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Abstract

A detailed analysis of a plant’s phenotype in real field
conditions is critical for plant scientists and breeders to un-
derstand plant function. In contrast to traditional pheno-
typing performed manually, vision-based systems have the
potential for an objective and automated assessment with
high spatial and temporal resolution. One of such systems’
objectives is to detect and segment individual leaves of each
plant since this information correlates to the growth stage
and provides phenotypic traits, such as leaf count, cover-
age, and size. In this paper, we propose a vision-based
approach that performs instance segmentation of individ-
ual crop leaves and associates each with its corresponding
crop plant in real fields. This enables us to compute relevant
basic phenotypic traits on a per-plant level. We employ a
convolutional neural network and operate directly on drone
imagery. The network generates two different representa-
tions of the input image that we utilize to cluster individual
crop leaf and plant instances. We propose a novel method to
compute clustering regions based on our network’s predic-
tions that achieves high accuracy. Furthermore, we com-
pare to other state-of-the-art approaches and show that our
system achieves superior performance. The source code of
our approach is available1.

1. Introduction

Crop production is key for our society to provide feed,
food, and other resources. During the growth of a plant, the
development of its functional body is affected by a dynamic
process between its genotype, the performed management,
and the environment [4]. Thus, plant scientists and breed-
ers continuously assess phenotypic traits as an expression of
the genotype for individual plants to generate new genetic
variations of crops that show desired traits. Outside green-
houses, this in-field assessment is conventionally done man-
ually, which is time-consuming [20]. In contrast, vision-
based systems have the prospect to perform this assessment
at a large scale, in less time, and more objectively [30].

1https://github.com/PRBonn/leaf-plant-instance-segmentation

Figure 1: Our approach takes images of real fields (top) and pro-
vides an instance segmentation for individual crop leaves (middle)
and plants (bottom), each represented by a particular color.

A key target of these systems is to predict the total num-
ber of leaves per plant. This information is commonly
used to describe plant growth stages, which are linked to
yield potential and plant performance [13]. However, when
studying the plant growth in more detail, it is also essential
to segment individual leaves in order to determine the leaf
size and shape to get a clearer response [29]. At the same
time, obtaining this refined information on a per-pixel level
is challenging, particularly in uncontrolled in-field condi-
tions with multiple plants. In this environment, each seg-
mented leaf needs to be associated with a specific plant on
the field to enable a reliable analysis on a per-plant level.

In this paper, we address the problem of automated,
vision-based phenotyping to detect and segment individual
leaves of crops based on images taken from real agricultural
fields that we associate to specific crop plants to extract rel-
evant basic phenotypic traits on a per-plant level. This pro-
vides plant scientists and breeders with reproducible pheno-
typing information with a high spatial and temporal resolu-
tion in contrast to manual field assessments.

The main contribution of this work is a vision-based ap-
proach that performs a simultaneous instance segmentation
of individual crop leaves and plants, as shown in Fig. 1. We
target sugar beets as crops. Our approach computes binary

https://github.com/PRBonn/leaf-plant-instance-segmentation


segmentation masks for all crop leaves in the field and as-
sociates them with their corresponding plant. This enables
us to compute relevant basic phenotypic traits for individ-
ual crops. Our method is a bottom-up approach based on an
end-to-end trainable single-shot convolutional neural net-
work (CNN). We generate two different representations of
the input image that are eligible to cluster individual crop
leaf and plant instances within a predicted clustering region.

We make the following four claims about our approach.
First, our bottom-up approach accurately performs a si-
multaneous instance segmentation of individual crop leaves
and plants on real agricultural fields based on a single-shot
CNN. Second, this allows us to derive relevant basic phe-
notypic traits for individual crops in the field. Third,
in both tasks, our approach is competitive with differ-
ent state-of-the-art methods. Fourth, for the clustering of
crop leaves and plant instances, we present a novel method
to specify clustering regions by full covariance matrices
predicted by our network that shows superior performance
compared to previous methods.

2. Related Work
There has been significant progress towards vision-based

methods for semantic and instance segmentation in real
agricultural fields. However, most methods for image-based
phenotyping have been applied in laboratory environments.

Semantic Segmentation. Most recent approaches use
CNNs to perform semantic segmentation based on images
of real fields and provide a pixel-wise classification. Lottes
et al. [15] propose a crop-weed classification system based
on sequential image data recorded by agricultural robots,
which exploits the spatial arrangement of crops and weeds
to perform robust pixel-wise labeling. McCool et al. [17]
propose a method for crop-weed classification that learns
lightweight CNN models, which are appropriate to run on
robotic platforms and achieve high accuracy for the task
of weed segmentation. Milioto et al. [19] perform se-
mantic segmentation of crops based on RGB and near-
infrared (NIR) images but also compute multiple vegetation
indices in a preprocessing step to support the training. Un-
like our approach, these methods do not detect leaf or plant
instances, which is key to extract morphological plant traits.

Instance Segmentation. Contrary, recently proposed
image-based instance segmentation methods aim at detect-
ing and segmenting individual plants. Champ et al. [3] rely
on Mask R-CNN [8] to perform instance segmentation for
different crops and weeds on real fields based on RGB im-
ages to target weed control. In contrast, Milioto et al. [18]
propose a vision-based, two-stage approach, which first de-
tects single plants based on RGB and NIR information and
feeds each to a CNN classifying whether it is a crop or
weed. Opposite to these plant-based methods, Morris [21]
performs detection and segmentation of overlapping leaves

in dense foliage images based on a pyramid CNN, which
detects and discriminates leaf boundaries from interior tex-
tures. In contrast to our approach, these methods exclu-
sively detect and segment plant or leaf instances but not
both simultaneously. Thus, these methods are incapable of
extracting per-plant leaf count.

Phenotyping. Most methods extract morphological
plant traits based on images or 3D models of plants ac-
quired individually in the laboratory. Kulikov [12] presents
an instance segmentation approach to detect leaves based on
images of single plants captured in the laboratory. He pro-
poses a two-stage method that first specifies target embed-
dings, which are subsequently learned by a CNN and allow
for a clustering approach at inference time to recover each
instance. In contrast, Shi et al. [30] rely on a multi-view
approach that performs semantic and instance segmentation
based on Mask R-CNN for multiple images of single tomato
plants. They combine the predictions of different view-
points to 3D point clouds and perform instance segmenta-
tion of leaves, stems, and nodes. Magistri et al. [16] aim at
an automated tracking of phenotypic traits over time based
on 3D models of individual growing plants. Itzhaky et
al. [10] propose a CNN to generate a heatmap of leaf key-
points for images of single plants and feed this map to a
non-linear regression model to predict the total number of
leaves per plant. In contrast to these methods, our approach
does not rely on images of single plants but is applied in
real fields. Weyler et al. [32] jointly detect the bounding
box of individual plants and per-plant leaf keypoints based
on a single-shot detection approach in images of real fields
to compute the total number of leaves per plant. However,
this method does not segment individual leaves nor plants
but provides coarse keypoints that are not suitable to deter-
mine leaf size and shape. In contrast, our approach obtains
refined information on a per-pixel level instead of coarse
leaf keypoints. This setting is challenging since images of
real fields usually contain multiple plants. Thus, each seg-
mented leaf needs to be associated with a specific plant on
the field to compute relevant basic phenotypic traits on a
per-plant level. To account for this association problem, our
approach has some relations to work on human pose esti-
mation [23]. However, they assume that the number of parts
per instance is known a priori, which is not reasonable for
plants in different growth stages.

3. Our Approach
The main objective of our approach is to generate a bi-

nary segmentation mask for each leaf of a crop and to asso-
ciate it with a specific crop plant based on images of real
agricultural fields. Thus, we perform a simultaneous in-
stance segmentation of individual crop leaves and plants.
Accordingly, we can determine the shape and size of indi-
vidual leaves but also the number of leaves per crop, which
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Figure 2: The network architecture of our approach. Based on RGB images, we predict offset maps ∆L and ∆P that translates each pixel
of a crop leaf and plant into a clustering region around its associated center. The clustering regions are specified by covariance matrices.
We compute the covariance matrices for crop leaf instances based on the predicted feature maps ΘL, Λ1

L, and Λ2
L and the covariance

matrices for crop plant instance based on ΘP , Λ1
P , and Λ2

P . Besides, we predict the feature map SL and SP to recover the centers of
individual crop leaf and plant instances, respectively. We exploit our network’s predictions to generate two different representations (A, B)
of the input image in an automated postprocessing step that we utilize to cluster individual crop leaf and plant instances.

is highly relevant to perform phenotyping [20, 29].
To achieve this twofold instance segmentation, we pro-

pose a bottom-up approach based on a CNN whose archi-
tecture is described in Sec. 3.1. Our network takes an RGB
image as input, which we feed into an encoder-decoder ar-
chitecture based on ERFNet [26] to compute dense predic-
tions. We split the decoder into two branches, which are
labeled as (a) and (b) in Fig. 2. We design the first decoder
(a) to predict offsets that enforce pixels of individual crop
leaves to point into a leaf-specific region around the leaf
center they belong to. Simultaneously, we predict another
set of offsets that enforces pixels of individual crop leaves
to point into a plant-specific region around the plant cen-
ter they belong to (Sec. 3.2). In addition, this decoder pre-
dicts the parameters required to compute clustering regions
around each center (Sec. 3.3). Based on the prediction of the
second decoder (b), we predict the center locations of each
instance (Sec. 3.4). Finally, we generate two different rep-
resentations of the input image based on these predictions
that we utilize to cluster each crop leaf and plant instance
with an automated post-processing step (Sec. 3.5) applied
after the CNN, as shown at the bottom of Fig. 2.

3.1. General Architectural Concept

Inspired by the recent success of bottom-up approaches
for instance segmentation [2, 23], we design an enhanced
version of the method proposed by Neven et al. [22] that
enables a simultaneous instance segmentation of individ-
ual crop leaves and their corresponding plant. We explic-
itly model the instance segmentation of a crop plant as the

union of the binary masks of its associated leaves. The orig-
inal method [22] does not allow to model a simultaneous in-
stance segmentation and is also more restricted in the design
of clustering regions (Sec. 3.3).

The objective of our proposed twofold instance seg-
mentation is to cluster a set of 2D pixel coordinates
X = {0, 1, ...,W − 1} × {0, 1, ...,H − 1} into a set of
crop leaf instances L = {L0, L1, ..., LK−1} and crop plant
instances P = {P0, P1, ..., PJ−1}, where Lk ⊂ X and
Pj ⊂ X . Let W and H denote the image width and height,
respectively. Since, by nature, each leaf Lk is associated
with a specific plant Pj on the field, we argue that each plant
instance is defined as the union of its associated leaves.

To achieve the desired clustering, we learn two offset
vectors ∆li and ∆pi for each pixel xi = (xi, yi) ∈ X
such that the resulting spatial embeddings li = xi +∆li
and pi = li +∆pi (Fig. 3) point into a clustering region
around the corresponding crop leaf center CLk

and crop
plant center CPj

, respectively. The centers correspond to
the centroids of the kth leaf or jth plant.

Note that the spatial embedding pi depends on the leaf
embedding li. Thus, to cluster an individual crop plant, we
first translate each corresponding pixel to the center of its
associated leaf and next to the center of its associated plant,
see Fig. 3. Underlying this is that we consider sugar beet
leaves to be easier to cluster due to their blob-like shape.

To perform the clustering, we propose two Gaussian
functions ϕLk

(·) and ϕPj
(·) for each crop leaf Lk and plant

Pj , which convert the distance between the embeddings li
or pi to their corresponding center CLk

or CPj
into a score



of belonging to that instance as:

ϕLk
(li)=exp
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)
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(
pi −CPj
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, (2)

where ϕLk
(li) ∈ [0, 1] and ϕPj (pi) ∈ [0, 1]. A high score

indicates that the embedding li or pi is associated with the
kth crop leaf Lk or jth plant instance Pj accordingly. In con-
trast, a low score indicates that this embedding is associated
with a background pixel or another instance.

Note that we specify for each crop leaf and plant instance
a specific covariance matrix ΣLk

∈ R2×2 and ΣPj
∈ R2×2,

which determines the clustering region around the corre-
sponding center for which spatial embeddings are consid-
ered to be part of the instance. These covariance matrices
are learned in addition to the spatial embeddings by our pro-
posed CNN and give the network the capability to adopt the
clustering region around an object’s center to its shape and
orientation. This accounts for the nature of leaves that have
a relatively blob-like shape in a variety of orientations.

During training, we optimize the intersection over
union (IoU) between the predicted and the ground truth
mask by feeding them to the Lovász Hinge loss [1]:

Lleaves =
1

K

K−1∑
k=0

Lovász
(
FLk

, y∗Lk

)
, (3)

Lplants =
1

J

J−1∑
j=0

Lovász
(
FPj

, y∗Pj

)
, (4)

where y∗Lk
∈ {−1, 1}H×W and y∗Pj

∈ {−1, 1}H×W denote
the binary ground truth mask for each crop leaf and plant,
respectively. Let FLk

∈ RH×W be the output scores of the
model for the kth crop leaf and FPj ∈ RH×W the output
scores of for the jth crop plant defined as:

FLk
[yi, xi] = 2ϕLk

(xi +∆li)− 1 ∀xi ∈ X, (5)
FPj [yi, xi] = 2ϕPj (xi +∆li +∆pi)− 1 ∀xi ∈ X. (6)

Here, we transform the scores to the range [−1, 1]
such that the predicted binary masks ŷLk

and ŷPj

can be efficiently obtained by ŷLk
= sign (FLk

) and
ŷPj = sign

(
FPj

)
. This follows the definition of the Lovász

Hinge loss [1] and sets the score threshold effectively to 0.5.
Based on Eq. (1) and Eq. (2) the network has multiple

options to optimize the IoU between the predicted and the
ground truth mask. First, the network can translate the pixel
embeddings close to the desired centers and predict a small
clustering region around an object’s center specified by its
covariance matrix. Second, the network can adapt the co-
variance matrix to the object’s shape and orientation and
predict minor translations for the spatial embeddings.

Figure 3: Clustering approach to perform instance segmentation
for individual crop leaves (left) and plants (right). Our network
predicts all entities to enforce pixels xi to point into a clustering
region (specified by covariance matrices ΣLk and ΣPj ) around
each crop leaf CLk and plant center CPj and to perform the clus-
tering. Note that we sample only a few pixels for visualization.

3.2. Spatial Embeddings

To translate individual pixels xi towards their associ-
ated crop leaf and plant center, we apply the previously
mentioned 2D offset vectors ∆li and ∆pi, respectively.
Thus, our network predicts two offset maps denoted as
∆L ∈ R2×H×W and ∆P ∈ R2×H×W . The channels con-
tain the predicted offsets in x- and y-direction for all pixels.
In Fig. 2, we show the orientation of these offsets encoded
in a color scheme, e.g., the offsets in ∆L point towards leaf
centers and in ∆P towards plant centers.

Since in our case W = 1024 px and H = 512 px, we
generate a pixel coordinate map [22] Mcoord ∈ R2×H×W

that scales the x-coordinates of all pixels into the range
[0, 2] and the y-coordinates into the range [0, 1]. We apply
a tanh(·) activation function to the predicted offset maps to
restrict its values to the range [−1, 1].

First, we compute Mcoord +∆L to generate a represen-
tation of the image where all pixels belonging to a crop
leaf are translated towards its associated center. Second,
we compute Mcoord +∆L +∆P to generate another rep-
resentation where all pixels belonging to a crop plant are
translated towards its associated center, as shown in Fig. 3.
Note that during training, we do not compute gradients for
∆L but only for ∆P in the second step.

3.3. Instance Covariance Matrices

Our clustering functions described in Eq. (1) and Eq. (2)
define each a clustering region around the instance centers
determined by the associated covariance matrix. Thus, we
propose a network architecture, which enables us to com-
pute valid covariance matrices for each instance. In con-
trast, the original method proposed by Neven et al. [22] is
restricted to predict diagonal covariance matrices and thus
limited in the representation of clustering regions.

By definition, a valid covariance matrix needs to be sym-
metric, positive semi-definite, and square [6]. We must en-
sure that these properties hold for the predictions of our
network. Thus, we exploit the properties of the spectral
theory in linear algebra [7], which states that a symmet-



ric matrix Σ ∈ Rn×n can be decomposed as Σ = RDR⊤

or Σ−1 = RD−1R⊤. Let R ∈ Rn×n be an orthogonal
matrix, which contains the normalized eigenvectors stacked
as columns and D ∈ Rn×n be a diagonal matrix containing
the eigenvalues of Σ. Since covariance matrices are positive
semi-definite, all eigenvalues need to be non-negative [31].

First, we define R ∈ R2×2 as a 2D rotation matrix R (θ)
determined by the angle θ. Since R (θ) ∈ SO(2) is an or-
thogonal matrix [6] it meets the constraint mentioned above.

Second, we determine the diagonal matrix D ∈ R2×2 by
the two eigenvalues λ1 and λ2 as follows:

D (λ1, λ2)=

(
λ1 0
0λ2

)
→D−1(λ1, λ2)=

(
λ−1
1 0
0 λ−1

2

)
, (7)

with the constraint that λ1 and λ2 are non-negative to ac-
count for positive semi-definiteness. Thus, a valid covari-
ance matrix is determined by three values for our 2D case.

Note that the eigenvalues and eigenvectors of Σ com-
pletely determine the shape of our clustering region. In the
case of θ = 0 and λ1 = λ2, the region’s shape is circular.
In contrast it is elliptical but axis-aligned if λ1 ̸= λ2. If in
addition θ ̸= 0, it is rotated w.r.t. the axis as well.

Accordingly, we design our network to predict three val-
ues at each pixel location xi to compute the covariance ma-
trices ΣLk

or ΣPj
for each crop leaf or plant. However, we

directly predict the inverse matrix Σ−1
Lk

or Σ−1
Pj

since these
are required in Eq. (1) and Eq. (2).

Our network predicts three feature maps denoted as ΘL,
Λ1

L, and Λ2
L which are ∈ RH×W . The feature map ΘL

predicts the angles θi, Λ1
L predicts the first set of inverse

eigenvalues λ−1
1,i , and Λ2

L predicts the second set of inverse
eigenvalues λ−1

2,i for each pixel. We apply an exponen-
tial activation function to the feature maps Λ1

L and Λ2
L to

enforce non-negative values to account for positive semi-
definiteness. Besides, we multiply ΘL by π

2 to encourage
the network to predict appropriate angles. We show these
maps in a color-encoded representation in Fig. 2.

For training, we exploit the ground truth masks to set the
parameters θLk

, λ−1
1,Lk

, and λ−1
2,Lk

of a crop leaf Lk to the
average of all predictions belonging to this instance:

θLk
=
∑

θi∈Lk

θi
|Lk|

, λ−1
1,Lk

=
∑

λ−1
1,i∈Lk

λ−1
1,i

|Lk|
, λ−1

2,Lk
=

∑
λ−1
2,i∈Lk

λ−1
2,i

|Lk|
. (8)

At inference, we predict an instance center’s location
(Sec. 3.4) and at the same location we extract the three val-
ues from the associated feature maps.

Finally, we compute the inverse covariance matrix of the
kth crop leaf instance for the Gaussian in Eq. (1) as follows:

Σ−1
Lk

= R (θLk
)D−1 (λ1,Lk

, λ2,Lk
)R⊤ (θLk

) . (9)

To compute the inverse covariance matrix Σ−1
Pj

of a crop
plant instance Pj , we predict three additional feature maps
ΘP , Λ1

P , and Λ2
P and follow the same procedure.

3.4. Instance Centers

During training, we compute the centers of each crop
leaf and plant based on the ground truth masks. However,
at inference time, we need to recover these centers to per-
form the clustering based on Eq. (1) and Eq. (2). Since the
loss functions described in Eq. (3) and Eq. (4) enforce the
spatial pixel embeddings li and pi to lie close to their as-
sociated instance center, we need to sample an appropriate
embedding for each crop leaf and plant and set them as their
corresponding instance centers at inference time to perform
the clustering. By appropriate embeddings, we refer to spa-
tial embeddings which have a high score under the Gaus-
sian function ϕLk

(·) or ϕPj (·), since these are close to the
ground truth center by definition of Eq. (1) and Eq. (2).

During training, we generate a score map for each crop
leaf and plant instance by passing all li and pi to the cor-
responding function ϕLk

(·) and ϕPj
(·), respectively. We

exploit these computations to train our network to predict
two score maps that imitate these maps and thus are suit-
able to recover the centers of all crop leaves and plants. In
the following, we denote these map as SL ∈ RH×W and
SP ∈ RH×W , as illustrated in Fig. 2. The map SL should
be equal to the score map computed for all crop leaf in-
stances during training. Thus, it contains values close to 0
for all pixels whose associated embedding li belongs to the
background and values close to 1 if the corresponding em-
bedding lies close to a crop leaf center. The same holds for
the map SP but in contrast for all crop plant instances and
their associated embeddings pi. We achieve this objective
by the following regression loss functions [22]:

LCL
=

1

N

N−1∑
i=0

{
w (sL,i − ϕLk

(li))
2
, if sL,i ∈ Lk

s2L,i , otherwise
(10)

LCP
=

1

N

N−1∑
i=0

{
w
(
sP,i − ϕPj

(pi)
)2
, if sP,i ∈ Pj

s2P,i , otherwise
(11)

where sL,i defines the network’s output of the previously
defined map SL for the ith pixel, N is the total number of
pixels, and w is a weight factor set to 10 in all experiments.
The upper term in Eq. (10) regresses the ith output of SL

to the score of the Gaussian function for the kth crop leaf
instance if and only if the ith pixel belongs to this instance.
Otherwise, we regress it to 0, as in that case the ith pixel
belongs to the background. The same applies to Eq. (11) but
in this regard we consider crop plant instances. We apply a
sigmoid activation function to the map SL and SP such that
their values are in [0, 1]. During training, we compute the
gradients only for sL,i and sP,i [22]. In Sec. 3.5, we provide
more details about how to recover instance centers.



3.5. Postprocessing

At inference, we employ an automated clustering ap-
proach based on our network’s predictions to perform in-
stance segmentation. First, we cluster all crop leaves and
subsequently merge these into clusters of individual crop
plants. Thus, we consider a plant as the union of its leaves.

First, to predict the semantic mask of each crop leaf, we
compute their spatial embeddings by Mcoord +∆L but do
not consider pixels which have a score ≤ 0.5 in the pre-
dicted map SL since we judge them as background. Sub-
sequently, we sample the pixel with the highest score in SL

and set the location of its associated embedding li as the
center CL1

of the first leaf instance L1. This is in accor-
dance with Eq. (1). The confidence score of L1 is equal to
the score extracted from SL. At the same location we ex-
tract the predicted angle θL1

and both inverse eigenvalues
λ−1
1,L1

and λ−1
2,L1

from ΘL, Λ1
L, and Λ2

L to compute Σ−1
L1

according to Eq. (9). We use these entities to compute the
Gaussian in Eq. (1) for all spatial embeddings li and as-
sign each pixel to L1 if and only if the score ϕL1 (li) > 0.5.
Then, we mask out all pixels assigned to this instance and
do not consider them for clustering of other leaves to avoid
multiple assignments. We repeat this process until all pixels
in SL with a score sL,i > 0.5 are consumed. Thus, we do
not need to specify the number of clusters explicitly.

Second, to predict the semantic mask of each crop plant,
we iterate over the set of previously detected leaves and
compute their spatial embeddings pi = li +∆pi, where
∆pi is extracted from the predicted offset map ∆P . This
translates all previously computed crop leaf clusters towards
the center of their associated crop plant, as shown on the
right side of Fig. 3. Subsequently, we select the pixel with
the highest score in SP and set the location of its associated
embedding pi as the center CP1

of the first crop plant P1.
This is in accordance with Eq. (2). The confidence score
of P1 is equal to the score extracted from SP . We compute
Σ−1

P1
in the same way as we did for leaves but based on ΘP ,

Λ1
P , and Λ2

P . Finally, we compute the Gaussian in Eq. (2)
for all embeddings pi associated with a leaf Lk and assign
a leaf to the plant P1 if and only if for more than 50% of
its embeddings ϕP1

(pi) > 0.5 holds true. Thus, we asso-
ciate a crop leaf with a specific crop plant if the majority of
its pixels point into the clustering region of this plant. As
before with the leaves, we mask out pixels assigned to this
plant and do not consider them in the further procedure. We
repeat this process until all pixels in SP with sP,i > 0.5 are
consumed, or all leaves are associated with a plant. Conse-
quently, crop leaves are only associated with a single plant.

Finally, we obtain two image representations, shown at
the bottom of Fig. 2. These allow for an instance segmenta-
tion of all crop leaves and plants (Fig. 1). Simultaneously,
this operation associates each leaf with a specific crop plant
and enables us to compute relevant basic phenotypic traits.

4. Experimental Evaluation
We present our experiments to show the capabilities of

our approach and to support our key claims, which are: Our
bottom-up approach (i) performs a simultaneous instance
segmentation of individual crop leaves and plants on real
agricultural fields, (ii) allows to compute relevant basic phe-
notypic traits, (iii) is competitive w.r.t. to state-of-the-art ap-
proaches, and (iv) our design decision to use full covariance
matrices to specify clustering regions shows superior per-
formance in contrast to related work.

Implementation Details. In all experiments, we train
our network for 512 epochs using Adam optimizer [11] with
a learning rate of 1 · 10−3 and a polynomial learning rate
decay (1− epoch

max epoch )
0.9. We define a multi-task loss as sum

of Eq. (3), Eq. (4), Eq. (10), and Eq. (11).
Datasets. We evaluate our method on RGB images of

sugar beet fields. The dataset contains 1316 images with a
size of 1024 px× 512 px and a ground sampling distance
of 1 mm

px . The images are recorded with an unmanned aerial
vehicle (UAV) equipped with a PhaseOne iXM-100 cam-
era mounted in nadir view. We captured the images in real
fields in uncontrolled conditions that cause shadows and
variable illumination, as shown in Fig. 1. Thus, this data is
more challenging compared to images captured in the lab-
oratory [10, 12]. For training, we use 60% of the entire
dataset and 20% to validate the hyperparameters. To evalu-
ate the final metrics, we rely only on the remaining 20%.

In addition, we evaluate our method on the small but de-
manding CVPPP Leaf Segmentation Challenge (LSC) [28]
as a popular benchmark. We follow best practice and use
the sequence A1 with the highest number of baselines.

Evaluation Metrics. To evaluate the performance of
our approach and to compare it with state-of-the-art meth-
ods, we calculate the average precision (AP) and average
recall (AR) that are commonly used for instance segmenta-
tion [5]. We provide these metrics separately for crop leaves
and plants since our approach computes a simultaneous in-
stance segmentation for both. We differ between instances
with an area scale a < 1024 px2 and a ≥ 1024 px2 to ac-
count for different object sizes denoted as APS and APM.

Besides, we adopt the evaluation metrics commonly used
for leaf segmentation in phenotyping [29]. We evaluate the
Absolute Difference in Count (|DiC|) to measure the leaf
count performance between the predicted and ground truth
number of leaves. In contrast, Percentage Agreement (Pa)
is the number of times the predicted leaf count matches the
ground truth. The Symmetric Best Dice (SBD) measures the
leaf segmentation accuracy by the average overlap between
the predicted and ground truth mask for all leaves. In con-
trast, the Foreground-Background Dice (FBD) measures the
plant segmentation accuracy. The values of Pa, SBD, and
FBD values are ∈ [0, 1], where higher values indicate more
accurate predictions. For more details we refer to [29].



Figure 4: Qualitative results of our approach and both baselines.
Note that we show cropped images and do not show the predicted
bounding boxes of Mask R-CNN for reasons of clarity.

The performance of competing methods on the LSC is
commonly specified in terms of SBD and |DiC| [2, 12].

4.1. Comparison with the State of the Art

The first experiments evaluate the performance of our ap-
proach in comparison with other state-of-the-art methods.

First, we show that our approach is superior in com-
parison with Mask R-CNN [8, 34], a two-stage top-down
method for instance segmentation. For comparison, we use
models pre-trained on the COCO dataset [14] that lever-
age a ResNet50 model [9] and fine-tune it to our task. To
provide a fair comparison, we train two networks based
on Mask R-CNN. We train the first network with the ob-
jective to detect and segment all crop leaf instances and the
second network to detect and segment all crop plants. Thus,
both networks are experts for the specific task. However,
we emphasize that our method performs both tasks at once.
In Tab. 2, we show the results in terms of phenotypic metrics
on the test set. Our proposed approach outperforms Mask
R-CNN in all metrics. We achieve higher performance in
terms of leaf count (|DiC|, Pa) per crop plant. In addition,
the predicted masks for crop leaves of our method outper-
form the baseline by a wide margin in terms of SBD. Fur-
thermore, our predicted masks for crop plants also have a

Figure 5: Qualitative results of our approach for the CVPPP LSC.

higher accuracy regarding FBD. In Fig. 4, we highlight that
our predicted masks for crop leaves and plants are consis-
tent since we explicitly model a crop plant as the union of
its associated leaves (Sec. 3.5). In contrast, the predicted
masks of Mask R-CNN are inconsistent. These results are
supported in Tab. 1 in terms of AP and AR where our ap-
proach outperforms the baseline in most metrics. In Fig. 4,
we show that our approach is less prone to confuse crop
leaves and plants with leaves or plants of weeds which are
commonly present on real agricultural fields.

Second, we show that our approach is competitive
with another state-of-the-art method proposed by Ku-
likov [12] tailored to instance segmentation on biologi-
cal images. This two-stage bottom-up method achieves
state-of-the-art results on the popular CVPPP LSC. Similiar
to Mask R-CNN it does not allow to perform a simultane-
ous instance segmentation of crop leaves and plants. Thus,
we train two expert networks for each task. We denote
this method as Harmonic Embeddings. In Tab. 2, we show
that the performance in terms of predicted masks for crop
leaves (SBD) and crop plants (FBD) only varies marginally
in comparison with our method. We support these results
visually in Fig. 4 and show that segmented crop leaves and
plants differ only slightly. However, our approach achieves
a higher performance in terms of leaf count per crop plant
w.r.t. |DiC| and Pa. Note that the method of Kulikov [12]
does not predict confidence scores for object instances and
thus does not support an evaluation in terms of AP and AR.

4.2. Performance on CVPPP LSC

The next experiments are designed to show that our ap-
proach achieves high performance on a popular leaf in-
stance segmentation benchmark [28], see Fig. 5. In Tab. 3,
we show that the performance of our method is on par with
competing algorithms. Concerning the SBD metric, only
the approach proposed by Wu et al. [33] achieves higher
performance. However, their results rely on the ground-
truth foreground masks, which we do not use.

We note that this competition addresses a less complex
problem than our dataset since each image contains only a
single plant. All competing methods are restricted to this as-
sumption. In contrast, our network is also applicable to im-
ages of real fields that contain an arbitrary number of crops.
The results convey that our approach covers a broader range
of applications than competing methods but still achieves
high performance in their targeted, restricted domain.



Table 1: Comparison of our method with Mask R-CNN based on average precision (AP) and average recall (AR) on our dataset.

Approach AP AP50 AP75 APS APM AR ARS ARM

Ours (crop leaves, Σfull) 48.7 82.5 54.6 46.8 78.2 57.3 55.6 81.4
Ours (crop leaves, Σdiag) 42.9 78.8 44.1 41.1 71.8 53.9 52.4 74.9
Mask R-CNN (crop leaves) 41.3 78.5 39.5 39.6 73.8 50.2 48.8 76.5

Ours (crop plants, Σfull) 60.4 93.8 73.5 28.1 63.7 68.0 43.7 71.1
Ours (crop plants, Σdiag) 56.5 93.1 67.2 25.6 60.2 65.6 43.8 68.4
Mask R-CNN (crop plants) 51.8 93.8 56.3 24.4 54.8 59.5 46.3 61.5

Ours (crop leaves, no ∆ + Σfull) 31.5 70.5 19.3 29.7 51.8 37.7 36.5 54.0
Ours (crop leaves, no ∆ + Σdiag) 24.3 68.7 5.7 22.9 41.7 31.4 30.6 42.8

Table 2: Evaluation of our dataset based on phenotypic metrics.

Approach |DiC| (std.)↓ Pa↑ SBD↑ FBD↑
Ours (Σfull) 0.60 (0.83) 0.55 0.79 0.90
Ours (Σdiag) 0.69 (0.94) 0.51 0.77 0.89
Mask R-CNN 1.53 (1.70) 0.30 0.68 0.86
Harmonic Emb. 0.68 (0.90) 0.51 0.80 0.92

Ours (no ∆ + Σfull) 1.01 (0.96) 0.32 0.66 0.78
Ours (no ∆ + Σdiag) 1.00 (1.08) 0.36 0.63 0.73

Table 3: Evaluation on CVPPP LSC.

Approach SBD↑ |DiC| (std.)↓
Recurrent IS + CRF [27] 66.6 1.1 (0.9)
IPK [24] 74.4 2.2 (1.3)
Discriminative Loss [2] 84.2 1.0 (-)
Recurrent with Attention [25] 84.9 0.8 (1.0)
Harmonic Emb. [12] 89.9 3.0 (-)
W-Net [33] 91.9 -

Ours (crop leaves, Σfull) 91.1 1.8 (2.4)

4.3. Ablation Studies

A key contribution of our method is the prediction of
full covariance matrices based on the output of our CNN
(Sec. 3.3) to compute clustering regions. This representa-
tion gives our network the capability to adjust the clustering
region to an instance shape and orientation. To demonstrate
its contribution, we train two different networks with the
same hyperparameters. The former predicts full covariance
matrices. For the latter, we remove the feature maps ΘL and
ΘP and hence enforce diagonal covariance matrices ΣLk

and ΣPj
similar to Neven et al. [22]. Thus, we constrain

axis-aligned clustering regions, which cannot adapt to an
instance orientation. In Tab. 1 and Tab. 2 we show that the
former network outperforms the latter in most metrics since
it provides more degrees of freedom.

We also train two networks without the offsets ∆L

and ∆P . Hence, these networks have to adapt the clustering
region to an instance shape and orientation to minimize the
objectives in Eq. (3) and Eq. (4). We also predict full covari-
ance matrices for the former network and diagonal covari-

Figure 6: Image representation of the input image (top) after post-
processing based on the network’s predictions for crop leaves,
when trained without offsets but Σfull (middle) or Σdiag (bottom).

ance matrices for the latter. In the center of Fig. 6, we show
that the former network effectively adjusts the clustering re-
gion to the orientation of each leaf and thus outperforms the
latter network in most metrics, see Tab. 1 and Tab. 2.

These results convey that our predictions of full covari-
ance matrices increase the segmentation performance and is
superior to previous, more restricted representations [22].

5. Conclusion
In this work, we presented a novel vision-based approach

to perform a simultaneous instance segmentation of crop
leaves and plants using UAV-recorded images of real agri-
cultural fields. Our proposed method generates two differ-
ent image representations suitable to cluster individual crop
leaves and plants within a predicted clustering region. We
exploit these predictions to compute relevant basic pheno-
typic traits for individual crops in the field. Our thorough
experimental evaluation using data from real agricultural
fields suggests that our method outperforms multiple state-
of-the-art approaches. We also show that our novel method
to specify the clustering region based on full covariance ma-
trices improves the overall performance in comparison with
representations presented in related work.
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