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Abstract— Efficient aerial data collection is important in
many remote sensing applications. In large-scale monitoring
scenarios, deploying a team of unmanned aerial vehicles (UAVs)
offers improved spatial coverage and robustness against indi-
vidual failures. However, a key challenge is cooperative path
planning for the UAVs to efficiently achieve a joint mission
goal. We propose a novel multi-agent informative path planning
approach based on deep reinforcement learning for adaptive
terrain monitoring scenarios using UAV teams. We introduce
new network feature representations to effectively learn path
planning in a 3D workspace. By leveraging a counterfactual
baseline, our approach explicitly addresses credit assignment
to learn cooperative behaviour. Our experimental evaluation
shows improved planning performance, i.e. maps regions of
interest more quickly, with respect to non-counterfactual vari-
ants. Results on synthetic and real-world data show that our
approach has superior performance compared to state-of-the-
art non-learning-based methods, while being transferable to
varying team sizes and communication constraints.

I. INTRODUCTION

Efficient aerial data collection is crucial for mapping and
monitoring phenomena on the Earth’s surface. Unmanned
aerial vehicles (UAVs) provide a flexible, labour-, and cost-
efficient solution for remote sensing applications such as pre-
cision agriculture [1–3], wildlife conservation [4], and search
and rescue [5, 6]. For monitoring large terrains, replacing a
single UAV with a multi-UAV system can improve spatial
coverage, versatility, and robustness to individual failures at
lower overall cost [7]. However, to fully unlock its potential,
a key challenge is planning UAV paths cooperatively in com-
plex environments, given on-board constraints on runtime
efficiency and communication.

This paper addresses active data collection using a team
of UAVs in terrain monitoring scenarios. Our goal is to
map an initially unknown, non-homogeneous binary target
variable of interest on a 2D terrain, e.g. crop infestations
in an agricultural scenario or to-be-rescued victims in a
disaster scenario, using image measurements taken by the
UAVs. We tackle the problem of multi-agent informative path
planning (IPP): we plan information-rich paths for the UAVs
to cooperatively gather sensor data subject to constraints on
energy, time, or distance. Our motivation is to allow the
UAVs to adaptively monitor the terrain in areas of interest
where information value is high.

Traditional approaches for data collection are non-adaptive
and rely on static, predefined paths. In multi-UAV coverage
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Fig. 1: Our RL-based approach applied in a multi-UAV surface
temperature mapping scenario. The UAVs take images of the terrain
(white transparent) and communicate them (grey dashed arrows).
Based on locally available information, each UAV decides from a
set of actions (orange arrows) where to take the next measurement.
Inset image: resulting trajectories for 4 deployed UAVs (different
colours). By planning paths cooperatively, our approach enables
adaptively mapping warm (red) areas of interest on the field.

path planning [8], the terrain is equally partitioned and a
sweep pattern is assigned to each UAV. The main drawback
of such methods is that they assume uniformly distributed
target variables of interest, e.g. anomalies, hotspots, victims,
and do not allow for targeted inspection of specific areas.
To address this, IPP methods [1, 9–13] have been proposed
enabling online decision-making based on incoming informa-
tion. However, the runtime of these strategies usually scales
exponentially with the planning horizon, since they rely on
evaluating many candidate paths online. In team scenarios,
reasoning about the other UAVs’ behaviours causes the
number of evaluations to further grow exponentially with
the team size, which leads to intractable runtime complexity.

Reinforcement learning (RL) has emerged as a popular
approach for efficiently learning online decision-making in
robotics [11–16]. Recent works apply RL for single-agent
IPP to enhance path quality and computation time for
adaptive data collection [11, 14, 17, 18]. However, learning
informative paths for multiple cooperating agents remains an
open challenge. First studies show promising results [12, 13],
but are limited to 2D action spaces and do not address the
credit assignment problem [19], i.e. how much each agent
contributes to the overall team performance, which adversely
impacts cooperation capabilities.

The main contribution of this paper is a novel multi-
agent deep RL-based IPP approach for adaptive terrain
monitoring scenarios using UAV teams. Bridging the gap
between recent advances in RL and robotic applications,
we build upon counterfactual multi-agent policy gradients
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(COMA) [20] to explicitly address the credit assignment
problem in cooperative IPP. Our approach supports de-
centralised on-board decision-making and achieves coop-
erative 3D path planning with variable team sizes. We
show that (i) our designed network input representations are
effective for multi-agent IPP in 3D action spaces; (ii) our
COMA-based algorithm accounts for credit assignment re-
sulting in improved planning performance; and (iii) our RL-
based approach improves planning performance compared
to non-learning-based methods across varying team sizes
and communication constraints without re-training. To back
up these claims, we demonstrate the performance of our
approach using synthetic and real-world data in a thermal
hotspot mapping scenario. We will open-source our code at:
https://github.com/dmar-bonn/ipp-marl.

II. RELATED WORK

Our work brings together multi-robot IPP for autonomous
data collection and advances in multi-agent RL. This section
overviews relevant literature for both, distinguishing between
single- and multi-robot settings.

Informative path planning has been widely studied for
efficient data gathering using autonomous robots [1, 2, 9, 11–
13, 17, 21]. Non-adaptive coverage planners [8] monitor a
terrain exhaustively based on pre-defined paths. In contrast,
we focus on adaptive strategies replanning paths online based
on incoming sensor data. Hollinger et al. [9] study the benefit
of adaptive online replanning to maximise the information
value of sensor measurements given a limited mission bud-
get for single-vehicle underwater inspection tasks. Recent
works [21, 22] propose optimisation-based IPP methods
for single-UAV monitoring. However, these methods require
computationally costly evaluations of candidate paths’ ex-
pected information value. Extending them naı̈vely to multiple
UAVs yields exponentially scaling complexity which restricts
applicability to online applications.

Deploying cooperative robotic teams is beneficial for
monitoring tasks over large terrains such as post-disaster
assessment [5, 6] and precision agriculture [1–3]. We focus
on decentralised planning strategies, where robots make
locally informed decisions on-board to enable robustness to
individual failures and scalability with the team size. Best
et al. [23] introduce a decentralised variant of Monte Carlo
tree search over a joint probability distribution of action
sequences to plan individual paths for active perception.
Similar to our multi-UAV setup, Albani et al. [1] and Carbone
et al. [2] propose methods for monitoring areas of interest in
crop fields. The former use biology-inspired swarm behavior
for adaptive IPP. Despite promising results, their method
relies on manual problem-specific parameter tuning.

An alternative line of work leverages learning-based meth-
ods for active data collection. Following the paradigm of
centralised training and decentralised policy execution, Li
et al. [24] learn inter-robot communication policies to ex-
change local robot information. Tzes et al. [10] propose
a more general multi-robot framework relying on graph
neural networks. Both approaches are trained via supervised

imitation learning and require an expert to learn from. We
learn the desired team behaviour using deep RL, which
enables flexible, foresighted planning in various applications.

Reinforcement learning (RL) is increasingly utilised in
robotics and UAV applications [11, 14, 17, 18, 25]. Pirinen
et al. [25] introduce a strategy for finding an unknown goal
region using a UAV based on limited visual cues. Recently,
RL has also been applied to IPP to efficiently replan robotic
paths online. Chen et al. [14] develop a graph-based deep
RL method for exploration, selecting map frontiers that
reduce map uncertainty and travel time. However, their
approach is limited to 2D workspaces, while we consider
3D planning. Other works reward agent actions that lead to
high information gain [18] and map uncertainty reduction
in target regions [17]. In a similar problem setup to ours,
Rückin et al. [11] propose an IPP method combining deep
RL and sampling-based planning for adaptive UAV terrain
monitoring in 3D workspaces. Naı̈vely extending single-
agent algorithms to multi-agent setups incurs exponentially
growing complexity with the number of agents.

Multi-agent RL for IPP is a relatively unexplored research
area. Existing approaches for cooperative team applications
do not account for the credit assignment problem [19], i.e. do
not discriminate the contribution of one agent to the overall
team performance. Most works address related applications
including navigation [15], target assignment [26], and cov-
erage planning [27]. Similar to us, Bayerlein et al. [13] pro-
pose a multi-agent RL-based IPP approach that maximises
harvested data without inter-agent communication. Viseras
and Garcia [12] allow agents to exchange information via a
communication module. Both works are limited to constant
UAV altitudes ignoring potentially varying sensor noise with
altitude. Recently, Luis et al. [16] proposed a deep Q-learning
algorithm that supports learning cooperation by penalising
redundant measurements based on the inter-UAV distance.
Their reward design is tailored to pure exploration instead
of adaptively monitoring areas of interest.

These works independently assign hand-engineered indi-
vidual agent rewards. Thus, they do not fully account for the
cooperative nature of IPP and require manual reward tuning.
In contrast, we propose a new approach solely relying on
generally applicable global rewards for the whole UAV team.
We adapt the counterfactual multi-agent (COMA) RL algo-
rithm [20] to active robotic data collection in 3D workspaces.
This way, we explicitly assign credit to individual agents
during training. Our experimental results emphasise the
need for explicit credit assignment to achieve cooperative
behaviour and verify that it improves IPP performance.

III. PROBLEM STATEMENT

We consider a team of homogeneous UAVs monitoring a
flat terrain. The goal is to plan information-rich UAV paths
on-the-fly as new measurements arrive to accurately and
efficiently map regions of interest on the terrain given a finite
mission budget. We briefly describe the general multi-agent
IPP problem, our mapping strategy, and how to quantify
information value for our RL approach.
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Fig. 2: Inter-UAV communication. The UAVs (filled circles) ex-
change their current measurements (square footprints) with each
other when closer than a limited communication range (black dotted
circle). Green and dotted red lines indicate in-range and out-of-
range communications, respectively. The UAVs use the received
measurements to update their local map states (top to bottom row).

A. Multi-Agent Informative Path Planning

We address the problem of multi-agent informative path
planning (IPP) optimising an information-theoretic criterion
I : ΨN → R+ over all N UAV paths ψ = {ψ1, . . . , ψN},
where Ψ is the set of all possible individual UAV paths:

ψ∗ = argmax
ψ∈ΨN

I(ψ), s.t. C(ψi) ≤ B ∀ i ∈ {1, . . . , N} . (1)

Each set of UAV paths ψ is composed of individual paths
ψi = (p0

i , . . . ,p
B
i ) ∈ Ψ of length B with 3D measurement

positions pti ∈ R3 in an equi-distant grid P of resolution
rP over multiple altitudes above the terrain. The function
C : Ψ → R+ maps a UAV path ψi to its associated
execution cost; in our work, a maximum number B ∈ N+

of measurements taken along a path ψi.

B. Terrain Mapping

The UAVs map the terrain by taking images using
downward-facing cameras. The image information is pro-
cessed, e.g. by semantic segmentation, communicated, and
fused into a terrain map. A measurement zti taken by UAV
i at time step t is a likelihood estimate projected onto
the flat terrain. We consider binary per-pixel classification
and sequentially fuse zti using probabilistic occupancy grid
mapping [28]. Each UAV i stores a local posterior map belief
Mi discretised into M grid cellsMj

i of resolution rM . The
altitude of the current measurement position pti determines
the mapped field of view and the mapping resolution. We
align rM with the mapping resolution at the lowest altitude
and upsample higher-altitude measurements to rM to fuse
heterogeneous mapping resolutions together in Mi. Similar
to Popović et al. [21], we leverage an altitude-dependent
sensor model specifying p(zti |M

j
i ,p

t
i) to update a UAV’s

local posterior map belief over each Mj
i at time step t.

Fig. 2 visualises the inter-UAV communication protocol.
All UAVs i send their measurements zti to another UAV k
and receive measurements ztk to update the individual local
map beliefs over Mi. UAVs i and k share measurements, if
‖pti − ptk‖2 ≤ D, where D ∈ R+ is a radius approximating

a range-limited communication channel. The communication
message contains the UAV identifier i, its position pti, and
its collected measurement zti . The receiving UAV k utilises
zti and pti to update its local map belief over Mk.

C. Utility Definition for Adaptive Terrain Monitoring
Our goal is to plan future measurement positions ψt+1

i =
(pt+1
i , . . . ,pBi ) for each UAV i at time step t from which

the next measurements {zt+1
i , . . . , zBi } maximally reduce

the uncertainty of the current posterior belief over a global
map M. The global map M contains measurements z0:t

i

taken by the N UAVs up to the current time step t. We
quantify the uncertainty reduction of a set of measurements
zt+1 = {zt+1

1 , . . . , zt+1
N } taken at the next time step t+1 by

computing the entropy reduction over M after fusing zt+1.
Then, the information criterion I(ψt+1) is computed as the
summed entropy reduction along paths ψt+1:

I(ψt+1) =

B−t−1∑
m=0

H(M| z0:t+m,p0:t+m)−

H(M| z0:t+m+1,p0:t+m+1) .

(2)

We consider adaptive mapping with one interesting target
class, i.e. one class that holds information value, and a com-
plement class. Thus, the map entropy H(M| z0:t,p0:t) at
time step t is weighted by the importances of the interesting
and the uninteresting classes:

H(M| z0:t,p0:t) =

M∑
j=1

H(Mj | z0:t,p0:t)

=−
M∑
j=1

W(Mj) p(Mj | z0:t,p0:t) log
(
p(Mj | z0:t,p0:t

)
+ W(Mj) p(Mj | z0:t,p0:t) log

(
p(Mj | z0:t,p0:t)

)
,
(3)

where p(Mj | z0:t,p0:t) = 1 − p(Mj | z0:t,p0:t). The im-
portance weighting W (Mj) is defined as:

W (Mj) =


w1 if p(Mj | z0:t,p0:t) > 0.5 ,

w2 if p(Mj | z0:t,p0:t) < 0.5 ,

0.5 else ,
(4)

where w1, w2 ≥ 0 and w1 + w2 = 1. The importance
weights w1, w2 encourage the UAVs to plan paths ψt+1

targeting potentially interesting regions according to the
current posterior map belief p(Mj | z0:t,p0:t).

IV. OUR APPROACH

We present our novel multi-agent RL-based IPP approach
for UAV teams. Our goal is to plan UAV paths in a 3D
workspace to achieve cooperative adaptive terrain mapping.
As shown in Fig. 3, we train agents offline based on
global terrain information using RL to learn UAV paths
in a centralised way. A key aspect is the integration of a
counterfactual baseline, allowing us to estimate each agent’s
mapping contribution to the overall team performance and
improve cooperation. During a mission, we leverage the
trained agent behaviour and deploy a fully decentralised
system to replan informative measurement positions online.
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Fig. 3: Overview of our approach. At each time step during a
mission, each UAV takes a measurement and updates its local
map state. The local map is input to an actor network, which
outputs a policy from which an action is sampled. During training,
a centralised critic network is additionally trained using global map
information and outputs Q-values for each action from the current
state, i.e. the expected future return.

A. RL for Sequential Decision-Making

We formulate the multi-UAV IPP task as a sequential
decision-making problem for a team of agents and train it
using RL. The UAVs execute missions, where at each time
step t each UAV i simultaneously plans its next measurement
position pt+1

i based on the current local on-board state ωti .
The local state ωti includes the local map belief Mi that
sequentially fuses past (communicated) measurements z0:t

encoding the measurement history. This way, we account for
partial observability induced by communication constraints
and noisy sensor measurements. At each time step, all UAV
actions, i.e. next measurement positions, define the joint
action ut = (ut1, . . . , u

t
N ) ∈ UN . The UAVs receive one

global team reward Rt : S × UN × S → R quantifying the
joint information value of mapped measurements zt+1 =
{zt1, . . . , ztN}. The discounted return Gt =

∑B−t
k=0 γ

kRt+k,
where γ ∈ [0, 1) is a discount factor, measures the infor-
mation value of the team’s paths from t until the mission
budget is spent. Although each UAV chooses actions in a
decentralised way, we evaluate the performance of the team
as a whole to enforce cooperative IPP behaviour.
State. The global environment state st ∈ S is defined as st =
{Mt,pt1:N , b}. Mt captures the current global map belief
p(M| z0:t

1:N ,p
0:t
1:N ), pt1:N are the current agent positions, and

b ≤ B is the remaining mission budget. st+1 is the next
state after the agents have moved to the next positions pt+1

1:N

reached by executing actions ut. Mt+1 is updated based on
measurements zt+1 taken at pt+1

1:N .
Actions. The agents move within a discrete position grid P,
bounded by the environment borders and discrete minimum
and maximum altitudes. Each UAV i selects an action ui
from a discrete 3D action space U containing movements
{up, north, east, south,west, down} with a fixed step size.
We prevent actions leading to movement outside of the envi-
ronment or UAVs having concurrent 2D terrain coordinates.
Reward. We explicitly design the reward function R to re-

flect the information criterion defined in Eq. (2) to adaptively
and quickly reduce map uncertainty in target areas:

Rt(st,ut, st+1) = α
H(Mt+1)−H(Mt)

H(Mt)
+ β . (5)

We reward the weighted map entropy reduction from the
current to the next map state Mt+1 after mapping new
measurements zt+1. We normalise the reward by the current
map entropy to keep its magnitude approximately constant
during the mission and apply affine scaling factors α and
β to improve training stability. Note that, for γ = 1, the
return Gt resembles the IPP criterion in Eq. (2) up to the
normalisation and scaling factors.

B. Algorithm

Our goal is to learn a policy enabling cooperative UAV
team behaviour for the adaptive monitoring task. To do this,
we build upon the COMA RL algorithm of Foerster et al.
[20] to our IPP application for UAV teams. COMA is an
actor-critic algorithm using a centralised critic network to
evaluate each agent’s behaviour, described by the policy
π(· |ωti) and parameterised by an actor network, and to
optimise the policy accordingly. The critic evaluates the
current policy π by estimating the agent’s i state-action
value Qπ

(
st, (ut1, . . . , u

t
i, . . . , u

t
N )
)

given the other agents’
actions ut−i. The critic network is trained on-policy via
TD(λ) [29] to estimate the discounted return Gt, introduced
in Sec. IV-A, for taking the joint action ut from the current
state st and following the current policy π afterwards. The
critic uses global information st during training, while the
actor utilises only on-board information ωti to predict the
next-best measurement position decentralised during both
training and deployment. We leverage the counterfactual
baseline to assign credit to individual agents according to
their contribution to the team performance, which fosters
cooperative team behaviour. The advantage Ati for agent i
taking action uti in the team’s action ut is:

Ati(s
t,ut) = Qπ(s

t,ut)−
∑
u′t
i∈U

π(u′
t
i |ωti)Qπ

(
st, (ut−i, u

′t
i)
)
.

(6)
The contribution of agent i to the joint state-action value

Qπ(st,ut) of the team’s action ut = (ut1, . . . , u
t
i, . . . , u

t
N )

by taking action uti is estimated by marginalising over all
possible individual actions u′ti ∈ U while keeping the other
agents’ actions ut−i fixed. For optimising π(· |ωti), we apply
the policy gradient theorem using Eq. (6) and minimise:

L = − log π(uti|ωti)Ati(st,ut) , (7)

using mini-batch stochastic gradient descent. For further
details, we refer to Foerster et al. [20].

C. Network Architecture & Feature Design

We propose new actor and critic representations to exploit
COMA in 3D robotic applications. As shown in Fig. 4,
actor and critic are represented by neural networks fθπ

and fθc , parameterised by θπ and θc. The actor network is
conditioned on the agent i and its local state ωti . Feature



inputs are the agent’s identifier i, the remaining mission
budget b, and the following spatial inputs: (a) a position
map centred around the agent’s position encoding the map
boundaries and the communicated other agents’ positions,
where the values represent the agent altitudes; (b) the local
map stateMi; (c) the weighted entropy of the local map state
H(Mi | z0:t,p0:t) in Eq. (3); (d) the weighted entropy of
the measurement H(zti |pti); and (e) the map cells currently
spanned by all agents’ fields of view within the communi-
cation range (’footprint map’).

Our critic network receives the same input (a)-(e) and, in
addition, global environment information accessible during
training. Specifically, it further receives: (f) a global position
map encoding all agent positions pt1:N ; (g) the global map
state M; (h) its weighted entropy H(M| z0:t,p0:t); (i) the
map cells currently spanned by all agents’ fields of view; and,
to enable learning the counterfactual baseline in Eq. (6), (j)
the other agents’ actions. Inputs are provided in the position
grid resolution rP . We downsample the map resolution rM
by rP

rM
to align both resolutions. The scalar inputs i and b

are expanded to constant-valued 2D feature maps.
To handle spatial information necessary for the terrain

monitoring task, the networks consist of convolutional en-
coders and multi-layer perceptron heads predicting the policy
π and Q-values Qπ , respectively. Fig. 4-Top illustrates the
architecture of both networks. The actor’s logits fθπ (xti)
given a collection xti of feature maps (a)-(e) above, are
passed through a bounded softmax function π(ui |xti) = (1−
ε) softmax

(
fθπ (xti)

)
+ ε
|U | to predict the stochastic policy.

The hyperparameter ε ∈ [0, 1] fosters exploration during
training and is set to 0 at deployment. The critic outputs Q-
values Qπ

(
st, (ut1, . . . , u

t
i, . . . , u

t
N )
)

for each action uti ∈ U
of agent i after the last linear layer.

D. Network Training

We train an actor and a critic network offline and utilise
the trained actor online at deployment. We simulate UAV
missions and learn from rewards received after fusing mea-
surements z into the global map M. Before each mission,
we generate a new terrain of resolution rM . The terrains are
split into connected interesting and complementary uninter-
esting regions. The split is randomly oriented and interesting
regions cover between 30% to 60% of the terrain to foster
generalisation. We fix the initial UAV positions and execute
a mission until budget B is spent. During training, actions
are sampled from the actor’s policy as described in Sec. IV-
C, where ε is linearly decreased from 0.5 to 0.02 over the
first 10, 000 missions.

We alternate between generating 3, 000 environment inter-
actions on-policy and policy optimisation using Eq. (7). Both
networks are optimised via stochastic mini-batch gradient
descent for 5 epochs using the Adam optimiser with learning
rates of 1e−5 (actor) and 1e−4 (critic), and a batch size of
600. The critic network is trained to estimate the expected
return Gt applying TD(λ) with λ = 0.8 and γ = 0.99 using a
target critic network copying the critic network each 30, 000
environment interactions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Actor input

Critic input

Fig. 4: Architecture and inputs for our actor and critic. Both
networks consist of convolutional encoders and linear layers in
the prediction head. For the actor, the output is produced by a
softmax layer (grey). Both actor and critic receive local inputs
(‘Actor input’). The critic also receives global inputs for centralised
training (‘Critic input’). All inputs (a)-(j) are detailed in Sec. IV-C.

V. EXPERIMENTAL RESULTS

We present experiments to show the capabilities of our
multi-agent RL-based IPP approach for adaptive terrain mon-
itoring using UAV teams. Our experimental results support
our claims, which are: (i) our designed network represen-
tations are effective for multi-agent IPP for UAVs in a 3D
workspace; (ii) accounting for the credit assignment problem
via a counterfactual baseline improves planning performance;
and (iii) our approach outperforms non-learning-based state-
of-the-art approaches in terms of planning performance
across varying team sizes and communication constraints.
Moreover, we demonstrate our approach applied to a real-
world surface temperature monitoring scenario.

A. Experimental Setup

For each experiment, we execute 50 terrain monitoring
missions with changing regions of interest as described in
Sec. IV-D. The terrains are of size 50 m × 50 m with a map
resolution of rM = 10 cm. We set the planning resolution
to rP = 5 m, bound altitudes between 5 m and 15 m, and
use camera field of views of 60◦, so that adjacent measure-
ments do not overlap when taken from the lowest altitude.
To account for increased sensor noise at higher altitudes,
we simulate p(zti |M

j
i ,p

t
i) to be {0.99, 0.735, 0.625} at

{5, 10, 15}m altitude. The UAV team consists of 4 agents
and the communication radius is limited to 25 m unless
reported otherwise. As metrics, we use the entropy of the
map state H(M| z0:t,p0:t) to assess the map uncertainty
and the F1-score between the map state M and the ground
truth map to evaluate the correctness of M. We report the



Fig. 5: Feature input ablations. We systematically add (left) and
remove (right) components of our approach and show the map
entropy reduction over the mission time. The results show that the
entropy map input has the largest impact, while the footprint map
only contributes to a better performance at the end of a mission.
Our full proposed network input (green) performs best.

mean and standard deviation of these performance metrics in
ground truth regions of interest given B = 15 measurements.

B. Ablation Study of Network Feature Design

In this section, we provide ablations to show that our
proposed network input representation is effective for multi-
agent IPP for UAVs in a 3D workspace. Our ablation studies
systematically add and remove single input feature maps to
assess their effect on the overall planning performance.

Fig. 5 shows the mean map entropy reduction and standard
deviation during the mission with varying network input
features. Steeper falling curves indicate better planning per-
formance. In Fig. 5-Left, we add single input feature maps to
base input features (a)-(d), as described in Sec. IV-C, which
are necessary to model the IPP problem. In Fig. 5-Right, we
remove single input feature maps.

As expected, the proposed full input (green) performs
best, i.e. leads to the lowest final map entropy. The entropy
map feature (blue) is most beneficial for planning perfor-
mance, suggesting that it holds most relevant information for
learning informative paths. Interestingly, adding the footprint
map (pink) slightly harms planning performance, but leads
to worse final performance when removed from the input.
This indicates that, when combined with the other inputs,
the footprint map has a larger contribution at the end of the
mission. Intuitively, this is because identifying the currently
observed map cells, which is essential for planning the next
measurement positions, becomes harder as more measure-
ments are mapped. Adding the current measurement’s en-
tropy (red) decreases uncertainty faster during the first ∼ 12
mission time steps but harms final performance, presumably
since this local feature causes myopic planning bias. As
part of the full input with enough global features, however,
this feature is significant for planning performance providing
additional map information in close proximity. Additionally,
not masking invalid actions (light green) and not centring the
agents’ position map (orange) impairs performance since this
removes valuable spatial information for planning. In sum,
the results confirm that our network input features (‘Full’)

Fig. 6: Credit assignment study. We compare our COMA-approach
(green) with variants which do not explicitly tackle the credit
assignment problem in terms of map entropy (left) and F1-score
(right). In later mission stages, our approach allows for better
cooperation for adaptive mapping when most of the environment
has already been explored.

are most effective for multi-agent IPP for UAVs in a 3D
workspace, leading to superior planning performance of our
proposed RL-based approach compared to possible variants.

C. Credit Assignment Mechanism Study

The experiments in this section show that accounting for
the credit assignment problem results in improved planning
performance, which verifies the need for explicit credit
assignment mechanisms in cooperative RL-based multi-agent
IPP. We perform a systematic study comparing the UAV
team’s IPP performance with varying advantage functions in
Eq. (6) and thus changing policy gradient updates in Eq. (7).
To this end, we compare our proposed approach (Sec. IV-B)
against three variants of itself, as described in the following.
Central-QV. Similar to Foerster et al. [20], we verify the
effectiveness of the counterfactual baseline in our adaptive
IPP scenario by replacing the baseline in Eq. (6) with
a state value Vπ(st). This way, we do not estimate an
individual agent’s contribution but consider the team’s joint
performance alone. We train two critic networks estimating
Q and V , both as described in Sec. IV-D, and change the
advantage function to Ati(s

t,ut) = Qπ(st,ut)− Vπ(st).
Actor-Independent. As described in Sec. IV-B, we utilise a
centralised critic exploiting global state information during
training. However, to investigate the effect of reasoning
about the other team members’ actions, we now do not
account for them and exclude them from the critic network
input. We adapt the advantage function to depend solely
on the agent’s own action: Ati(s

t, uti) = Qπ(st, uti) −∑
u
′t
i ∈U

π(u
′t
i |ωti)Qπ(st, u

′t
i ).

Decentralised. In this variant, we remove all global in-
formation and consider a purely decentralised critic based
on local agent information ωti only. As for the actor-
independent variant, the critic ignores the other agents’
actions using the own agent’s state value as a baseline. The
advantage function reduces to: Ati(ω

t
i , u

t
i) = Qπ(ωti , u

t
i) −∑

u
′t
i ∈U

π(u
′t
i |ωti)Qπ(ωti , u

′t
i ).

Fig. 6 shows the planning performance using different
advantage functions. We focus on performance at later
stages of the mission, when most of the environment is



Fig. 7: Comparison of planning methods for 4 agents and a
communication range of 25m. By planning paths cooperatively, our
approach reduces map uncertainty (left) and improves map accuracy
(right) quickest, indicating its superior performance.

explored and cooperation is crucial for adaptive mapping.
The counterfactual baseline utilised in our approach (green)
performs best, indicating its effectiveness for achieving coop-
erative behaviour. All variants lack explicit credit assignment
mechanisms, which adversely impacts planning performance
irrespective of using centralised or decentralised critics. This
confirms that our COMA-based algorithm improves planning
performance by addressing the credit assignment problem.

D. Comparison against Non-Learning-based Approaches

The following experiments back up our claim that our RL-
based approach outperforms state-of-the-art non-learning-
based multi-agent IPP approaches. We compare our ap-
proach against three methods: (i) an adaptive information
gain approach for UAV swarms proposed by Carbone et al.
[2], which selects a UAV’s action greedily by maximising
the estimated map entropy reduction without explicit credit
assignment (‘IG’); (ii) a non-adaptive coverage lawnmower-
like pattern with equidistant (5 m) measurement positions at
the best-performing altitude (‘Coverage’); (iii) non-adaptive
random exploration sampling UAV actions uniformly at
random (‘Random’). All approaches share the same state
space, action space, and action masking strategy.

Fig. 7 shows the evaluation metrics over the mission
time for the considered approaches. The information gain-
based strategy (blue) and our RL-based approach (green)
outperform the non-adaptive methods as they can actively
focus on regions of interest. The superior performance of
our approach confirms the benefits of addressing the credit
assignment problem and the applicability of our learning-
based planning to varying terrains.

Next, we show the generalisability of our learning-based
approach to different team sizes and communication set-
tings. We deploy our actor trained on the 4-agent setting
with communication limited to 25 m in scenarios with 2,
4, and 8 agents, and communication radii of 0 m, 25 m,
and unlimited communication without re-training. Table I
shows the planning performance of our approach compared
to the information gain-based and the coverage method. As
expected, more agents lead to faster mapping, i.e. entropy
decrease and F1-score increase. Though changing communi-
cation radii leads to small performance drops, our approach

Fig. 8: Real-world evaluation. We deploy our approach on surface
temperature data (left) and compare the map entropy reduction of
the considered planning methods. Warmer regions are considered
as interesting. Although our approach is trained on synthetic data,
it outperforms all other methods. Fig. 1 shows the resulting UAV
paths planned in this experiment.

consistently outperforms both. This verifies that our RL
approach generalises to varying numbers of agents and
communication requirements without re-training, showcasing
its broad applicability without additional training costs.

E. Temperature Mapping Scenario

We demonstrate the performance of our approach in a
surface temperature monitoring scenario using real-world
data of a 40 m ×40 m crop field near Jülich, Germany.
The field data was collected with a DJI Matrice 600 UAV
carrying a Vue Pro R 640 thermal sensor and is shown
in Fig. 8-Left. We discretise the terrain into a 500 × 500
grid map with resolution rM = 8 cm. The planning grid
resolution is rP = 4 m to guarantee the same network
input dimensions as used for training. Regions with surface
temperature ≥ 25◦ C are considered as being interesting
for adaptive hotspot mapping. Fig. 8-Right shows the map
entropy reduction over B = 15 measurements for 4 agents
and a communication radius of 25 m, using our approach
compared to the methods introduced in Sec. V-D. Note that
our approach is trained solely in simulation on synthetic data
as described in Sec. IV-D. Our approach clearly outperforms
all other methods showcasing its applicability for real-world
terrain monitoring missions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel multi-agent deep RL-
based IPP approach for adaptive terrain monitoring using
UAV teams. Our method features new network represen-
tations and exploits a counterfactual baseline to address
the credit assignment problem for cooperative UAV path
planning in a 3D workspace. This allows us to successfully
outperform state-of-the-art non-learning-based approaches
in terms of monitoring efficiency, while generalising to
different mission settings without re-training. Experiments
using UAV-acquired thermal data validate the real-world
applicability of our approach. Future work will investigate
heterogeneous robot teams and dynamically growing maps
in environments of unknown bounds.



TABLE I: Robustness to varying team sizes and communication constraints. We report the mean and standard deviation of entropy and
F1-score over 50 trials after 33%, 66%, and 100% of the mission time. Best results in bold.

Setting Approach 33% Entropy ↓ 67% Entropy ↓ 100% Entropy ↓ 33% F1 ↑ 67% F1 ↑ 100% F1 ↑

2 agents Ours 0.8826± 0.0267 0.7343± 0.0548 0.5802± 0.0451 0.3608± 0.0661 0.5035± 0.0768 0.6268± 0.0436
IG 0.9155± 0.0154 0.8449± 0.0410 0.7432± 0.0801 0.3275± 0.0386 0.4353± 0.0539 0.5340± 0.0857
Coverage 0.9163± 0.0472 0.7845± 0.0628 0.6970± 0.0332 0.1603± 0.0871 0.3687± 0.0912 0.4863± 0.0418

4 agents Ours 0.7360± 0.0349 0.4137± 0.0294 0.2842± 0.0408 0.5765± 0.0168 0.7350± 0.0268 0.7858± 0.0308
IG 0.8302± 0.0298 0.6805± 0.0554 0.5176± 0.0700 0.5396± 0.0435 0.6728± 0.0375 0.7599± 0.0289
Coverage 0.8615± 0.0762 0.6614± 0.0317 0.6052± 0.0396 0.1603± 0.0870 0.3687± 0.0913 0.4864± 0.0418

8 agents Ours 0.5621± 0.0235 0.2952± 0.0403 0.2209± 0.0459 0.7115± 0.0336 0.7859± 0.0322 0.8171± 0.0283
IG 0.6887± 0.0234 0.4886± 0.0460 0.3077± 0.0446 0.6957± 0.0260 0.7881± 0.0194 0.8576± 0.0151
Coverage 0.8185± 0.0832 0.6072± 0.0274 0.5149± 0.0309 0.2455± 0.1281 0.5246± 0.0358 0.5800± 0.0433

Zero communication Ours 0.7638± 0.0408 0.5445± 0.0674 0.3699± 0.0486 0.5476± 0.0256 0.6846± 0.0327 0.7620± 0.0282
IG 0.8284± 0.0283 0.6814± 0.0529 0.5286± 0.0775 0.5396± 0.0453 0.6510± 0.0442 0.7151± 0.0432

Limited communication Ours 0.7360± 0.0349 0.4137± 0.0294 0.2842± 0.0408 0.5765± 0.0168 0.7350± 0.0268 0.7858± 0.0308
IG 0.8302± 0.0298 0.6805± 0.0554 0.5176± 0.0700 0.5396± 0.0435 0.6728± 0.0375 0.7599± 0.0289

Full communication Ours 0.7428± 0.0276 0.4623± 0.0602 0.3674± 0.0843 0.5818± 0.0294 0.7077± 0.0481 0.7524± 0.0465
IG 0.8294± 0.0290 0.6809± 0.0501 0.5266± 0.0593 0.5389± 0.0449 0.6721± 0.0432 0.7606± 0.0306
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[8] R. Bähnemann, D. Schindler, M. Kamel, R. Siegwart, and J. Nieto,
“A decentralized multi-agent unmanned aerial system to search, pick
up, and relocate objects,” in Proc. of the Intl. Symposium on Robotic
Research (ISRR), 2017.

[9] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme,
“Active planning for underwater inspection and the benefit of adap-
tivity,” Intl. Journal of Robotics Research (IJRR), vol. 32, pp. 3–18,
2013.

[10] M. Tzes, N. Bousias, E. Chatzipantazis, and G. J. Pappas, “Graph
Neural Networks for Multi-Robot Active Information Acquisition,”
arXiv preprint arXiv:2209.12091, 2022.

[11] J. Rückin, L. Jin, and M. Popović, “Adaptive Informative Path
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