space.

In the following, we will first explain how we train the
NDF from the sensor data. Second, we show two common
localization methods for point cloud data within the NDF,
namely scan registration using ICP and global localization
using a particle filter.

A. Learning NDF from Sensor Data

Our goal is to be able to query the neural distance field D
at an arbitrary point in space p € RP to obtain the distance d
to the closest surface. In this work, we focus on applications
in outdoor robotics with D = 3, which covers localization
and registration using 3D point clouds produced by com-
monly employed automotive LiDAR sensors or terrestrial laser
scanners, but also indoor environments, where we often use
D = 2, for commonly equipped 2D LiDARs for localization
and navigation.

The representation of our map is a multi-layer percep-
tron D : RP +— R which maps the input coordinates to
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Fig. 2: Instead of learning the distance between the point p, and the
measured point on the surface e; (red), e.g., as for TSDF, we project
the beam along the direction of the gradient (grey arrow) to supervise
by the approximated distance d; to the closest surface. The color of
the background corresponds to the distance field; the brighter the
color, the higher the distance.

the Euclidean distance space. We use a positional encoding
7 : RP s R2?/v with periodic activation functions,

m(p) = (p,sin(w1p), cos(w1p), . . ., sin(wr, p), cos(wr,p)), (1)

which is applied separately to each coordinate of the point p
with the aim to retain high-frequency information in the
distance field [23]].

In contrast to previous approaches which supervised the
training process either by ground truth distances [8]], [28],
occupancy fields [37]], or given normals [33]], [43], we exploit
the measurement process of the LiDAR sensors similar to
truncated signed distance field (TSDF) fusion pipelines [26],
[39]. However, we do not directly supervise by the TSDF
values like Zhong et al. [43]], but rather by an approximated
distance as explained as follows.

Laser sensors measure the distance from the sensor origin
to the surface, which we will call the ray distance d,. Inspired
by NeRFs, we sample points {p, € RP | i =1,..., N;} along
the LiDAR beam, i.e., p, = (1 — A\;)0; + \;e;, between the
sensor origin o; € RP and the end of the beam e; € RP. We
sample more points near the surface by sampling log-linearly
along the ray, i.e.,

1—10~-11
B 0.9 @
Consequently, the ray distance d; for each sampled point
to the surface is given by d; = ||e; — p,||. Note that the ray
distance d; does not necessarily correspond to the distance
to the closest surface. Instead of searching for each sampled
point the closest point on a surface, which is computationally
expensive for large-scale maps and requires determining first
the surface by reconstruction, we can approximate the direc-
tion m; to the closest surface analytically using the NDF D
by using the gradient:

Ai

0D(p;
Op;
A visualization of this process is depicted in Fig. 2] The
gradient provides us with the direction of the steepest increase

of the distance field, therefore the negative gradient points
toward the closest surface. In practice, we can use automatic
differentiation to compute n;. We project the distance d; along
the direction m; to approximate the distance to the closest
surface

i _ (e —p) '

di = “
([

We use the approximated distance d; to supervise the
training. Note that this is a circular problem: The better
the approximated distance d;, the better we can supervise
the NDF. At the same time, the better the NDF, the better
we can estimate the direction to the surface, which finally
should result in a better-approximated distance. This circular
dependency might raise the question if the training is stable,
especially when we initialize the NDF D with random weights.
Practically, we did not notice any instabilities due to this
approximation in the training. We reason that this might be
due to the fact that the approximation error, €; = |d; — d;], is
smaller, the closer the query point p; is to the surface. Thus,
for surface points or points close to the surface, i.e., d; ~ 0,
we approach €; ~ 0 regardless of the gradient n;. Therefore,
the correct distance propagates from the surface to the free
space while training the NDF.

Similar to TSDF fusion pipelines [39]], we prioritize mea-
surements e; with lower distance d;. For this, we introduce a
weight w; given by

w; = (dmax -

d;)7, (&)

where d,,q; is the largest distance in a batch and v is a
hyperparameter which regulates the impact of measurements
from higher distances, i.e., the higher ~, the lower the impact
of far points. We supervise the NDF by minimizing the
weighted L1 loss of our approximated distances

i|D(r(p,)) — d;
Law =30 %”J} : ©)

Additionally, we have an additional loss to enforce that the
endpoints lie on the surface

Lena =Y _|D(e:)]. @)

B

Similar to Zhong et al. [43]], we add a regularization loss to
enforce the Eikonal equation ||V N||= 1, which needs to hold
for being a valid distance field

Leix = Z|”ni”2_1|a ®)

as well as a loss to enforce that neighboring points have similar
normals

where /(-) is the cosine distance and 7; is the gradient of
the neighbor of p,. The neighbors p; are sampled within
a distance 7 of p;, i.e., we randomly select from all radius
neighbors {p | |[p; — p|| < 7} an arbitrary point p;.
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Fig. 3: Principle of scan registration in an NDF. Querying the NDF
at the positions of the input scan provides us with the distance and
by differentiation also with the direction we have to go, to align the
scan to the NDF. This procedure can be solved iteratively in an ICP
fashion. The color of the background corresponds to the distance
field; the brighter the color, the higher the distance.

The final loss is a linear combination of the aforementioned
losses

L = Laist + endLend + g Leik + nLly. (10

B. Scan Registration using a NDF

In this section, we show how to leverage the learned NDF
to register point clouds to the map using ICP effectively. The
objective is to find the rotation R and transformation ¢ that
aligns the point cloud P to the NDF map D, i.e., that reduces
the distance between the point cloud and the surface

R*,t* = argmin Z
Rt p,eP

(Rp; +t)? (11)

We solve the problem using non-linear least squares opti-
mization, where the Jacobians for ih point are
OD(Rp; +t) OD(Rp,; +1)
ot ’ 00

Ji = = [n’ivpi X ni]a

12)

where © is the axis-angle parameterization of R.

As we can see in Eq. (TT) and Eq. (T2), we do not rely on
corresponding points. This has the advantage of not needing to
search for correspondences in contrast to classical ICP-based
methods. We can solely solve the problem by knowing in
which direction (n) and how far (given by D(p)) we have
to go. This information is directly encoded in the weights
of the network and learned in the generation of the map. A
visualization of this for the 2D case can be seen in Fig. [3]

We know from theory [16] that the distance field needs to
fulfill the Eikonal equation ||V D||= 1, or in simpler words:
if we move one meter away from the surface, the distance
needs to increase by one meter. Since we only approximate
the NDF by a neural network, this does not necessarily hold.
If the norm of the gradient is either larger or smaller, we
would over or underestimate the distance accordingly. To
counter this phenomenon, we normalize the distance by the
norm of the gradient D(p,)/||n;||. If for example the gradient
would be ||VD||> 1, one would overestimate the distance and

Distance [m]

P(z|z;,D)

1 T2 T3 T4

Fig. 4: The neural distance field can be used in an particle filter
to evaluate the likelihood of a measurement for each particle in the
given NDF. The better the scans are aligned with the zero level of
the NDF, the higher the likelihood.

overshoot, ending up behind and not at the surface. Therefore,
by shortening the step to only move D(p;)/||n;|| towards the
surface, one would end up on, or at least closer to the surface,
which enables a more reliable registration.

C. MCL-based Localization using a NDF

In this section, we explain how to globally localize within
an NDF using Monte Carlo localization. The belief bel(x;)
about the robots position x4, at time ¢ is represented by as set
of particles {(zi,w!) | i = 1...I'}} each with a corresponding
weight w. A motion model p(x;) ~ p(x; | £;—1,u;) updates
the particles based on their previous position x;_; and the
control commands u;. The weight of the particles is updated
by the observation model w! o p(z; | @;, D) which depends
on the observations z;, the pose x;, and the NDF D. Assuming
we observe the local surrounding with a LiDAR sensor, we
can evaluate the distance field at the observed point cloud
{921]j=1,..,J} around the particle position /2! with the
classical beam-end model

idi = D(R}7z} + ). (13)

Ri and ¢! are the rotation matrix and translation of the
particle’s position !} respectively. Assuming a Gaussian noise
model, we can compute the weight for a particle by

/8 J
jzﬂdé> +w

j=1

p(z | @}, D) o wy = exp (— (14)

The parameters 3 and w are commonly used for robustness
against outliers. In other words, the lower the average distance
between the observations and the surface, the higher the weight
(see Fig. ). The particles are resampled after each observation
step based on their weight w! to focus on the most likely
positions.
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(a) VDBFusion

(b) SHINE mapping

(c) LocNDF (Ours)

Fig. 5: Qualitative results of registering a scan (red points) to the maps generated by different distance field-based methods. The meshes
are generated using the marching cubes algorithm. We use the mesh only for visualization purposes, the registration is done directly on the

distance field.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the localization performance to
validate the three key claims that (1) the proposed training
strategy can provide neural distance fields which (2) are well
suited for scan registration as well as (3) global localization
using MCL. To evaluate the scan registration performance (2),
we will track the pose of a car in the given maps using ICP.
For the global localization (3), we evaluate in a 2D indoor
dataset of our office environment. Eventually, we provide our
ablation studies to validate our poposed training methodology

).

A. Training Setup

In this section, we provide the hyperparameters used to
conduct the experiments, which, unless stated differently, are
used throughout all experiments. We transform the coordinates
of the point clouds to be in the range of [0,1] before passing
them into the positional encoding. For the positional encoding,
we sample I, = 30 different frequencies. The default network
uses a SIREN [33] backbone with a hidden feature dimension
of size 128. For the training, we sample N; = 40 points
between the sensor origin and the endpoint to supervise the
distance field (Eq. (3)) and additionally 20 pairs of points with
a distance up to 10 cm, which are distributed randomly in space
on which we are computing the regularization on the normals
(Eq. (B) and Eq. (). The coefficients between the different
loss terms are ceng = 1071, agir = 1074, and «a,, = 1073,
as well as v = 3. We optimize using AdamW with a start
learning rate of 10~%, which gets decreased with a cosine
annealing scheduler to 10~7 over around 25,000 steps. The
experiments have been evaluated on a desktop PC with i7 @
3.5GHzx8 CPU and an Nvidia RTX A5000.

B. 3D Pose Tracking in Outdoor Scenes

For the 3D localization, we want to estimate the current
vehicle pose by aligning local LiDAR point clouds with the
map. We assume a rough initial location to be given, which
is usually provided by a low-cost GPS sensor and track the
vehicle’s position using scan registration. The initial guess for
ICP of the first timestamp is provided by a rough GPS position,
whereas, for the following scans, we use a constant velocity
model as the initial guess for ICP. We evaluate the registration
performance on the Apollo-Southbay [22] dataset, which has

TABLE I: Scan Registration Results

Approach MAE(t) [m] Memory Runtime
[MB] [s]
VDBFusion (KDTree) 0.072 170.8 0.87
VDBFusion (Projective) 0.072 170.8 1.52
LOAM (KDTree) 0.0714 6.3 0.23
SHINE (KDTree) 0.070 154.1 0.83
SuMa (Projective) 0.085 240.7 0.03
Ours 0.059 5.1 0.42

multiple runs through the same areas recorded at different
points in time. Since the environments changed substantially
between the different points in time, points cannot always be
matched, and therefore a robust kernel, here a Geman McLure
kernel with the parameter £ = 0.3 m, is used.

For the map generation, we use the first 800 scans of the
ColumbiaPark-3 mapping run and the provided poses, which
got obtained using a combination of GPS, IMU, and a SLAM
system. Instead of training one big network for the whole
scene, we found it beneficial to follow the key pose paradigm.
For this, we use bounding boxes of 50 m size and 20 % overlap
along the trajectory. We assign to each bounding box an
NDF and train them incrementally based on the weights of
the previous key pose. We fine-tune the maps for 10 epochs
with the standard parameters. The evaluation will be done
on 700 scans in the same area (starting at scan 5280) from
the test run. Hyperparameters are tuned on 800 scans of
the training set (starting at scan 6880). We compare against
VDBFusion [39]] as a highly effective, traditional TSDF fusion
pipleline, as well as against the recent learning-based SHINE
mapping system [45]], that utilizes also neural distance fields
for mapping. For these baselines, we do the registration based
on point-to-plane ICP using the same robust kernel using
their meshes. Additionaly, we compare against the surfel-based
method SuMa [2]] and the grid based method LOAM [44], both
in localization mode, i.e., first constructing the map on the
mapping run, and use the second run from a different point in
time solely for registration without updating the map. For the
evaluation, we use the mean average translation error MAE(%),
the memory consumption of the maps, as well as the average
runtime for aliging a scan. The baselines either use a kD-tree
or projective data associations to find correspondences.

The results are presented in Tab. [II Our approach is able to
outperform the baselines in respect of mean average translation
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error MAE(t) while requiring also the least memory. All
the approaches have a mean average rotation error lower
than 0.1°. In Fig. [} the registration of a scan w.rt. the
map representations are depicted. Note that we use the mesh
obtained using marching cubes [21]] only for visualization and
not for the registration. We can see that the points are clipping
inside our triangle mesh (Fig. [5c), showing that the point cloud
is well aligned. The meshes from the other approaches are
more detailed, but the aligned point clouds seem like floating
in the scene. This is due to the acquisition process of the
TSDF, where for each voxel a weighted average over the ray
distances is stored. This leads to an overestimation of the
distance to the closest surface, resulting in slightly smaller
objects and the aligned point cloud seems to be always in
front of the surface. This effect is mitigated for our approach,
due to projecting the ray distance along the surface normal
and having a special loss term given in Eq. (7) to enforce that
the measured surface actually is the zero level of the distance
field. SHINE mapping [43] is also supervising using the ray
distance leading to similar effects as for TSDF.

C. 2D Monte Carlo Localization

In this experiment, we evaluate the global localization
performance using the MCL in our office environment. The
robot is equipped with a 2D laser scanner (Hokuyo UTM-
30LX) and wheel odometry. We use directly the measurements
uy = (Az, Ay, Af) of the wheel odometry as a motion model
with a Gaussian noise model of

5-1001  2.5.-1072 1-1072
Su, = |25-1002 5-107% 5-1073 (15)
5-1072 5.107¢ 2.5

We use the same sequences for mapping and evaluation used
by Kuang et al. [20] as well as the same setting using 100,000
particles for initialization for a fair comparison. We assume
the particle filter to be converged when the standard deviation
of the particle’s position is below 30cm to switch into the
pose tracking mode with 10,000 particles. We reweight and
resample the particles if the robot moved by at least 5Scm or
0.1rad. The hyperparameters for the observation model are set
to =100 and w = 1078,

For constructing the map, we train for 15 epochs on the
31,608 training scans with the default parameters for our
network. The NDF has no notion about unknown space by
itself, i.e., areas that did not get supervised. Therefore, we
also store a low-resolution bitmap of size [100 x 100] voxels
to know roughly, which spaces are not supervised. Points that
lie in an unknown area have the maximum distance assigned,
rather than querying the network. We use the standard root
mean squared error metric (RMSE) between the ground truth
and estimated positions. The RMSE is evaluated for converged
positions at certain thresholds (5cm, 10cm, 20cm). Addi-
tionally, we provide the percentage of poses below the given
thresholds. The results are averaged over 5 runs where the
RMSE is only reported if all runs at least converged once,
otherwise denoted as ”-”. We compare against the standard
ROS1 localizer AMCL [12]], the MCL system by Grisetti [14]],
as well as the recent, learning-based IR-MCL [20] approach.

TABLE II: MCL Results

Approach RMSE(t) RMSE(t) RMSE(t)

@ 5cm @ 10cm @ 20cm

AMCL - (0.0%) - (0.0%) - (0.0%)
'; SRRG 0.034 (57.1%) 0.047 (88.6%) 0.049 (90.3%)
3 IR-MCL 0.033 (60.3%) 0.047 (92.5%) 0.052 (95.7%)
Ours 0.031 (76.6%) 0.041 (96.2%) 0.047 (99.2%)
- AMCL 0.037 (26.5%) 0.061 (56.2%) 0.089 (80.6%)
o SRRG 0.034 (41.4%) 0.059 (87.4%) 0.063 (92.6%)
3 IR-MCL 0.029 (60.1%) 0.048 (87.4%) 0.054 (93.8%)
Ours 0.028 (78.0%) 0.032 (83.0%) 0.042 (86.7%)
AMCL 0.038 (20.0%) 0.066 (58.7%) 0.099 (81.3%)
‘; SRRG 0.033 (36.5%) 0.050 (59.0%) 0.075 (71.0%)
A IR-MCL 0.033 (68.2%) 0.043 (84.4%) 0.054 (89.8%)
Ours 0.028 (54.4%) 0.034 (62.0%) 0.053 (70.0%)
AMCL 0.034 (63.1%) 0.048 (88.7%) 0.059 (98.8%)
E SRRG 0.035 (54.1%) 0.052 (83.7%) 0.058 (88.2%)
A IR-MCL 0.033 (33.7%) 0.054 (59.9%) 0.091 (85.2%)
Ours 0.031 (42.4%) 0.046 (64.5%) 0.069 (73.7%)

AMCL - (0.0%) - (0.0%) - (0.0%)
'; SRRG 0.035 (48.8%) 0.051 (86.8%) 0.055(89.0%)
A IR-MCL 0.032 (41.4%) 0.057 (81.3%) 0.064 (89.8%)
Ours 0.027 (41.5%) 0.032 (45.0%) 0.071 (55.6%)

Sequence 1

Sequence 2
Sequence 3
Sequence 4
Sequence 5
—— Groundtruth

Fig. 6: Qualitative localization results of our approach on the
five sequences. The estimated poses are mostly aligned with the
groundtruth. In sequence 5 our approach converged to the wrong
location but could recover later to the correct position. Sequence 4
took a long time to resolve ambiguities to finally converge to the
correct position.

The results are depicted in Tab. As can be seen, our
approach is able to outperform the baselines in terms of RMSE
on most sequences showing that our approach can provide
reliable pose information once it is converged. We believe this
is due to the continuous map representation and therefore we
are not limited by the grid resolution. The convergence rate
of our approach to the correct position is highly competitive
w.r.t. baselines. Our approach runs at an average framerate of
around 2.6 Hz. A visualization of the localization is depicted

in Fig.

D. Ablation Studies

In this section, we will provide ablation studies on certain
hyperparameters to validate our choices and provide a deeper
insight in the behaviour of the approach. In the following,
we will first look at the different loss terms, and later which
influence the type of backbone has. We conduct the ablation
studies on the scan registration task, as described in Sec. [[V-B]
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TABLE III: Ablation: Loss Function

TABLE 1V: Ablation: Backbone & Feature Size

project. ARk Qend an MAE(t) MAE(R) Backbone Feature MAE(t) MAE(R) Memory
dist. [m] [deg] Size [m] [deg] [MB]
[A] v X X X 0.103 0.269 (G] NeRF 32 0.215 0.402 0.934
[B] v X v v 0.063 0.103 H] NeRF 64 0.061 0.102 2.648
(C] v v X v 0.198 0.449 [ NeRF 128 0.104 0.257 8.989
D] v v v X - - 9] NeRF 256 0.061 0.100 31.677
[E] v v v v 0.062 0.100 K] NeRF 512 0.084 0.122 125.289
[F] X v v v \ 0.313 0.886 L] SIREN 32 - - -
M] SIREN 64 0.126 0.395 1.541
N] SIREN 128 0.062 0.100 5.051
(0] SIREN 256 0.068 0.101 17.732
[P] SIREN 512 0.068 0.099 69.835

Distance

Projected - =
Distance

Fig. 7: A visualization of the distance fields when supervising the
distance field with the ray distance (top), as well as with the projected
distance (bottom). The distance fields are evaluated on a slice in the
middle of the scene and depicted by the color. When using the ray
distance, one can see the field of view of the LiDAR sensor, leading
to a gradient from the surface to the LiDAR center. For the projected
distance on the other hand it looks more like a true Euclidean distance
field where the gradient ascents radialy from the surface. Note, that
the NDF is only supervised for the regions within the field of view
of the sensor, leading to wrong values in unobserved areas.

All numbers provided in the following are evaluated on the
validation set.

1) Loss Function: In this experiment, we validate
the choice of our loss function. For this, we enable
(v/; taking the default o) or disable (X; set a = 0) certain
parts of the loss functions. In Tab. are the results of
this experiment shown. Disabling all the additional losses [A]
increases the error by a factor of around 2 w.r.t. enabling them
[E], showing the importance of the regularization losses. Dis-
abling the regularizations of the gradients [B], [D] deteriorates
the performance slightly to completly. While only disabling
Qeng [C] results in even worse performance than disabling
all [A], suggesting the loss is useful to mitigate undesired
effects of the other terms. Lastly in [F], we supervise by the
ray distance d; instead of the projected distance d; where the
performance substantially degrades. For better understanding
this phenomen, we show a slice of the distance fields in Fig.[7]
The gradient for the ray distance looks towards the LiDAR
sensor, pulling the points not towards the closest surface but
along the ray. The projected distance n; points more towards

the closest surface.

2) Backbone and Feature Size: In this experiment, we
investigate the impact of the backbone and the network size
on the localization ability. The first backbone we use is the
classical NeRF [23] architecture with a positional encoding
and an MLP with 8 layers, layer norm, and leaky ReLU. There
is a skip connection from the positional encoding to the 6%
layer. The second network is a SIREN [33], an MLP with 5
layers, layer norm, and sine nonlinearity. The results of this
experiment are depicted in Tab. V] With both backbones, we
can see that a bigger network size does not necessarily mean
a better localization performance. For the SIREN network, the
results look more stable with the best performance for a hidden
feature dimension of 128 ([N]). The classical NeRF network
has less consistent but similar results ([G]-[K]). The results are
in line with Sitzmann et al. [33] stating that the supervision
of derivatives works better for SIRENs than for ReLU-based
networks.

E. Limitations and Future Work

Despite these encouraging results, there is further space for
improvement. The training time at each key pose takes around
20 min, which makes it only suitable for offline mapping but
prohibits building the maps on the fly as it would be needed
for online SLAM applications. In our case, we only optimized
for obtaining the distance to the surface, but it would be
interesting to regress point attributes such as semantics or
colors as obtained from RGB-D sensors.

V. CONCLUSION

In this paper, we propose to use neural distance fields
(NDFs) for robot localization. We showed how to directly learn
the NDF from range sensor observations by projecting the
measurements along the gradients of the network. The NDF
provides us with a discretization-free and highly memory-
effective distance field, that allows us to compute directions
to the closest surface elegantly through the Jacobian. As
a result of that, ICP can be used to register point clouds
directly to the NDF without the need of searching for data
associations. Additionally, we have shown how to globally
localize in an NDF using Monte Carlo localization. Both use
cases show competitive results considering multiple existing
baseline approaches. We believe that having a continuous and
memory efficient representation as the NDF can be useful for
many robotic applications.
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