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PhenoBench: A Large Dataset and Benchmarks
for Semantic Image Interpretation

in the Agricultural Domain
Jan Weyler, Federico Magistri, Elias Marks, Yue Linn Chong, Matteo Sodano,

Gianmarco Roggiolani, Nived Chebrolu, Cyrill Stachniss, and Jens Behley

Abstract—The production of food, feed, fiber, and fuel is a key task of agriculture, which has to cope with many challenges in the
upcoming decades, e.g., a higher demand, climate change, lack of workers, and the availability of arable land. Vision systems can
support making better and more sustainable field management decisions, but also support the breeding of new crop varieties by
allowing temporally dense and reproducible measurements. Recently, agricultural robotics got an increasing interest in the vision and
robotics communities since it is a promising avenue for coping with the aforementioned lack of workers and enabling more sustainable
production. While large datasets and benchmarks in other domains are readily available and enable significant progress, agricultural
datasets and benchmarks are comparably rare. We present an annotated dataset and benchmarks for the semantic interpretation of
real agricultural fields. Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop
leaf instances at the same time. Furthermore, we provide benchmarks for various tasks on a hidden test set comprised of different
fields: known fields covered by the training data and a completely unseen field. Our dataset, benchmarks, and code are available at
https://www.phenobench.org.

✦

1 INTRODUCTION

THE agricultural production of food, feed, fiber, and fuel
has to cope with several challenges in the upcoming

decades. The world population is increasing, yet the avail-
ability of arable land is limited or even decreasing, climate
change increased uncertainties in crop yield, and we observe
substantial losses in biodiversity [18]. At the same time,
agricultural practices need to be more sustainable and have
to reduce the use of agrochemical inputs, i.e., herbicides and
fertilizers that potentially negatively impact yield [32] and
the environment.

Robots and drones using vision-based perception sys-
tems could help with these challenges by offering tools to
make better, more sustainable field management decisions
and providing supporting tools for breeding new varieties
of crops by estimating plant traits in a reproducible man-
ner [72]. Such visual perception systems enable the devel-
opment of agricultural robots that can support the mon-
itoring of fields and replace labor-intensive tasks such as
manual weeding [89]. Additionally, they potentially enable
more targeted crop management, where agrochemicals are
applied precisely and only where needed, thereby reducing
the negative effects on the environment [53], [82].

With the advent of deep learning for visual percep-
tion [41], [49], the field of computer vision has made tremen-
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dous progress in image interpretation, achieving remark-
able results in several domains. Datasets and associated
benchmarks [14], [52], [66] were essential for achieving this
progress as they provide a testbed for developing novel
algorithms but also provided the necessary data to tackle
novel tasks. Progress can be tracked quantitatively with
metrics that measure the performance of developed ap-
proaches against benchmarks using hidden test sets. Novel
tasks with increasing complexity drive the progress of the
field by posing novel challenges for the community.

In this paper, we aim to provide a large dataset together
with benchmarks for semantic interpretation under real-
field conditions enabling similar progress in the agricultural
domain. We target multiple tasks: semantic segmentation,
panoptic segmentation, plant detection, leaf detection, and
the novel task of hierarchical panoptic segmentation that
provides a coarse-to-fine interpretation of plants.

For this purpose, we recorded high-resolution images
with unmanned aerial vehicles (UAV) of sugar beet fields
under natural lighting conditions over multiple days, cap-
turing a large range of growth stages. We annotated these
images with dense, pixel-wise annotations to identify sugar
beet crops and weeds at an instance level, as needed for
semantic segmentation and plant-level instance segmenta-
tion tasks. Additionally, we labeled leaf instances of crops
to enable the investigation of leaf instance segmentation
(see Fig. 1). Furthermore, we provide temporal association
of plant instances over the different dates, which allows to
identify individual plants at different growth stages.

The combination of plant-level and leaf-level annota-
tions enable the investigation of novel tasks needed for a
holistic semantic interpretation in the agricultural domain.
One such task is the hierarchical panoptic segmentation that

https://www.phenobench.org
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Fig. 1. Our dataset, called PhenoBench, provides dense semantic plant-level instance annotations (shown by different colors)
of sugar beet crops and weeds (green and red in the semantics) and leaf-level instance annotations of crops (different colors
correspond to different instances) for high-resolution images recorded with a UAV. The dataset consists of images collected at
different times during a growing season, which captures various growth stages of plants.

targets to segment individual leaves and assign them to
their associated plant instance to predict the total number
of leaves per plant. Plant scientists and breeders commonly
assess this information to describe the growth stage of
individual plants, which is also linked to yield potential and
plant performance [45]. However, this in-field assessment
is nowadays done manually outside greenhouses, which is
laborious and time-consuming [62]. Thus, developing vision
systems to assess these properties per plant automatically is
essential for large-scale, sustainable crop production.

Our provided data shows distinct challenges in terms of
plant variation and overlap between different plant and leaf
instances that are distinct in the agricultural domain. Such
challenges are seldomly addressed by general segmentation
approaches prevalent in man-made environments, as shown
by our experimental results, where we challenged several
state-of-the-art approaches but also provide results for more
domain-specific approaches for the agricultural domain.

In summary, our main contributions are:

• We present a large dataset for plant segmentation
providing accurate instance annotations at the level
of plants and leaves.

• We provide benchmark tasks on a hidden test set for
evaluating semantic, instance, and panoptic segmen-
tation, and detection approaches targeted at plants
enabling reproducible and unbiased evaluation of
novel plant perception approaches.

• We provide baseline results for general and domain-
specific models for plant and leaf detection, but also
semantic, instance, and panoptic segmentation.

We believe that the effort in generating high-quality
annotations and establishing reliable benchmarks for mul-
tiple tasks with a hidden test set will accelerate progress
in semantic perception of agricultural fields and potentially
lead to novel avenues of research in this important domain.
We make our dataset and benchmarks1, code for visualizing
predictions and computing metrics2, and baselines3 with
code, checkpoints, and predictions publicly available.

2 RELATED WORK

In recent years, dense, pixel-wise semantic interpretation
of images, i.e., semantic, instance, and panoptic segmen-

1. https://www.phenobench.org
2. https://github.com/PRBonn/phenobench
3. https://github.com/PRBonn/phenobench-baselines

tation [38], made rapid progress due to advances in deep
learning [49], but also thanks to the availability of large-
scale datasets for object detection [20], [21], [52], semantic
segmentation [14], [66], instance segmentation [52], and
lately panoptic segmentation [14], [52], [66].

Despite the availability of large datasets in man-made
environments, the agricultural domain faces different chal-
lenges, such as large intra-class variability due to plant
growth. Thus, there has been interest in large datasets to
enable studying perception in the agricultural domain [57].
However, accurately dense annotated and large agricultural
datasets in combination with reproducible benchmarks on a
hidden test set are still missing today, see Tab. 1.

In particular, the crop/weed field image
dataset (CWFID) by Haug et al. [30] is one of the first
semantic segmentation datasets that provides pixel-level
annotations of semantics for plants, i.e., sugar beets
and weeds using a multispectral camera. Lameski et
al. [44] also provides a dataset for crops, i.e., carrots and
weed segmentation. CVPPP [1], [61] is one of the first
datasets providing annotations for leaves in images of
individual tobacco and arabidopsis plants recorded in
a lab environment, which is also the basis for a series
of workshops and competitions hosted at CVPR and
ICCV. The dataset by Chebrolu et al. [7] provides images
of sugar beets and weeds recorded by a ground robot
under real field conditions with a ground sampling
distance (GSD) of 0.3 mm

px and provides annotations
for semantic segmentation. Similar to our dataset, the
WeedMap dataset [79] provides imagery of UAVs covering
a large field with sugar beets and weeds. In contrast
to our dataset, where we provide the original camera
data, WeedMap first generated orthophotos via bundle
adjustment. While we considered this option, we noticed
that the lack of a detailed elevation model usually leads to
artifacts on the boundaries of the plants. Additionally, the
images of WeedMap have a coarse GSD between 8.2 cm

px
and 13 cm

px while our images have a GSD of 1 mm
px to

assess detailed information for individual plants. The
Sunflowers dataset [22] provides images collected with
a multi-spectral sensor providing RGB and near-infrared
images from a ground robot. The Agriculture-Vision
dataset [13] contains aerial images with a coarse GSD
between 10 cm

px and 20 cm
px with corresponding annotations

that covers rather large areas but not individual plants,
e.g., regions with nutrient deficiencies and weed clusters.

https://www.phenobench.org
https://github.com/PRBonn/phenobench
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Dataset #Images Image Size Crop Weed Field? Hidden
Test Set?Sem. Inst. Leaves Sem. Inst.

CWFID [30] 60 1291 × 966 ✓ ✓ ✓
CVPPP [1], [61] 1,311 2048 × 24481 ✓ ✓
Carrot-Weed [44] 39 3264 × 2448 ✓ ✓ ✓
Sugar beets [7] 280 1296 × 966 ✓ ✓ ✓
WeedMap [79] 1,670 480 × 360 ✓ ✓ ✓
Carrots-Onion [3] 40 2464 × 2056 ✓ ✓ ✓
Oil Radish [65] 129 1600 × 1600 ✓ ✓ ✓
Sunflower [22] 500 1296 × 966 ✓ ✓ ✓
GrowliFlowers [36] 2,198 448 × 368 ✓ ✓ ✓ ✓
CropAndWeed [81] 8,034 1920 × 1088 ✓ ✓ ✓
PhenoBench (Ours) 2,872 1024 × 1024 ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE 1. Comparison of datasets in the agricultural domain providing dense pixel-wise annotations. For the crop and weed, we
indicate if semantic segmentation (Sem.), plant instances (Inst.), and leaf instances (Leaves) are densely annotated. We also record
if the dataset was recorded under field conditions, as opposed to under lab conditions (Field?). Furthermore, we note if there is a
hidden test set, such that approaches do not have access to test set labels (Hidden Test Set?). 1We report maximum image size,
as it ranges from 441 px× 441 px to 2048 px× 2448 px.

More recently, the GrowliFlowers dataset [36] provides
images recorded with a UAV showing multiple growth
stages of cauliflowers. While we recorded images on three
dates roughly a week apart, this dataset contains images
captured on four different dates, also roughly a week apart.
Therefore, it captures an extended period of one month.

Lately, the CropAndWeed dataset [81] provides RGB
images taken close to the field canopy showing a large
variety of crops and weeds. While the number of anno-
tated images is large, the pixel-wise annotations have been
semi-automatically annotated exploiting a pre-segmentation
via a deep neural network to lower the annotation effort.
However, this sometimes leads to incomplete annotations
and notable annotation artifacts. Also in our experience, we
noted that correcting annotations is quite tedious and can
counter-intuitively lead to even larger annotation effort as
boundary regions generated using contemporary segmenta-
tion approaches almost always need to be corrected, which
is also the part that takes most of the annotation time.

The recently published RumexLeaves dataset [27] pro-
vides fine-grained annotations of leaves of the Rumex ob-
tusifolius L., which is a problematic weed in grasslands.
Besides the leaf annotations of this particular plant, the
dataset also provides more fine-grained vein and stem anno-
tations that allows to get insights into the plant physiology
corresponding to traits relevant for plant phenotyping.

Besides the aforementioned closely related datasets that
also provide dense pixel-wise annotations, there have been
recently also several datasets in the agricultural domain
released for wheat detection [16], localization and map-
ping [34], [69], image classification of weed species [67],
detection for phenotyping [58], crop row detection [96], or
fruit detection [78]. Additionally, there are a small number
of available datasets for semantic interpretation of 3D agri-
cultural data [19], [35], [80].

While recent interactive labeling approaches, like Seg-
mentAnything [39], can certainly speed-up labeling of in-
stance masks with only weak annotations delivering com-
pelling results, we target to generate a reliable and high-
quality dataset and corresponding benchmark. Therefore,
we resort to manual annotations from scratch, which en-
tailed a rigorous correction and verification procedure to

ensure accurate and consistent segmentation masks.
In contrast to the aforementioned datasets, which are

great starting points for research, our dataset shows an
unique level of annotations, including semantic and in-
stance masks for crops and weeds of an overall larger
number individual plants (see Tab. 1). Furthermore, we
provide temporally consistent instance ids of crops that
allow to identify individual plants over multiple dates.
Note that our dataset provides large images with multiple
completely visible plants, which is not always the case
for other pixel-wise annotated datasets [36], [61]. Lastly,
we enable comparable and reproducible results with the
provided benchmarks on a hidden test set, i.e., labels are
not released and the predictions are evaluated on a server
via CodaLab [68].

3 OUR DATASET

In this section, we present our setup for data collection,
explain the labeling process, and provide statistics to show
the variability of the data.

3.1 Data Collection
Our dataset provides RGB images in real field conditions
recorded by an UAV equipped with a high-resolution cam-
era that captures imagery of the field. For recording the
data, we employed a DJI M600 and used the PhaseOne
iXM-100 camera with a 80mm RSM prime lens mounted
on a gimbal to obtain motion-stabilized RGB images at a
resolution of 11 664 px× 8750 px. The UAV was flying at
a height of approx. 21m, resulting in a GSD of 1 mm

px . For
covering the entire field, we use the DJI Ground Station Pro
app to plan a flight that covers the field row-wise. We set
the forward overlap between consecutive images by motion
vector at 75% and the side overlap between images placed
in neighboring rows at 50%. Each image is geo-referenced
by using the on-board GNSS.

We performed three missions roughly a week apart to
capture different growth stages of the plants. More specifi-
cally, we performed the flights on May 15, May 26, and June
6 in 2020. Additionally, we used the same sensor setup to
record images at four different points in time in 2021 on a
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Fig. 2. Variability in overlap and illumination of plants at the
same part of the field on different recording dates. Theses
examples show the variation in growth stages ranging from
4 leaf stage (early growth stage) to plants with over 20 leaves
(later growth stage) and the variety of illuminations with sunny
(left) and overcast (right) weather conditions.

Fig. 3. Orthophoto of the field recorded in 2020 and our spatial
separation into rows for training (green), validation (blue), and
testing (red). Due to the geo-referencing of the images, we
extracted the same rows on each of the dates.

different field: May 20, May 28, June 1, and June 10. As the
data was captured in the open field, we have a variety of
different lighting conditions with sunny and also overcast
weather, as shown in Fig. 2, which significantly changes the
visual appearance of the plants.

From the approximately 1300m2 sugar beets field lo-
cated at the Campus Klein-Altendorf farm between Mecken-
heim and Rheinbach, Germany (50◦37’.51N, 6◦59’.32E), we
selected eight crop rows that were covered by the recording
mission. To have a clear spatial separation between the
train and test set, we selected four crop rows for extracting
training images, two crop rows for validation, and two crop
rows for testing purposes as shown in Fig. 3. Additional
data recorded in 2021 is only included in the test set to
evaluate also the performance in a setting of an unseen field
with the same crop but potentially different weeds.

Specifically, the sugar beet field contains a mixture of
two different crop varieties, i.e., BTS 440 and Celesta KWS
that are both from distinct agro-seed companies and differ
in their properties regarding a beet’s mass and sugar yield.
Furthermore, we observe six weed varieties that are most
prominent in the field, i.e., Chenopodium album, Poly-
gonum aviculare, Thlaspi arvense, Persicaria lapathifolia,
Bilderdykia convolvulus, and Polygonum hydropiper.

The field belongs to a farm of the University of Bonn
located at the Campus Klein-Altendorf. This allows us to
conduct field studies and to study perception systems under
varying conditions with respect to application of herbicides,
which leads to different scenarios with fully (conventional),
partial (80% herbicides), and non-herbicided field condi-

Fig. 4. Varying conditions of the field recorded at different lo-
cations, which are treated with different amounts of herbicides.
From left to right: Fully-herbicided, partially-herbicided, and
non-herbicided field conditions recorded at the same day.

1 2 3 4

Fig. 5. Extracted tiles per iteration such that a row is densely
covered with tiles to ensure that all plants are completely visible
in at least one tile. Annotations of tiles are transferred between
iterations and aggregated in the global image Ig .

tions, as shown in Fig. 4. In conventional farming and field
management operations, such conditions with less or no
herbicides are usually not observable. While keeping most
of the other field parameters constant, this makes our field
setup distinct to other larger datasets, such as GrowliFlow-
ers [36] that recorded data only under conventional field
management conditions with only a very few weeds.

3.2 Labeling Process
The full-sized images, which we denote as global images,
Ig , are challenging to annotate due to their large size of
11 664 px× 8750 px. To parallelize the labeling process and
ensure no plant is missed, we extracted from Ig overlapping
patches, Ip, of size 2000 px× 2000 px. We extracted multiple
iterations of overlapping patches such that we always have
in one of the resulting four tilings complete plants visible,
c.f . Fig. 5. As we ensure that each plant is fully visible in
at least one of the patches, we instructed our annotators to
label only completely visible plants in Ip.

For labeling the plants and leaves at the same time, we
developed a novel tool to enable a hierarchical annotation
of the images. Please see the supplement for a more detailed
description of the labeling tool and the provided features.

We first labeled the plant instances of sugar beet crops
and weeds, which was completed by 9 annotators investing
a total of 800 h. Each iteration was validated and corrected
before we transferred the annotations to the global images
Ig . Then, the next iteration is started with the transferred
labels copied to the respective patches Ip, and these steps
were repeated till the final fourth iteration.
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Split #imgs #crops #weeds #leaves

Train 1, 407 11, 875 8, 141 71, 264
Validation 772 6, 482 3, 926 35, 503
Test 693 6, 201 4, 291 33, 935

Unlabeled 129, 000 – – –

TABLE 2. Dataset statistics of the provided splits. Note that
we have a hidden test set, i.e., we have a server-sided evalua-
tion [68]. We additional provide unlabeled data of the fields to
enable studying of self-supervised pre-training.

Annotation of a single patch Ip ranged from approx.
1 h for earlier growth stages to 3.5 h for later growth stages
where plants had significant overlap. In sum, we annotated
705 patches over all dates and crop rows.

After the plant instances were labeled, we had 5 an-
notators labeling leaf instances. Annotators were tasked
with identifying crop leaves and annotation of a patch Ip
took approx. 1 h to 2 h depending on the number of visible
crops. With the masking of plant instances provided by
our annotation tool, we ensure that we have consistent leaf
labels that are inside the crop instance. Thus, it is possible
to associate each leaf instance with its corresponding crop
based on the plant instance annotations.

To ensure high-quality, accurate annotations of plants
and leaves, we furthermore had an additional round of
corrections performed by four additional annotators that re-
vised the annotations. More details on our quality assurance
process is provided in the supplementary material.

In total, we had 14 annotators who invested 1,400 h of
annotation work and roughly 600 h invested into additional
validation and refinement, leading to an overall labeling
effort of approximately 2,000 h.

3.3 Temporal Alignment
As we recorded images in the same geographical location,
we can furthermore provide temporally aligned plant in-
stances, which enables the study of individual plant growth.
By matching the occurrences of the same plants in different
recordings we ensure that each crop plant has a unique
instance id throughout our whole dataset.

To this end, we exploit the positions delivered by the
RTK GNSS of the drone as initial guesses for a bundle
adjustment procedure to determine the pose of the camera
for each captured image in a global reference frame. This
allows us to project the crop center locations, computed as
the centroid of the plant pixels, of plants appearing in all
images of a mission into a common plane.

As the estimated poses of the camera are not completely
free of noise, we use Hungarian matching [42] based on the
distances of crop centers to robustly associate instances of
the same plant appearing in different images. To account
for new crop instances but also missing crop instances, we
only associate crop centers, when their distance is below
a threshold of 15 cm, which was determined empirically.
We experimented with using GNSS poses to associate crop
instances between different missions collected at different
points in time, but found the inaccuracies of the localization
to be too high for our purpose. We, therefore, manually
associated around 10 plants between the different missions
and used these datapoints to compute a transformation
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Fig. 6. Distribution of crop sizes in terms of canopy cover in cm2

for mostly visible plants in the training and validation set.

between each mission using a least squares approach. Given
those transformations we then associated the crop ids again
by projecting them onto a common plane and matching
them by the Hungarian algorithm. Finally, we validated
the temporal alignment by visualizing the matches between
missions at different points in time.

3.4 Dataset Statistics

We finally extracted from the global images Ig smaller
images of size 1024 px× 1024 px to ensure that we have
images containing complete crops at later growth stages, but
also provide context such as the crop row structure. More
specifically, we use the an overlap of 50% between extracted
patches to ensure that plants in later growth stages are at
least 50% visible in the extracted patches.

Tab. 2 shows an overview of the number of extracted
images for the different splits from the earlier described
train/validation/test rows, the number of crop instances,
the number of crop leaves, and the number of weed in-
stances annotated. Note that only the test data includes data
from 2020 and 2021. As we ensured that we have completely
annotated plants, we are able to generate a visibility map
and differentiate between mostly visible plants with at least
50 % visible pixels and partially visible plants. Note that we
provide a rather large validation set to allow researchers to
conduct conclusive ablations studies.

In addition to the labeled data, we also provide unla-
beled data from all fields, which can be exploited for pre-
training, semi-supervised, or unsupervised domain adapta-
tion, which we see as promising future avenue of research.

As motivated earlier, we recorded images under real-
world conditions of real agricultural fields leading to a
diverse range of plant appearances due to varying growth
stages. The crops are affected by different soil conditions
leading to a variety of growth stages even on images of the
same date. This intra-class variability of the crops poses an
interesting challenge for learning approaches that have to
correctly segment or detect small but also large crops at the
same time. The extra data from a different field captured in
2021 leads to even greater diversity of recording conditions,
which is a common challenge in the agricultural domain.

Additionally, we observe a large variability in terms of
overlap between plants. They are clearly separated at the be-
ginning of the recording campaign but show a considerable
overlap at the last recording date. Fig. 2 shows the same
area of the field over the course of three weeks showing
the variation in terms of growth stage but also the overlap
between crops.
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Fig. 7. Distribution of leaf count of mostly visible plants in the
training and validation set.

In Fig. 6, we provide an overview of the plant sizes
per data collection day in terms of the area covered by
the plant instances that shows the diversity in terms of
growth stages. While on May 20th plants with a small
coverage are predominately present, the plant area of plants
naturally increased in the following weeks. On May 26th, the
amount of larger plants increases. At the latest date, June
5th, the amount of larger plants further increases and the
distribution gets more long-tailed as now all plants directly
compete for space, which is also visually visible from the
larger overlap between neighboring plants. Thus, only few
plants are able to develop a larger canopy cover.

Finally, we present in Fig. 7 the distribution of leaves per
plant per data collection day of completely visible plants in
the training and validation split. Similar to the trends for
the canopy cover, we can also observe an increase in terms
of the number of leaves over time. On May 20th, most of
the plants are still in the two-leaves stage with only a few
plants in the later development with more than 10 leaves.
Note that some leaves are also so-called germ leaves that
are later replaced by the real leaves. The peak in the leaf
count shifts to the right on May 26th as the sugar beet plants
develop more leaves in later growth stages. On the last data
collection date, June 5th, the distribution of leaves gets more
long-tailed as now larger plants are competing for space.
At this stage, however, it’s also more likely that leaves are
covered by other leaves, since we observe the field from a
UAV. Thus, the true number of leaves is not observable.

Overall, we annotated 583 unique crop plants at po-
tentially different growth stages growing under real-world
conditions in the open field. Thus, the individual plant
growth is affected by the weather conditions and the soil
quality that changes over the whole field. As noted before,
the visual appearance changes between different plants but
also can have substantial differences due to the natural plant
growth. More specifically, 496 plants appear in all three
dates, 15 plants in only two of the dates, and 72 plants only
at a single point in time, which is caused by the conventional
field management operations or natural growing conditions.

4 BENCHMARKS

In this section, we present the benchmark tasks that we
provide together with the dataset. These tasks cover dif-
ferent aspects of a perception system for the crop produc-
tion domain in agriculture. While we cover classical, well-
established tasks, we also want to provide a novel task of
hierarchical panoptic segmentation that provides a complete
picture of the plant structure.

Approach mIoU IoU

Crop Weed Soil

ERFNet [76] 85.98 94.30 64.37 99.28
DeepLabV3+ [9] 85.97 94.07 64.59 99.25

TABLE 3. Baseline results for semantic segmentation on the
test set.

We provide metrics on the test set of our dataset includ-
ing data from known and unknown fields for all investigated
baseline approaches. Note that we provide more details on
the training setup, including hyperparameters and qualita-
tive results, in the supplement. We furthermore will provide
code for the baselines in our code release. In the supple-
ment, we furthermore provide qualitative results together
with more fine-grained quantitative results differentiating
between the different fields of the test set.

4.1 Semantic Segmentation

Task description. Semantic segmentation in images aims
to train models capable of predicting each pixel’s class.
Thus, we provide annotated ground truth data that assigns
each pixel to the class soil, crop, or weed. Consequently, an
approach for this task needs to provide dense predictions
assigning each pixel to one of the before-mentioned classes.
State of the Art. Semantic segmentation is a classical task
that was first mainly tackled using conditional random
fields [40], [43] to exploit the neighboring structure of im-
ages. With the advent of deep learning and the success in
image classification [41], dense prediction tasks are nowa-
days mainly tackled by encoder/decoder architectures [54],
[76], [77]. Recently, refined architectures add larger con-
text [8], [9] and multi-resolution processing [84] or rely on
Transformers [87] for the encoder [12], [97]. We refer to
surveys [46], [85] for an overview of recent developments.

In the agricultural domain, most approaches [55], [56],
[60] follow the development and adopt the pipelines to
account for the row structure [55] or leverage additional
background knowledge to cope with less labeled data [60].
Baselines. As baselines, we select DeepLabV3+ [9] (39.8 M
params) and ERFNet [76] (2.1 M params) at different ends
of model capacity.
Metrics. To evaluate the performance of semantic seg-
mentation models, we report the common intersection-over-
union (IoU) for each class individually, where higher values
indicate a better performance [14]. Additionally, we com-
pute the mean intersection over union (mIoU) across all
classes as the main metric.
Results and Discussion. In Tab. 3, we show quantitative re-
sults of the selected baselines. The investigated off-the-shelf
semantic segmentation methods already show an overall
good performance in terms of mIoU. However, we observe
a relatively low IoU for weeds which are often wrongly
assigned to pixels of crops. We support these results quali-
tatively in Fig. 10 and Fig. 11 of the supplement, depicting
the predictions of each approach as well as highlighting
correct and false predictions. In terms of model capacity,
the different investigated methods perform very similarly,
indicating that the models’ capacity cannot resolve the
aforementioned issues. Surprisingly, the smaller, simpler,
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Approach PQ† PQcrop PQweed IoUsoil

Panoptic DeepLab [10] 57.97 52.02 22.61 99.27
Mask R-CNN [31] 65.79 67.61 31.30 98.47
Mask2Former [11] 69.99 71.21 40.39 98.38

TABLE 4. Baseline results for panoptic segmentation on the test
set.

and faster architecture ERFNet performs on par with the
more complex DeepLabV3+ model that commonly shows
better performance in the context of autonomous driving.
Furthermore, we refer to Tab. 9 of the supplement for more
detailed quantitative results distinguishing between each
data collection date.

4.2 Panoptic Segmentation

Task description. Panoptic segmentation [38] tackles the
task of jointly estimating a pixel-wise semantic label and dis-
tinguishing instances. This task differentiates between so-
called “stuff” and “thing” classes. The former corresponds
to instance-less classes, i.e., soil, and the latter refers to
classes with clearly separable objects, i.e., crops and weeds.
Consequently, an approach for this task needs to produce
semantic masks assigning each pixel to crop, weed, or soil
and an instance segmentation for crops and weeds.
State of the Art. Most approaches for panoptic segmenta-
tion [37] extend classical semantic segmentation approaches
with an instance branch or head to separate “thing” classes.
Generally, there are two main paradigms for generating
instances prevalent: top-down and bottom-up approaches.
Top-down approaches [37], [51], [70] use detection-based
bounding box predictions to locate instances and mask pre-
dictions in bounding boxes to segment the located instances
pioneered by Mask R-CNN [31]. Bottom-up approaches [10],
[91] use a separate decoder to estimate embedding vec-
tors and offsets to find clusters corresponding to instances
of “thing” classes guided by the semantic segmentation
branch. The main focus of research in this field concen-
trates on improving the architecture to achieve better sep-
aration between instances [51], [63], [71]. However, recent
approaches [11], [83], [98] based on Vision Transformer [17]
show substantial improvements.

In the agricultural domain, most methods adopt panop-
tic segmentation pipelines for crop and weed detection [6],
[28] to contribute towards sustainable crop production and
targeted weed management in real field conditions.
Baselines. We use Panoptic DeepLab [10] (7.7 M params)
and Mask R-CNN [31] (44.4 M params). Further, we
show Mask2Former [11] (44 M params) performance of a
Transformer-based approach.
Metrics. We separately compute the panoptic quality [38]
for the predicted instance masks of crops (PQcrop) and
weeds (PQweeds). During evaluation, we treat predicted in-
stances associated with a partially visible instance, i.e., a
plant where less than 50% of its pixels are inside the image,
as “do not care” regions not affecting the score. Addition-
ally, we report the IoU for the semantic segmentation of
soil (IoUsoil) to consider predictions related to “stuff”. In our
final metric, we compute the average over all three values
and denote it as PQ† as proposed by Porzi et al. [70].

Approach mAP mAP50 mAP75
AP

Crop Weed

Faster R-CNN [74] 40.43 65.07 40.19 63.23 17.62
Mask R-CNN [31] 38.68 63.72 38.07 60.32 17.05

YOLOv7 [90] 60.48 82.47 62.30 83.06 37.91

TABLE 5. Baseline results for plant detection on the test set.

Results and Discussion. In Tab. 4 we show that
Mask2Former [11] achieves the best overall performance. A
more detailed quantitative evaluation provided in Tab. 11 of
the supplement, distinguishing between different data col-
lection days characterized by specific plant growth stages,
reveals that the instance segmentation of plants is challeng-
ing in cases of barely visible small plants and large plants
with high mutual overlap. We support these results qualita-
tively in Fig. 13 and Fig. 14 of the supplement. This suggests
that domain-specific models could potentially exploit the
plant growth stage.

4.3 Detection

Task description. While pixel-wise segmentation of in-
stances allows for extracting fine-grained information, often
detecting instances is sufficient. Therefore, we also propose
using our data for studying plant or leaf detection in sepa-
rate tasks. For plant detection, we distinguish between the
classes of crop and weed. Similar to COCO [52], we extract
bounding box annotations from the instance-level plant
and leaf annotations to allow training of object detection
approaches. An approach for either plant or leaf detection
needs to provide bounding boxes and confidence scores for
each detected instance.
State of the Art. Early approaches for object detection relies
on sliding window-based classification methods [88] and
research before 2014 mainly concentrates on better feature
representations [15], [24], part-based representations [23],
[50], or better proposal generation [86].

Since 2013, CNN-based approaches have been prevalent
as pioneered by R-CNN [26] and follow-up work [25],
[31], [74]. Generally, one can distinguish between single-
stage and two-stage approaches. Nowadays, single-stage
approaches are mainly employed and YOLO [73]-based
approaches are popular choices. Recently, also keypoint-
based approaches [47], [99] were proposed that divert from
the anchor-based methods. Similarly to other tasks, the field
recently shifted towards Transformer-based approaches [5].

In the agricultural domain, most methods use detectors
to identify crops or weeds [28], [29] or suggest domain-
specific adaptations, e.g., for fruit detection [59].
Baselines. We select established approaches for object de-
tection, such as Faster RCNN [74] (41.7 M params), Mask
R-CNN [31] (44.4 M params) and YOLOv7 [90] (37.2 M
params), which are commonly used approaches. Since this
task refers to either plant or leaf detection, we train models
for each task separately. Although Mask R-CNN also pro-
vides an instance segmentation, we do not consider these
here but rely on its predicted bounding boxes.
Metrics. In line with established benchmarks [20], [21], [52],
we report the average precision (AP) for each class and
mean average precision (mAP) across all classes, which uses
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Approach mAP mAP50 mAP75

Faster R-CNN [74] 33.91 64.61 31.30
Mask R-CNN [31] 34.41 66.02 32.15

YOLOv7 [90] 57.90 86.85 62.92

TABLE 6. Baseline results for leaf detection on the test set.

Approach PQleaf

Mask R-CNN [31] 59.74
Mask2Former [11] 57.50

TABLE 7. Baseline results for leaf instance segmentation on test
set.

multiple IoUs for matching between 0.5 and 0.95 with a
step size of 0.05. Furthermore, we report the mean average
precision at 0.5 IoU (mAP50) and 0.75 IoU (mAP75). As
previously, we treat each predicted bounding box associated
with a partially visible instance as “do not care” regions.
Thus, these predictions do not affect the scores.
Results and Discussion. In Tab. 5, we show results for
plant detection, where we see that modern approaches have
a clear edge over the other approaches. Apparently, weed
detection is more difficult than crop detection, which could
result from smaller plant sizes, as also suggested qualita-
tively in Fig. 16 and Fig. 17 of the supplement.

In Tab. 6, we summarize the results for leaf detection,
which shows lower performance across all methods com-
pared with aforementioned plant detection, indicating the
need for domain-specific approaches. In Tab. 15 of the
supplement, we provide more detailed results for each data
collection day and additionally show qualitative results
in Fig. 18 and Fig. 19 of the supplement.

4.4 Leaf Instance Segmentation

Task description. Leaf instance segmentation is relevant for
estimating the growth stage of a plant [45] and also the basis
for leaf disease detection [64]. Such approaches are involved
in phenotyping activities to investigate new varieties of
crops [62]. An automatic, vision-based assessment of such
traits has the potential to have reproducible and objective
measurements at a high temporal frequency. Consequently,
an approach for this task needs to predict an instance mask
for each visible crop leaf.
State of the Art. Instance segmentation is closely related
to object detection. Therefore earlier approaches rely on
object detection approaches [73], [74] to perform top-down
instance segmentation by predicting segmentation masks
for bounding boxes [2], [31]. A different line of research [4]
investigated the usage of bottom-up processing, where first
pixel-wise embedding vectors are estimated such that pixels
belonging to the same instance are near in embedding space,
while embedding vectors of different instances are sepa-
rated. The estimated embedding vectors can then be clus-
tered, resulting in instances. Recently, several methods [92],
[93] were proposed that directly estimate masks for each
object instance. Most recently, also Transformer-based ap-
proaches [11], [48] for instance segmentation gained interest.
Popularized by CVPPP [61], several approaches tackle the
task of leaf instance segmentation [33] or leaf counting [95].

Approach PQ† PQ PQcrop PQleaf
IoU

Weed Soil

HAPT [75] 65.27 50.73 54.61 46.84 61.11 98.50
Weyler et al. [94] - 40.49 38.37 42.60 - -

TABLE 8. Baseline results for hierarchical panoptic segmenta-
tion on the test set.

Baselines. As baselines for our experiments, we
employ Mask R-CNN [31] (44.4 M params) and
Mask2Former [11] (44 M params). While the former
method represents a traditional top-down approach,
the latter belongs to more recent methods relying on a
Transformer decoder and masked attention.
Metrics. We compute the panoptic quality [38] for the
predicted instance masks of crop leaves, denoted as PQleaf.
As previously, any instance prediction associated with a
partially visible instance does not affect the score.
Results and Discussion. Tab. 7 shows the results of the
investigated baselines. In this setting, the approaches gen-
erally struggle to separate leaves, as they are naturally
overlapping, even for smaller plants. In Fig. 20 and Fig. 21 of
the supplement, we support these results qualitatively and
provide more detailed metrics differentiating between each
data collection day in Tab. 17 of the supplement. Again, we
suspect that more domain-specific approaches could induce
prior knowledge to achieve a better separation.

4.5 Hierarchical Panoptic Segmentation

Task description. Models for hierarchical panoptic segmen-
tation target objects, which can be represented as an aggre-
gation of individual parts, e.g., plants can be represented as
the union of their leaves [94]. Consequently, these methods
provide a simultaneous instance segmentation of the whole
object and each part. Thus, they are capable of providing
more detailed information about each object, e.g., the associ-
ation of individual leaves to a specific plant allows obtaining
the total number of leaves per plant, which correlates to its
growth stage [45]. We provide the annotated instance masks
of all crops and their associated leaves. Since there are no
leaf annotations for weeds, we do not consider them under
the guise of a hierarchical structure. Thus, we also relate to
weeds as “stuff” for this task.
State of the Art. Several recent works exploit the under-
lying hierarchical structure of objects to obtain a panoptic
segmentation [75], [94]. In the agricultural domain, recent
methods [75], [94] operating in real field conditions exploit
the hierarchical structure of plants to predict the instance
segmentation of individual crops and their leaves.
Baselines. We select the methods by Weyler et al. [94] (2.2 M
params) and Roggiolani et al. [75] (2.4 M params) as base-
lines that both perform a simultaneous instance segmenta-
tion of crops and their associated leaves, where the latter
method is denoted as HAPT. The first method is a bottom-
up approach that first predicts leaves, which are then as-
sociated to a plant. In contrast, HAPT uses a hierarchical
feature aggregation starting at the plants providing plant-
level features to then predict leaves.
Metrics. To evaluate the performance of this task, we com-
pute the panoptic quality [38] for the predicted instance
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masks of all crops (PQcrop) and leaves (PQleaf) separately.
We report the average panoptic quality over both values,
denoted as PQ. As previously, any instance prediction as-
signed to a partially visible instance does not affect the
metrics. To account for methods that filter pixels related to
weeds or soil with an additional semantic segmentation, we
also report the IoU for both classes. Finally, we compute PQ†

as the average over PQcrop, PQleaf, and both IoU values.
Results and Discussion. In Tab. 8, we show the results
of the hierarchical approaches. Here, we can see that both
methods do not obtain consistent predictions for plants at a
large growth stage, where individual plants and their leaves
overlap. In particular, instance separation of leaves seems
most challenging in line with the plant instance segmenta-
tion. Thus, methods targeting these scenarios could improve
the performance. We support these findings in Tab. 19 of the
supplement, where we perform the evaluation for each data
collection day separately. Ultimately, we show quantitative
results in Fig. 22, which we separate into true positives, false
positives, and false negatives in Fig. 23 in the supplement.

5 CHALLENGE IN CONJUNCTION WITH CVPPA
WORKSHOP AT IEEE/CVF ICCV 2023
In conjunction with the workshop on Computer Vision in
Plant Phenotyping and Agriculture held at the IEEE/CVF
International Conference on Computer Vision (ICCV) in
2023, we invited the community to tackle the most challeng-
ing task of hierarchical panoptic segmentation using our
dataset. We received overall 148 submissions from 107 reg-
istered participants on the competition hosted on CodaLab4,
where one could upload predictions until a fixed deadline.

For the top-performing entries of the leaderboard, we
invited authors to provide a technical report of their ap-
proach5. The technical solutions surpassed the baselines
by a large margin and often employed the Segment Any-
thing Model [39] either in conjunction with a detection
approach or initial segmentation that is refined. But also a
Mask2Former-based [11] approach using a mask refinement
on small plants and a second stage for leaf instance segmen-
tation on plant masks showed promising results surpassing
our off-the-shelf baselines presented in Sec. 4.5.

6 POTENTIAL IMPACT ON OTHER TOPICS

Besides the already covered supervised tasks in agricultural
perception, our dataset providing labeled and unlabeled
images has the potential to impact also other fields of re-
search and applications in the agricultural domain, such as
research in self-supervised representation learning, domain
generalization, and unsupervised domain adaptation that is
currently getting increasing interest in the computer vision
and robotics community. Exploiting developments in semi-
supervised, but also unsupervised learning of vision models
seems like a indispensable step to reduce the burden of
annotating data and unlocking the scalable deployment of
vision models in the agricultural domain.

4. The concluded and now closed competition is still available at
https://codalab.lisn.upsaclay.fr/competitions/13904.

5. Non-archival, non-peer reviewed technical reports are available at
https://cvppa2023.github.io/challenges/

Furthermore, the combination with other agricultural
datasets providing pixel-wise annotations, e.g., GrowliFlow-
ers [36], opens the door for studying cross-domain transfer
between different plant species towards the goal of devel-
oping more generalizable visual perception systems in the
agricultural domain.

7 CONCLUSION

In this paper, we present a novel dataset for studying visual
perception in the agricultural domain of crop production
using real-world field images captured by an UAV. Together
with dense pixel-wise annotations of crops and weeds that
distinguish instances of plants, we also provide leaf-level
pixel-wise annotations of crop leaves.

In line with the dataset, we presented our benchmark
tasks that will be evaluated on a hidden test set to al-
low an unbiased and controlled evaluation of developed
approaches. The server-side evaluation also ensures that
metrics are consistent and reliable allowing to compare
approaches based on published results.

For each task, we also provide baseline results that show
the performance of off-the-shelf approaches for the different
tasks. These results show that certain tasks need further
research to tackle the specific challenges of the agricultural
domain. We believe that more domain-specific approaches
exploiting domain knowledge could boost performance.
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Supplementary Material

PhenoBench — A Large Dataset and
Benchmarks for Semantic Interpretation

in the Agricultural Domain
✦

1 DATA COLLECTION

As mentioned in the paper, we performed multiple missions using
the same sensor setup during 2020 and 2021 on different fields to
collect our dataset. We emphasize that the training and validation
set contains only images captured in 2020, while the test set
includes data from both years. Thus, any model achieving high
performance on the test set must generalize to different fields
captured across multiple years, an essential property for real-world
applications. In Fig. 6 and Fig. 7, we show images from the
test sets captured in 2020 and 2021 to emphasize the variation in
lighting conditions and changes in the visual appearance of plants.

2 QUALITY ASSURANCE PROCESS

As explained in the main paper, we followed a rigorous validation
process to ensure high-quality and accurate annotations. See our
website, www.phenobench.org, for some qualitative examples of
the annotations.

For hiring students for annotation, we employed an initial task
of annotating a single image to ensure that students could achieve
the required annotation quality and can spot crops and weeds
correctly. The selection process helped us to ensure that we have
student annotators that provide a good quality level of annotations.

To have consistent annotations of plant and leaves, we split the
annotations in two phases: (1) plant mask annotation and (2) leaf
mask annotation, where we used the plant masks to limit the leaf
labels, as we want to ensure that leaf labels only appear where are
also plant masks annotated.

Each phase was closely supervised by a team of researchers,
which we call now senior annotators, i.e., PhD students and post
docs working in the domain of agricultural computer vision. All
researchers published in the agricultural domain and worked with
sugar beet data before. Each of these senior annotators supervised
2-3 student annotators, i.e., students with different background
including biology, plant sciences, and computer science-related
fields of study. The senior annotators provided guidance and
feedback after each iteration. After finishing a batch of images by
the student annotators, i.e., all four iterations, the senior annotators
did a final pass of corrections to ensure that plant annotations and
leafs are consistent and accurate.

After all individual annotations were completed by a team of
student and senior annotators, we had a final round of corrections,
where each batch of images were corrected and approved by
another senior annotator including corrections and clean-up of
annotations. By having another round of corrections with a differ-
ent senior annotator, we ensure that the quality of the annotations

achieves a high standard and remaining errors that slipped through
in the first round of corrections get removed. Note that we then
corrected the global images directly instead of following the
iterative annotation process described in the main paper.

For validation of the annotations, we also improved our custom
annotation tool (see Sec. 4) to make the process of corrections
and validation easier by providing ways of iterating through plant
instances, which ensured that the senior annotator checks each
crop and weed.

A common issue that we noticed in the final round of correc-
tion of the annotations, where inaccuracies in the plant boundaries
caused by shadows or texture of the ground that was wrongly
identified as dry parts of the leaves. Annotations of images
recorded on days with overcast weather conditions were generally
better annotated as the difference between plant and background
was more clearly visible.

Furthermore, we observed that the annotators or senior anno-
tators improved substantially over time in respect to the quality
of annotations. In particular, the identification of leaves got easier
over time as the general appearance and possible arrangements
of leaves got clearer over time. Due to these improvements in
annotation quality, we believe that the second and final round of
annotations substantially improved the consistency and accuracy
of the annotations.

To ensure consistency between plant and leaf annotations, we
also had a last algorithmic consistency check that removed leaf
annotations that are outside of a plant annotation, which could be
caused by the final validation round where we corrected semantic
masks of plants.

3 DEVELOPMENT KIT

For simple data access and reproducibility of the employed task-
specific metrics, we also provide a devkit that includes a Py-
Torch [15] dataloader, evaluation scripts for computing the met-
rics, and scripts for visualization of the results publicly available
at https://github.com/PRBonn/phenobench.

4 IMAGE LABELER

In this section, we provide additional details on the annotation
tool we used to annotate the images. We implemented a tool for
our specific needs since publicly available tools did not provide the
required capabilities to ensure a consistent hierarchical annotation.
Furthermore, it allowed us to modify the tool for our specific
needs. To this end, we implemented a Python-based application.

www.phenobench.org
https://github.com/PRBonn/phenobench
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(a) 2020/05/15 (b) 2020/05/26 (c) 2020/06/05

Fig. 6. Sample images from the test set captured at different dates in 2020.

(a) 2021/05/20 (b) 2021/05/28 (c) 2021/06/01 (d) 2021/06/10

Fig. 7. Sample images from the test set captured at different dates in 2021.

Fig. 8 shows an overview of our tool, where we indicated
different sections and capabilities via the numbers on the left side.

In the following, we shortly summarize the capabilities of our
so-called “image labeler” and the design decisions. We plan to
release also our annotation tool since we believe that our modular
design and distinct capabilities make it a valuable contribution for
the community.

4.1 Layers

As we intended to provide a hierarchical annotation, where leaves
should always be entirely inside the corresponding plant mask, we
had to represent the different levels of masks in the labeler.

For this purpose, we used the folder structure of the annota-
tions to denote the parent-child relations. A layer is specified by
a file called manifest.yaml inside the folders, such that the
type of the layer and the available set of categories are specified.
Categories that can be selected for the currently active layer (see

“category selection” (6) in Fig. 8). An annotation layer is selected
via the list field shown under “layer selection” (1) in Fig. 8.
Depending on the selected layer and type, the categories under
“category selection” (6) and the available tools under “toolbar” (5)
change.

Currently, we have a “semantic” layer implemented that can be
used for pixel-wise semantic annotations. However, other types of
annotation layers, such as bounding boxes, key points, etc., should
be possible to be integrated into our annotation tool.

4.2 Image Enhancement

We provide some common image enhancement capabilities (see
“image enhancement” (2) in Fig. 8) to change the brightness,
contrast, and gamma of the image. This helps, especially when the
lighting conditions make it hard to identify leaves in the shadow
areas caused by the self-occlusions of the plant.



3

1

2

3

4

5

6

Fig. 8. Our “image labeler” for annotating plant images implemented
in Python with OpenGL-based drawing capabilities. On the left, we
indicate the different sections of our tool: (1) layer selection, (2) image
enhancement, (3) layer properties, (4) tool properties, (5) a toolbar,
and (6) category selection.

4.3 Layer Properties
We allow the user also to select, which information is visualized
inside the image, i.e., one can switch between semantic and
instance colors and select between outlines and masks. These
properties are selectable for each layer to select the most relevant
information for the annotation. For instance, when annotating
leaves, we usually show just the plants’ semantic outline and the
instance masks of leaves to better distinguish between different
leaves.

4.4 Tool properties
Depending on the selected tool, we also can show different
properties, e.g., brush size, as shown under “tool properties” (4)
in Fig. 8. The properties are specific to each tool. We provide
properties for boolean, float that are translated into a widget, such
as a slider or a checkbox.

4.5 Tools
As mentioned before, we have layer-specific tools, where we
show here the tools that we implemented for the dense pixel-wise
semantics:

• A brush (f) to annotate pixels with a resizable paint brush
using the currently active label.

• The polygon tool (�) allows to specify areas by setting the
vertices of a polygon that are then filled with the currently
selected label.

• The vegetation mask (
) allows to show an excess-green-
based vegetation mask that can be adjusted via the tool
parameters. As with the masking (4), we label only pixels
that are highlighted via the mask of the vegetation mask.

• As we require unique instance ids, we have a dedicated
tool (m) to advance the instance id value. Instance ids are
unique within a given image.

• To select a specific instance, which is often needed to
refine labels, we provide an instance selection tool (ª),

visibility 1.00.0

Fig. 9. Examples of visibility plant masks. We indicate the amount
of visible pixels from the complete annotation by the color ranging
from dark blue to yellow. Plants below a visibility of 0.5 are treated
as partially visible.

which allows selecting an instance of the currently active
category.

• We also provide a way to toggle the overwriting of existing
labels (�).

• For the hierarchical annotation, we provide a masking
tool (4), which applies a mask following the correspond-
ing instance on the parent layer. The selected parent mask
will then restrict all annotations done via the brush and
polygon to the area of the parent mask.

• During annotation, we found that it was a common mistake
to accidentally label multiple plants as a single instance.
To correct such cases, we implemented a cutting tool (ô)
to separate an instance into multiple parts.

• Lastly, we provide a fill tool (X) that allows to re-label or
add regions to an existing instance label.

Date Approach mIoU IoU

Crop Weed Soil

05-15-2020 ERFNet [18] 81.47 91.74 53.02 99.65
DeepLabV3+ [1] 81.02 91.28 52.14 99.63

05-26-2020 ERFNet [18] 84.98 94.64 61.49 98.82
DeepLabV3+ [1] 84.95 94.48 61.62 98.75

06-05-2020 ERFNet [18] 91.31 96.83 78.49 98.62
DeepLabV3+ [1] 91.29 96.83 78.40 98.64

2020 ERFNet [18] 86.70 94.46 66.28 99.36
DeepLabV3+ [1] 86.56 94.25 66.08 99.33

05-20-2021 ERFNet [18] 82.08 90.82 55.87 99.53
DeepLabV3+ [1] 80.97 89.14 54.27 99.49

05-28-2021 ERFNet [18] 87.03 92.81 68.82 99.46
DeepLabV3+ [1] 87.38 92.54 70.14 99.45

06-01-2021 ERFNet [18] 77.92 91.16 43.67 98.94
DeepLabV3+ [1] 78.72 89.22 48.19 98.75

06-10-2021 ERFNet [18] 78.53 93.91 44.38 97.30
DeepLabV3+ [1] 80.65 93.75 51.07 97.14

2021 ERFNet [18] 80.11 93.61 48.35 98.37
DeepLabV3+ [1] 81.38 93.28 52.62 98.26

TABLE 9. Baseline results for semantic segmentation on the test set,
separated to 2020, 2021, and each data collection day.
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Date Approach mIoU IoU

Crop Weed Soil

05-15-2020 ERFNet [18] 80.43 91.90 49.75 99.64
DeepLabV3+ [1] 80.15 91.38 49.45 99.62

05-26-2020 ERFNet [18] 84.28 94.88 58.68 99.26
DeepLabV3+ [1] 84.16 94.73 58.51 99.23

06-05-2020 ERFNet [18] 90.29 96.46 75.82 98.60
DeepLabV3+ [1] 89.91 96.33 74.85 98.56

2020 ERFNet [18] 87.77 95.34 68.65 99.33
DeepLabV3+ [1] 87.47 95.13 68.00 99.30

TABLE 10. Baseline results for semantic segmentation on the valida-
tion set recorded at different data collection days in 2020.

5 VISIBILITY MASKS

As mentioned in the paper, we annotated complete plants enabled
by the overlapping tiling, ensuring that plants are at least in one of
the iterations completely visible. Therefore, we can also account
for the amount of visible pixels in the evaluation and provide this
information in the training and validation set. Thus, it is possible to
account for the visibility of plants when training and developing
the approaches. We provide the same information for individual
crop leaf instances as well.

Fig. 9 shows examples of the provided visibility masks, where
the colors indicate the percentage of visible pixels inside the image
of the complete annotated plant.

6 BASELINES

In this section, we provide additional information on the baselines,
including the training setup, results on the validation set, and
qualitative results comparing the different approaches. We separate
the baselines by each benchmark task described in the paper.

To ensure reproducibility of the baselines, we additionally also
provide implementations with configs, checkpoints, and results at
https://github.com/PRBonn/phenobench-baselines. For most base-
lines, we provide docker containers to ensure that the provided
code can be run on various systems where the docker platform
is available. Each baseline directory also contains the baseline-
specific configuration files, and we summarize here the most
important hyperparameters of the training setup to provide an
overview.

We additionally provide validation set results to enable com-
parison of novel approaches in ablation studies using the validation
set. The provided results also suggest that the validation set
performance is a good indicator of test set performance, which
is achieved by having a sufficiently large validation set.

For the qualitative results, we show images of different dates
and, consequently, different growth stages. As described in the
paper, earlier dates correspond to early growth stages where
crops are clearly separated and usually show only a few well-
separated leaves. At the last date, the plants show a significantly
larger overlap and a larger number of leaves. While early growth
stages seem to be less of an issue, the later growth states show
a substantial drop in performance, particularly in the panoptic
segmentation and hierarchical panoptic segmentation tasks. In
these late growth stages, we see the most need for further research.

All approaches were trained on a single Nvidia RTX A6000
with 48 GB of memory using PyTorch [15], where we used the
version required by each baseline implementation respectively.

6.1 Semantic Segmentation

We employ ERFNet [18] and DeepLabV3+ [1] based on ResNet-
50 [9] as architectures for semantic segmentation and provide here
more details on these baseline approaches.
Training setup. We use the same training setup for both
approaches. Specifically, we train each model for 4096 epochs
with a batch size of 4 using a weighted cross-entropy loss [11].
During optimization, we employ Adam [12] and set the weight
decay to 2 · 10−4. At the initial 16 epochs, we linearly increase
the learning rate to 1 · 10−4 and subsequently apply a polynomial
learning rate decay

(
1− e

4096

)3
, where e is the current epoch.

During training, we apply standard data augmentation methods to
the input image, i.e., random adjustment of brightness, contrast,
hue, and saturation, as well as random scaling and horizontal or
vertical flipping. Furthermore, we feed randomly cropped patches
of size 768 px× 768 px from the input image to the network.
Evaluation on the 2020 and 2021 Test Set. Tab. 9 provides
quantitative results on the 2020 and 2021 data, belonging to the
test set. Since we train the models only on 2020 data, both ERFNet
and DeepLabV3+ suffer a drop in performance when we test on
2021 data.
Evaluation on the Validation Set. Tab. 10 provides quantitative
results on the validation set. The validation set numbers are
apparently good indicators of test set performance and, therefore,
should ensure that insight on the validation set transfers well to
the test set, which seems important when we restrict the number
of test set submissions.
Qualitative Results. In Fig. 10, we show qualitative results for
ERFNet [18] and DeepLabV3+ [1]. We encode the predictions
of each class by a specific color, i.e., crops in green and weeds
in red. As the quantitative results suggest, both networks often
assign pixels to crops that actually belong to weeds. Contrary, most
pixels annotated as crop in the ground truth are correctly predicted
by both approaches. Furthermore, we highlight in Fig. 11 each
mispredicted pixel in magenta, i.e., where the prediction does not
match the ground truth class. Here, it becomes also evident that
many mispredictions occur at the contour of plants. We trace this
back to label noise in these regions, as such pixels are particularly
difficult to assign to the background or vegetation.

Overall, the predicted semantic segmentation quality is already
at a satisfactory level, but this is an expected outcome as the task
is basically characterized by predicting a vegetation mask and then
assigning a class to individual pixels. As we show later, predicting
instance masks and bounding boxes of plants is a much more
challenging task since these approaches also need to distinguish
between different crops with substantial overlap between plants in
later growth stages.

6.2 Panoptic Segmentation

We investigate three commonly employed methods for panoptic
segmentation and provide more details about their training proce-
dures in the following paragraphs.
Training setup. First, we employ Panoptic DeepLab [3] with
a MobileNetV2 [19] backbone. We initialize the network with
weights pre-trained on ImageNet [5] and train the model for 200
epochs with a batch size of 8 using Adam [12]. We employ the
WarmupPolyLR scheduler [15] with an initial value of 1 · 10−2.

Second, we use Mask R-CNN [8] with a ResNet-50 [9]
backbone and train the model for 200 epochs with a batch size of 8

https://github.com/PRBonn/phenobench-baselines
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(a) Input image (b) Ground truth (c) ERFNet (d) DeepLabV3

Fig. 10. Qualitative results for semantic segmentation on the test set. Colors indicate here the semantic class, where crop pixels are green and
weed pixels are red.
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(a) Input image (b) ERFNet (c) DeepLabV3

Fig. 11. Qualitative mispredictions for semantic segmentation on the test set. Specifically, we highlight each pixel where the prediction does
not match the ground truth in magenta.
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Date Approach PQ† PQcrop PQweed IoUsoil

05-15-2020 Panoptic DeepLab [3] 59.09 54.81 22.81 99.65
Mask R-CNN [8] 64.28 66.20 27.12 99.52
Mask2Former [4] 70.37 73.04 38.52 99.54

05-26-2020 Panoptic DeepLab [3] 59.78 54.66 25.88 98.81
Mask R-CNN [8] 69.71 76.84 34.67 97.62
Mask2Former [4] 73.06 80.21 41.92 97.05

06-05-2020 Panoptic DeepLab [3] 58.94 50.52 27.53 98.77
Mask R-CNN [8] 73.51 79.59 44.83 96.10
Mask2Former [4] 73.72 78.49 48.38 94.30

2020 Panoptic DeepLab [3] 59.31 54.39 24.16 99.37
Mask R-CNN [8] 66.72 70.34 31.03 98.78
Mask2Former [4] 71.49 75.52 40.46 98.49

05-20-2021 Panoptic DeepLab [3] 48.29 34.40 10.94 99.54
Mask R-CNN [8] 74.44 80.22 43.70 99.41
Mask2Former [4] 62.22 52.47 34.76 99.44

05-28-2021 Panoptic DeepLab [3] 53.26 43.23 17.25 99.29
Mask R-CNN [8] 70.29 74.10 37.78 98.99
Mask2Former [4] 55.32 19.86 46.83 99.27

06-01-2021 Panoptic DeepLab [3] 48.10 39.13 6.51 98.67
Mask R-CNN [8] 57.64 45.96 29.31 97.66
Mask2Former [4] 49.72 13.21 37.28 98.68

06-10-2021 Panoptic DeepLab [3] 38.74 17.83 1.48 96.91
Mask R-CNN [8] 45.21 14.53 30.64 90.45
Mask2Former [4] 51.84 20.45 40.47 94.59

2021 Panoptic DeepLab [3] 43.73 26.95 6.11 98.12
Mask R-CNN [8] 55.93 38.81 34.16 94.81
Mask2Former [4] 54.14 25.82 39.64 96.97

TABLE 11. Baseline results for panoptic segmentation on the test set,
separated to 2020, 2021, and each data collection day.

Date Approach PQ† PQcrop PQweed IoUsoil

05-15-2020 Panoptic DeepLab [3] 59.91 56.37 23.70 99.66
Mask R-CNN [8] 65.28 66.61 29.72 99.52
Mask2Former [4] 70.80 73.21 39.67 99.51

05-26-2020 Panoptic DeepLab [3] 61.63 58.62 27.00 99.27
Mask R-CNN [8] 68.80 75.21 32.65 98.54
Mask2Former [4] 73.36 79.93 42.01 98.15

06-05-2020 Panoptic DeepLab [3] 62.37 55.12 33.14 98.86
Mask R-CNN [8] 76.50 78.78 54.61 96.11
Mask2Former [4] 79.15 84.61 57.76 95.08

2020 Panoptic DeepLab [3] 61.00 56.54 27.08 99.39
Mask R-CNN [8] 69.18 71.70 37.30 98.53
Mask2Former [4] 73.70 77.68 45.22 98.19

TABLE 12. Baseline results for panoptic segmentation on the valida-
tion set recorded at different data collection days in 2020.

using the AdamW [14] optimizer. We employ an exponentially
decaying schedule [15] with an initial learning rate of 1 · 10−4.

Finally, we employ Mask2Former [4] based on a ResNet-
50 [9] backbone. We initialize the weights based on a model pre-
trained on ImageNet [5] and train the model for 200 epochs with a
batch size of 8 using the AdamW [14] optimizer. Here we employ
the WarmupPolyLR rate scheduler with an initial value of 1·10−4.
Evaluation on the 2020 and 2021 Test Set. Tab. 11 provides
quantitative results on the data collected in 2020 and 2021,
belonging to the test set. Since the models are only trained on
2020 data, all three approaches suffer a drop in PQ† performance
when we test on 2021 data.
Evaluation on the Validation Set. Tab. 12 shows the results
of all approaches on the validation set. Compared to the test
set results, the gap between Mask R-CNN and Mask2Former is
larger, while this difference is on the test set not as pronounced. In
particular, the panoptic quality of weeds for Mask R-CNN shows
a drop in performance.
Ablation Studies. A key contribution of our paper is a large
dataset for semantic image interpretation in the agricultural do-
main. To demonstrate the necessity of such a large dataset for
panoptic segmentation, we train multiple networks with the same
hyperparameters but provide each network with a random subset
of the training data. Specifically, we create random subsets con-
taining 1%, 10%, 25%, and 50% of the original training data
and train Mask R-CNN based on each subset.

We report quantitative results based on the test set in Fig. 12.
Generally, we observe that a larger training set results in in-
creased performance. This effect is particularly apparent when
comparing the quantitative results for small random subsets but
less pronounced when increasing the size of the training set.
Additionally, we highlight that detecting pixels belonging to soil
is less demanding than identifying individual plants belonging to
crops and weeds. Thus, only a few training samples can achieve
relatively high performance for the former task, while the latter
requires substantially more training samples.
Qualitative Results. Fig. 13 shows the qualitative results of the
instance segmentation, where different colors indicate different
instances. We see a difference between the early and late growth
stages. While early growth stages usually show separated plants,
later growth stages can be characterized by a larger overlap
between plants. At the early growth stage, plant instance masks are
generally correctly identified. However, this changes dramatically
in later growth stages, where the predicted instance masks between
overlapping plants are not well separated. In particular, Mask R-
CNN shows very blob-like segmentation that often does not even
cover the whole plant, which seems to be caused by the instance
prediction branch that predicts masks at a lower resolution and
the upsampling to a higher resolution image. We leave the inves-
tigation of approaches for refining the instance masks, such as
PointRend [13], as an avenue for future work.

The segment boundaries of bottom-up approaches, i.e., Panop-
tic Deeplab and Mask2Former, are much sharper and follow the
plant’s shape much better than the results of Mask R-CNN since
these approaches predict pixel-wise instance masks. However,
both approaches still struggle with the separation of different
plants. In particular, the last row of the qualitative results in Fig. 13
shows the limit of commonly employed panoptic segmentation
approaches, where all approaches miss a complete plant at the
bottom of the image and leaves are wrongly assigned to different
crops. As discussed in the paper, we see here an interesting
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Fig. 12. Quantitative results for panoptic segmentation based on
Mask R-CNN models trained on random subsets containing 1%,
10%, 25%, and 50% of the original training data.

research direction to integrate plant structure in the prediction of
instance masks, as sugar beets have a stem location from which
the leaves originate.

We further emphasize the issues of each baseline in Fig. 14,
where we illustrate each instance as true positive, false positive,
or false negative. Particularly, we define any predicted instance
that has an IoU greater than 0.5 with any ground truth instance
that is not already assigned to a prediction as true positive and
visualize it in blue. Oppositely, if a prediction cannot be assigned
to any ground truth instance, we consider it as a false positive and
illustrate it in a pinkish color. Lastly, we define any ground truth
instance that is not assigned to any prediction as a false negative
and indicate it in a shade of cyan.

6.3 Detection

For the detection of plants or leaves, we employ Faster R-
CNN [16], Mask R-CNN [8], and YOLOv7 [20] as common
methods for this task and provide more details about the training
procedure in the following.
Training setup. Since Faster R-CNN [16] and Mask R-CNN [8]
follow a similar architecture, we apply the same training procedure
for both methods. Specifically, we use ResNet-50 [9] as a back-
bone and train each model for 200 epochs with a batch size of 12
using Adam [12] for optimization. We set the initial learning rate
to 1 · 10−4 and apply an exponentially decaying schedule [15].

For YOLOv7 [20], we trained the network for 300 epochs with
a batch size of 16. Additionally, we used the stochastic gradient
descent optimizer with an initial learning rate of 1 · 10−1 and a
momentum of 0.937. Furthermore, we employ the OpenCycle [10]
learning rate scheduler with the final learning rate of 0.1. We use
the 51 layers deep default YOLOv7 backbone. During training,
we apply standard data augmentation such as color augmentation,
translation, scaling, flipping, mosaic, and mixup, as proposed by
the authors of YOLOv7 [20].

Date Approach mAP mAP50 mAP75
AP

Crop Weed

05-15-2020 Faster R-CNN [16] 38.11 62.70 35.14 61.70 14.52
Mask R-CNN [8] 37.21 62.38 35.70 61.09 13.33

YOLOv7 [20] 57.63 82.26 59.08 79.16 36.10

05-26-2020 Faster R-CNN [16] 46.92 71.80 50.37 75.72 18.11
Mask R-CNN [8] 45.90 71.14 46.88 74.36 17.44

YOLOv7 [20] 63.25 83.44 64.60 89.67 36.83

06-05-2020 Faster R-CNN [16] 52.41 72.77 60.07 74.22 30.61
Mask R-CNN [8] 48.31 69.54 56.26 71.05 25.56

YOLOv7 [20] 66.75 81.86 70.43 86.55 46.94

2020 Faster R-CNN [16] 42.35 66.89 42.60 66.77 17.93
Mask R-CNN [8] 40.86 66.13 41.05 65.16 16.55

YOLOv7 [20] 60.37 82.31 62.09 82.76 37.98

05-20-2021 Faster R-CNN [16] 49.00 70.46 49.75 78.38 19.62
Mask R-CNN [8] 49.90 71.33 51.50 78.76 21.03

YOLOv7 [20] 66.85 85.83 69.23 91.29 42.41

05-28-2021 Faster R-CNN [16] 56.37 80.68 58.48 87.17 25.58
Mask R-CNN [8] 56.62 81.30 57.07 84.34 28.90

YOLOv7 [20] 75.56 92.77 76.12 98.58 52.54

06-01-2021 Faster R-CNN [16] 30.68 60.56 27.78 50.03 11.33
Mask R-CNN [8] 23.37 48.85 17.03 35.86 10.87

YOLOv7 [20] 63.98 91.06 62.77 94.77 33.20

06-10-2021 Faster R-CNN [16] 13.96 34.74 7.02 11.05 16.87
Mask R-CNN [8] 11.70 33.41 5.44 5.81 17.59

YOLOv7 [20] 54.63 81.15 55.00 78.52 30.74

2021 Faster R-CNN [16] 27.10 51.95 22.33 36.26 17.95
Mask R-CNN [8] 23.83 48.67 19.00 27.77 19.90

YOLOv7 [20] 62.94 85.41 65.51 86.22 39.66

TABLE 13. Baseline results for plant detection on the test set,
separated to 2020, 2021, and each data collection day.

Date Approach mAP mAP50 mAP75
AP

Crop Weed

05-15-2020 Faster R-CNN [16] 37.75 64.08 34.57 59.29 16.21
Mask R-CNN [8] 36.57 64.23 32.72 57.71 15.43

YOLOv7 [20] 60.93 86.71 63.21 78.14 43.71

05-26-2020 Faster R-CNN [16] 43.21 64.78 46.54 71.32 15.10
Mask R-CNN [8] 44.41 65.39 48.15 72.30 16.53

YOLOv7 [20] 63.48 85.63 66.02 87.07 39.89

06-05-2020 Faster R-CNN [16] 57.63 80.03 64.52 74.42 40.84
Mask R-CNN [8] 54.93 78.43 60.11 71.87 37.98

YOLOv7 [20] 76.17 90.61 82.47 88.67 63.66

2020 Faster R-CNN [16] 44.77 69.59 45.92 65.89 23.64
Mask R-CNN [8] 44.41 70.00 45.03 64.82 24.01

YOLOv7 [20] 66.95 88.40 71.00 82.90 51.01

TABLE 14. Baseline results for plant detection on the validation set
recorded at different data collection days in 2020.

Evaluation on the 2020 and 2021 Test Set. Tab. 13 and
Tab. 15 provides quantitative results on the data collected in 2020
and 2021, belonging to the test set for the plant detection and
leaf detection tasks. Since the models are only trained on 2020
data, both Faster R-CNN and Mask R-CNN suffer a drop in mAP
performance when we test on 2021 data for both the plant and
leaf detection task. However, the YOLOv7 approach showed an
improvement in performance across all performance metrics.
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(a) Input image (b) Ground truth (c) Panoptic DeepLab (d) Mask R-CNN (e) Mask2Former

Fig. 13. Qualitative results for panoptic segmentation on the test set. Colors indicate here different instances and we do not show semantics as
these are generally consistent to the semantic segmentation results.
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(a) Input image (b) Panoptic DeepLab (c) Mask R-CNN (d) Mask2Former

Fig. 14. Qualitative results distinguishing between correct predictions and mispredictions for panoptic segmentation on the test set. Specifically,
we highlight each true positive plant instance in blue, each false positive in a pinkish color, and each false negative in shades of cyan.
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Date Approach mAP mAP50 mAP75

05-15-2020 Faster R-CNN [16] 34.95 69.10 31.39
Mask R-CNN [8] 36.15 69.55 33.48

YOLOv7 [20] 58.63 90.51 63.65

05-26-2020 Faster R-CNN [16] 32.67 61.86 31.44
Mask R-CNN [8] 33.62 62.57 32.72

YOLOv7 [20] 56.91 84.03 61.80

06-05-2020 Faster R-CNN [16] 33.12 61.09 32.89
Mask R-CNN [8] 34.29 63.08 33.74

YOLOv7 [20] 59.16 84.76 63.82

2020 Faster R-CNN [16] 33.66 64.54 31.61
Mask R-CNN [8] 34.60 65.94 33.08

YOLOv7 [20] 57.90 87.00 62.75

05-20-2021 Faster R-CNN [16] 32.87 67.48 27.83
Mask R-CNN [8] 33.64 65.62 29.81

YOLOv7 [20] 61.04 91.53 69.25

05-28-2021 Faster R-CNN [16] 45.00 71.71 52.60
Mask R-CNN [8] 44.28 70.24 49.14

YOLOv7 [20] 66.69 95.63 76.40

06-01-2021 Faster R-CNN [16] 38.71 69.64 37.89
Mask R-CNN [8] 37.86 68.96 36.06

YOLOv7 [20] 63.56 88.19 72.36

06-10-2021 Faster R-CNN [16] 33.16 64.85 29.90
Mask R-CNN [8] 32.56 64.62 28.24

YOLOv7 [20] 54.62 80.97 60.65

2021 Faster R-CNN [16] 34.57 65.94 32.00
Mask R-CNN [8] 34.34 65.77 30.90

YOLOv7 [20] 57.78 84.98 65.26

TABLE 15. Baseline results for leaf detection on the test set, separated
to 2020, 2021, and each data collection day.

Date Approach mAP mAP50 mAP75

05-15-2020 Faster R-CNN [16] 33.53 66.72 30.62
Mask R-CNN [8] 34.77 67.68 31.70

YOLOv7 [20] 58.17 89.73 62.11

05-26-2020 Faster R-CNN [16] 35.06 68.06 31.39
Mask R-CNN [8] 34.87 68.17 31.63

YOLOv7 [20] 59.70 89.79 65.06

06-05-2020 Faster R-CNN [16] 37.04 66.47 37.74
Mask R-CNN [8] 37.99 66.37 39.67

YOLOv7 [20] 62.41 85.78 68.94

2020 Faster R-CNN [16] 35.40 66.84 33.85
Mask R-CNN [8] 36.01 67.12 34.75

YOLOv7 [20] 60.04 88.12 65.08

TABLE 16. Baseline results for leaf detection on the validation set
recorded at different data collection days in 2020.

Evaluation on the Validation Set. Tab. 14 provides the val-
idation results for the plant detection, and Tab. 16 provides the
results for the leaf detection task on the validation set, which are
generally well aligned with the results reported on the test set.
Qualitative Results. In Fig. 16, we show the detection results
for plants, where we encode bounding boxes associated with crops
in green and associated with weeds in red. In particular, the first
row of the qualitative results shows that many approaches struggle
to detect small weeds. This is in line with the additional qualitative
results in Fig. 17, where we highlight true positive, false positive,

Fig. 15. Quantitative results for plant detection based on Mask R-CNN
models trained on random subsets containing 1%, 10%, 25%, and
50% of the original training data.

and false negative bounding boxes in different colors. Similar to
the qualitative results for panoptic segmentation, we specify any
predicted bounding box that has an IoU greater than 0.5 with
any ground truth bounding box which is not already assigned to
a prediction as a true positive. Oppositely, in case the predicted
bounding box cannot be assigned to any ground truth bounding
box, we consider it as a false positive. Finally, we specify any
ground truth bounding box that is not assigned to any prediction
as a false negative.

Moreover, we show in in Fig. 18 the detection results for crop
leaves, where different colors correspond to the bounding box
associated with a specific instance. Like panoptic segmentation,
the baselines achieve impressive performance at early growth
stages, with moderate overlap between individual leaves. In con-
trast, the predictions are less accurate for later growth stages,
where individual leaves overlap substantially. Here, some leaves
are missing, or multiple leaves are detected as a single leaf. This
also becomes evident in Fig. 19, where we specify each bounding
box as a true positive, false positive, or false negative, emphasized
by different colors.
Ablation Studies. In this section, we evaluate the influence
of varying sizes of the training set on the performance of plant
detection. We investigate multiple Mask R-CNN models trained
on reduced sets of training data by creating random subsets
containing 1%, 10%, 25%, and 50% of the original training
data. In Fig. 15, we show quantitative results for each subset,
emphasizing that more training data increases AP scores for crops
and weeds. However, this effect is specifically pronounced in the
low data regime.

6.4 Leaf Instance Segmentation

Similarly to panoptic segmentation, we employ Mask R-CNN [8]
and Mask2Former [4] for crop leaf instance segmentation and
specify the training details in the following.
Training setup. As described for the panoptic segmentation,
we train Mask R-CNN [8] with a ResNet-50 [9] backbone for
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(a) Input image (b) Ground truth (c) Faster R-CNN (d) Mask R-CNN (e) YOLOv7

Fig. 16. Qualitative results for plant detection on the test set, where green bounding boxes correspond to crop detections and red bounding
boxes correspond to weed detections.
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(a) Input image (b) Faster R-CNN (c) Mask R-CNN (d) YOLOv7

Fig. 17. Qualitative results distinguishing between correct predictions and mispredictions for plant detection on the test set. We illustrate each
true positive bounding box in blue, each false positive in a pinkish color, and each false negative in shades of cyan.
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(a) Input image (b) Ground truth (c) Faster R-CNN (d) Mask R-CNN (e) YOLOv7

Fig. 18. Qualitative results for leaf detection on the test set. Here different colors indicate different instances.
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(a) Input image (b) Faster R-CNN (c) Mask R-CNN (d) YOLOv7

Fig. 19. Qualitative results distinguishing between correct predictions and mispredictions for leaf detection on the test set. We illustrate each
true positive bounding box in blue, each false positive in a pinkish color, and each false negative in shades of cyan.
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Date Approach PQleaf

05-15-2020 Mask R-CNN [8] 59.27
Mask2Former [4] 58.65

05-26-2020 Mask R-CNN [8] 58.84
Mask2Former [4] 60.01

06-05-2020 Mask R-CNN [8] 61.17
Mask2Former [4] 60.84

2020 Mask R-CNN [8] 59.32
Mask2Former [4] 59.23

05-20-2021 Mask R-CNN [8] 63.37
Mask2Former [4] 44.50

05-28-2021 Mask R-CNN [8] 69.69
Mask2Former [4] 38.11

06-01-2021 Mask R-CNN [8] 67.75
Mask2Former [4] 36.74

06-10-2021 Mask R-CNN [8] 62.48
Mask2Former [4] 38.29

2021 Mask R-CNN [8] 64.20
Mask2Former [4] 39.30

TABLE 17. Baseline results for leaf instance segmentation on test set,
separated to 2020, 2021, and each data collection day.

200 epochs with a batch size of 12 using the AdamW [14]
optimizer. We set the initial learning rate to 1 · 10−4 and employ
an exponentially decaying schedule [15].

Similarly, we use Mask2Former [4] with ResNet-50 [1], [9]
as a backbone and optimize the weights of the model with
AdamW [14]. Additionally, we employ the WarmupPolyLR rate
scheduler[15] with an initial value of 1 · 10−4, use weights pre-
trained on ImageNet and train for 200 epochs with a batch size
of 8 images.

Evaluation on the 2020 and 2021 Test Set. Tab. 17 provides
quantitative results on the data collected in 2020 and 2021,
belonging to the test set. Since the we train the models only
on 2020 data, Mask2Former suffer a drop in mAP performance
when we test on 2021 data for the leaf instance segmentation task.
However, the Mask R-CNN approach shows an improvement in
performance.

Evaluation on the Validation Set. In Tab. 18, we present the
performance of each baseline on the validation set. Both methods
achieve a slightly increased performance on the validation set
compared to the test set. However, the results are consistent, i.e.,
Mask2Former [4] still achieves a better performance than Mask
R-CNN [8].

Qualitative Results. In Fig. 20, we show the qualitative results
of the leaf instance segmentation for crops, where different colors
indicate different instances. Specifically, the instance masks of
Mask R-CNN [8] have a blob-like shape that is less accurate
compared with Mask2Former [4]. We attribute this to the instance
segmentation head of Mask R-CNN, which predicts a low resolu-
tion mask that is upsampled for the full resolution image. Again,
we leave investigation of refinement strategies [13] for future
work. We support these results in Fig. 21, where we highlight
true positive, false positive, and false negative leaf instances in
different colors.

Date Approach PQleaf

05-15-2020 Mask R-CNN [8] 59.78
Mask2Former [4] 60.25

05-26-2020 Mask R-CNN [8] 61.20
Mask2Former [4] 63.58

06-05-2020 Mask R-CNN [8] 65.14
Mask2Former [4] 65.30

2020 Mask R-CNN [8] 61.50
Mask2Former [4] 62.31

TABLE 18. Baseline results for leaf instance segmentation on the
validation set recorded at different data collection days in 2020.

Date Approach PQ† PQ PQcrop PQleaf
IoU

Weed Soil

05-15-2020 HAPT [17] 64.83 54.72 62.79 46.64 50.36 99.53
Weyler [21] - 40.64 38.88 42.41 - -

05-26-2020 HAPT [17] 63.36 47.78 48.92 46.65 60.74 97.14
Weyler [21] - 44.38 43.52 45.24 - -

06-05-2020 HAPT [17] 63.70 43.41 41.39 45.43 73.14 94.85
Weyler [21] - 32.73 32.09 33.37 - -

2020 HAPT [17] 66.50 51.79 57.04 46.54 63.89 98.55
Weyler [21] - 40.99 39.57 42.40 - -

05-20-2021 HAPT [17] 58.15 47.03 56.99 37.06 39.06 99.47
Weyler [21] - 44.33 39.70 48.95 - -

05-28-2021 HAPT [17] 66.48 52.71 46.70 58.72 61.22 99.27
Weyler [21] - 55.86 50.76 60.97 - -

06-01-2021 HAPT [17] 55.07 42.39 28.54 56.24 36.96 98.54
Weyler [21] - 41.38 29.79 52.96 - -

06-10-2021 HAPT [17] 50.96 33.21 15.10 51.33 41.11 96.32
Weyler [21] - 26.98 16.19 37.77 - -

2021 HAPT [17] 54.52 39.48 28.96 49.99 41.34 97.80
Weyler [21] - 35.74 26.74 44.74 - -

TABLE 19. Baseline results for hierarchical panoptic segmentation on
the test set, separated to 2020, 2021, and each data collection day.

6.5 Hierarchical Panoptic Segmentation

We select HAPT [17] and the method proposed by Weyler et
al. [21] as baselines for hierarchical panoptic segmentation, where
both models use ERFNet [18] as a backbone. Next, we provide
more details about the training procedures for both methods.
Training setup. We train HAPT for 200 epochs with a batch
size of 16 and employ AdamW [14] during optimization. Addi-
tionally, we set the step learning rate scheduler with an initial value
of 4 · 10−4 for the backbone, and three exponential schedulers
with initial learning rates of

(
4 · 10−4, 8 · 10−4, 8 · 10−4

)
for the

semantic, plant instance, and leaf instance decoders, respectively.
During training, we apply dropout with a probability of 0.15

Furthermore, we train the model by Weyler et al. [21] for 512
epochs with a batch size of 1 and use Adam [12] for optimization.
We set the initial learning rate to 1 · 10− and subsequently apply
a polynomial learning rate decay

(
1− e

512

)0.9
, where e is the

current epoch.
For both methods, we do not apply any data augmentations

and keep the original image size of the dataset.
Evaluation on the 2020 and 2021 Test Set. Tab. 19 provides
quantitative results on the data collected in 2020 and 2021,
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Date Approach PQ† PQ PQcrop PQleaf
IoU

Weed Soil

05-15-2020 HAPT [17] 65.14 56.08 64.41 47.75 48.89 99.49
Weyler [21] - 44.02 43.07 44.96 - -

05-26-2020 HAPT [17] 65.33 52.65 55.70 49.60 58.15 97.87
Weyler [21] - 48.20 47.86 48.53 - -

06-05-2020 HAPT [17] 63.32 45.83 43.17 48.49 67.09 94.53
Weyler [21] - 31.93 29.28 34.57 - -

2020 HAPT [17] 66.60 52.63 56.91 48.35 63.14 97.99
Weyler [21] - 41.76 40.50 43.02 - -

TABLE 20. Baseline results for hierarchical panoptic segmentation on
the validation set recorded at different data collection days in 2020.

belonging to the test set. The HAPT approaches suffer a drop in
PQ† and PQ performance when we test on 2021 data for the leaf
instance segmentation task. Similiarly, the approach by Weyler et
al. [21] also suffers a drop in PQ performance when tested on 2021
data. The drop in performance for 2021 data in both approaches is
expected since we train both approaches only on 2020 data.
Evaluation on the Validation Set. In consensus with the results
on the test set, we observe that HAPT [17] shows superior perfor-
mance compared with the method Weyler et al. [21], see Tab. 20.
However, the performance of HAPT is slightly worse compared
to its results on the test, while the other method by Weyler et al.
achieves a minor performance increase on the validation set.
Qualitative Results. Since the methods for hierarchical panop-
tic segmentation perform a simultaneous instance segmentation of
crop leaf and plant instances, we present the qualitative results for
each separately in Fig. 22 and Fig. 24, respectively. We observe
for both baselines that the quality of predicted instance masks
for crops leaves and plants generally decreases with increasing
growth stages. Specifically, the baselines struggle to distinguish
instances with substantial overlap. As mentioned in the paper, we
see a need for models that target these challenging scenarios, e.g.,
by incorporating the plant structure more explicitly. We consider
this challenging since the number of leaves per plant varies highly.
Thus, plants do not have a strong prior assumption about their total
number of leaves, contrary to human pose estimation, where the
number of parts per instance is often a constant.

We support these results in Fig. 23 and Fig. 25, where we show
true positive, false positive, and false negative instances of plants
and leaves, respectively. Here, we observe many false negative
instances at late growth stages, i.e., ground instances that cannot
be assigned to any prediction, illustrated in shades of cyan.

7 EXTENDED DATASET STATISTICS

As the recorded field belongs to a farm of the University of
Bonn, we can conduct field studies and study perception systems
under varying conditions with respect to the application of her-
bicides, resulting in different scenarios with fully (conventional),
partial (80% herbicides), and non-herbicide field conditions. We
annotate images of the field regions treated with conventional and
reduced herbicidal weed control. We emphasize that the distinct
application of agrochemicals has a substantial effect on the number
of weeds present in the field. To this end, we report in Tab. 21 the
total number of weeds in the training, validation, and testing split
for each data collection day and each field treatment separately.

Furthermore, we provide in Tab. 22 more details about the
annotated images collected in different years at various dates and

Split Date Partially-
Herbicided

Fully-
Herbicided

Train 05-15-2020 2259 603
05-26-2020 2410 −
06-05-2020 2869 −

Validation 05-15-2020 658 591
05-26-2020 1097 −
06-05-2020 1580 −

Test 05-15-2020 1104 559
05-26-2020 1522 −
06-05-2020 623 −
05-20-2021 694 −
05-28-2021 138 −
06-01-2021 100 −
06-10-2021 434 −

Total 15488 1753

TABLE 21. Statistics about the number of weeds in the train, val, and
test split separated by each data collection day and field treatment.

fg/bg Canopy Cover
[
cm2

]
Number of Leaves

Y
ea

r 2020 0.11 128.51 6.37
2021 0.19 141.25 7.11

D
at

e

05-15-2020 0.03 44.63 4.90
05-26-2020 0.12 137.88 6.95
06-05-2020 0.23 267.90 8.39
05-20-2021 0.02 21.42 5.47
05-28-2021 0.05 46.10 6.56
06-01-2021 0.09 72.88 6.85
06-10-2021 0.27 201.73 7.68

Sp
lit

train 0.12 147.18 6.70
val 0.09 119.31 6.17
test 0.10 104.14 6.07

TABLE 22. Averaged dataset statistics across different years, data
collection days, and provided splits.

split into three distinct sets, i.e., train, val, and test.. Specifically,
we report the average ratio between all pixels belonging to the
foreground, i.e., crops and weeds, and the background. Addi-
tionally, we compute the average canopy cover of all plants and,
ultimately, the average number of leaves per crop.

8 ADDITIONAL UNLABELED DATA

Together with the annotated data and the dedicated splits, we
provide also unlabeled data. We hope that this additional data
can be exploited using a semi-supervised approach. Furthermore,
we think that the recent interest in self-supervised representation
learning [2], [7], [6] is an interesting avenue for further research
and in this way can be supported through our dataset.

The geographical location of the unlabeled images is the same
field plot as the train and validation sets of the labeled images. In
addition to the plots used for the labeled data, we include plots
without any herbicidal weed control for the unlabeled images.
We included either ”train” or ”val” in the provided unlabeled
image filenames to differentiate which plots the images are of.
Specifically, we captured these images on seven distinct date
in 2020, i.e., April 25, May 3, May 15, May 26, June 5, June
12, July 2. Of these seven days, three days, i.e., 15th of May
2020, 26th of May 2020, and 5th of June, are taken from the same
data collection run as the labeled data. However, we also include
the date each image was taken in their respective filenames.
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(a) Input image (b) Ground truth (c) Mask R-CNN (d) Mask2Former

Fig. 20. Qualitative results for leaf instance segmentation on the test set.
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(a) Input image (b) Mask R-CNN (c) Mask2Former

Fig. 21. Qualitative results distinguishing between correct predictions and mispredictions for leaf instance segmentation on the test set. We
illustrate each true positive leaf instance in blue, each false positive in a pinkish color, and each false negative in shades of cyan.
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(a) Input image (b) Ground truth (c) HAPT (d) Weyler

Fig. 22. Qualitative results for hierarchical panoptic segmentation targeting crop leaf instances on the test set. Different colors of the masks
indicate different instances.
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(a) Input image (b) HAPT (c) Weyler

Fig. 23. Qualitative results distinguishing between correct predictions and mispredictions for hierarchical panoptic segmentation targeting crop
leaf instances on the test set. We illustrate each true positive crop leaf instance in blue, each false positive in a pinkish color, and each false
negative in shades of cyan.
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(a) Input image (b) Ground truth (c) HAPT (d) Weyler

Fig. 24. Qualitative results for hierarchical panoptic segmentation targeting crop instances on the test set. We emphasize that HAPT additionally
predicts weed instances, which not the case for approach proposed by Weyler.
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(a) Input image (b) HAPT (c) Weyler

Fig. 25. Qualitative results distinguishing between correct predictions and mispredictions for hierarchical panoptic segmentation targeting crop
instances on the test set. We illustrate each true positive instance in blue, each false positive in a pinkish color, and each false negative in
shades of cyan. Since HAPT additionally predicts weed instances, we also consider these plants in the visualization of mispredictions.
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