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Joint Plant Instance Detection and Leaf Count
Estimation for In-Field Plant Phenotyping

Jan Weyler, Andres Milioto, Tillmann Falck, Jens Behley, and Cyrill Stachniss

Abstract—Precision management of agricultural fields as well
as plant breeding are central factors for keeping yields high and
to provide food, feed, and fiber for our society. A key element
in breeding trials but also for targeted management actions
is to analyze the growth state of individual plants objectively
and at a large scale. In this paper, we address the problem of
analyzing crops in real agricultural fields based on camera data
recorded with mobile robots and to derive information about
the plant development, e.g., to monitor phenotypic traits such as
growth stage. We propose a novel single-stage object detection
approach that localizes crops and weeds in the field. At the
same time, it detects plant-specific leaf keypoints intending to
estimate leaf count at a plant level, which is a key trait for
classifying the growth stage. We implemented and thoroughly
tested our approach on real sugar beet fields. As our experiments
show, it performs the required detections and shows superior
performance with respect to a state-of-the-art two-stage approach
based on Mask R-CNN.

Index Terms—Robotics and Automation in Agriculture and
Forestry, Deep Learning for Visual Perception

I. INTRODUCTION

CROP production provides food, feed, and fiber for our
society. To keep the yields high and to adapt to stresses

as well as to impacts of climate change, plant breeders
continuously generate new genetic variations of crops. These
variations are then planted and their performance is assessed.
Thus, plant breeders are looking for effective systems to assess
detailed phenotypic traits about plants at a large scale for an
in-depth understanding of the relationship between genotype
and phenotype [5]. Regular and standardized monitoring of
the plant’s vegetative development is required by law in many
countries to maintain high-quality seeds of good varieties [4].
Recording how the individual plants develop and grow how-
ever is a time-consuming process and is conventionally done,
at least in the field, by manual inspection. Crops that show
desirable traits then serve as the basis for the next round when
generating genetic variations.

Recognizing the growth state of individual plants is also
relevant for targeted management actions on agricultural fields
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Fig. 1. Left: Agricultural robot (top) acquires image data (bottom) which is
fed as input to our system. Right: Magnified view of the result of our vision-
based system. We predict the bounding boxes of crops (green) and weeds by
their corresponding top-left (dark green circle) and bottom-right (light green
circle) corner. Simultaneously we associate plant-specific leaf keypoints to
each plant to estimate its total leaf count (#) in complex scenes.

performed by autonomous robots to ensure effective weed con-
trol and crop safety. For example, most weeds show the highest
susceptibility to herbicides at certain growth stages [17].
However, when applying postemergence herbicides it is also
important to consider the crop growth stage to avoid potential
crop injury [16]. Thus, agricultural robots must identify the
current state of the plant development to make informed
decisions.

Vegetative development stages such as the BBCH index [14]
are mainly defined by the number of leaves produced on the
main stem and the number of tillers on a plant (e.g., cereals),
or the number of nodes on a plant (broadleaf plants). Thus,
the leaf count is a key plant trait and is directly related to
the growth stage of the plant [3], its yield potential [32] and
proper herbicide timing [33]. Today, the vegetative stage is
obtained by manual inspection, typically sampled at a subset
of locations in the field. By contrast, automating this process
allows for a more frequent assessment on a large scale in
less time to support plant breeders and precision farming on
agricultural fields.

In this paper, we address the problem of robotic in-field
analysis based on images to derive information about the veg-
etative stage of each plant using leaf information. Combining
such an approach with unmanned aerial vehicles or ground
robots allows for analyzing breeding plots and agricultural
fields on a large scale at a high time resolution. Using
data from the field instead of the laboratory is important
for phenotyping since the phenotype is a result of genetic
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expression, environmental influences, and field management.
The main contribution of this work is a single-stage object

detection approach based on CenterNet [7] that can jointly
localize crops and weeds and detect plant-specific leaf key-
points using images. Our approach is applicable to real-world
field data, see Fig. 1, and provides leaf counts for every plant
in the field. It shows superior performance with respect to
an alternative state-of-the-art two-stage approach based on
Mask R-CNN [12].

In sum, we make the following four key claims. First, our
method is able to accurately detect crops and weeds without
relying on expensive anchor-based frameworks. Second, it si-
multaneously detects leaf keypoints associated with individual
plants enabling per plant leaf counts in complex scenes with
overlapping plants. Third, in contrast to related methods, we
do not rely on any a priori assumption about the number of
keypoints associated with each object. Fourth, this allows for
the computation of relevant basic phenotypic traits on real-
world field data in an automated fashion, e.g., to support plant
breeders and precision farming on agricultural fields.

II. RELATED WORK

The development of vision-based systems for plant clas-
sification [27], detection [24] and extraction of morpholog-
ical plant traits [9] has made significant progress in recent
years. Some approaches rely on a set of handcrafted fea-
tures [34], but more recent methods use convolutional neural
networks (CNNs), which learn features directly from labeled
image data [28].

Crop-Weed Classification/Segmentation. In the context of
crop-weed classification, several vision-based approaches have
been proposed [2], [23]. Lottes et al. [25] propose a two-
stage approach to distinguish crops and weeds in the field
based on RGB and near infra-red (NIR) images. They identify
vegetation using NIR images followed by a random forest
classifier based on a set of handcrafted features.

In contrast, more recent methods use CNNs to distinguish
crops and weeds. Milioto et al. [27] perform real-time classifi-
cation of sugar beets and weeds by detecting individual plants
as connected components and feed each of them to a CNN
to predict the plant type. McCool et al. [26] employ model
compression on a complex CNN to conduct an ensemble
of lightweight CNNs to address the task of crop and weed
segmentation. Lottes et al. [23] perform end-to-end semantic
segmentation to detect crops and weeds as well as stem
positions based on RGB and NIR images to enable farming
robots to apply selective weed treatment. Unlike our approach,
they propose a pixel-wise semantic classification of the entire
image but do not detect individual plants as an instance
itself, which is necessary to predict phenotypic traits of single
plants. Bargoti et al. [2] develop an image-based fruit detection
system to support yield mapping and robotic harvesting. Their
approach is based on Faster R-CNN [29], a two-stage object
detection framework, to localize each fruit by its bounding
box.

Leaf Counting. In contrast to the above-mentioned ap-
proaches, current leaf counting methods are mainly conducted

in laboratory environments [30] based on cropped images
or 3D models of single plants but are often not applied in
real agricultural fields. Aksoy et al. [1] propose a clustering
algorithm to extract leaves in NIR images of single plants.
Since the output given by the clustering approach splits one
leaf into more than one segment and may contain noisy regions
they merge initial segments based on a leaf-shape descriptor
represented by the convex hulls of segments. Kumar et al. [18]
present a graph-based algorithm to segment leaf regions in
enhanced HSV images of single plants. Given the assumption
of round leaves, they predict the total count by applying
a circle Hough transform. In contrast, Golbach et al. [11]
propose a segmentation method based on a flood-fill algorithm
to identify leaves from 3D models of single plants, which
enables them to measure the area of singles leaves.

More recent methods use deep neural networks for leaf
count estimation. The approach by Itzhaky et al. [15] computes
the number of leaves from multiple image scales of single
plants accounting for cases of small and large leaves using a
feature pyramid network [20]. They predict a heatmap of leaf
keypoints and feed this map to a non-linear regression model
to estimate the total leaf count. Shi et al. [31] propose a multi-
view 3D segmentation approach to segment point clouds of
single tomato seedlings acquired in a laboratory setting into
leaves, stems, and nodes. They project predictions of a neural
network applied to multiple 2D images into a 3D point cloud
to eliminate errors and improve performance.

In contrast, our proposed pipeline bridges the gap of sepa-
rate crop-weed detection and leaf counting by performing both
tasks simultaneously in an end-to-end manner on images of
agricultural fields. This task is more challenging in comparison
to laboratory settings since different plants may overlap. Our
method enables high-throughput phenotyping on real-world
field data and can be integrated into an autonomous robotic
platform.

Our approach is related to the task of human pose estimation
proposed by Zhou et al. [35]. They predict the bounding
box of each person in an image and simultaneously estimate
the location of each joint via heatmaps and offsets to its
corresponding center point. However, their method relies on a
fixed number of keypoints for each object, which is assumed
to be known a priori. This assumption is not valid for plants
since the number of leaves per plant is highly variable. In
contrast, our approach is able to associate a varying number
of leaf keypoints to each plant to account for different plant
growth stages.

III. OUR APPROACH

The main objective of our work is to enable agricultural
robots to detect and simultaneously distinguish crops and
weeds and estimate their leaf count in order to assess the veg-
etative development of single plants in an automated fashion.
We propose a vision-based approach for the joint processing
of crop-weed detection and leaf count estimation based on a
fully convolutional neural network (FCN) [22].

Given an image of the field, we feed it to a feature pyramid
network (FPN) [20] using a ResNet18 model [13] pre-trained
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Fig. 2. Network architecture used for joint crop weed detection and leaf count estimation. We predict the bounding boxes of crops (green) and weeds (red)
based on CenterNet and simultaneously detect the location of leaf keypoints via heatmaps, which depth-dimension encodes crops and weeds. Additionally,
we predict embeddings for all leaf keypoints to associate each to an individual plant on the field to estimate its total leaf count. (Best viewed in color.)

on ImageNet [6] to construct a high resolution semantic feature
volume. We use the output of the FPN to first detect the
bounding boxes of crops and weeds using an FCN based on
the recently proposed CenterNet [7] approach (Sec. III-A).
We designed a new version of CenterNet, which allows us
to jointly detect plant-species-specific keypoints inside each
leaf (Sec. III-B) and associate them to each detected in-
stance (Sec. III-C), enabling us to finally determine the total
leaf count of individual crops and weeds, see Fig. 2.

A. Crop-Weed Detection

The backbone of our proposed network is CenterNet [7],
which detects each object as a triplet of keypoints, i.e., its
top-left corner, bottom-right corner, and center point.

This object detection pipeline predicts the location of all
object’s top-left and bottom-right corners in an image and
determines corresponding pairs that belong to the same object
to compute bounding boxes. To reduce the number of false
positive detections CenterNet additionally detects the center
points of each object’s bounding box and preserves only those
previously determined boxes which contain a center point
inside a defined central region.

To predict the corner locations, the network computes two
heatmaps of top-left and the bottom-right corners for all crops
and weeds separately. Those heatmaps contain high confidence
scores at corner locations, see Fig. 3. Simultaneously, the
network estimates the location of all center points in an image
by an additional heatmap for both categories.

As a result of down-sampled heatmaps, a remapping of the
detected corner and center coordinates to the input image leads
to coarse predictions. To alleviate this problem, the network
additionally predicts offsets for all corners and centers for
more precise localization of these points.

To match corresponding corners from the same object, the
network also computes an embedding vector for each corner
in the heatmaps. We train the network with the objective of
preserving small distances between embeddings of the same
object, and large distances for different instances. Thus, we
associate top-left and bottom-right corners of the same object
by computing their distance in an automated post-processing
step on top of the network predictions.

Post-processing. To generate bounding boxes from the
heatmaps, embeddings, and offsets, an automated post-
processing procedure after the CNN is applied. First, we adopt
non-maximum suppression (NMS) by using a max pooling
layer with kernel size kNMS on the heatmaps and keep only
those keypoints whose value is identical to its original value to
remove redundant corners and centers. Second, we select the
top-k predictions of each heatmap according to the confidence
score. Third, we shift the selected top-left (tl) and bottom-right
(br) corners as well as center points by their corresponding
offsets. Finally, we pair selected corners if the L1-distance of
their associated embeddings is less than a predefined threshold
θco to determine bounding boxes. During pairing, we only
consider corners of the same category where xbr > xtl and
ybr > ytl. Note that each top-left corner has a maximum of
jmax related bottom-right corners and vice versa selected by
shortest distance.

Quantitative results, however, suggest a high rate of false
positive predictions, since visual patterns inside bounding
boxes are not exploited by corners [7]. This problem is solved
by including the adjusted center point predictions. First, each
previously generated bounding box is associated with a scale-
aware center region, see Fig. 3. A bounding box is valid if and
only if a center point of the same category is detected within
this region, otherwise it is discarded. We keep only those boxes
whose associated triplet of keypoints have each a confidence
score higher than a predefined threshold θscore. Finally, we
compute the confidence score of an object by averaging the
predicted confidence scores of its triplet.

B. Leaf Keypoint Detection

Simultaneously to the aforementioned object detection
pipeline, we predict morphological plant traits of each detected
plant, i.e., its total number of leaves and their location. We
propose a counting by detection approach, detecting leaf
keypoints encoded in a 2-channel heatmap of size H×W,
where H and W specify the height and width accordingly.
Each channel predicts confidence scores of crop and weed leaf
keypoints separately, due to different visual appearance. Thus,
we encode the location of plant-species-specific leaf keypoints
in each channel, shown as white circles in Fig. 2.
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Fig. 3. The network predicts heatmaps, encoding the location of corners and centers (not shown) of bounding boxes. An additional heatmap estimates the
location of leaf keypoints. For each detected corner and leaf keypoint we predict an embedding vector to associate pairs of the same plant. Thus, we match
top-left and bottom-right corners based on their distance to compute bounding boxes and assign each leaf keypoint to a specific plant based on its embedding
as well. We visualize associative embeddings of the same plant in uniform colors. Here we show only the predictions of crops.

During training, we create a map of weights w of size
2×H×W with unnormalized, isotropic 2D Gaussians, i.e.,
exp

(
− 1

2 (∆x2 + ∆y2)σ−2
LK

)
, placed at each ground truth leaf

keypoint to reduce the penalty given to negative locations close
by the desired location. Let ∆x and ∆y be the offsets between
the desired location to each pixel in the map w. We choose a
fixed radius rLK for each 2D Gaussian such that nearby leaf
keypoints do not intersect within the interval defined by rLK
and set σLK = 1

3rLK. Thus, we argue that predictions close to
their desired ground truth location might still detect a valid
leaf keypoint. Given the predicted heatmap, we apply a per-
pixel sigmoid and define Lleaves

det as a variant of focal loss [19],
[21] to encounter class imbalance:

Lleaves
det = − 1

NL

2∑
c=1

H∑
i=1

W∑
j=1

wβt (1− pt)γ log (pt) , (1)

with

pt =

{
pcij if ycij = 1

1− pcij otherwise
, wt =

{
wcij if ycij = 1

1− wcij otherwise
,

where NL is the total number of leaves in an image. Let
pcij ∈ [0, 1] be the model’s estimated probability for a leaf
keypoint at location (i, j) in the c-th channel encoding crops
or weeds respectively and ycij ∈ {0, 1} is the ground-truth
category. We set the hyperparameters γ and β to 2 and 4
following Duan et al. [7], where β controls the penalty given
to negative locations nearby the ground truth leaf keypoint.

We initialize the biases of all convolutional layers to
zero expect for the final layer, which we initialize to
b = − log((1− 0.01)/0.01) due to class imbalance [21]. Thus,
the probability of positive samples is small compared to those
of negative samples in the first iterations of training to optimize
a smaller and more stable loss.

C. Associating Leaf Keypoints

In laboratory settings, plants are observed instance-wise and
therefore detection of leaf keypoints is in general sufficient
to count the number of leaves [10], [15]. However, these
approaches fail in real-world fields, since each image contains
multiple plants that may even overlap, see Fig. 4. To associate
each detected leaf keypoint to a specific plant on the field we
additionally predict embedding vectors for each leaf keypoint
and train the network with the objective of preserving small
distances to their associative pair of top-left and bottom-right
corner. Thus, we can assign each detected leaf keypoint to
an individual plant by distance based on an automated post-
processing procedure, see Fig. 3.

We achieve this objective by the following proposed cluster-
ing loss function. We separate our loss function into two parts.
First, we pull spatial embeddings of leaf keypoints belonging
to the same instance:

Lleaves
pull =

1

P

P∑
k=1

1

NP

NP∑
i=1

(ētb,k − eLi,k)
2
, (2)

where P is the total number of plants in the image and NP is
the number of leaves associated with each plant. Let ētb,k be
the average embedding of the top-left and bottom-right corner
of the k-th plant and eLi,k be the embedding of the i-th leaf
keypoint associated with this plant.

Second, we push apart spatial embeddings of leaf keypoints
belonging to different instances and leaf keypoints to non-
associative pairs of top-left and bottom-right corner:

Lleaves
push =

1

P (P − 1)

P∑
k=1

P∑
j=1
j 6=k

δleaves + δtb, (3)
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Fig. 4. Example of different leaf counting approaches. Left: Estimating the
total number of leaves by counting the predicted leaf keypoints (blue circles)
within an object’s bounding box. However, this method fails in the case of
overlapping plants in real agricultural fields. Thus, we associate each predicted
leaf keypoint to an object’s top-left and bottom-right corner via embeddings.
This allows us to discard leaf keypoints that belong to different plants (red
triangles) to ensure more accurate leaf counts (#).

with

δleaves = max (0,∆− |ēL,k − ēL,j |) , (4)

δtb = max (0,∆− |ēL,k − ētb,j |) , (5)

where ēL,k is the average embedding of all leaf keypoints
associated with the k-th object in the image. The objective
Lleaves

push is high if the embedding L1-distance of different objects
is smaller than ∆. By minimizing this loss we push apart
embeddings of non-associative objects in feature space.

We do not predict offsets for leaf keypoints, since their exact
location is not required for the task of counting.

Post-processing. To assign each detected leaf keypoint to an
individual plant, an automated post-processing procedure after
the CNN is applied. First, we apply NMS on the predicted
heatmap to prevent over-counting keypoints as described in
Sec. III-A and select its top-n predictions by score. For
each leaf keypoint, we compute the L1-distance between its
corresponding embedding and the averaged embedding pair of
top-left and bottom-right corner for each bounding box. We
assign a leaf keypoint to its nearest neighbor if the distance is
less than a predefined threshold θleaf. Furthermore, we discard
leaf keypoints associated with a plant of a different category
or if it is not within the bounding box. Finally, we compute
the total number of leaves per plant by counting its associated
leaf keypoints, as illustrated in Fig. 4.

IV. EXPERIMENTAL EVALUATION

The experiments show the capabilities of our method and
support our claims made in the introduction that our system
accurately detects crops and weeds without relying on expen-
sive anchor-based frameworks and simultaneously detects leaf
keypoints without any a priori assumptions which we associate
to specific plants to determine per plant leaf count in complex
scenes with overlapping plants in agricultural fields.

A. Experimental Setup

We evaluate on images of a sugar beet field located near
Stuttgart in Germany. The dataset contains 705 images of
sugar beets and different weed types in a variety of growth
stages with a size of 2048× 1536 px and a ground sampling
distance of 0.7 mm

px . The image data was recorded with an

TABLE I
STATISTICS OF OUR TEST DATASET

all small (S) medium (M) large (L)

su
ga

r
be

et
s count 1782 32 187 1563

min leaves 1 1 1 1
max leaves 16 3 8 16
max IoU 0.32 0.13 0.23 0.32

w
ee

ds

count 836 239 457 140
min leaves 1 1 1 1
max leaves 44 5 10 44
max IoU 0.17 0.14 0.17 0.14

agricultural robot equipped with a Manta G-319 GigE cam-
era mounted in nadir view with an additional triple band-
pass filter. Note that the bandpass filters maps green, red
and NIR. We determine the development under different
plant sizes subdividing into them into small (area < 5 cm2),
medium (5 cm2 ≤ area < 45 cm2) and large (area ≥ 45 cm2),
see Tab. I. In the following, they are denoted with S, M, and
L, respectively. For the training of our network, we use 70 %
of the entire dataset and 10 % to validate the hyperparameters.
To evaluate the final metrics, we rely only on the remaining
test portion.

We evaluate the performance of our crop-weed detection in
terms of average precision (AP) and average recall (AR) [8],
calculated across both categories and on a per-category basis
by setting the threshold for intersection over union (IoU) with
ground truth bounding boxes at different levels for each of
the above-mentioned object scales, i.e., IoU ∈ [0.5, 0.95] with
step size 0.05. To evaluate leaf count performance, we follow
the evaluation metrics proposed by Scharr et al. [30]:

• Difference in Count (DiC): mean and standard deviation
of the difference between actual and predicted count.

• Absolute Difference in Count (aDiC): identical to DiC
but instead computes the absolute value.

• Percentage Agreement (Pa): number of times the pre-
dicted count matches the actual count with Pa ∈ [0, 1].

We also introduce the metric Pa±1 that allows a mismatch
of one leaf between prediction and ground truth. For false
positive detections, we use a ground truth leaf count of zero.

As a baseline, we provide comparisons with the popular
state-of-the-art Mask R-CNN [12] framework for the task of
object instance segmentation in two stages. We adopt this
approach to our task, such that it is most comparable to our
proposed method and can perform the same predictions.

First, a set of reference boxes with predefined sizes and as-
pect ratios serves as detection candidates. In the second stage,
each positive box is refined and assigned to a set of categories.
Simultaneously, Mask R-CNN predicts a 28× 28 px binary
semantic mask for each object.

For a comparison with our approach, we need to extract the
total leaf count per plant from each binary mask. Thus, we
encode each leaf keypoint in an object’s ground truth mask,
which allows us to estimate its total leaf count at inference by
applying a simple post-processing procedure. This representa-
tion of leaves is commonly used for this task [30], [15] and
is similar to our heatmap of leaf keypoints.

For training, we create a binary mask for each plant where
its ground truth leaf keypoints are encoded with a fixed
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Fig. 5. Qualitative results of our approach (top row) and Mask R-CNN (bottom row). We show magnified views of our results to improve visibility. We
predict the location of crops (green) and weeds (red) by their bounding boxes. Leaf keypoints associated with the same plant share the same color as well as
its related total leaf count (#). Left: Our approach achieves a more accurate leaf count estimation for crops. Leaves that are not detected are marked with red
triangles. Middle: We observe the same effect for weeds, which are characterized by a more heterogeneous visual appearance. Right: Our approach is more
robust in complex scenes where bounding boxes of different instances overlap and associates leaf keypoints correctly. (Best viewed in color).

radius rLK. We choose rLK = 2 px such that nearby leaves
do not intersect to avoid an under-counting of the total leaf
count per plant. Thus, the binary mask of each plant is defined
analogously to our heatmap of leaf keypoints and is well suited
for the task of counting. We define the mask loss as a variant
of focal loss, see Eq. (1).

For inference, we resize each predicted mask and binarize
it at a confidence threshold of 0.5. Finally, we apply a dilation
to merge fragmented leaf keypoints and extract the total leaf
count per plant by computing its connected components.

B. Training and Testing Details

During the training of our approach, we use data augmenta-
tion to reduce overfitting by horizontally and vertically flipping
the original image. The radius rLK of 2D Gaussians is set
to 2 px. We define a weighted multi-task loss function:

L = αdetLdet + βclusterLcluster + γoffLoff, (6)

Ldet = Lco
det + Lce

det + Lleaves
det , (7)

Lcluster = Lco
pull + Lco

push + Lleaves
pull + Lleaves

push , (8)

Loff = Lco
off + Lce

off, (9)

composed of the focal losses in Ldet to detect corner (co),
center (ce) and leaf keypoints of all objects as well as the
clustering losses Lcluster with the objective of small distances
between associative embeddings. We set the L1-distance
threshold of non-associative embeddings in feature space to
∆ = 1 in all experiments. The smooth L1 losses in Loff train
the network to adjust coarse locations of corner and center
predictions due to down-sampled heatmaps. We set the weights
of the composed loss function L to αdet = 1, βcluster = 0.25,

and γoff = 1. The dimension D of our embedding vectors is
set to 16 in all experiments. For details of corner and centers
losses, we refer to Law et al. [19]. To optimize the multi-task
loss, we use Adam and set the learning rate to 5× 10−4 with
a epoch-wise decay of 0.995 and train for 512 epochs with
a batch size of 2. We set weight decay to 1 × 10−4 and use
dropout with p = 0.1 in the FPN.

For inference, we first apply NMS with kNMS = 3 on all
predicted heatmaps. Next, we select top 50 center points, top-
left, and bottom-right corners as well as top 250 leaf keypoint
predictions by confidence score, which we previously denoted
as top-k and top-n respectively. We associate a pair of corners
if the distance of their corresponding embeddings is less than
θco = 0.95, whereby each top-left corner has a maximum
of jmax = 1 related bottom-right corners and vice versa.
Additionally, we define scale-aware center regions for small,
medium, and large boxes as proposed by Duan et al. [7]. Thus,
the center region of a small box is identical to its bounding
box while we assign tighter regions to medium and large boxes
to reduce the rate of false positives. Finally, we keep only
boxes that contain a center point within their center region and
where for each keypoint of its triplet θscore > 0.5. To associate
a leaf keypoint with θscore > 0.5 to its related instance, we
compute the distances to all averaged top-left and bottom-
right corner embeddings of valid bounding boxes and assign
it to the nearest neighbor of the same category if the distance
is less than θleaf = 0.95.

We test our approach on a NVIDIA GTX 1080 and ob-
tain an average inference time of 200 ms per image and
for Mask R-CNN 250 ms.
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TABLE II
OBJECT DETECTION PERFORMANCE OF OUR APPROACH IN COMPARISON WITH STATE-OF-THE-ART METHOD MASK R-CNN.

Approach AP AP50 AP75 APS APM APL ARS ARM ARL

Ours (mean average) 56.5 72.5 61.8 19.4 50.1 48.6 27.4 57.4 51.7
Mask R-CNN (mean average) 47.2 80.0 48.4 17.6 35.6 43.7 29.6 46.9 50.8

Ours (crop) 71.4 82.0 76.0 5.2 48.5 75.0 12.9 56.5 77.7
Mask R-CNN (crop) 62.2 92.0 72.4 8.1 32.8 65.5 20.8 45.5 73.5

Ours (weed) 41.5 63.0 47.6 33.7 51.7 22.2 41.5 58.3 25.7
Mask R-CNN (weed) 32.2 68.1 24.3 27.2 38.5 21.8 38.3 48.3 28.0

TABLE III
DIFFERENCE IN LEAF COUNTING OF OUR APPROACH IN COMPARISON WITH STATE-OF-THE-ART METHOD MASK R-CNN. NOTATION: MEAN (STD.).

Approach DiC DiCS DiCM DiCL aDiC aDiCS aDiCM aDiCL

Ours (crop) 0.20 (1.69) -0.50 (0.63) -0.25 (0.56) 0.26 (1.77) 1.16 (1.24) 0.64 (0.48) 0.33 (0.52) 1.26 (1.27)
Mask R-CNN (crop) 2.26 (2.20) -0.67 (0.67) -0.08 (0.83) 2.63 (2.12) 2.54 (1.88) 0.67 (0.67) 0.57 (0.61) 2.84 (1.83)

Ours (weed) 0.04 (1.64) 0.24 (1.17) 0.02 (1.28) -0.48 (3.83) 0.99 (1.31) 0.89 (0.80) 0.82 (0.99) 2.59 (2.86)
Mask R-CNN (weed) 0.19 (2.85) -0.46 (1.42) 0.06 (1.34) 2.50 (6.82) 1.47 (2.45) 1.15 (0.96) 0.93 (0.97) 4.81 (5.44)

TABLE IV
PERCENTAGE OF AGREEMENT IN LEAF COUNTING OF OUR APPROACH IN COMPARISON WITH STATE-OF-THE-ART METHOD MASK R-CNN.

Approach Pa PaS PaM PaL Pa ± 1 PaS ± 1 PaM ± 1 PaL ± 1

Ours (crop) 0.33 0.35 0.69 0.29 0.70 1.00 0.97 0.67
Ours (crop - heatmap only) 0.28 0.35 0.66 0.24 0.65 1.00 0.97 0.60
Mask R-CNN (crop) 0.13 0.44 0.48 0.07 0.35 0.88 0.96 0.26

Ours (weed) 0.41 0.35 0.46 0.26 0.77 0.78 0.80 0.48
Ours (weed - heatmap only) 0.41 0.35 0.46 0.26 0.77 0.78 0.80 0.48
Mask R-CNN (weed) 0.32 0.28 0.40 0.06 0.68 0.66 0.77 0.31

C. Performance on Crop-Weed Detection

The first experiment supports the claim that our approach
accurately detects crops and weeds of different growth stages
and is superior to state-of-the-art two-stage approaches. In
Tab. II we show test set results for the evaluated approaches.
The results show that we achieve a higher detection perfor-
mance most importantly for value crops. We report a test
AP of 71.4 % considering crops of all object area ranges, an
improvement of 9.2 percent points over 62.2 % obtained by
Mask-RCNN. Our approach suggests a lower rate of incorrect
predictions across medium (48.5 %), and large (75.0 %) crops
as well as an higher AR. This difference is critical for precision
farming to predict yield potential. In terms of weed detection,
we achieve an AP improvement from 32.2 % to 41.5 % and an
improved AR across small and medium area ranges. This is
highly relevant for weed treatment in the early growth stages.

D. Performance on Leaf Count Estimation

In this experiment, we show the capability of our approach
to estimate leaf count for in-field phenotyping of crops and
weeds, see Fig. 5. In Tab. III and Tab. IV we show that
our method outperforms Mask R-CNN in this task for high
value crops. We achieve a Pa of 33 % for crops across all
area ranges, an improvement of 20 percent points over 13 %
reported by Mask R-CNN. We also argue that a count offset
of one leaf is within the accuracy of a manual inspection
and evaluate our predictions based on this metric. The high
increase of performance in Pa ± 1 for small crops (from
35 % to 100 %) relates to the fact that those plants have
only a few leaves per se, see Tab. I. Our network also

shows superior performance for later growth stages of medium
(97 %) and large crops (67 %) in contrast to Mask R-CNN
(96 % or 26 %) allowing for a more accurate monitoring and
determination of growth stages of individual plants. Those
results are supported in terms of aDiC for high value crops
achieving a smaller mean in aDiC of (1.16) with a higher
precision (1.24) opposed to Mask R-CNN (2.54 or 1.88).
Contrarily, different weed types are characterized by a more
heterogeneous visual appearance with many leaves leading to a
drop in performance, especially for large weeds. We still obtain
a lower mean in aDiC of 2.59 for large weeds in comparison
with Mask R-CNN (4.81) with higher precision.

E. Ablation Study

Estimating the leaf count based on associative embeddings
is a key component of our approach to deal with overlapping
leaves of different plants. To demonstrate its contribution, we
provide a comparison to a leaf count method, which is only
based on the leaf keypoint heatmap but with the same hyperpa-
rameters (Tab. IV). For each predicted bounding box we count
the total number of leaf keypoints inside but reject keypoints of
different categories (Fig. 4). The results of our approach show
an improvement for crops across medium and large object area
scales in terms of PaM and PaL demonstrating the importance
of associative embeddings. Crops at those growth stages are
characterized by a high IoU (Tab. I) and thus more likely to
contain leaves of different plants within their bounding box.
We see the highest increase of 7 percent points (from 60 % to
67 %) in terms of Pa ± 1 for large crops, which accordingly
have the highest IoU. Furthermore, small crops and weeds
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across all area scales are characterized by a lower IoU in our
dataset (Tab. I) and thus are less likely to contain leaves of
different plants within their bounding box. Their leaf count
performance is not affected by using associative embeddings.
Our results convey that using associative embeddings increases
the leaf count performance of overlapping plants but does not
affect the performance of plants with little or no overlap.

V. CONCLUSION

In this paper, we presented a novel approach to analyze
plant development in complex scenes on agricultural fields.
Our system uses camera images as inputs to predict the
bounding boxes of crops and weeds as well as leaf keypoints
associated with each plant to estimate its leaf count. These
parameters are commonly used to describe vegetative stages.
Thus, our approach provides plant breeders with the ability
to assess phenotypic traits in an automated fashion more
frequently, objectively, and on a large scale in comparison
with conventional, manual methods. In contrast to related
methods, which predict additional keypoints for each object,
our approach does not rely on any a priori assumption about
the number of keypoints associated with each object and is
thus well suited for the task of per plant leaf count esti-
mation. We implemented and thoroughly tested our approach
on data from a real agricultural field. Our experiments show
that our approach achieves superior performance with respect
to a Mask R-CNN-based approach on complex scenes with
overlapping plants in different growth stages.
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[35] X. Zhou, D. Wang, and P. Krähenbühl. Objects as Points. arXiv preprint,
2019.


