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Panoptic Segmentation with Partial Annotations
for Agricultural Robots

Jan Weyler Thomas Läbe Jens Behley Cyrill Stachniss

Abstract—A detailed analysis of agricultural fields is key
toward reducing the use of agrochemicals to achieve a more
sustainable crop production. To this end, agricultural robots
equipped with vision-based systems offer the potential to detect
individual plants in the field automatically. This capability
enables targeted management actions in the field, effectively
reducing the amount of agrochemicals. A primary target of such
vision systems is to perform a panoptic segmentation, combining
the task of semantic and instance segmentation. Recent methods
use neural networks for this task, which typically have to be
trained on densely annotated images containing the required
ground truth information for each pixel. Gathering these dense
annotations is generally daunting and requires domain experts’
knowledge in the agricultural domain. In this paper, we propose
a method to effectively reduce the annotation bottleneck and yet
achieve high performance using partial annotations. These partial
annotations contain ground truth information only for a subset
of pixels per image and are thus much faster to obtain than
dense annotations. We propose a novel set of losses that exploit
measures from vector fields used in physics, i.e., divergence
and curl, to effectively supervise predictions without ground
truth annotations. The experimental evaluation shows that our
approach outperforms several state-of-the-art methods targeting
to reduce the amount of annotations.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Semantic Scene Understanding, Deep Learning for
Visual Perception

I. INTRODUCTION

DECREASING the detrimental environmental impacts of
agrochemicals such as herbicides and pesticides by re-

ducing their application in conventional farming is crucial to
achieve a more sustainable agriculture. Autonomous agricul-
tural robots offer the potential to tackle this challenge [6]. Such
platforms, equipped with vision-based systems, can employ
plant classification systems [26] to perform targeted field
interventions and reduce the use of agrochemicals [17].

Thus, a key objective is to develop vision-based models
addressing the task of panoptic segmentation [12], which
targets a joint semantic and instance segmentation [3], [18].
The former assigns each image pixel to the class background,
crop, or weed. Contrary, the latter aims to generate pixel-
precise binary masks for each plant instance. Thus, panoptic
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Fig. 1: We propose a vision-based approach based on CNNs to
perform a panoptic segmentation, combining a semantic segmentation
of background, crop, or weed and an instance segmentation of plants.
Our model is trainable with partial annotations, contrasting with most
other methods relying on dense annotations.

segmentation empowers agricultural robots to perform plant-
specific treatments. Besides, for different tasks like vision-
based navigation, it enables splitting the background into more
classes that may occur in real fields. Most recent vision-based
systems [22] deploy convolutional neural networks (CNNs)
for this task which are trained on densely annotated images,
providing ground truth information for all pixels, see Fig. 1.
However, gathering these dense annotations is laborious and, at
the same time, requires domain expertise to distinguish crops
and weeds. Thus, collecting large, densely annotated datasets
is often a bottleneck.

In this paper, we aim to overcome the bottleneck of requir-
ing dense annotations for panoptic segmentation by proposing
a network architecture trainable with substantially reduced an-
notations. Our method requires only annotations for a subset of
plant instances per image, which we call partial annotations,
see Fig. 1. Unlike dense annotations, partial annotations are
easier to collect at a larger scale and facilitate the creation of
a diverse training set by annotating a few plants in multiple
images taken under varying conditions instead of annotating
all plants within a single image.

The main contribution of this paper is a novel end-to-end
trainable pipeline for panoptic segmentation targeting the an-
notation bottleneck. We propose a network architecture train-
able with partial annotations, including three novel, conceptu-
ally simple, yet effective loss functions. These losses exploit
concepts from vector calculus, specifically divergence, curl,
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and consistency of vector fields, to provide explicit supervision
for pixels corresponding to instances without annotations
during training. Ultimately, our proposed losses encourage the
network to predict a vector field that enables us to recover
individual instances through clustering. Additionally, each loss
increases the supervision and performance of our model.
Finally, we achieve superior performance to other methods
targeting the annotation bottleneck. The source code of our
method is available at: https://github.com/PRBonn/PSPA.

II. RELATED WORK

Several vision-based approaches have been proposed for
panoptic, semantic, and instance segmentation utilizing dif-
ferent annotation schemes for supervision. Below, we provide
a broad overview of methods employing varying supervision.

Full Supervision. Most methods for panoptic [12], [22],
semantic [15], [23], and instance [4], [7], [19] segmentation
are fully supervised, i.e., they consume densely annotated
training data providing for each pixel corresponding ground
truth information. In the agricultural domain, Roggiolani et
al. [18] present an approach for panoptic segmentation, which
involves the classification of crops and weeds, while jointly
identifying instances of plants and leaves. Furthermore, Mil-
ioto et al. [18] propose a method for semantic segmentation
of crops and weeds that leverages background knowledge
to speed up training and improve generalization capabilities.
Similarly, McCool et al. [17] perform a segmentation of weeds
on agricultural robots by using multiple lightweight CNNs in a
mixture model. Regarding instance segmentation, Halstead et
al. [6] propose a method based on Mask R-CNN [7] en-
abling crop-agnostic monitoring in arable farmlands. Similarly,
Champ et al. [3] also utilize Mask R-CNN to detect and
remove individual weeds in agricultural fields. Despite its
need for densely annotated images, Mask R-CNN remains a
prevalent choice in the agricultural domain. While it allows
to ignore specific instances during training, such instances
must be explicitly assigned to an ignore class, preventing any
degradation of the training. This contrasts with our method
operating without such extra information.

Weak Supervision. Recent methods for instance segmenta-
tion target to reduce the cost of dense pixel-wise annotations.
Specifically, they require only box-level annotations for all
instances during training while generating pixel-wise masks
at inference [14], [25]. To this end, Hsu et al. [8] propose
to exploit the bounding box tightness prior during training
to supervise mask predictions without ground truth. Petti et
al. [21] apply this method in the agricultural domain to count
cotton flowers from aerial images. Another approach is to
deploy promptable foundation models for image segmentation,
e.g., the segment anything model (SAM) [13]. These large-
scale models are pretrained on massive datasets and provide
high-quality, class-agnostic instance masks based on prompts,
e.g., bounding boxes. However, Ji et al. [9] show that the
zero-shot capabilities of SAM are limited in the agricultural
domain. Thus, a two-step, weakly-supervised approach [20]
is more promising in the agricultural domain. Typically, an
object detector like DETR [2] is first trained using box-level

annotations. Next, during inference, the predicted bounding
boxes are passed as prompts to SAM, resulting in a pixel-wise
segmentation for each prompt. In contrast to our method, these
approaches demand annotations for every instance within an
image, even when only bounding boxes are needed.

Partial Supervision. Other recent approaches target to re-
duce the annotation bottleneck of instance segmentation differ-
ently. Specifically, these methods require complete annotations
for a subset of instances within each image while leaving
the remaining instances unannotated, i.e., partial annotations,
see Fig. 1. With this aim, Wolny et al. [28] propose a class-
agnostic instance segmentation approach based on non-spatial
embeddings. They exploit a set of losses to structure the
embedding space of annotated and unannotated instances such
that individual instances can be recovered. In contrast to our
approach, their proposed losses primarily promote consistency
in the non-spatial embedding space, whereas we define multi-
ple losses explicitly encouraging the network to predict spatial
embeddings that are well-suited to recover individual instances
through clustering. Additionally, our method is not class-
agnostic, i.e., it can readily handle multiple classes, as required
for our task. Kigli et al. [10] show that in the context of
semantic segmentation, a reduced set of semantic annotations
per image is sufficient to achieve solid results. However, their
approach is restricted to semantic segmentation while we
perform a panoptic segmentation with partial supervision.

III. OUR APPROACH

Our main objective is to develop a CNN-based model that
empowers agricultural robots to perform a panoptic segmen-
tation in real agricultural fields. Specifically, our model is
trainable with partial annotations, where only a subset of plant
instances is annotated in each training image.

A. General Architectural Concept

For the task of panoptic segmentation, we employ a
proposal-free encoder-decoder network that consists of three
components. First, we utilize a shared encoder backbone ϕenc
to generate a compact but expressive representation of an input
image. Next, we pass this output to two decoupled decoders,
providing task-specific dense predictions, see Fig. 2.

The first decoder ϕsem predicts the semantic segmentation
by assigning each pixel to the class background, crop, or
weed. In the context of panoptic segmentation, the background
belongs to the stuff classes containing any object not belonging
to vegetation, while crops and weeds belong to the thing
classes [12]. However, our architecture is easily extendable
to multiple stuff classes. The second decoder ϕoff performs
an instance segmentation based on the principle of spatial
embeddings [19]. The output of this decoder is a 2D vector
field providing for each pixel belonging to a specific plant an
offset vector pointing toward its instance’s centroid. Next, we
obtain 2D spatial embeddings, where embeddings belonging
to the same instance form a cluster by translating each pixel
of a crop or weed along its predicted offset vector. Finally, we
recover instances at inference by applying a clustering algo-
rithm based on these spatial embeddings. Our pipeline enables

https://github.com/PRBonn/PSPA
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Fig. 2: Our network for panoptic segmentation based on an encoder-decoder architecture. First, we pass the input image to the encoder to
generate a compact but expressive representation. Next, we pass this representation to the upper decoder to perform a semantic segmentation.
Simultaneously, the lower decoder predicts a vector field, where offset vectors point toward their associated plant centroid. We exploit these
offsets in an automated postprocessing procedure to compute spatial embeddings, which we cluster to recover individual instances. Finally,
we fuse the instances and semantics such that each instance belongs to a single class.

training with either dense or partial annotations, allowing us to
adapt the training process to different annotation schemes. We
propose novel losses targeting partial annotations, enabling us
to supervise offset vectors of instances without annotations.
Next, we explain both setups in more detail, starting with
dense annotations.

B. Training Dataset with Dense Annotations

In the fully supervised setting, we have access to a
densely annotated training dataset D = {(X,Y, C)} contain-
ing N RGB images X ∈ RH×W×3, i.e., |D| = N . Let H
and W denote the height and width of an image. We de-
fine Y ∈ NH×W×K as the dense semantic annotation that
contains for each pixel a one-hot encoded vector over K
classes. In our work, we have K = 3 classes, i.e., back-
ground, crop, and weed. Each image also contains a set
of M instances C = {C1, C2, . . . , CM}, where Cj is the subset
of all pixel coordinates X = {1, 2, . . . ,H} × {1, 2, . . . ,W}
belonging to the jth instance, i.e., Cj⊂X .

C. Semantic Segmentation with Dense Annotations

For semantic segmentation, we train our network to generate
a prediction S ∈ RH×W×K for each input image, representing
a pixel-wise categorical distribution over K possible classes.
Hence, we minimize during training the cross-entropy, com-
paring the prediction and ground truth class for each pixel
independently:

Lsem (Y,S,X ) = − 1

|X |

K∑
k=1

∑
(h,w)∈X

Yhwk log (Shwk) , (1)

where we employ the shared encoder and semantic-specific
decoder to compute S = ϕsem (ϕenc (X)).

At inference, we assign each pixel to the class with the
highest confidence to obtain the final semantic segmentation.

D. Instance Segmentation with Dense Annotations

The aim of our proposed instance segmentation
is to train the network to predict for a given input
image a 2D vector field O ∈ RH×W×2. For each
pixel coordinate xi = [hi, wi]

⊺ ∈ X associated with the
jth instance, this vector field should contain a 2D offset

vector oi = [oh (hi, wi) , ow (hi, wi)]
⊺ such that the resulting

spatial embedding ei = xi + oi is close to the embedding
centroid cj =

1
|Cj |

∑
xi∈Cj

(xi + oi) of this instance, as
illustrated in Fig. 2. Here, we employ the shared encoder and
instance-specific decoder to compute O = ϕoff (ϕenc (X)).

During training, we employ a clustering loss function [19]
to optimize the model parameters toward obtaining the de-
sired vector field. Crucially, we generate for each annotated
instance Cj a soft mask based on the current offset predictions.
Specifically, we use a function fCj : R → [0, 1] converting the
distance between a spatial embedding ei to the centroid cj
into a score of belonging to this instance:

fCj
(ei) = exp

(
−∥ei − cj∥2

2σ2

)
. (2)

Hence, a high score implies the association of ei with the
jth instance. Conversely, a low score indicates its association
with the background or another instance. Here, the hyperpa-
rameter σ defines an isotropic clustering region around the
centroid. Finally, we obtain a soft mask FCj

∈ RH×W for the
jth instance by computing fCj

(ei) ∀ i ∈ {1, . . . , |X |}.
Intuitively, we want to obtain offset vectors for all pixels

belonging to the instance Cj that point directly toward cj
while the remaining offset vectors should not. We achieve this
implicitly by maximizing the intersection over union (IoU)
between each annotated instance’s soft and ground truth mask
by minimizing the Lovász Hinge loss [19]:

Loff (F,G, C) = 1

|C|

|C|∑
j=1

Lovász
(
FCj

,GCj

)
. (3)

Here, GCj
∈ {0, 1}H×W denotes the binary ground truth

mask of the jth instance derived from its corresponding an-
notation Cj . By maximizing the IoU, we implicitly encourage
the network to predict for all pixels associated with a specific
instance offset vectors that point toward their corresponding
centroid. Simultaneously, this objective penalizes offset vec-
tors that point toward a different centroid. Ultimately, the
spatial embeddings of individual instances form clusters in
2D embedding space, see Fig. 2.

E. Postprocessing for Panoptic Segmentation
At inference time, the embeddings enable us to recover

individual instances by applying an automated post-processing
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step. Initially, we compute the spatial embeddings for all pixels
based on the predicted vector field. However, we ignore any
pixel associated with the background based on the semantic
segmentation. As a result, we obtain a 2D embedding space,
where individual instances form separate clusters. Thus, we
can employ DBSCAN [5] clustering to obtain an instance seg-
mentation, see Fig. 2. Additionally, we propose a fusion step
to unify the semantic and instance segmentation. Intuitively,
each instance must belong to a unique semantic class. Thus,
we gather all pixels in the semantic segmentation belonging to
a specific instance and perform a majority voting to reassign
pixels to the most frequent semantic class.

F. Training Dataset with Partial Annotations

In the partially supervised setting, we have access to a train-
ing dataset DP =

{(
X,YP , CP

)}
containing the same im-

ages as D, i.e., |DP | = |D|. However, unlike before, we only
have access to partial annotations YP and CP for each image,
as illustrated in Fig. 1. Let YP ∈ NH×W×K be the partial se-
mantic annotation containing only for a subset A ⊂ X of pix-
els the ground truth class, where |A| ≪ |X |. Furthermore, we
annotate only a subset of R instances CP = {C1, C2, . . . , CR}
in each training image X, where |CP | ≪ |C|. Here, we follow
a particular annotation scheme to obtain these partial annota-
tions. We instruct the labeler to annotate a certain percentage
of all crop and weed instances in each image. Finally, the
labeler uses a brush tool to sample a few regions in the
background class. Thus, the partial annotation YP contains
background regions, as shown in Fig. 1. Note that creating
these partial annotations for experimental evaluation at varying
annotation percentages is trivial using a densely annotated
dataset.

G. Semantic Segmentation with Partial Annotations

Regardless of the annotation type, we employ our network’s
shared encoder and semantic-specific decoder to compute
S = ϕsem (ϕenc (X)), as described in Sec. III-C.

However, given DP , we adapt the cross-entropy loss
in Eq. (1) to operate on partial annotations. Since this objective
performs an independent comparison per pixel, we define
the loss just over the subset A of annotated pixels, i.e.,
Lsem

(
YP ,S,A

)
. Minimizing this objective still results in a

reliable semantic segmentation [10].

H. Instance Segmentation with Partial Annotations

As before, despite the annotation type, we use the shared en-
coder and instance-specific decoder to compute the predicted
vector field as O = ϕoff (ϕenc (X)).

Next, we adapt Eq. (3) to partially annotated images,
containing a reduced set |CP | ≪ |C| of annotated instances.
Specifically, we define the loss function just for the set CP of
instances associated with an annotation, i.e., Loff

(
F,G, CP

)
.

By minimizing this objective, we implicitly encourage our
network to predict offset vectors in O for all pixels associated
with an annotated instance pointing toward their associated
centroid. Furthermore, any offset vector, whether associated

with an annotation or not, pointing toward an unrelated cen-
troid of an annotated instance receives a penalty.

However, in our experiments, we observe that the model is
not capable to generalize well from the set CP of annotated
instances to any instance Ci ∈ C \ CP . Generally, the offset
vectors associated with Ci do not point toward a specific
centroid, being inappropriate for clustering. This is a critical
issue that we resolve by the method described subsequently.

I. Divergence for Vector Field Supervision

Since training with partial annotations does not yield an
appropriate vector field, we need additional objectives to
explicitly supervise the offset predictions of unannotated in-
stances. To this end, we employ the divergence operator from
vector calculus operating on a vector field and producing a
scalar field, analyzing its behavior [16]. In 2D, the diver-
gence divO : R2 → R is defined as:

divO :=
∂oh (h,w)

∂h
+

∂ow (h,w)

∂w
. (4)

First, we provide an intuition about this operator and then
explore its behavior for specific vector fields. Finally, we
exploit it to define novel loss functions that encourage our
network to predict offset vectors suitable for recovering all
instances through clustering, whether annotated or not.

The divergence is particularly viscerally understood when
imagining the vector field as a fluid flow, where fluid particles
traverse along the offset vectors. Here, a positive divergence
indicates a source from which all particles flow away. Con-
trary, a negative divergence implies a sink to which particles
are flowing. This analogy transfers to our task since we want
a vector field where offset vectors associated with a specific
instance point toward this instance’s centroid, i.e., a sink in the
context of a fluid flow, as shown in Fig. 3. Thus, divergence
is a useful tool for designing a loss function for this type of
learning problem.

Let us analyze this operator in greater depth by investi-
gating an illustrative and simplified vector field defined by a
continuous multivariable function O (h,w) : R2 → R2 as:

O (h,w) =

[
oh (h,w)
ow (h,w)

]
=

[
−h+ ch
−w + cw

]
, (5)

which behaves as a perfect sink, i.e., all offset vec-
tors point toward c = [ch, cw]

⊺ ∈ R2. Hence, it is evident
that ∂oh(h,w)

∂h = ∂ow(h,w)
∂w = −1 and thus divO = −2.

Next, we expand our analysis to a discrete vector field
that our network should predict for instance segmentation.
Firstly, we generate an illustrative ground truth vector field
containing offset vectors pointing directly toward their as-
sociated centroid, see Fig. 3. Secondly, we employ gradient
filters to compute this vector field’s partial derivatives and
divergence. We highlight that the results are identical to
the simplified example, as shown by the visualized partial
derivatives in Fig. 3. However, we notice a few outliers in the
transition area of overlapping instances. Here, adjacent offset
vectors of different instances point toward different centroids,
causing these outliers.
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Fig. 3: We analyze the divergence of a vector field that our network should predict, i.e., each offset vector points toward the centroid of its
associated plant instance. Specifically, we show that both partial derivatives are mostly equal to −1, except in transition areas of overlapping
plants, where offset vectors point toward different centroids. During training, this enables us to define a set of loss functions applicable to
instances without annotation, encouraging our network to predict the desired vector field even in the case of partial annotations.

The previous analysis provides desired properties a pre-
dicted vector field should have for our task. Thus, we define
additional loss functions to encourage the network to predict a
vector field with these properties. First, we define a robust re-
gression loss function targeting the divergence of the predicted
vector field during training:

Ldiv (O,V) = 1

|V|
∑

(h,w)∈V

ρ ((divO)hw − (−2)) , (6)

where V ⊂ X is the set of pixel coordinates assigned to
vegetation, encompassing both crops and weeds, as determined
by the current semantic segmentation. Let ρ (·) denote the
Geman-McClure loss [1] enforcing robustness to decrease the
effect of expected outliers. Since this loss applies to any
vegetation pixel, it affects the predicted offset vectors of any
instance, whether annotated or not. Thus, it is well-suited in
the case of partial annotations to also supervise the offset
vectors of instances without annotation.

Simultaneously, we aim to predict identical partial deriva-
tives, as shown previously. Consequently, we define a second
robust regression loss function:

Laux
div (O,V)= 1

|V|
∑

(h,w)∈V

ρ

(
∂oh (h,w)

∂h
− ∂ow (h,w)

∂w

)
, (7)

encouraging the network to behave as desired.
The proposed formulation of both losses guarantees that an

offset vector is only optimized if both partial derivatives are
likely to be inliers. Conversely, the corresponding offset vector
is not optimized if either is considered an outlier.

During training, we minimize both previous objectives to
encourage our network to predict a vector field, yielding offset
vectors applicable to recover instances through clustering.

J. Curl for Vector Field Supervision

We additionally employ the curl operator [16] to further
supervise the offset predictions during training. As before, this
operator generates a scalar field based on a vector field. In 2D,
the operator curlO : R2 → R is defined as:

curlO :=
∂oh (h,w)

∂w
− ∂ow (h,w)

∂h
. (8)

We again start by providing insight into the curl and study
its behavior. Ultimately, we exploit this operator to define
another set of loss functions to obtain a vector field with
desirable properties for instance segmentation.

Generally, a positive curl indicates a rotational, counter-
clockwise behavior in a vector field, while a negative curl
suggests a clockwise rotation. Apparently, we want to obtain
a vector field with no rotational behavior for our task. This is
evident when applying the curl to the illustrative vector field
in Eq. (5) since ∂oh(h,w)

∂w = ∂ow(h,w)
∂h = 0 and curlO = 0.

As before, a thorough analysis based on a ground truth
vector field similar to Fig. 3 exposes that the partial derivatives
and curl are mostly the same as in the simplified example.
Here, we again observe outliers in transition areas where offset
vectors point toward different instances’ centroids.

Once more, during training, we propose a robust regression
loss function that focuses on the curl of the vector field:

Lcurl (O,V) = 1

|V|
∑

(h,w)∈V

ρ ((curlO)hw) , (9)

applying to any predicted vegetation pixel.
Simultaneously, we aim to achieve identical partial deriva-

tives and thus define an additional robust regression loss:

Laux
curl(O,V)= 1

|V|
∑

(h,w)∈V

ρ

(
∂oh (h,w)

∂w
+

∂ow (h,w)

∂h

)
. (10)

By minimizing both previous objectives during training, we
encourage our network to predict a vector field with the desired
behavior regarding its curl. Again, both losses are appropriate
for partial annotations by supervising the offset vectors of any
vegetation pixel, whether annotated or not.

K. Self-Consistency for Vector Field Supervision

Intuitively, the network should predict consistent vector
fields for different content-preserving augmentations of the
same input image. Thus, we propose a self-consistency loss,
well-known to achieve smoother and more stable predictions.
Additionally, this loss is well-suited to partial annotations since
consistency does not rely on annotations.

To this end, we first apply a random augmentation to an
input image to obtain X′ = rθ (c (X)) as its augmented view.
Let c (·) denote a random color transformation and rθ (·) a
random rotation, where θ = {90◦, 180◦, 270◦}. Thus, X′ pre-
serves the content of the original input, even though identical
content appears at different locations.

Consequently, we pass both input images to our network
to obtain O = ϕoff (ϕenc (X)) and O′ = ϕoff (ϕenc (X

′)) as
their respective vector field predictions. Next, we compare
both vector fields pixel-wise since they should be identical.
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Fig. 4: Sample images from PhenoBench at different dates.

However, to enable a direct comparison, we first apply the
inverse rotation O′′ = r−1

θ (O′), ensuring alignment of offset
vectors. Finally, we define a regression loss function encour-
aging the network to predict consistent vector fields:

Lcon (O,O′′) =
1

|V|
∑

(h,w)∈V

||Ohw −O′′
hw||2. (11)

L. Implementation Details

We use the ERFNet [23] architecture and convert it into
a 2-branch network, where the first branch predicts the se-
mantic segmentation and the second the vector field. During
training, we employ the Adam optimizer [11] with a batch size
of 6 and a weight decay of 10−4. Here, we train the model
for 4096 epochs. At the initial 32 epochs we linearly increase
the learning rate from 0 to 10−3 and then apply a polynomial
learning rate decay

(
1− e

4096

)2
, where e is the current epoch.

We define the final loss as a weighted sum:

L = Lsem + w1Loff + w2

(
L̄div + L̄curl + w3Lcon

)
, (12)

where L̄div = Ldiv + Laux
div and L̄curl = Lcurl + Laux

curl. Let w1

and w3 denote constant weights set to 5 and 10, respectively.
In contrast, we quadratically increase w2 from 0 to 1 during
the initial 128 epochs and set it to 1 afterward. We determine
these hyperparameters based on the validation set.

IV. EXPERIMENTAL EVALUATION

Following, we provide a comprehensive experimental eval-
uation, supporting our key claims made in Sec. I.

Datasets. We evaluate our method on the PhenoBench
dataset [27] containing real-world RGB images captured from
a nadir-view perspective of sugar beet fields and providing
dense annotations for semantic and instance segmentation of
crops and weeds. The images contain plants at different growth
stages throughout the year 2020 from May 15, May 26, and
June 6, as shown in Fig. 4. Hence, the overlap between
adjacent plant instances increases over time. Besides, the
dataset contains test images from a sugar beet field captured
in 2021 to evaluate generalization capabilities.

First, we automatically generate partial annotations using
the original dense annotations simulating a human labeler,
as proposed in Sec. III-F. Besides, this dataset provides the
visibility ratio for each instance. We exploit this to leave any
instance with a visibility ratio of < 25% unannotated, as it
would pose a challenge for a human labeler to assign such
an instance to either crop or weed. We denote a partially
annotated dataset DP , with 50%, 25%, or 10% of all crop
and weed instances annotated as D50, D25, or D10.

Note that consecutive images in the original dataset overlap
by 50%, resulting in single plant instances appearing in

multiple images. However, in our partial annotation setup,
we aim to ensure that an instance without annotation in one
image remains unannotated in any other image. Thus, we
remove overlapping images in the training split and obtain
a reduced set of 356 images for training. However, we use the
original validation and test set for our experiments. For more
information about the dataset statistics, we refer to [27].

Evaluation Metrics. To evaluate the performance for
panoptic segmentation we follow the PhenoBench setup [27]
and compute the panoptic quality [12] for crop and weed
instances, denoted as PQc and PQw, respectively. Furthermore,
we compute the intersection over union for the background
class, i.e., IoUbg. Finally, we report PQ† as average over all
metrics [27]. We also compute the mean intersection over
union (mIoU) over background, weed, and crop to evaluate
the semantic segmentation. Note that for all metrics higher
values indicate better performance.

A. Performance based on Partial Annotations

In the first experiment, we show that our proposed method
achieves high performance when trained using partial anno-
tations, thus supporting our first key claim. To this end, we
train a model based on dataset D with dense annotations and
compare its performance with models trained on D50, D25, and
D10 containing partial annotations. We employ all previously
introduced loss functions during the training of each model.
Thus, the only difference are reduced annotations.

In Tab. I, we show that our model can attain high per-
formance even with substantially fewer annotations during
training. Specifically, concerning May 15, the model’s per-
formance trained on D is similar to that on D25 achieving
a PQ† score of 70.48% and 70.06%, respectively. Thus,
our approach substantially reduces the required annotations at
this early growth stage, where individual plants are mostly
well separated. Contrary, the performance gap increases at
later growth stages, as expected. Here adjacent plants over-
lap considerably. Particularly, regarding June 6, we achieve
a PQ† score of 77.24% when employing D for training
and 73.53% when reyling on D10. However, we highlight
a marginal performance drop in these challenging conditions
between the models trained on D50 and D10 differing by
just 1.03 absolute percent points. Furthermore, we highlight
that specifically on June 6, small and large plants co-occur in
the same image [27], but our model still performs reliably,
as evident in Tab. I. Additionally, when evaluated in another
field in 2021, the model trained on D50 achieves a competitive
performance regarding its generalization capabilities compared
with the model trained on D, achieving a PQ† score of 74.44%
and 74.75% each.

B. Ablation Study on Vector Field Supervision

Next, we show that our proposed losses to supervise the
predicted vector field during training effectively enhance the
performance of our model, supporting our second claim.
Specifically, we evaluate the influence of the different losses
on the validation set of PhenoBench, exclusively consisting of
images captured in the year 2020, with none from 2021.
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TABLE I: Evaluation of varying partial annotations on the test set of
PhenoBench. We report all metrics in percentage.

Dataset PQ† PQc PQw IoUbg mIoU

M
ay

15

D 70.48 74.76 36.99 99.68 81.48
D50 70.48 75.20 36.57 99.68 81.36
D25 70.06 73.97 36.55 99.67 80.46
D10 68.91 72.97 34.13 99.64 79.33

M
ay

26

D 77.18 84.17 48.51 98.87 86.21
D50 76.16 82.94 46.74 98.80 85.30
D25 75.09 80.66 45.92 98.70 84.31
D10 73.69 78.43 44.20 98.43 82.94

Ju
ne

6

D 77.24 83.84 49.32 98.56 90.96
D50 74.56 78.75 46.63 98.30 88.99
D25 74.23 77.30 47.31 98.09 83.77
D10 73.53 76.88 45.86 97.84 82.51

20
21

D 74.75 86.20 40.08 97.96 78.96
D50 74.44 83.36 42.05 97.92 79.47
D25 71.07 79.87 35.53 97.82 76.18
D10 67.68 71.71 33.72 97.61 75.97

First, we train a model based on D25 without additional vec-
tor field supervision. Following, we compare its performance
to models trained with increasing supervision by successively
including the losses targeting the divergence, curl, and consis-
tency. Finally, we leverage our entire pipeline and compare to
a model trained with all objectives and also include our fusion
procedure, as explained in Sec. III-E.

In Tab. II, we show that each of our proposed losses to
supervise the predicted vector field increases the performance
when training with partial annotations. Note that the additional
supervision is particularly beneficial in challenging conditions
with overlapping plants, e.g., on June 6. Particularly, without
extra supervision we achieve a PQ† score of 69.18% while
the model trained with all proposed losses achieves 75.40%.
We support this quantitative evaluation with qualitative results
in Fig. 5, showcasing how our proposed losses effectively
supervise the offset vectors towards the desired behavior,
resulting in spatial embeddings that are well-suited for clus-
tering. However, the mIoU decreases slightly from 86.53%
to 86.15%. In less complex situations, as on May 15, we
observe a less drastic improvement regarding the PQ† score
from 67.07% to 69.05%. We highlight that our proposed
fusion procedure in Sec. III-E improves the performance
further across all dates.

C. Comparison to Baselines

To support our third claim, we show that our approach
outperforms related methods targeting to reduce the annotation
bottleneck. Specifically, we compare with weakly supervised
methods, i.e., DiscoBox [14] and BoxInst [25]. Additionally,
we train a state-of-the-art object detection model based on
DETR [2] and pass its predicted bounding boxes as prompts
to the foundation model SAM [13], providing an instance
segmentation for each prompt. Lastly, we compare against
Mask R-CNN [7]. We train this model using the partial
annotations of D10 by explicitly ignoring instances without
annotations to prevent any penalties during training.

In Tab. III, we show that the combination DETR → SAM
performs most competitively compared to our approach. Par-
ticularly, both methods achieve a PQ† score of 73.73%

TABLE II: Ablation study of increasing vector field supervision and
our proposed fusion procedure based on models trained with D25.
We report all results on the PhenoBench validation set and report
each metric in percentage.

Div Curl Con Fuse PQ† PQc PQw IoUbg mIoU

M
ay

15

67.07 70.50 31.06 99.64 79.51
✓ 67.83 71.16 32.69 99.63 79.33
✓ ✓ 68.05 70.92 33.62 99.62 78.87
✓ ✓ ✓ 69.05 72.84 34.66 99.64 80.56
✓ ✓ ✓ ✓ 70.58 75.31 36.76 99.68 81.10

M
ay

26

69.99 72.51 38.37 99.10 80.81
✓ 72.09 75.71 41.53 99.03 80.21
✓ ✓ 71.84 76.16 40.35 99.02 80.65
✓ ✓ ✓ 73.33 78.25 42.65 99.10 81.50
✓ ✓ ✓ ✓ 75.31 81.16 45.54 99.22 82.00

Ju
ne

6

69.18 61.98 47.51 98.04 86.53
✓ 71.83 71.45 46.36 97.68 84.80
✓ ✓ 72.93 74.71 46.41 97.67 83.86
✓ ✓ ✓ 75.40 76.77 51.61 97.82 86.15
✓ ✓ ✓ ✓ 79.24 82.14 57.42 98.16 86.66

and 73.53% when evaluated on June 6, respectively. However,
the performance gap increases in earlier growth stages, where
plants have finer structures, e.g., on May 15. The former
method achieves a PQ† score of 64.64%, whereas our ap-
proach achieves 68.91%.

D. Performance on Other Datasets
The last experiment shows the transferability of our method

to different datasets. We evaluate our model based on the
popular CVPPP leaf segmentation challenge (LSC) [24] con-
taining images captured from a nadir-view perspective in a
laboratory environment. Here, we compare our results with
another competitive baseline, i.e., SPOCO [28].

In Tab. IV, we show that both methods achieve comparable
performance on the commonly used evaluation metric when
trained with dense annotations or the most reduced set of
annotations, i.e., D10. Contrary, our method substantially
outperforms the baseline in the case of models trained on D25,
achieving a score of 86.13% and 83.50%, respectively. We
observe similar behavior for models trained on D50, suggesting
that our approach handles these partial annotations more ef-
fectively. Note that SPOCO performs a class-agnostic instance
segmentation but is not designed to differentiate different
classes, e.g., crops and weeds.

V. CONCLUSION

In this paper, we present a novel vision-based method
targeting panoptic segmentation in the agricultural domain that
substantially reduces the annotation bottleneck. We propose
a CNN that performs a semantic segmentation and jointly
predicts a vector field where offset vectors of individual plant
instances point toward their associated centroid. This enables
us to perform an instance segmentation through clustering.
Our approach is trainable on partial annotations, where only
a subset of pixels is annotated. To this end, we propose
a novel set of losses based on common operators used in
physics to analyze the behavior of vector fields, i.e., divergence
and curl. We exploit these operators to effectively supervise
predicted offsets associated with no annotation to obtain high
performance even with substantially reduced annotations.
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TABLE III: Evaluation on the test set of PhenoBench with various
approaches to reduce the annotations; all metrics in percentage.

Approach PQ† PQc PQw IoUbg mIoU

M
ay

15

BoxInst 57.41 54.26 18.50 99.46 75.62
DiscoBox 48.55 36.17 10.54 98.94 70.14

DETR → SAM 64.64 62.27 32.10 99.56 79.10
Mask R-CNN 58.13 57.08 17.91 99.40 69.53
Ours

(
D10

)
68.91 72.97 34.13 99.64 79.33

M
ay

26

BoxInst 67.84 74.72 30.89 97.92 78.85
DiscoBox 57.50 55.44 20.92 96.15 74.95

DETR → SAM 68.19 74.09 32.36 98.11 80.70
Mask R-CNN 65.88 67.14 33.73 96.76 74.78
Ours

(
D10

)
73.69 78.43 44.20 98.43 82.94

Ju
ne

6

BoxInst 70.07 74.30 38.99 96.91 84.61
DiscoBox 58.62 55.06 26.53 94.26 74.42

DETR → SAM 73.73 74.88 49.20 97.11 86.21
Mask R-CNN 69.23 71.17 42.21 94.32 73.10
Ours

(
D10

)
73.53 76.88 45.86 97.84 82.51

20
21

BoxInst 59.47 50.49 33.15 94.76 70.60
DiscoBox 45.63 23.92 20.50 92.46 66.44

DETR → SAM 66.35 58.18 44.43 96.45 78.53
Mask R-CNN 52.23 39.14 23.54 94.02 64.61
Ours

(
D10

)
67.68 71.71 33.72 97.61 75.97
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