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Towards Domain Generalization in Crop and Weed
Segmentation for Precision Farming Robots

Jan Weyler Thomas Läbe Federico Magistri Jens Behley Cyrill Stachniss

Abstract—Precision farming robots offer the potential to
reduce the amount of used agrochemicals through targeted
interventions and thus are a promising step towards sustainable
agriculture. A prerequisite for such systems is a robust plant
classification system that can identify crops and weeds in various
agricultural fields. Most vision-based systems train convolutional
neural networks (CNNs) on a given dataset, i.e., the source
domain, to perform semantic segmentation of images. However,
deploying these models on unseen fields, i.e., in the target
domain, often shows a low generalization capability. Enhancing
the generalization capability of CNNs is critical to increasing
their performance on target domains with different operational
conditions. In this paper, we present a domain generalized seman-
tic segmentation approach for robust crop and weed detection
by effectively extending and diversifying the source domain
to achieve high performance across different agricultural field
conditions. We propose to leverage unlabeled images captured
from various agricultural fields during training in a two-step
framework. First, we suggest a method to automatically compute
sparse annotations and use them to present the model more
plant varieties and growth stages to enhance its generalization
capability. Among others, we exploit unlabeled images from
fields containing crops sown in rows. Second, we propose a
style transfer method that renders the source domain images
in the style of images from various fields to achieve increased
diversification. We conduct extensive experiments and show that
we achieve superior performance in crop-weed segmentation
across various fields compared to state-of-the-art methods.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Semantic Scene Understanding, Deep Learning for
Visual Perception

I. INTRODUCTION

AN essential requirement for sustainable agriculture is to
reduce the amount of agrochemicals used in farming,

such as herbicides and pesticides, to decrease their nega-
tive impact on the environment [1], [2]. In this context,
autonomous agricultural robots equipped with vision-based
systems offer the potential to address this issue by deploying
plant classification systems that automatically identify crops
and weeds to perform targeted interventions in the field [3].

Most recent vision-based systems deploy convolutional neu-
ral networks (CNNs) to perform a semantic segmentation
of soil, crops, and weeds in agricultural fields. Generally,

Manuscript received: Sep 9, 2022; Revised: Jan 11, 2023; Accepted: March
5, 2023. This paper was recommended for publication by Editor Hyungpil
Moon upon evaluation of the Associate Editor and Reviewers’ comments.

All authors are with the University of Bonn, Germany. Cyrill Stachniss is
additionally with the Department of Engineering Science at the University of
Oxford, UK, and with the Lamarr Institute for Machine Learning and Artificial
Intelligence, Germany.

This work has partially been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy, EXC-2070 – 390732324 – PhenoRob and under STA 1051/5-1 within
the FOR 5351 – AID4Crops.

Images Dense Annotations
Unlabeled Images of various agricultural fields

Style Diversification Sparse Annotations

Automatic Process

Semantic Segmentation Network

...
...

......

...

Soil

Source Domain

Source domain for a conventional training procedure of semantic segmentation networks
Our extended and diversified source domain to obatin domain generalized networks

Crop Weed

Fig. 1: We propose a vision-based method to develop domain gener-
alized semantic segmentation models by leveraging unlabeled images
from various fields that reliably segments soil, crops, and weeds in
arbitrary agricultural fields. We present methods to compute sparse
annotation for these images automatically and to perform a style
diversification of source domain images. We exploit both methods
to train CNNs achieving high performance in various fields.

these models are trained on a single dataset, i.e., the source
domain, consisting of a set of images and its corresponding
dense annotations, providing for each pixel its corresponding
ground truth class. While achieving impressive results on
images visually similar to the source domain, deploying these
models on unseen agricultural fields, i.e., the target domain,
results in a substantial performance decrease indicating a low
generalization ability [4]. We attribute this to the domain gap
between the source and target domain, i.e., the images of
the source domain contain a limited view of plant varieties
and growth stages and are restricted to a certain image style.
Achieving domain generalization is essential for real-world
deployment of precision farming robots operating in various
fields [5]. In this paper, we address the issue of domain
generalized semantic segmentation to reliably identify soil,
crops, and weeds in images of arbitrary agricultural fields.

The main contribution of this paper is an end-to-end train-
able pipeline for domain generalized semantic segmentation
that achieves high performance in various agricultural fields.
We leverage unlabeled images that we exploit during training
to extend and diversify the source domain and increase the
models’ generalization capability, as sketched in Fig. 1. Our
method does not need extra manual labeling and is simple
to wrap into many network architectures. In sum, we make
three key claims. First, we propose a method to leverage
unlabeled images of various agricultural fields during training
that achieves high generalization capabilities compared to con-
ventionally trained semantic segmentation networks. Second,
our framework performs superior to several domain adaptation
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methods that, contrary to ours, require image samples from the
target domain. Lastly, our approach outperforms other domain
generalization methods. Our implementation and datasets are
available at: https://github.com/PRBonn/DG-CWS.

II. RELATED WORK

Several vision-based approaches have been proposed for
semantic segmentation in agricultural fields using handcrafted
features [6], [7] or CNN-based methods [1], [2], [8]. Below,
we aim to provide a broad overview of semantic segmentation
methods and approaches to mitigate the performance decrease
for unseen target domains.

Semantic Segmentation. Most current methods use CNNs
for semantic segmentation of images from agricultural fields
to predict a pixel-wise classification. Milioto et al. [9] propose
a vision-based classification system based on CNNs to distin-
guish crops and weeds. Initially, they apply a preprocessing
step to separate vegetation from soil and subsequently perform
a classification on cropped regions to distinguish crops and
weeds. McCool et al. [8] combine multiple lightweight CNN
models to a mixture model to perform a fast and accurate weed
segmentation on agricultural robots.

Contrary to our approach, these methods are trained on
a single source domain and thus show low generalization
capabilities when applied to various unseen target domains [4].

Domain Adaptation. Several works address the general-
ization issue by adapting the images of the source domain to
the target domain [10], [4], [11]. Generally, these methods
require image samples from the target domain to perform
the adaptation. Subsequently, they train a CNN based on the
adapted images of the source domain and deploy this model
to the target domain to mitigate the decrease in performance.

Park et al. [11] generate images in the source domain
that have the appearance of the target domain but explicitly
preserve content by maximizing the mutual information be-
tween corresponding image patches with contrastive learning.
Cherian et al. [10] emphasize that the semantic classes of the
original and adapted image should be identical. Accordingly,
they present a method that enforces semantic consistency dur-
ing domain adaptation to achieve realistically adapted images.
Gogoll et al. [4] propose an unsupervised domain adaptation
for plant segmentation using generative adversarial networks.
They assume a single dataset containing images and ground
truth annotations as the source domain and image samples of
the target domain without annotations. Next, they adapt images
of the source domain to the target domain and train a CNN
using the adapted dataset that achieves increased performance
in the target domain.

These methods require images from the target domain to
perform the adaptation, which limits their applicability.

Domain Generalization. In contrast, domain generaliza-
tion [12] overcomes this limitation and aims at training robust
CNNs that achieve high performance in arbitrary unseen
domains. Contrary to domain adaption, any image of the target
domain is unavailable before deploying the model.

Hendrycks et al. [13] propose a data augmentation proce-
dure to diversify the source domain during training. Specif-
ically, they compute multiple augmented versions of the

original image and effectively combine them into a single
augmented image. Their method achieves high generalization
capability and performs robustly on multiple target domains. In
contrast, Choi et al. [14] propose to enhance the generalization
capability of CNNs by introducing an objective function to
encourage the network to be invariant to the image style of the
source domain. They exploit covariance matrices from feature
maps and remove correlations related to variation in image
style. Thus, their method is less sensitive to domain-specific
styles but focuses on domain-invariant content.

Unlike our approach, these methods do either not exploit
unlabeled images and eventually operate within the source
domain or do not utilize automatically computed sparse an-
notations based on unlabeled images. We leverage images of
various fields to increase domain generalization capabilities by
using sparse annotations and exploiting various image styles.

III. OUR APPROACH

The main objective of our approach is to develop a model
based on CNNs that enables agricultural robots to perform
a reliable semantic segmentation of the classes soil, crop,
and weed in various agricultural fields, even when the source
and target domain differ substantially. We propose a method
to train domain generalized semantic segmentation models
that achieve high performance on RGB images captured by
unmanned aerial vehicles (UAVs) or unmanned ground vehi-
cles (UGVs) across different agricultural fields.

First, we describe in Sec. III-A the conventional training
procedure of semantic segmentation models and its deficien-
cies regarding domain generalization. We propose to address
these issues by leveraging unlabeled images captured from
various agricultural fields during training in a two-step frame-
work. In Sec. III-B and Sec. III-C we present a method to
automatically compute sparse annotations for these images
and subsequently exploit them during training by computing
objective functions on a subset of pixels, see Sec. III-D. This
enables us to extend the intra-class content of the source
domain to provide our model with wide plant varieties at
different growth stages and soil conditions to improve its
generalization capability. Furthermore, we argue that the image
style of the source domain is severely restricted, thus facili-
tating overfitting to the source style. Consequently, we exploit
the unlabeled images in Sec. III-E and propose a style transfer
method based on a whitening and coloring transformation
that diversifies the source domain by rendering its images in
various real-world styles. In Sec. III-F, we exploit these images
during training to alleviate overfitting. In sum, we utilize
densely and sparsely annotated images and style-transferred
versions of densely annotated images. Finally, we provide
implementation details in Sec. III-G.

A. Supervised Semantic Segmentation

The key task of supervised semantic segmentation with
CNNs is to train a network φ that provides for an RGB im-
age x ∈ RH×W×3 a corresponding prediction p ∈ RH×W×K ,
which models pixel-wise a categorical distribution of K
possible classes. Let H and W denote the height and

https://github.com/PRBonn/DG-CWS
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crop row

Fig. 2: Our method to automatically compute sparse annotations for soil and crops in images xc of cultivated fields. First, we compute soil
masks Sc and vegetation mask Vc. However, these masks may still contain pixels associated to weeds. Thus, we detect a crop row, denoted
as Rc. Finally, we generate restricted masks Ŝc and V̂c to consider only pixels along the row in the final sparse annotation yc.

width of an image, respectively. In supervised seman-
tic segmentation, we have access to the source domain
dataset Ds = {(xs,ys)} with |Ds| = N , containing N pairs
of RGB images xs ∈ RH×W×3 and corresponding ground
truth annotations ys ∈ ZH×W×K , which contain for each
pixel a one-hot encoded vector over K classes. Thus, each
image in the source domain is densely annotated. For our
task, K = 3 since we define the classes soil, crop, and weed.
During training, we follow best practice and minimize the
cross-entropy objective to optimize the models’ parameters:

Ls
dense(y

s,ps)=− 1

HW

H∑
h=1

W∑
w=1

K∑
k=1

ys
hwklog (ps

hwk) , (1)

where ps = φ(xs) represents the model prediction.
While deploying φ on images similar to the source domain

results in impressive performance, it often fails to perform
appropriately on other target domains due to the domain gap
and its low generalization capability [14], [13]. We attribute
this to a limited source domain with a restricted set of plant
varieties, growth stages, and soil conditions, which occur in
various target domains. Additionally, the model φ tends to
overfit to the image styles provided in the source domain [14]
since the set of xs is captured with a limited variability of illu-
mination. However, increasing the generalization capability by
providing a large-scale source domain with dense annotations
covering a wide range of plant varieties and image styles is not
viable since the annotations are typically acquired manually
and, thus, time- and labor-intensive.

Contrary, we propose an approach to leverage unlabeled,
real-world images of various agricultural fields. Next, we
present our method to automatically compute sparse annota-
tions for these images that does not require manual interven-
tion and subsequently exploit them during training to increase
the generalization capabilities.

B. Sparse Annotations for Soil and Crops
First, we propose an approach to obtain sparse annotations

for soil and crops in images of conventionally cultivated
fields containing crops sown in rows by exploiting the spatial
arrangement. In this work, we refer to sparse annotations as
a subset of pixels with associated ground truth classes that
we leverage during training to extend the source domain.
First, we employ redness [15] and greenness [16] indices to
obtain binary masks of pixels belonging to soil and vegetation.
Subsequently, we detect a crop row by a Hough transform
and exploit this information to filter out pixels belonging to
weeds [17]. Finally, we obtain sparse annotations for pixels
belonging to soil or crops, as shown in Fig. 2.

Similar to related work [15], [16], we first convert an RGB
image xc ∈ RH×W×3 of a conventionally cultivated crop field
to the HSV color space and denote its hue channel as Hc,
where each pixelHc

hw ∈ [0◦, 360◦). The value 0◦ indicates red
pixels, 120◦ green pixels, and 240◦ blue pixels. Subsequently,
we compute a binary soil mask Sc ∈ ZH×W by a thresholding
operation defined as:

Sc
hw =

{
1, if Hc

hw ≤ 45◦ ∨Hc
hw ≥ 315◦

0, otherwise
, (2)

and a binary vegetation mask Vc ∈ ZH×W :

Vc
hw =

{
1, if 50◦ ≤ Hc

hw ≤ 175◦

0, otherwise
. (3)

Since our primary aim is to generate sparse annotations
covering a fraction of all pixels, our method allows setting
the thresholds conservatively to detect some pixels that are
likely to belong to soil or vegetation but not all of them. Thus,
we do not fine-tune the thresholds to stress that the method’s
heuristics are broadly applicable on crop row fields.

As highlight by red circles in Fig. 2 these masks may
still contain undesired pixel belonging to weeds. Thus, we
suggest to detect a single crop row in Vc by applying a
Hough transform to constrain the vegetation pixels in Vc

to crops and remove weeds. The Hough transform computes
based on Vc for each parameter θ and r of a line in the
polar system l : y = − tan(θ)−1x+ r sin(θ)−1 its support in
terms of vegetation pixels belonging to l, where y ∈ [1, H]
and x ∈ [1,W ]. Note that we restrict the parameter space
of θ to θ ≤ 20◦ ∨ θ ≥ 340◦ and thus consider only lines
approximately vertical. This assumption is based on the fact
that common farming robots capture images along vertical
crop rows [18], [2]. Since the number of crop rows is variable,
we suggest to identify the single most dominant line l̂ with the
most support in the Hough space. Therefore, we miss some
rows, but we aim for correct annotations and do not want to
introduce wrong labels.

Next, we compute a binary crop row mask Rc ∈ ZH×W :

Rc
hw =

{
1, if d

(
l̂, (h,w)

)
≤ ε

0, otherwise
, (4)

where d
(
l̂, (h,w)

)
is the orthogonal distance between the line

and a pixel location (h,w). Thus, Rc contains the crop row
with a width of ε, see Fig. 2. Since our images xc have a
ground sampling distance (GSD) between 0.33 mm

px and 1 mm
px ,

we set ε to 35 px to cover a reasonable width between 11.5 mm
and 35 mm for small and large crops. As before, we state that



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2023

Fig. 3: Our method to automatically compute sparse annotations for
soil and weed in images xw of uncultivated fields. We exploit soil
masks Sw and vegetation mask Vw to get sparse annotations yw.

a precise fine-tuning of ε is not required since we aim to obtain
sparse annotations only.

Following, we constrain the binary masks Sc and Vc to
pixels belonging to the crop row inherent in Rc. Intuitively,
since crops are cultivated along rows, we are confident that the
restricted set of pixels belongs to soil or crops but not weeds.
We define the constrained binary soil mask as Ŝc:

Ŝc
hw =

{
1, if Rc

hw = 1 ∧ Sc
hw = 1

0, otherwise
, (5)

and similarly the constrained binary vegetation mask V̂c:

V̂c
hw =

{
1, if Rc

hw = 1 ∧Vc
hw = 1

0, otherwise
. (6)

We exploit both constrained binary masks to generate the
sparse ground truth annotation yc ∈ ZH×W×K . We assign
each pixel with Ŝc

hw = 1 to the class soil and each pixel
with V̂c

hw = 1 to the class crop, see Fig. 2. We define Ac as
the set of automatically annotated pixels in xc and emphasize
that the annotations of the remaining pixels are undefined.

Ultimately, our proposed procedure enables us to gen-
erate an automatically, sparsely annotated soil-versus-crop
dataset Dc = {(xc,yc)}, with |Dc| = M , based on M images
captured from various conventionally cultivated fields that we
exploit during training, see Sec. III-D. We tested our procedure
on sugar beet fields, but we believe it is generic to any crop
in cultivated fields sown in rows.

C. Sparse Annotations for Soil and Weeds

Additionally, we automatically compute sparse annotations
for soil and weeds based on images of uncultivated fields, i.e.,
agricultural wastelands not containing any target crops.

Let xw ∈ RH×W×3 be an RGB image of an uncultivated
field. We compute the binary soil and vegetation mask as
shown in Eq. (2) and Eq. (3). Consequently, we denote them
as Sw and Vw and illustrate them in Fig. 3. However, in this
case, we do not enforce any further constraint on the binary
masks since xw contains only soil and weed.

Next, we exploit the unconstrained binary masks to generate
the sparse ground truth annotation yw ∈ ZH×W×K . We assign
each pixel with Sw

hw = 1 to the class soil and with Vw
hw =

1 to the class weed, see Fig. 3. We define Aw as the set
of automatically annotated pixels in xw and stress that the
annotations of the remaining pixels are undefined.

We compute these annotations for T images captured at
various uncultivated fields to generate a sparsely annotated
soil-versus-weed dataset Dw = {(xw,yw)} with |Dw| = T .
In the following, we exploit Dc and Dw during training.

WCTA

Fig. 4: Our proposed WCTA diversifies the style of source domain
images xs, e.g., we transfer the style from an image xc to xs, where
α denotes the controllable transformation strength.

D. Training with Sparse Annotations
A key reason for the low generalization capability of con-

ventionally trained CNNs is that the source domain contains
limited source content [12], e.g., an insufficient amount of
plant varieties and growth stages with constrained soil con-
ditions. We address this issue by additionally involving the
sparsely annotated datasets Dc and Dw during training.

Conventionally, a network φ processes an image xs and
computes pixel-wise an objective function to optimize the
models’ parameters by minimizing Eq. (1). Contrary, we
additionally process an image xc from Dc during training
to obtain its predictions pc = φ(xc). Next, we propose to
compute the cross-entropy objective effectively on the subset
of pixels Ac belonging to sparse annotations:

Lc
sparse (yc,pc) = − 1

|Ac|

|Ac|∑
i=1

yc
i log (pc

i ) . (7)

By minimizing Eq. (7), we present the network with ex-
tended content of real fields and enhance the generalization
capabilities by enforcing the correct class for various crops in
different soil conditions and prevent false weed predictions.

We further increase the intra-class content and process
additionally an image xw from Dw. Like previously, we
compute the cross-entropy function based on the set of
sparsely annotated pixels in Aw and denote the corresponding
objective as Lw

sparse (yw,pw). We minimize this objective to
train our network on various weeds that occur in differing soil
conditions and penalize false crop predictions.

E. Source Image Style Diversification
Another cause of low generalization capability is the often

limited image style of the source domain [14] that does not
cover the variety of illumination that occurs at various loca-
tions in images of real fields. Thus, we propose a method to
diversify the style of images in the source domain. Specifically,
we apply a whitening and color transformation (WCT) to
transform an image in the source domain such that it inherits
the covariance matrix [19] of an image in Dc or Dw, which
cover various real-world conditions. Chiu et al. [19] show that
the WCT achieves good results among different approaches
as it effectively transforms the style but preserves the content.
Finally, we perform an alpha blending an denote our method
as WCTA. Next, we describe the three-step procedure of our
WCTA using an image pair xs and xc.

Whitening Transformation. In this step, we employ a
whitening transformation [19] to compute a representation
of the image xs such that its color channels are uncorre-
lated and have unit variance. First, we specify fs ∈ R3×HW
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as a reshaped version of xs that contains its RGB val-
ues row-wise. Before whitening, we center fs by sub-
tracting its mean ms ∈ R3×1 and denote its centered ver-
sion as f̄s ∈ R3×HW . Let Qs ∈ R3×3 be an orthogonal
matrix containing the eigenvectors of the covariance ma-
trix Σs = 1

HW−1 f̄sf̄s
>

and Λs ∈ R3×3 be the diagonal matrix
of eigenvalues. We perform the whitening as following:

f̂s = QsΛs−
1
2 Qs> f̄s, (8)

such that f̂sf̂s
>

= I3 holds true for f̂s ∈ R3×HW .
Coloring Transformation. Next, we aim to transfer the

covariance matrix of a sparsely annotated image xc to the
result of the previous operation. This procedure provides a
representation of the image xs that is visually similar to xc

but preserves its content [19]. As previously, we denote
f c ∈ R3×HW as the reshaped version of xc and subtract its
mean vector mc ∈ R3×1 to obtain a centered representation f̄ c.
Let Qc ∈ R3×3 contain the eigenvectors of the covariance
matrix Σc and Λc ∈ R3×3 be the diagonal matrix of associated
eigenvalues. Next, we perform the coloring:

f̂sc = QcΛc
1
2 Qc> f̂s, (9)

which essentially represents an inverse whitening. This trans-
formation ensures that f̂sc ∈ R3×HW has the desired cor-
relations between its color channels, i.e., f̂scf̂sc

>
= f̄ cf̄ c

>
.

Thus, the transformed image f̂sc inherits the covariance matrix
of the sparsely annotated image f c. Finally, we recenter the
transformed image f̂sc = f̂sc + mc and perform a reshaping
to obtain the transformed image xsc ∈ RH×W×3, see Fig. 4.

Alpha Blending. Next, we propose a method to combine
an image xs and its transformed representation xsc by a
parameter α ∈ [0, 1] that controlls the transformation strength:

xsc = αxs + (1− α) xsc. (10)

Using α = 0 exploits the color transformation entirely, α = 1
preserves the original image xs, and intermediate values of
α combine both representations proportionally. Since we aim
to diversify the source domain, we randomly sample α from
a uniform distribution in the interval [0, 1], see Fig. 4. We
perform the WCTA also for image pairs xs and xw since xw

covers yet another set of real-world conditions, see Fig. 5.

F. Training with Style-Diversified Source Images

Next, we exploit the WCTA during training to alleviate over-
fitting to the restricted source style. Particularly, we propose
in Sec. III-D to process images xc and xw additionally to
an image xs to increase intra-class content variability based
on their sparse annotations. Next, we additionally exploit
xc and xw to compute style-diversified representations xsc

and xsw of the source image that serve as additional inputs
to the network, see Fig. 5. Consequently, we obtain their
corresponding predictions psc = φ (xsc) and psw = φ (xsw)
that are both ∈ RH×W×K . Since the style-diversified images
xsc and xsw have the same semantic content as xs (see Fig. 5)
their ground truth annotation is ys. Thus, we compute the
cross-entropy similiar as in Eq. (1) and denote the objective

Input

WCTA

Objectives
Ground-Truth

Fig. 5: Our framework to train a semantic segmentation model φ that
has high generalization capabilities. Besides training on images xs

and dense annotations ys we suggest to process images xc and xw

from various fields and propose an automatic procedure to compute
their sparse annotations yc and yw. Additionally, we perform a
style transfer method (WCTA) to obtain images xsc and xsw with
annotations ys and exploit them also during training.

using the style-diversified image xsc as Lsc
dense (ys,psc) and

using xsw as Lsw
dense (ys,psw). By minimizing these objectives,

we enforce the network to capture correct semantic classes for
images with the same content but different styles to achieve
domain generalization.

G. Implementation Details
We employ ERFNet [20] and DeepLabV3+ based on

ResNet-50 [21], [22] as possible segmentation networks φ and
report the results for both to show that our proposed method
to increase the generalization capability is network-agnostic.
The former aims at efficiency and has a small number of
parameters, i.e., 2.1 · 106, while the latter is a high capacity
architecture with 39.8 · 106 parameters. We train each model
for 4096 epochs using the Adam optimization [23] with a
batch size of 4 and a weight decay of 2 · 10−4. At the initial
16 epochs, we linearly increase the learning rate to 1 · 10−4

and subsequently apply a polynomial learning rate decay(
1− e

4096

)3
, where e is the current epoch. During training,

we randomly crop patches of size 768 px× 768 px from each
input image and use standard data augmentation methods, i.e.,
random adjustment of brightness, contrast, hue, and saturation,
as well as random scaling and horizontal or vertical flipping.
At each training step we pass a quintet of images, i.e., xs,
xc, xw, xsc, and xsw, to our network and define the final loss
function as a uniformly weighted sum of Ls

dense, Lc
sparse, Lw

sparse,
Lsc

dense, and Lsw
dense, as shown in Fig. 5. Thus, we set the weight

of each loss equal to one to avoid overfitting to any specific
domain.

During inference, we pass a single image to our network to
obtain its associated semantic segmentation.

IV. EXPERIMENTAL EVALUATION

In our experimental evaluation, we support our key claims
that are: (i) We present a method that achieves high generaliza-
tion capabilities compared to conventionally trained semantic
segmentation networks, (ii) our framework performs superior
to several domain adaptation methods, and (iii) our approach to
exploit unlabeled images of various fields outperforms several
domain generalization methods that eventually operate within
the source domain.
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TABLE I: Dataset Information.

Bonn Dc Dw Zurich Stuttgart

# Images 379 2386 979 322 666
Platform UAV UAV/UGV UAV/UGV UAV UGV
Annotations dense sparse sparse dense dense
GSD [mm/px] 1 0.33 - 1 0.33 - 1 1 0.33

Bonn Zurich Stuttgart

Fig. 6: Sample images from source und target domains.

Datasets. For the source domain Ds, we deployed an UAV
to collect a dataset from an agricultural field in Bonn that
consists of RGB images captured over one month, see Tab. I.
These images contain sugar beets between the 2- and 12 leaf
growth stages and serve a substantial amount of different weed
types. We use 70 % of these images for training, 15 % for
validation, and define the remaining 15 % as test set to report
the evaluation metrics. Additionally, we capture images from
cultivated agricultural fields at various locations and deploy
our proposed automatic procedure in Sec. III-B to compute
sparse annotation for each image and generate the dataset Dc

which is captured with different RGB cameras and cover a
variety of sugar beets. Furthermore, we gather images from
uncultivated fields at different locations containing various
weeds with varying growth stages. We perform our procedure
proposed in Sec. III-C to automatically compute sparse anno-
tations for each image and generate the dataset Dw. Finally,
we employ Ds, Dc, and Dw to train a semantic segmentation
network with our proposed method.

Additionally, we collected datasets from fields in Zurich
and Stuttgart as target domains. Both contain sugar beets and
weeds at various growth stages and differ visually substan-
tially, see Fig. 6. As previously, we split each target domain
into a training, validation, and testing split. Our method is not
trained using any image in the target domains.

Evaluation Metric. To evaluate the performance of our ap-
proach and other methods, we compute the mean intersection
over union (mIoU) ∈ R [0, 1] across the classes soil, weed, and
crop based on the test set of each dataset, where higher values
indicate a better performance [24].

A. Comparison to Conventional Semantic Segmentation

To support our first key claim, we show that our approach
achieves high generalization capabilities across different archi-
tectures compared to conventionally trained networks.

First, we use the densely annotated dataset of Bonn and
perform a conventional training, i.e., we pass images of the
training set to the network and optimize the model parameters
by minimizing the objective in Eq. (1). Subsequently, we
deploy the trained model on the test sets of Bonn, Zurich, and
Stuttgart. We denote this approach as “conventional”. In Tab. II
and Tab. III, we report the results based on DeepLabV3+ and
ERFNet, respectively. In Tab. II, we see that the mIoU of the
conventionally trained model is high with 0.92 on the test set

TABLE II: Comparison of mIoU on the test sets of source and target
domains between different approaches using DeepLabV3+.

Approach Bonn (B) Zurich (Z) Stuttgart (S) Avg.Source Target Target

Conventional [21] 0.92 0.47 0.62 0.67

Domain Adaption

SCG [4] B → Z 0.86 0.69 0.36 0.64
SCG [4] B → S 0.49 0.36 0.59 0.48
CUT [11] B → Z 0.87 0.73 0.31 0.64
CUT [11] B → S 0.73 0.47 0.57 0.59

Domain Generalization

AugMix [13] 0.91 0.77 0.67 0.78
RobustNet [14] 0.88 0.70 0.68 0.75
Ours 0.90 0.79 0.78 0.82

Upper Bound 0.92 0.88 0.92 0.91

TABLE III: Comparison of mIoU on the test sets of source and target
domains between different approaches using ERFNet.

Approach Bonn (B) Zurich (Z) Stuttgart (S) Avg.Source Target Target

Conventional [20] 0.93 0.48 0.57 0.66

Domain Adaption

SCG [4] B → Z 0.86 0.71 0.44 0.67
SCG [4] B → S 0.47 0.38 0.59 0.48
CUT [11] B → Z 0.86 0.76 0.54 0.72
CUT [11] B → S 0.75 0.48 0.57 0.60

Domain Generalization

AugMix [13] 0.92 0.78 0.73 0.81
Ours 0.90 0.79 0.78 0.82

Upper Bound 0.93 0.86 0.92 0.90

of Bonn but decreases substantially on the test sets of Zurich
and Stuttgart with 0.47 and 0.62, respectively. We attribute
this to the domain gap between the source and target domain.
In Tab. III, we observe similar behavior when using ERFNet,
indicating that the issue of low generalization capability is
rather network-agnostic.

Next, we train a model based on our proposed approach
as described in Sec. III and deploy it to each test set.
In Tab. II, we see that our method substantially increases the
performance on the test sets of the target domains. Specifically,
we achieve a mIoU of 0.79 for Zurich and 0.78 for Stuttgart.
These results indicate a better generalization capability of our
method as it achieves a consistent performance on images
of different agricultural fields captured by UAVs or UGVs
with different GSDs. Simultaneously, the performance drop
on test images of the source domain is small compared to
the conventional method (0.92 vs. 0.90). Thus, our increased
generalization performance does not come at the expense of a
major performance decrease for the source domain. As before,
we observe the same effect in Tab. III when using ERFNet to
emphasize that our method is network-agnostic.

Finally, we put the mIoU scores into a broader context
and provide an upper bound for each dataset for comparison.
To do that, we conventionally train three networks based
on the training sets of Bonn, Zurich, and Stuttgart for each
architecture. Then, we apply each model to its corresponding
test set and report the performance, e.g., we deploy the model
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TABLE IV: Effect of each step in our proposed framework to train
with sparse annotations (An.), WCTA, or both in terms of mIoU on
the test sets of source and target domains using DeepLabV3+.

Sparse An. WCTA Bonn Zurich Stuttgart Avg.Source Target Target

X 0.89 0.58 0.58 0.68
X 0.93 0.61 0.72 0.75

X X 0.90 0.79 0.78 0.82

trained on the training set of Zurich to the test set of Zurich.
In this setting, the domain gap between source and target
domain is marginal and thus, the results can be seen as
upper bounds, as shown in Tab. II and Tab. III. Accordingly,
the average upper bound across all three datasets based on
DeepLabV3+ is 0.91, see Tab. II. While the conventional
approach achieves 0.67, we obtain 0.82 and thus substantially
improve the generalization capabilities of CNNs, see Fig. 7.

B. Comparison to Domain Adaptation

The next experiments show that our approach outperforms
commonly used domain adaptation methods. We use SCG [4]
and CUT [11] to train networks on images of Bonn adapted
to Zurich or Stuttgart. We refer to the models trained on Bonn
adapted to Zurich by B→ Z or to Stuttgart by B→ S.

First, we compare with models where the source domain is
adapted to Zurich. Note that the conventional approach based
on ERFNet performs poorly on Zurich, i.e., mIoU of 0.48,
see Tab. III. Contrary, the models trained on the adapted source
domain substantially improve the performance, i.e., mIoU of
0.76 and 0.71 for CUT and SCG. However, our domain gener-
alized model outperforms both and achieves a mIoU of 0.79.
Thus, our method outperforms the domain adaptation methods
even in their targeted domain. Additionally, we observe for
CUT and SCG a noticeable performance decrease on the
original source domain, i.e., Bonn. Particularly, both methods
achieve a mIoU of 0.86 compared to 0.93 for the conventional
approach. This effect is less pronounced for our method, i.e.,
we achieve a mIoU of 0.90. Furthermore, the performance of
CUT and SCG drop substantially when applied to Stuttgart,
i.e., mIoU of 0.54 and 0.44. In sum, the domain adapted
models perform only well on the domain they are adapted
to. Contrary, we perform consistent across unseen agricultural
fields, i.e., mIoU of 0.78 and 0.79 for Stuttgart and Zurich.
The results in Tab. II support these conclusions when using
DeepLabV3+.

Next, we compare with models trained on the source domain
adapted to Stuttgart. While the conventional approach obtains
in Tab. III a mIoU of 0.57 on Stuttgart, the performance
increase for SCG and CUT is barely or not present, i.e., 0.59
and 0.57. We analyze the domain adapted images visually and
find that their appearance is unrealistic. We attribute this to
the difference in GSD between images of Bonn and Stuttgart.
Similarly, Gogoll et al. [4] perform the domain adaptation
only between images with the same GSD. This limitation
results in underwhelming performance. Contrary, our method
leverages images under various conditions and extends the
source domain by images with various GSDs and achieves
an increased mIoU of 0.78 for Stuttgart.

C. Comparison to Domain Generalization

In the last experiments, we show that our method achieves
superior performance among different domain generalization
methods to support our third key claim. Specifically, we
compete with RobustNet [14] and AugMix [13]. Unlike our
approach, these methods do not include real-world images
outside the source domain during training but suggest proce-
dures that eventually operate within the source domain. Note
that the implementation of RobustNet is only available for
DeepLabV3+ and thus, we only report its results in Tab. II.

In Tab. II, we show that our approach achieves an average
mIoU of 0.82 across all datasets while RobustNet and AugMix
obtain scores of and 0.75 and 0.78. Both baselines perform
worse on Stuttgart with mIoU scores of 0.68 and 0.67 while
our method achieves 0.78. We attribute this performance
decrease to the different GSDs in the source domain of Bonn
and target domain of Stuttgart. During training, the baseline
models are restricted by the source domain containing plants
with a GSD of 1 mm

px . Consequently, their performance suffers
on images of Stuttgart with a substantially increased GSD of
0.33 mm

px . On the contrary, our approach effectively exploits
additional images of various agricultural fields captured with
different GSDs and thus shows increased performance. These
results highlight that training on a single source domain is
insufficient to achieve high domain generalization capabilities
even with strong data augmentations like AugMix since it
does not cover a sufficient intra-class variety. Our method
overcomes this limitation by including automatically computed
sparse annotations from diverse fields. We observe similar
behavior in Tab. III, indicating that our method is network-
agnostic.

D. Ablation Studies

A key contribution of our approach is to leverage unla-
beled images from various agricultural fields in a two-step
framework to increase the generalization capability of CNNs.
To demonstrate the contribution of each step, we train and
evaluate three networks using DeepLabV3+. We train the
first model based on the objectives Ls

dense, Lc
sparse, and Lw

sparse,
i.e., it considers the sparse annotation but not the WCTA.
Contrary, we train the second model based on Ls

dense, Lsc
dense,

and Lsw
dense, i.e., it considers the WCTA but not the sparse

annotations. The third model considers all objectives and
thus exploits our framework entirely. In Tab. IV, we report
the evaluation metrics for each network and state that the
first two models achieve an average mIoU of 0.68 and 0.75
across all datasets, respectively. Thus, both achieve superior
performance compared to the conventional approach in Tab. II,
i.e., 0.67. Consequently, each proposed method increases the
generalization capability. However, the combination of both
achieves the best average mIoU of 0.82, see Tab. IV.

Additionally, setting α in Eq. (10) to a constant value of zero
slightly decreases the mIoU of the model only considering the
WCTA from 0.75 to 0.74. If we only use Ls

dense together with
Lc

sparse the average mIoU drops slightly to 0.67, whereas using
only Lw

sparse together with Ls
dense results in a big performance

decrease to 0.59 average mIoU.
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Fig. 7: Qualitative results based on DeepLabV3+ for the datasets Zurich and Stuttgart with different methods.

V. CONCLUSION

In this paper, we present a novel approach to leverage
unlabeled images captured from various agricultural fields to
develop domain generalized CNNs that enables agricultural
robots to perform a reliable semantic segmentation of the
classes soil, crop, and weed in different fields. First, we
present a method to compute sparse annotations for these
images automatically. Second, we propose a style transfer that
renders images of the source domain in the style of real-world
images captured in diverse conditions. We exploit both during
training to increase the generalization capability of CNNs. We
implemented and evaluated our approach based on multiple
networks architectures and datasets. The experimental evalua-
tion and comparisons with state-of-the-art methods support all
claims made in this paper. We believe that our method allows
to leverage vast amounts of unlabeled data to develop models
with high generalization capabilities.
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