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Deep Compression for Dense Point Cloud Maps
Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill Stachniss, Jens Behley

Abstract—Many modern robotics applications rely on 3D maps
of the environment. Due to the large memory requirements of
dense 3D maps, compression techniques are often necessary
to store or transmit 3D maps efficiently. In this work, we
investigate the problem of compressing dense 3D point cloud
maps such as those obtained from an autonomous vehicle in large
outdoor environments. We tackle the problem by learning a set
of local feature descriptors from which the point cloud can be
reconstructed efficiently and effectively. We propose a novel deep
convolutional autoencoder architecture that directly operates on
the points themselves so that we avoid voxelization. Additionally,
we propose a deconvolution operator to upsample point clouds,
which allows us to decompress to an arbitrary density. Our
experiments show that our learned compression achieves better
reconstructions at the same bit rate compared to other state-
of-the-art compression algorithms. We furthermore demonstrate
that our approach generalizes well to different LiDAR sensors.
For example, networks learned on maps generated from KITTI
point clouds still achieve state-of-the-art compression results for
maps generated from nuScences point clouds.

Index Terms—Mapping, Deep Learning Methods

I. INTRODUCTION

MAPS are a key ingredient for robot navigation, involv-
ing tasks such as localization, planning, or scene under-

standing. Over the past fifteen years, a lot of robot navigation
systems have moved from 2D to 3D representations. Moving
from 2D to 3D substantially increases the required amount
of memory. Particularly, if large-scale environments shall be
represented, storing and especially transmitting it over network
links becomes a challenge due to their large size.

Modern 3D LiDAR sensors, which are typically used on au-
tonomous cars or mobile robots, generate millions of points in
just a couple of seconds. Point clouds are naturally unordered
and quite memory inefficient, but they represent the raw data
that such sensors generate and are the main representation
used, for example, for scan registration. Although upcoming
5G networks will enable higher data transfer rates, represent-
ing 3D point cloud data in a compact and structured way is
key to handle the huge amount of data. Our approach focuses
on effectively compressing 3D point cloud data collected with
modern 3D LiDAR sensors in large, outdoor environments.

Representing 3D data in a memory-efficient way is a com-
mon problem in robotics and computer graphics and several
approaches exist that tackle this challenge. Binary space
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Fig. 1: 3D point clouds obtained by an autonomous car or robot
require a large amount of memory. Transferring this data to a fleet
of cars or sending it to some cloud service requires a compression
of the data. Our approach can reconstruct dense point clouds from a
highly compressed representation even when targeting low bit rates.
The point cloud color indicates the height above ground ranging from
blue (low) to red (high).

partition approaches, like Octrees [21] or kD-trees [4], utilize a
hierarchical data representation that allows for efficient storage
and fast neighbor queries. Voxel grids [1] discretize the world
enabling constant time access, however, at the cost of incurring
a large memory footprint if a fine resolution is desired. This
makes it inadequate for large-scale environments. To overcome
this problem, Octomaps [12] store voxels in a sparse octree
structure, thereby reducing the memory requirements. Other
representations [19], [41] make strong assumptions that often
do not hold in the real world. Another technique is to use
triangular meshes to approximate the environment or use
multiple primitives, like planes, cylinders, or spheres [37], but
such predefined geometries may not fully exploit the available
potential of recurring structures. Therefore, learning-based
representations often try to capture common characteristics of
the scene for further compression [34]. Recent deep neural au-
toencoder networks [13], [15], [31] provide data compression
for different domains and they have also been successfully
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used to compress 3D point cloud data. This work belongs
to this class of approaches and proposes a novel architecture
exploiting state-of-the-art representation learning for 3D point
clouds to achieve high compression rates.

The main contribution of this paper is a novel deep learning-
based approach for compressing 3D LiDAR point cloud data
in a lossy fashion for large-scale outdoor environments (see
Fig. 1 for an illustration).

Our approach exploits the occurrence of common structures
through local feature descriptors. It learns a small and compact
set of local feature descriptors that allows for compressing
and reconstructing point cloud data. Our approach is end-
to-end learnable and provides dense point clouds even when
targeting low bit rate compression. Additionally, we propose a
novel deconvolution for point clouds with feature propagation
and integration. Our deconvolutional kernel operates directly
on a set of points, which makes discretization unnecessary.
We compare our approach with state-of-the-art compression
techniques such as Draco [8] and the octree-based approach
from Mekuria et al. [22]. In brief, we are able to provide
higher quality maps after decompression than the state-of-
the-art compression approaches at the same bit rate. To-
gether with this paper, we plan to release the source code
along with the trained models at https://github.com/PRBonn/
deep-point-map-compression.

II. RELATED WORK

In recent years, we witnessed an increasing interest in deep
learning using point clouds from the computer vision and
robotics community. Guo et al. [10] survey the field and here
we concentrate on representation learning and point cloud
compression using neural networks.

Deep Learning on Point Clouds. The seminal PointNet
approach [28] uses multi-layer perceptrons (MLPs) followed
by a pooling operation to extract an embedding for a whole
unordered point cloud. The follow-up work PointNet++ [29]
extends this idea to a hierarchical approach by applying the
PointNet structure repeatedly to local neighborhoods for dif-
ferent scaling factors. Each layer downsamples the point cloud
by iteratively choosing the furthest point from the already
collected subset to keep a good coverage of the point cloud.
Yongcheng et al. [45] extend this idea by a multi-level feature
aggregation to increase the contextual information.

Grid-based approaches [20], [44] compute local features
using 3D convolutions on a voxel grid. Octree-based ap-
proaches [32], [43] alleviate the large memory footprint of
high-resolution voxel grids by using a hierarchical representa-
tion to efficiently represent free space. Our approach operates
directly on the point cloud to avoid discretization errors and
excessive memory usage.

For the extraction of local features, we use the convolutions
proposed by Thomas et al. [40]. They define a continuous
convolution for unordered point clouds using kernel points.
A convolutional kernel learns a weight for each position
in a set of kernel points. The 3D continuous weight space
is an interpolation of these discrete positions. They design
the network architecture for segmentation and classification

which allows them to use skip connections to recover the
points which get lost in the downsampling process. This is
not feasible for compression, since this would require storing
intermediate results of the encoder, which we want to avoid
to efficiently compress the point clouds. Therefore, we define
a continuous 3D deconvolution to recover the points based on
their learned feature.

Yu et al. [46] propose a network to upsample point clouds
using local feature matrices. In contrast to their hierarchical
purely point-based approach, our deconvolution integrates and
propagates features. We use multiple deconvolution layers
which allows for more flexible upsampling rates at inference
time.

Point Cloud Compression. Many works in the field of
robotics and computer vision also focus on compressing point
cloud data. Octrees [21] can efficiently store three-dimensional
data and can be used as an efficient map representation
which is commonly used in robotics [12], [6]. This already
compact representation can be further compressed by using
additional geometric heuristics [16], [36]. Huang et al. [14]
use neural networks to learn a conditional probability model,
followed by entropy coding to compress frequent symbols
with fewer bits than rarer symbols. Octrees efficiently store
three-dimensional coordinates but require additional meth-
ods to compress attributes [47]. Other approaches focus on
an iterative prediction of neighboring points using spanning
trees [9], [24]. Tree structures are very memory efficient in
most real-world scenarios but do not exploit the full potential
of recurring common objects.

The correlation between point clouds acquired from LiDAR
or depth camera streams offers a further possibility to save
memory. A range-image-based representation allows for the
usage of image or video compression algorithms [23], [26],
[17], [39], [42]. However, such a projective representation
is not suitable for large dense maps captured from many
locations, since it only represents the environment of the actual
viewpoint well, but is not very generalizable.

Golla et al. [7] exploit standard image compression for
static point clouds by storing oriented compressed height
and occupancy images for local patches. Deep convolutional
autoencoders can use a rate-distortion loss [30], [31] to ensure
a good trade-off between quality and memory consumption.
These approaches use grids and differentiable quantization
instead of a combination of points and features. Similar to
Huang et al. [15], we also propose an end-to-end learnable
point cloud compression autoencoder network. In contrast to
their approach to embed the information of the whole point
cloud into a single feature, we store a set of local feature
descriptors together with positions from which we can then
restore the point cloud.

III. OUR APPROACH

Our goal is to learn for a small subset of points useful
features from which we can recover the original point cloud.
To this end, we propose an autoencoder structure for point
cloud compression comprised of two parts. First, the encoder
learns, from a given input data, a reduced and often more

https://github.com/PRBonn/deep-point-map-compression
https://github.com/PRBonn/deep-point-map-compression
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Fig. 2: Schematic overview of our proposed network. The encoder takes as input a point cloud P = {X ,F}, |P| = N0 and computes
subsequentially for each subset a feature descriptor Ci, i ∈ {0, 1, 2} (red) using kernel point convolutions. The last feature descriptor will be
mapped (using an MLP) to the compact embedding space (yellow) to enable a memory-efficient representation E ∈ RNE×3. This embedding
E with its associated points can be used for storage or transmission and will later be used by the decoder to decompress the point cloud. The
decoder consists of four deconvolutional layers which subsequentially upsample the point cloud (green). We use the feature of the last layer
as a refinement of the last coordinates. The loss enforces a similar appearance of input and output. Additionally, we have a regularization
term for each upsampled cloud (denoted by the dotted line) to be lower-resolution versions of the input.

abstract representation – an embedding or code. The embed-
ding is the input for the second part, the decoder that tries
to reconstruct the original data using this compressed repre-
sentation. By comparing the reconstruction with the original
point cloud, the network can learn self-supervised parameters
via backpropagation [35]. Compression is achieved as long as
the embedding is smaller than the original point cloud.

Encoder Blocks. In our case, the input of the encoder is
a dense 3D point cloud P = {(xi,fi)}, |P| = N , which
consists of coordinates X = {xi ∈ R3} and point features
F = {fi ∈ RD}. The encoder uses multiple convolutional
layers to learn local geometric features for each point. In
Fig. 2 the coordinates X are denoted in blue and the learned
descriptors F in red. Each layer reduces the number of
points while increasing the receptive field. We use kernel
point convolutions (KPConvs) [40], which directly operate on
the features of the points themselves to avoid discretization
effects caused by using grid-based representations such as
voxel grids or octrees. The convolution of F at a point x
with a convolutional kernel g is defined as a weighted sum of
its neighboring features as

(F ∗ g)(x) =
∑

(xi,fi)∈N (x)

g(xi − x)fi, (1)

where N (x) = {(xi,fi) ∈ P | ‖xi − x‖< r} are the neigh-
bors of x within radius r. The convolutional weights W are
defined on M kernel points from which the weight of the
neighbors N (x) are interpolated using first-order splines of
size σ

g(yi) =
∑

m<M

max

(
0, 1− ‖yi − x̂m‖

σ

)
Wm, (2)

with the relative coordinate yi = xi − x and the weight
Wm ∈ RDin×Dout of the m-th kernel point x̂m. In each en-
coding block, we downsample the previous point cloud using
grid-based subsampling. This returns for each occupied voxel
the point which is the nearest to its center. It provides us with
a homogenous point distribution without the risk of losing all
points in a certain sparser area (as random sampling) or incur
long sampling times (as for furthest point sampling). We use
the same ResNet-like blocks as Hugues et al. [40]. The identity
shortcuts in ResNet blocks enable a more direct gradient flow
to earlier layers to reduce the risk of encountering instabilities
due to vanishing gradients [11]. In contrast to skip connections
between encoder and decoder, no additional information needs
to be stored for the decompression. The last layer consists of
an MLP to compress the features of size RN×Dout to the desired
dimension RN×Demb .

Decoder Blocks. The task of the decoder is to reconstruct
the original data from the embedding. Most encoder-decoder
networks use skip connections [33], [25] from the encoder
to the decoder to keep the high-frequency information. For
compression, skip connections cannot be used, since it would
require storing additional data from the encoder blocks for
usage in the decoder. Hence, the whole signal must be encoded
in the embedding to achieve effective compression. Therefore,
we present a decoder block that does not depend on any skip
connections but rather estimates the lost coordinates them-
selves. For a given point (xi,fi), we define the deconvolution
C−1 by a set of K MLP layers, as depicted in Fig. 3. For each
point, we obtain K new points {(xk

i ,f
k
i )}, k ∈ {0, . . . K−1}
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Fig. 3: Overview of our proposed deconvolution. Our deconvolutional
kernel consists of two small MLP networks which serve as 1D
convolutions. The first MLP (upper part) transforms the old feature
F into a new feature space. The second MLP (lower part) predicts
the offset to the new position X within the radius r. Depending on
the number of deconvolutional kernels, in this example K = 3, we
upsample the point cloud by a factor of K.

within a given radius r by

xk
i = xi + r ·∆k(fi), (3)

fk
i = Φk(fi). (4)

Let us call ∆k an offset block, which consists of an MLP
with one hidden layer which uses a ReLU activation after the
first layer and tanh after the second. The offset block ∆k

determines a coordinate increment by a nonlinear mapping
of the feature space into the coordinate frame of the kernel
∆k : RDin 7→ [−1, 1]3. The feature block Φk : RDin 7→ RDout

computes new features based on the old descriptor. Similar to
the offset block ∆k, the feature block Φk is also an MLP with
one hidden layer but utilizes two ReLU activations instead.
K offset and feature blocks form the proposed deconvolution
C−1 : {RN×3,RN×Din} 7→ {RKN×3,RKN×Dout} which will
be applied to each point {(xi,fi)} of the current layer. This
upsamples the point cloud by a factor of K.

Architecture. Fig. 2 provides an overview of our proposed
network architecture. We use 3 encoding blocks (KPConv)
with grid-based subsampling followed by one MLP layer for
compressing the embedding. Experiments show that a deeper
encoder architecture leads to a lower decompression quality.
We explain this behavior by vanishing gradients due to the
absence of skip connections between the encoder and decoder.
The radius of the convolution is equal to the resolution rs of
the sampling grid. This ensures that all points are part of at
least one convolutional operation.

We estimate the relation between the grid resolution rs and
the sub-sampling rate A(rs) to upsample the point clouds to
their original size

A(rs) =
a

rbs
. (5)

Further derivation and reasoning of the chosen power function
(with the parameters a and b) are provided in Sec. IV. We
use the grid resolution rs to control the compression rate.
The sparser we sample, the higher the compression will be

and the more points we need to upsample. Each KPConv
has 33 = 27 kernel points arranged in a grid with an
influence radius of σ = r/2. The feature dimension (the red
blocks in Fig. 2) for the KPConvs is 16, 32, 32 respectively,
and 3 for the embedding (yellow block). We saw that these
relative compact feature descriptors are sufficient to store the
geometric information about the neighborhood. If the original
point cloud has no feature, we then use the occupancy value
(fi = 1) as advocated by Thomas et al. [40]. The decoder
consists of 4 deconvolutions to upsample the embedding to
its original size. We use 32-dimensional point features and
128-dimensional hidden layer spaces in the deconvolution
(expressed through the green blocks in Fig. 2). The upsampling
factor Ki of the deconvolutional kernels is adapted to the
sampling rate (see Sec. IV-E). Since the feature of the last
layer is unused otherwise, we feed it to an MLP (R32 7→ R3)
to refine the coordinates.

Loss Function. We want to restore a point cloud, which
is as similar as possible to the input. We use the Chamfer
distance DCD as a measure of similarity in our loss function
L. It is the average symmetric squared distance d̄2 of each
point to its nearest neighbor in the other point cloud

DCD(Pin,Pout) =
d̄2(Pin,Pout)

2
+
d̄2(Pout,Pin)

2
, (6)

d̄2(Pi,Pj) =
1

|Pi|
∑

xi∈Pi

min
xj∈Pj

‖xi − xj‖22, (7)

where Pin denotes the input point cloud before compression
and Pout the decompressed point cloud. Using the symmetric
distance prevents the network from flooding the whole space
with points but also from leaving out parts that have been
present in the original point cloud. We add the Chamfer
distances between the input point cloud and the output points
P̂ of all deconvolutions as a regularization term to ensure valid
intermediate results. The loss L is then given by:

L = DCD(Pin,Pout) + β
∑
j

DCD(Pin, P̂j), (8)

where β is a weight to control the impact of the regularization
term and we use β = 0.2 in all of our experiments. For a more
detailed analysis of the regularization, see Sec. IV-E.

IV. EXPERIMENTAL EVALUATION

In this section, we validate that our proposed algorithm is
able to compress point cloud data efficiently. We compare
our method to Draco [8] and the octree-based compression
algorithm by Mekuria et al. [22], which we will refer to as
“MPEG anchor”. Additionally, we will show the results for a
plain Octree [21] using binary flags to indicate if a leaf octant
is occupied.

A. Experimental Setup

Our network is designed for compressing large-scale
dense point clouds. We evaluate our method on the Se-
manticKITTI [2] dataset. For obtaining high accurate and
dense point clouds, we aggregate all scans using the ground
truth poses and divide the map into patches of size 40× 40×
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Fig. 4: Compression results on the test sequence 08 of the KITTI Vision Benchmark dataset. We use Draco [8], the MPEG Anchor from
Mekuria et al. [22] and an own binary Octree implementation as baselines. Our approach can reconstruct the point cloud for the same amount
of memory at a higher quality level.
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Fig. 5: Compression results on the nuScenes dataset. The model was still trained on SemanticKITTI to show the generalizability of our
approach. The errors are slightly higher compared to the validation set of KITTI, but we are still able to outperform the baselines.

15 m3. The labels have been used to remove the dynamic
objects which otherwise will lead to artifacts in the map.
To remove redundant points in the original point cloud, we
filter it using a voxel grid with a resolution of 10 cm3. We
use sequence 00 to 10 (except 08) for training (see Fig. 6
first column). A small subset of the training data serves as a
validation set and the complete sequence 08 is used for testing
and comparison with the baselines.

Evaluation metrics. The quality of a compression algo-
rithm is a trade-off between compression ratio and recon-
struction error. For the compression ratio, we use the average
bits per point (BPP) required for storing the encoding of the
point cloud. We use 3 metrics for measuring the reconstruction
error. Symmetric point cloud distances Dd are widely used for
measuring the quality of the point cloud reconstruction. These
metrics consist of two parts: the distance D̄d from the ground
truth point cloud Pin to the reconstruction Pout and vise versa

Dd(Pin,Pout) =
D̄d(Pin,Pout)

2
+
D̄d(Pout,Pin)

2
, (9)

D̄d(Pi,Pj) =
1

|Pi|
∑

xi∈Pi

min
xj∈Pj

d(xi − xj). (10)

Thereby, the metric is sensitive to false positives (re-
constructing points in unoccupied areas) and false nega-
tives (leaving out occupied areas). The euclidean distance
De = Dd(Pin,Pout) with d = ‖xi − xj‖2 is used as a metric
for reconstructing the points itself. However, for some robotics
applications (e.g. point-to-plane ICP), it is less important to
reconstruct the exact same point than that it lies on the same

surface. Therefore, we also show the symmetric plane distance
D⊥ = Dd(Pin,Pout) with d = |nT (xi −xj)|. Where n ∈ R3

denotes the ground truth normal of that point. The normals
have been precomputed using the Eigenvalue decomposition
of the covariance matrix from all points within a 50 cm radius
around the query point.

The last metric is the intersection-over-union (IoU) between
occupancy grids G for both point clouds. The IoU is here
defined as

IoU =
|Gin ∩Gout|
|Gin ∪Gout|

. (11)

The occupancy grids Gin and Gout have a resolution of 20 ×
20× 10 cm3 as used by Huang et al. [14].

Implementation details. We use the octree implemen-
tation by Behley et al. [3] for an efficient radius neighbor
search in the KPConv-blocks. Our model is implemented in
PyTorch [27] and trained on a GeForce RTX 2080 SUPER
and with an Intel CPU with 3.5 GHz. We use the Adam opti-
mizer [18] and the one cycle learning rate schedule proposed
by Smith et al. [38] with a start learning rate of 10−6, which
will increase to 10−4 in the first 20 epochs and afterward de-
crease to 10−5. We use the cosine annealing strategy and train
for 200 epochs with a batch size of 3. We limit the number
of input points to 30,000 points to speed-up the training and
reduce the memory footprint while training. Nevertheless, we
compare at test time our reconstructed point cloud to all avail-
able points. We train four network architectures with varying
sub-sampling resolutions rs ∈ {3.0 m, 2.0 m, 1.2 m, 1.0 m} for
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Fig. 6: Qualitative results of our proposed method and the baselines for different bits per point (BPP) on two example point clouds. The
points are colored according to their height. Our approach is able to recover dense point clouds also when targeting low bit rates.

different compression levels. The encoder needs approximately
0.27 MB and the decoder between 0.30 MB and 0.62 MB
memory storage (depending on the upsampling rates), which
is a one-time investment and not depending on the number
of compressed maps or points. We use Open3D [48] for
visualization.

B. Compression Results

In this first experiment, we compare our compression results
to the baselines to quantify the compression performance of
our proposed method. Our approach stores the output of the
encoder, namely a set of features and points, as the compressed
representation. We will show the results for storing the embed-
ding as 32 and 16 bit floating-point values. The compression
results of our approach and the baselines on sequence 08 are
presented in Fig. 4. Our proposed method outperforms the
baselines in the distance-based metrics De and D⊥, as well
as in the IoU for the 16 bit representation. The small quality
gain (< 2%) of the 32 bit representation is disproportional
concerning doubling the memory demand. The reduced density
of the baselines leads to substantially higher errors than our
approach which can reconstruct for each bit rate the same
number of points. Our approach achieves over 2.4 times lower
reconstruction errors for bit rates under 0.1 BPP compared
to the baselines. We think that the worse performance of the
MPEG Anchor [22] compared to the plain occupancy octree is
due to some overhead for attribute compression and the ability
to further compress tele-immersive data streams.

C. Generalization Capability

Learning-based methods often degrade when applied in
a different environment due to over-fitting to the specific
characteristics of the training set. We claim that our method
generalizes well by learning the local geometries rather than
remembering the global shape. To support this claim, we
test our approach on a completely different dataset without
retraining the model. Here, we use the nuScenes dataset [5],
which not only has a different sensor setup (different height,
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Fig. 7: We estimate the dependency between the subsampling rate
α and the subsampling resolution r to predict the bit rate and to
estimate the necessary upsampling rate for the deconvolution. We use
least squares fitting to estimate the parameters of a power function
A(r) = a · r−b with parameters a and b.

field-of-view, and the usage of 32 beams instead of a 64-
beam LiDAR), it is also recorded on a different continent
which usually changes the appearance of the scenes quite
substantially. Note that there are no labels for the nuScenes
dataset available so that the dynamics will not be removed
from the map, which makes it more challenging due to new
artifacts it has never seen before. Fig. 5 shows that we still
outperform the baselines for the 16 bit representation, even
though the margin to the baselines got smaller.

D. Qualitative Analysis
In this part, we will analyze the decompression results

qualitatively. In Fig. 6, we show the decompressed maps of the
baselines and our approach. For the baselines, we have chosen
the quality levels with the closest bit rates to our approach.
The points are colored according to their height. As we can
see, our approach is able to recover comparably dense point
clouds even for varying compression rates. The point clouds
of the baselines are sparser, especially when targeting low bit
rates (see Fig. 6 second row). When reducing the bit rate,
the decompressed maps of our approach get noisier while the
baselines show larger quantization errors. Structures like the
curbs of the streets are only visible in our denser maps.



WIESMANN et al.: DEEP COMPRESSION FOR DENSE POINT CLOUD MAPS 7

w
it
h

re
gu
la
ri
za
ti
on

w
ith
ou
t

re
gu
la
riz
at
io
n

Fig. 8: Intermediate point clouds after each deconvolutional layer C−1
j , j ∈ {1, 2, 3, 4} for the same networks but with different loss functions.

The network of the top is trained without the regularization term, whereas the bottom row is learned with the regularization term. The lack
of the regularization leads to less homogeneous and more noisy point clouds after each deconvolution. When trained with the regularization,
the intermediate point clouds can be used as lower resolution model.

E. Ablation Studies

In this part, we provide ablation studies to validate the
choices made and to give a deeper understanding of the
behavior of the network. We first investigate the adaptive
sampling strategy and then the regularization.

Adaptive Sampling. Each encoding block reduces the
number of points by grid-based subsampling and thus the
number of embedding points depends on the resolution of the
sampling grid. In this experiment, we investigate the influence
of varying grid resolutions rs and the subsampling rate α of
the points. This enables us to adapt the up-sampling rate to
ensure that the input and output point clouds have similar sizes.
Additionally, it enables us to predict the bit rate BPP based on
the resolution rs or vise versa. Therefore, we subsample the
point clouds of the training set with different grid resolutions
rs and compute the mean subsampling rate α. We fit a power
function A(rs) which is proportional to the density distribution
ρ(rs) of the point cloud

A(rs) =
a

rbs
∝ ρ(rs). (12)

The parameter a denotes the magnitude of the density while
the parameter b describes the dimensionality of the point
distribution. A fix parameter b ∈ {1, 2, 3} would correspond to
a voluminous, planar, or linear distribution, respectively. The
result of A(rs) as well as for fix b ∈ {1, 2, 3} are shown in
Fig. 7. The best fitted function is given by a = 0.006 and
b = 1.80. The parameter b = 1.80 reflects the huge amount
of planar surfaces (streets, walls, meadows...) in outdoor
environments. Each deconvolutional block i up-samples the
point cloud by the factor Ki = dA(re)

−1/Ie, where I is the
number of deconvolutional blocks and re is the sub-sampling
resolution of the last encoding layer.

Impact of regularization. In this experiment, we show the
importance of the regularization term. We train the same net-
work two times, first with and second without regularization.

TABLE I: Quantitative regularization impact

experiment De D⊥ IoU

without regularization 0.110 0.062 0.327
with regularization 0.077 0.039 0.332

In Fig. 8, we can see the qualitative impact on the point
clouds after each upsampling step. The distribution of the
points is more uniform and less noisy for the point clouds
of the regularized network. The regularization term penalizes
big point distances between the clouds. This leads implicitly
to more homogeneous regions so that we do not see the
necessity of an additional repulsion loss as in the PU-Net [46].
The quantitative results in Tab. I support our assumption that
more meaningful intermediate point clouds help the network
to reconstruct the data. Additionally, the intermediate point
clouds can, with regularization, be used as lower-resolution
versions of the point cloud.

V. CONCLUSION

In this work, we presented a novel approach for lossy
point cloud compression using a neural network. Our approach
operates on dense large-scale maps of aggregated point clouds
used for autonomous driving. Our method exploits recurring
structures to learn a small set of feature descriptors using
a deep convolutional autoencoder. The descriptor set serves
as the compressed representation, which can be used for
efficient storage and transmission, or later by the decoder to
reconstruct the point cloud. Furthermore, we propose a 3D
deconvolution that directly operates on the points themselves
to avoid discretization effects from using voxel grids or
memory size problems from skip connections. This allows
us to successfully reduce the memory footprint of dense
point clouds. We implemented and evaluated our approach on
different datasets and provided comparisons to other existing
techniques and supported all claims made in this paper.
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[17] G. Jóźków. Terrestrial laser scanning data compression using JPEG-
2000. Proc. of the Conf. of the German Society for Photogrammetry,
Remote Sensing and Geoinformation (DGPF), 85(5):293–305, 2017.

[18] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
In Proc. of the Intl. Conf. on Learning Representations (ICLR), 2016.

[19] I. Kweono, M. Hebert, E. Krotkov, and T. Kanade. Terrain mapping for
a roving planetary explorer. In Proc. of the IEEE Intl. Conf. on Robotics
& Automation (ICRA), pages 997–1002, 1989.

[20] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional Neural
Network for Real-Time Object Recognition. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2015.

[21] D. Meagher. Octree Encoding: A New Technique for the Representation,
Manipulation and Display of Arbitrary 3-D Objects by Computer.
Rensselaer Polytechnic Institute Image Processing Laboratory, Technical
Report, (IPL-TR-80-111), 1980.

[22] R. Mekuria, K. Blom, and P. Cesar. Design, implementation, and
evaluation of a point cloud codec for tele-immersive video. IEEE
Trans. on Circuits and Systems for Video Technology (TCSVT), pages
828–842, 2016.

[23] P. Merkle, A. Smolic, K. Muller, and T. Wiegand. Multi-view video plus
depth representation and coding. In Proc. of the IEEE Intl. Conf. on
Image Processing (ICIP), volume 1, pages I–201, 2007.

[24] B. Merry, P. Marais, and J. Gain. Compression of dense and regular
point clouds. In Proc. of the Intl. Conf. on Computer graphics, virtual
reality, visualisation and interaction in Africa, pages 15–20, 2006.

[25] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss. RangeNet++: Fast
and Accurate LiDAR Semantic Segmentation. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2019.

[26] F. Nenci, L. Spinello, and C. Stachniss. Effective Compression of Range
Data Streams for Remote Robot Operations using H.264. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), 2014.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, Natalia N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In Proc. of the
Advances in Neural Information Processing Systems (NeurIPS), pages
8026–8037. 2019.

[28] C.R. Qi, H. Su, K. Mo, and L.J. Guibas. PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
2017.

[29] C.R. Qi, K. Yi, H. Su, and L.J. Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In Proc. of the
Advances in Neural Information Processing Systems (NeurIPS), 2017.

[30] M. Quach, G. Valenzise, and F. Dufaux. Learning convolutional
transforms for lossy point cloud geometry compression. In Proc. of
the IEEE Intl. Conf. on Image Processing (ICIP), pages 4320–4324,
2019.

[31] M. Quach, G. Valenzise, and F. Dufaux. Improved Deep Point Cloud
Geometry Compression. Proc. of the IEEE Intl. Workshop on Multimedia
Signal Processing (MMSP), pages 1–6, 2020.

[32] G. Riegler, A. Ulusoy, and A. Geiger. OctNet: Learning Deep 3D
Representations at High Resolutions. In Proc. of the IEEE/CVF Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

[33] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention, pages 234–241, 2015.

[34] M. Ruhnke, B. Steder, G. Grisetti, and W. Burgard. Unsupervised
learning of compact 3d models based on the detection of recurrent
structures. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), pages 2137–2142, 2010.

[35] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning Representa-
tions by Back-Propagating Errors, pages 696–699. 1988.

[36] R. Schnabel and R. Klein. Octree-based Point-Cloud Compression. In
Proc. of the Symposium on Point-Based Graphics, 2006.

[37] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for point-cloud
shape detection. In Computer Graphics Forum, pages 214–226, 2007.

[38] L. Smith and N. Topin. Super-convergence: Very fast training of
neural networks using large learning rates. In Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications, 2019.

[39] X. Sun, H. Ma, Y. Sun, and M. Liu. A novel point cloud compression
algorithm based on clustering. IEEE Robotics and Automation Letters
(RA-L), 4(2):2132–2139, 2019.

[40] H. Thomas, C R. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and
L.J. Guibas. KPConv: Flexible and Deformable Convolution for Point
Clouds. In Proc. of the IEEE/CVF Intl. Conf. on Computer Vision
(ICCV), 2019.

[41] R. Triebel, P. Pfaff, and W. Burgard. Multi-level Surface Maps for
Outdoor Terrain Mapping and Loop Closing. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), 2006.

[42] C. Tu, E. Takeuchi, A. Carballo, and K. Takeda. Point cloud compression
for 3D LiDAR sensor using recurrent neural network with residual
blocks. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 3274–3280, 2019.

[43] P. Wang, Y. Liu, Y. Guo, C. Sun, and X. Tong. O-cnn: Octree-based
convolutional neural networks for 3d shape analysis. ACM Trans. on
Graphics (TOG), 36(4):1–11, 2017.

[44] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d
shapenets: A deep representation for volumetric shapes. In Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 1912–1920, 2015.

[45] L. Yongcheng, F. Bin, M. Gaofeng, L. Jiwen, X. Shiming, and P. Chun-
hong. Densepoint: Learning densely contextual representation for
efficient point cloud processing. In Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision (ICCV), pages 5239–5248, 2019.

[46] L. Yu, X. Li, C. Fu, D. Cohen-Or, and P. Heng. Pu-net: Point cloud
upsampling network. In Proc. of the IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 2790–2799, 2018.

[47] C. Zhang, D. Florencio, and C. Loop. Point cloud attribute compression
with graph transform. In Proc. of the IEEE Intl. Conf. on Image
Processing (ICIP), pages 2066–2070, 2014.

[48] Q. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D
data processing. arXiv:1801.09847, 2018.


	Introduction
	Related Work
	Our Approach
	Experimental Evaluation
	Experimental Setup
	Compression Results
	Generalization Capability
	Qualitative Analysis
	Ablation Studies

	Conclusion
	References

