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DCPCR: Deep Compressed Point Cloud Registration
in Large-Scale Outdoor Environments

Louis Wiesmann Tiziano Guadagnino Ignacio Vizzo Giorgio Grisetti Jens Behley Cyrill Stachniss

Abstract—Reliable and accurate registration of point clouds
is a challenging problem in robotics as well as in the domain
of autonomous driving. In this paper, we address the task
of aligning point clouds with low overlap, containing moving
objects, and without prior information about the initial guess.
We enhance classical ICP-based registration with neural feature-
based matching to reliably find point correspondences. Our novel
3D convolutional and attention-based network is trained in an
end-to-end fashion to learn features, which are well suited for
matching and for rating the quality of the point correspondences.
By utilizing a compression encoder, we can directly operate on
a compressed map representation, making our approach well
suited for operation under memory constraints. We evaluate
our approach on point clouds obtained at completely different
points in time, showing that our approach is able to register
point clouds even under those challenging conditions reliably.
The implementation of our approach and the preprocessed data
can be accessed at https://github.com/PRBonn/DCPCR.

Index Terms—Deep Learning Methods; Localization; SLAM

I. INTRODUCTION

POINT cloud registration is key for many robotic applica-
tions such as map matching, pose tracking, loop closure,

or simultaneous localization and mapping (SLAM). Outdoor
point clouds, as they are commonly used in the domain of
autonomous vehicles, are typically large-scale, contain dynam-
ics, and may vary a lot between different recording times, and
therefore require robust and reliable methods. Additionally, the
vast amount of points, which can accumulate easily hundred
of thousands to millions of points within seconds, pose a
particular challenge for processing and storage. In this work,
we tackle the problem of registering partially overlapping point
clouds acquired at different points in time and with high un-
certainty regarding the initial guess. A common approach for
point cloud registration is the iterative closest point (ICP) [4]
algorithm, which usually only converges to the correct solution
with a good initial alignment. Global registration approaches
tackle exactly this problem with the goal to increase the
robustness when facing the alignment without any prior pose
information [36], [37]. Learning-based approaches provide the
opportunity to learn distinct features to match more reliably
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Fig. 1: In this work, we propose a method to directly register point
clouds on a compressed representation. For better visualization we
show the estimated transformation on the input point clouds, rather
than the sparse compressed representation.

[19], [31], [38], [39], [41] or even to bypass correspondence
matching by directly estimating a pose [1], [24].

A second problem, which especially arises in the automotive
domain is the massive memory demand for storing raw point
clouds. A single LiDAR sensor acquires millions of points per
second, which alone can be challenging for onboard storage.
When data for downstream tasks such as map matching or pose
tracking have to be stored, a memory-efficient representation
is needed. Compression can be one solution to deal with this
challenge. It is, however, not entirely clear how the perfor-
mance of downstream tasks deteriorates when operating on the
maps after lossy decompression. Comparably few approaches
try to directly operate on compressed maps to alleviate the
large memory demands and to avoid decompression [32], [40].

The main contribution of this paper is an approach to
perform global point cloud registration in the context of
outdoor environments and which operates on a compressed
representation, see Fig. 1 for illustration. Specifically, we
deal with large non-overlapping areas, moving or moved

https://github.com/PRBonn/DCPCR
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objects, and having no prior information about the initial
pose. We utilize the compact representation of our prior point
cloud compression network [33] to directly operate on the
compact representation and therefore bypass decompression
and reduce compute when compression is needed. We build
upon the classical SVD-based pose estimation using a feature
matching with soft assignments. For that, we propose a net-
work architecture that consists of a convolutional backbone
with a Transformer [29] head to produce distinct features,
which can directly be optimized for point cloud registration.
Additionally, the network learns to estimate the quality of
the correspondences to focus on points that are well suited
for the registration. We investigate the performance of our
approach when targeting memory-constrained registration, as
well as point cloud registration in the classical setup without
compression. In sum, we show that our proposed network
is able to reliably register point clouds such as commonly
encountered in urban outdoor environments with and without
compression.

II. RELATED WORK

Point cloud registration has a long history in robotics,
computer graphics, and computer vision [21]. In the following,
we will distinguish between local registration, which typically
requires a good initial alignment, and global registration where
the goal is to register point clouds that are initially poorly
aligned.

A. Local Registration

The most common approach for aligning two point clouds
is ICP [4] with its variants [5], [23], [25]. Here, the main
challenge is to find the correct correspondences. Looking only
at spatially close points often fails when the initial guess
is too far from the correct transformation. Geometric [9] or
photometric [13], [15], [20] features are often used to find
suitable correspondences and to resolve ambiguities. Projective
data association [3], [23], [26] can be applied to speed up
the correspondence search, which usually takes a relatively
large proportion of the computation time. Point-to-plane [7]
and GICP [25] on the other hand try to relax the assumption of
point correspondences for faster convergence and more precise
results.

Outdoor environments often change, and therefore assuming
to have a lot of one-to-one correspondences does not neces-
sarily hold. Robust optimization [6], [10], [12] or a careful
correspondence selection [23] is often needed to overcome
this issue.

Deep learning-based approaches have the advantage of com-
puting more distinct and sophisticated features than their hand-
crafted counterparts. Many learning-based approaches [19],
[31], [39] rely on the SVD-based closed-form solution and soft
assignments for end-to-end learning. Other approaches [1],
[24] try to estimate the transformation directly in the network
based on global features and thereby bypass the need to
find suitable correspondences. In general, local registration
methods require a quite good initial transformation to converge
to the desired solution.

B. Global Registration

Global registration methods try to estimate the pose between
the point clouds even when the initial guess is quite far
away from the correct transformation. RANSAC [8] provides
the opportunity to deal with large transformations as well as
outliers by sampling correspondences combined with a large
number of repetitions. Branch-and-Bound (BB) methods [36],
[37] generate multiple hypotheses in an evolutional manner
and prune the search space. The biggest disadvantage of those
methods is typically the high computation time.

In structural distinct environments, convolutional neural
networks can learn feature representations that are well suited
for matching [38], [41]. A contrastive loss [41] allows for
self-supervised training to enforce similar features for similar
areas, while dissimilar features to all other areas at the same
time.

When having the information about the transformation
between the point clouds at training time, one can directly
supervise the pose to get features that are well suited for
the matching [19], [39]. Instead of directly estimating the
transformation in one shot, or iteratively, recently some ap-
proaches [17], [30] propose a coarse to fine registration in
a hierarchical manner. DCP [31] is a supervised registration
approach, and closely related to our method. It utilizes a
graph convolutional neural network and a transformer head
to compute features, which are later used to obtain soft
correspondences for the registration. DCP was designed and
successfully applied on synthetic data with 1,024 points and
Gaussian noise, but cannot deal efficiently with a large number
of points, non-overlapping areas, or dynamics as they are
common in the automotive field. We overcome the scalability
problem by integrating a compression network [33], which
subsamples the points clouds significantly but preserves the
local information in the feature representation. To deal with
points that do not have a corresponding point in the other
cloud, we propose a way to weigh the correspondences. By
this, we also do not rely on RANSAC to evaluate the quality
of the correspondences [41].

III. FEATURE-BASED POINT CLOUD REGISTRATION

For the alignment of two point clouds, we follow the
classical paradigm of first finding point correspondences,
which are then used to estimate the relative transformation.
While in the classical ICP, correspondences are determined via
geometric neighborhood, we follow a feature-based approach.
The transformation consisting of rotation and translation is
estimated using the closed-form solution [14].

In the following, we will first explain in Sec. III-A how to
incorporate the soft-assignments and the feature-based match-
ing of the attention mechanism [29] into the Kabsch algo-
rithm [14]. Afterward, we propose our network architecture
to compute the features for the point matching (see Fig. 2).
In Sec. III-C, we will address the problem of ambiguities
and errors in the matching by introducing a weight for each
correspondence.



WIESMANN et al.: DCPCR: DEEP COMPRESSED POINT CLOUD REGISTRATION IN LARGE-SCALE OUTDOOR ENVIRONMENTS 3

C
om

pr
es

si
on

 

Feature
Enhance-

ment

Encoder

Decoder Fe
at

ur
e 

Si
m

ila
rit

y

R
eg

is
tr

at
io

n

KPConv Transformer Function Source Point CloudTarget Point Cloud

Target Source, not aligned Target Source, aligned

Fig. 2: Given two unaligned point clouds (target: blue, source: red), we first use a compression encoder to compute local features and to
subsample the point clouds. A feature enhancement block increases the receptive field to create more distinct features which serve as input
to the transformer heads for global aggregation. The resulting features are used for feature-based correspondence matching. Finally, the soft
assigned source points are aligned to the target point cloud with a point-to-point registration.

A. Deep Point Cloud Registration

Given are two point clouds Ps and Pz in different coordinate
frames, where each point cloud Pi consists of Ni coordinates
Xi ∈ RNi×3 and their corresponding Df dimensional features
Fi ∈ RNi×Df . We want to estimate the transformation T z

s

from the source frame s to the target frame z, which aligns
both point clouds. When having a correspondence matrix W ∈
RNz×Ns , we can compute the corresponding points X̃z of the
target points by

X̃z = WXs. (1)

A row in the W matrix represents the corresponding point in
X̃z by a linear combination of the source points. In case of one-
to-one correspondences, this is a row with 0 everywhere but a
1 at the index of the corresponding source point. The rotation
R ∈ R3×3 and translation t ∈ R3 of the transformation T z

s can
then be estimated by the Kabsch algorithm [14] using SVD,
as follows:

C = (X∗Tz X̃∗z)
SVD
= UDHT (2)

R = UHT (3)
t = x∗z − Rx̃∗z, (4)

where X∗i denotes a point cloud shifted by its mean x∗i such
that the point cloud is centered around the origin. When
dealing with uncertainties and partially overlapping point
clouds one can incorporate a weight w ∈ RNz for each
correspondence by computing weighted means in Eq. (4) and
a weighted cross-covariance C in Eq. (2).

Since the correspondences W are usually unknown, one es-
timates them by, e.g., nearest neighbors, feature-based match-
ing, etc. as in classical ICP methods [23]. In this work, we use
feature-based matching by utilizing the attention mechanism
as used in the Transformer [29]. It is defined by three matrices,
namely the queries Q, keys K and values V, where the attention
A is computed by

A = attn(Q,K,V) = softmax
(
QKT√
Df

)
V. (5)

When choosing the target features as queries Q := Fz , the
source features as keys K := Fs and the source coordinates as
values V := Xs, we can rewrite Eq. (5) resulting in the desired
correspondeces in Eq. (1) with A := X̃z

X̃z = softmax
(
FzF

T
s√

Df

)
Xs = WXs. (6)

In other words, we are computing a soft assignment between
the target points Pz and the source points Ps, based on the
cosine similarity between their features Fz and Fs. In the
following, we present our network architecture for computing
the point features.

B. Feature Generation

Our network architecture consists of three parts, namely
a compression encoder for memory and compute efficiency,
a convolutional block to increase the receptive field, and a
transformer head for global feature aggregation.

1) Compression Network: Point clouds obtained with mod-
ern LiDAR scanners easily contain multiple hundred of thou-
sands of points, which is for most networks infeasible to
process. Our previously described attention-based registration
relies on cross attention between the source and target point
cloud and therefore grows quadratically with the number of
points. To overcome this issue, we use our previously pub-
lished compression network [33], which substantially reduces
the number of points and provides locally-aware features. We
use the memory-efficient representation produced from the
convolutional encoder as input for our network, which allows
us to run the full registration procedure on the compressed
point clouds without the need for decompression. The decoder
of Wiesmann et al. [33] can later still be used to recover dense
point clouds for other downstream tasks if needed.

Additionally, we use a reduced PointNet [22] to transform
the compressed point representation to a localization-specific
feature space, which is better suited for matching than for
reconstruction. The PointNet consists of a multi-layer percep-
tron (MLP) with two hidden dimensions plus an initial TNet
to create a registration-specific representation.
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(a) Input Point Cloud (b) Compressed Point Cloud (c) Decompressed Point Cloud

Fig. 3: Visualization of the different point cloud representation in different stages of the network. (a) represents the original data like it is
used as input for our network and the baselines for the registration without memory constraints. In (b) the sparse compressed representation
is visualized, colorized by the feature space. In (c) one can see the decompressed point cloud, used for the baselines to register under
memory-constrained conditions. The color in (a) and (b) represents the height of the points for visualization purposes.

2) Feature Enhancement Network: The features from the
compression network contain local information about the close
neighborhood of the points but lack broader context, which
might be useful to create more distinct features for better
matching and resolving ambiguities. We use additional Bk

KPConv [27] blocks in a ResNet-like fashion [11]. KPConv is
a sparse convolution that aggregates the information from the
points within a radius r. The convolutional weights are defined
on kernel points, rather than a grid structure, and therefore
avoids voxelization. We are not subsampling further in those
blocks to keep the point resolution and thus increase only the
receptive field.

3) Transformer: We utilize a small Transformer head [29]
consisting of an encoder and decoder. The encoder operates on
the target point features Fz and utilizes multihead self-attention
for global feature aggregation.

Ft
z = MultiHead(Q := Fz,K := Fz,V := Fz) with (7)

MultiHead(Q,K,V) = [attn(QWQ
j ,KW

K
j ,VW

V
j )]W

O

j ∈ {1, Nh}, (8)

where WQ, WK , and WV are projection matrices of the
queries, keys, and values, respectively. WO projects the Nh

concatenated heads to the desired feature dimension.
The decoder uses multihead cross-attention between the

source and the target, as follows:

Ft
s = MultiHead(Q := Fs,K := Ft

z,V := Ft
z). (9)

This decoder transforms the features of the source points
into the feature space of the target to increase the feature
similarity and therefore should lead to better matching. We do
not explicitly add any positional encoding since our generated
features already contain some positional information and we
do not want to add any bias to the Transformer, which could
increase the influence of the positions. Defined by our task,
we know that the point coordinates are in different frames
therefore the comparability on those is limited. The final
features Ft

z and Ft
s are used for the correspondence matching

in Eq. (6).

C. Weighting Scheme
Finding the correct correspondences is a challenging task.

Often, the matching is ambiguous in regions that are not
very descriptive, e.g., finding point correspondences on large
homogenous regions like planes. Additionally, when dealing
with point clouds with partial overlap or that contain dynamic
objects, some points do not even have a corresponding point
in the other point cloud. To deal with these ambiguities and
uncertainties, we additionally estimate a weight w ∈ RN

z

for each correspondence. We compute the weights based on
the correspondence matrix W and thus based on the feature
similarities between the target and the source points. For each
correspondence, we feed the top kw features into an MLP:
RN×kw 7→ RN×1 to obtain the respective correspondence
weight. The MLP consists of three linear layers with ReLU
activation in the first two layers and a sigmoid activation after
the last one, to ensure that the weights are between 0 and 1.
In Sec. IV-E, we investigate also the performance of different
other weighting schemes.

D. Loss Function
The registration procedure (Sec. III-A), the feature gen-

eration (Sec. III-B), and the computation of the weights
(Sec. III-C) are fully differentiable. This allows us to directly
optimize for the correct pose to learn features that are well
suited for matching and therefore estimating the transforma-
tion. We split the loss LT into a rotational part LR and
translational part Lt. For the rotation, we want to minimize the
angle between the ground truth Rgt and estimated rotation Rest

LR = trace(I3 − RT
gtRest), (10)

and for the translational part the Euclidean distance between
the ground truth tgt and estimated test translation vectors

Lt = ‖tgt − test‖. (11)

The overall loss LT is the weighted sum of both

LT = α1LR + α2Lt, (12)

where α1 and α2 are the respective weight factors.
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TABLE I: Classical Registration

Approach MAE(R) @0.5◦ MAE(R) @1.0◦ MAE(R) @5.0◦ MAE(t) @0.1m MAE(t) @0.3m MAE(t) @0.5m

Teaser [36] 0.254 (62.02%) 0.369 (84.12%) 0.577 (97.80%) 0.060 (39.21%) 0.122 (87.30%) 0.141 (94.61%)
PCRNet [24] 0.366 ( 3.25%) 0.673 (14.57%) 2.071 (66.17%) 0.072 ( 1.18%) 0.198 (11.96%) 0.310 (26.62%)
HRegNet [17] 0.243 (74.90%) 0.296 (85.19%) 0.402 (90.86%) 0.060 (66.30%) 0.081 (88.07%) 0.085 (89.37%)

RANSAC + GICP 0.066 (97.52%) 0.067 (97.64%) 0.088 (98.43%) 0.048 (88.28%) 0.056 (97.46%) 0.057 (97.82%)
Ours 0.045 (98.95%) 0.045 (98.95%) 0.059 (99.35%) 0.047 (96.86%) 0.048 (98.69%) 0.048 (98.69%)

Quantitative Results on the Apollo-Southbay dataset. Presented numbers are the mean absolute errors and the success rate in brackets.

TABLE II: Compressed Registration

Approach MAE(R) @0.5◦ MAE(R) @1.0◦ MAE(R) @5.0◦ MAE(t) @0.1m MAE(t) @0.3m MAE(t) @0.5m

Teaser [36] 0.317 (19.90%) 0.545 (45.04%) 1.194 (79.84%) 0.071 ( 6.63%) 0.179 (46.23%) 0.239 (65.03%)
PCRNet [24] 0.353 ( 2.91%) 0.672 (13.32%) 2.117 (64.88%) 0.073 ( 0.87%) 0.200 ( 9.24%) 0.318 (21.98%)
HRegNet [17] 0.291 (56.99%) 0.390 (77.31%) 0.557 (86.55%) 0.067 (37.87%) 0.115 (79.89%) 0.126 (83.66%)

RANSAC + GICP 0.209 (51.69%) 0.299 (63.44%) 0.691 (78.39%) 0.062 (26.50%) 0.123 (57.43%) 0.159 (66.58%)
Ours 0.178 (91.95%) 0.207 (98.01%) 0.216 (98.55%) 0.064 (49.45%) 0.109 (96.61%) 0.113 (98.26%)

E. Fine Registration

Performing the aforementioned steps described in Sec. III-A
to Sec. III-C iteratively to improve the registration similar to
ICP would require a lot of compute. In practice, we have
seen that estimating the coarse registration with our network
and finetune the slightly misaligned pose with GICP [25] and
a Geman-McClure kernel [10] is more accurate and compu-
tationally efficient; especially when applied on the compact
point cloud representation after the compression in Sec. III-B1.
Thus, our approach does not aim at replacing ICP, but rather to
support it by providing a good initial guess, such that the ICP
converges easily to an accurate alignment. The fine registration
can be efficiently done on the compressed point cloud, or
slower but more accurate on the input.

IV. EXPERIMENTAL EVALUATION

Our goal is to estimate the transformation between point
clouds, as they are, for example, used in map matching or
loop closure detection. For this, we want to estimate the
transformation from a local source point cloud to the target
point cloud which was recorded at a different point in time. We
evaluate our approach on the Apollo-Southbay-ColumbiaPark
dataset [18], which provides multiple runs, namely a mapping,
training, and testing run, as well as ground truth poses. By
this, we can register point clouds from the training/testing
runs with the ones from mapping. Registering point clouds
recorded at completely different points in time is especially
challenging due to objects which moved slightly or miss
completely, e.g., cars on parking lots exchanged or moved
which often leads to wrong associations. We generate local
map patches as done in other works [28], [33] by aggregating
the scans within a 2 s timeframe and a bounding box of size
[40 m× 40 m]. We homogenize the patches using a voxel
grid with 10 cm resolution, resulting in point clouds with
around 300,000 points, see Fig. 3 on the top left. We consider
maps for registration that are within 10 m horizontal range
for a sufficient amount of overlap but still have a large non-
overlapping area. This can practically be accomplished even
with cheap GPS sensors or with place recognition [28]. The
initial rotations differ up to 180 degrees due to different driving

directions and therefore make it pretty challenging for local
registration methods.

We compare our approach with respect to two geometric ap-
proaches: RANSAC-based coarse registration with finetuning
using GICP [25] as well as Teaser [36]. For the comparison
with learning-based baselines we retrained PCRNet [24] and
HRegNet [17] on the Apollo data. We exchanged the loss
function of the PCRNet from the earth mover distance to our
loss function in Eq. (12), which led to better performance for
this data.

For the quantitative evaluation, we will evaluate the ap-
proaches based on the mean absolute error MAE(·) in terms
of the rotation MAE(R) and translation MAE(t), as follows

MAE(R) =
1

|I|
∑
i∈I

arccos

( trace(RT
gt(i)Rest(i))− 1

2

)
, (13)

MAE(t) =
1

|I|
∑
i∈I
‖tgt(i) − test(i)‖2. (14)

To measure the success rate of the registration, we always
provide additionally for each metric the recall rate of how
often it is below a certain threshold, e.g., MAE(R)@5◦. We
compute the mean absolute errors only for the inlier I , which
are below the threshold.

A. Implementation Details

For our network, we utilize the compression encoder [33]
with a compression ratio of around 1:100. For the feature
enhancement network in Sec. III-B2, we use Bk = 7 KPConv
blocks with radius r = 2m. We use the transformer blocks
with pre-layer normalization [35] for faster convergence and
more stable training. In our experience, we saw that more
than 2 transformer layers require substantially more training
time and do not improve the performance significantly. The
final feature dimension of the PointNet in Sec. III-B1, the
ResNet blocks in Sec. III-B2 and the transformer in Sec. III-B3
is set to 256. The normals for the GICP fine registration
are computed on the 25 nearest neighbors. We use Layer
normalization [2] in all blocks due to the relatively small
batch size of 8. Further, we use gradient accumulation over
4 batches and a learning rate of 5 · 10−5 with the ADAMW
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Fig. 4: Qualitative results of our point cloud registration method on two example scenes. In blue, the target point cloud is shown, while
in red the source is transformed by either the initial guess (left), the registration solely based on our network (middle), and after the fine
registration (right). Even under extreme conditions like 180 degrees wrong rotation, our network is able to align the point clouds properly.
The fine registration is there to fix the last slight misalignment. E(R) and E(t) denotes the error in rotation and translation, respectively.

TABLE III: Ablation: Architecture

KPConv Transf. GICP MAE(R) @5.0◦ MAE(t) @0.5m

[A] 7 7 3

[B] 7 7 7
[C] 3 7 7
[D] 7 3 7
[E] 7 3 3
[F] 3 3 7
[G] 3 3 3

0.503 (48.89%) 0.120 (13.33%)

2.990 (40.13%) 0.304 ( 1.70%)
0.425 (98.69%) 0.101 (94.38%)
1.285 (89.80%) 0.252 (54.51%)
0.253 (94.64%) 0.121 (92.16%)
0.405 (99.74%) 0.099 (96.21%)
0.187 (99.87%) 0.115 (99.61%)

optimizer [16]. Registering a compressed point cloud requires
around 0.04 s for feature extraction and pose estimation, as
well as 0.02 s for the fine registration, i.e., in sum 60 ms for our
approach. The compression of a dense point cloud of around
300 thousand points requires additional 0.173 s but can be
done in a preprocession step and might be needed anyway
for operation or storage. All experiments and the runtime are
evaluated on an i7 @ 3.50 GHz with 8 cores and a GeForce
RTX 2080 SUPER with 8 GB GPU memory.

B. Point Cloud Registration

In this experiment, we evaluate the accuracy of the point
cloud registration without aiming at compression. All methods
have access to the original input data (see Fig. 3a). Note that
our approach still uses the compression network for feature
extraction and subsampling, but uses the original input data
(as in Fig. 3a) for a more precise fine registration. The results

are depicted in Tab. I. Our approach is able to outperform both,
the classical, as well as the other learning-based approaches.
The RANSAC-based approach provides quite similar results
to ours. In Fig. 4 we visualize some registration results of
our approach. Our approach (middle) is able to recover from
a bad initial guess (left). The fine-registration (right) allows
fixing the small remaining pose error.

C. Compressed Point Cloud Registration

This experiment investigates the registration quality of the
aforementioned approaches when only the compressed repre-
sentation is available, for example, due to memory constraints
on the vehicle. For a fair comparison with the baselines, we
will either provide them with the compressed (Fig. 3b) or
the decompressed point clouds (Fig. 3c), whatever works best
for them. We will evaluate our approach directly operating
on the compressed point clouds. We want to note that for
our approach, we also do the fine registration with the com-
pressed point clouds (see Fig. 3b) and not with the denser
decompressed ones. In Tab. II the results for our approach
and the baselines are shown. Our approach is the only one
that is able to consistently (over 95% of the time) estimate
the transformation within 1◦ and 0.3 m. The decompression of
the point clouds leads to artifacts or additional noise, which
seem to deteriorate the performance of the baselines. Our
approach computes the initial guess in both cases on the
compressed representation, and therefore the recall does not
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high
weights

Fig. 5: Point clouds (target: left, source: middle) are visualized by the estimated weights w to show which points contribute to the estimated
transformation. The brighter the color the higher the impact. On the right is a close-up view of the target. Our network only considers static,
structured areas for the registration. Weights are upsampled on the input point cloud for better visualization.

drop significantly when compared to the registration without
memory constraints (compare Tab. I). The mean absolute
errors on the other hand drop by a factor of 2 to 3 when
doing the fine registration on the compressed representation.
The very low point resolution (around 1.5 m) does not allow
for accurate normal estimations, limiting the performance of
the GICP in the fine registration.

D. Ablation on the Network Architecture

In this section, we will take a look at different parts of the
network to provide deeper insights into the approach. All the
following results are evaluated on the validation set.

In Tab. III we investigate the performance of the architec-
tural choices by enabling and disabling certain parts of the
network. We can see that only using the compressed features
[B] is not sufficient to reliably estimate the transformations,
leading to the worst performance. Increasing the receptive
field by using the proposed feature enhancement increases the
performance drastically [C]. An additional transformer head
can slightly improve the performance [F], while only using
the transformer degrades the performance significantly [D].
These results are in line with results from different domains,
showing that the locally inductive bias of convolutions speeds
up the training and is especially helpful when having smaller-
sized datasets [34]. The best results can be achieved when
enabling all parts of the network and finetuning the results
using GICP [G]. For completeness, we show the results of
only using the GICP without an initial guess from our network
[A]. The ICP cannot deal well with the large transformations,
which therefore shows the need for a good initial guess.

E. Ablation on the Weighting Schemes

In this ablation study, we will investigate the performance
of different weighting schemes. In addition to the MLP-based
weighting, proposed in Sec. III-C, we investigate three others
schemes. First, we give each correspondence the same constant
weight (w = 1N ) as baseline. Second, we compute the
relative entropy (Kullback-Leibler divergence) between each
row of W and the uniform distribution as a measure of
ambiguousness, referred to as entropy. Third, we assign to

TABLE IV: Ablation: Weighting schemes

Metric Constant Entropy Max MLP

MAE(R)
@5.0◦

1.648
(89.28%)

0.725
(97.78%)

0.620
(98.04%)

0.405
(99.74%)

MAE(t)
@0.5m

0.304
(10.85%)

0.186
(82.22%)

0.156
(86.93%)

0.099
(96.21%)

each correspondence a weight based on its highest similarity,
by row-wise max-pooling over the correspondence matrix W
to support correspondences that have high similarity (Max).

The results are depicted in Tab. IV. The MLP-based
method shows superior performance over the max-pooling and
entropy-based versions, which both perform quite similarly.
Using for every correspondence a constant weight performs
substantially worse (with a 80 percent-point drop in the
translation), showing the importance of computing individual
weights. In Fig. 5, we additionally visualize the weights for
the correspondences to illustrate, which points the network
uses for the registration. For each target point, we have
exactly one correspondence weight and therefore can directly
colorize the points based on the weight magnitude. For the
source, we compute the mean activation in W weighted by the
correspondence weight w to colorize the points. Bright colors
indicate a high weight, and dark colors indicate a low weight.
For better visualization, we show the weights on the input
point cloud based on its nearest neighbor in the compressed
point cloud. Big areas with a low structure like ground, and
huge walls have a very low weight and therefore are not
considered for the registration. Even though cars provide a
lot of structure, they also have a low weight. The network
did maybe learn that cars often move and therefore are not
reliable for the pose estimation. Only a few distinct and stable
areas like trunks, small walls, or poles have a high weight
and therefore are used for the registration. Since our approach
relies on point-to-point correspondences, these results are in
line with our expectations.

V. CONCLUSION

In this paper, we presented a novel architecture for point
cloud registration under bad initial estimates. We exploit a
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compression encoder to directly operate on a compressed
representation, making it well suited for the registration when
compression is needed. By predicting for each point correspon-
dence a weight, we have shown, that we can improve our reg-
istration quality. Our approach is able to reliably align large-
scale point clouds, without getting deteriorated by dynamic
objects or non-overlapping areas. Additionally, our experi-
ments suggest that it can be beneficial to directly work on the
compressed representation, rather than decompressing first and
doing the registration on the denser but noisier decompressed
point clouds. Working solely on compressed representations,
which is two orders of magnitudes smaller than the raw point
cloud data has the potential to scale mapping-based systems to
substantially environment dimensions, without compromising
the systems performance.
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