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Doppler-SLAM: Doppler-Aided Radar-Inertial and
LiDAR-Inertial Simultaneous Localization and

Mapping
Dong Wang, Hannes Haag, Daniel Casado Herraez, Stefan May, Cyrill Stachniss, and Andreas Nüchter

Abstract—Simultaneous localization and mapping is a criti-
cal capability for autonomous systems. Traditional SLAM ap-
proaches often rely on visual or LiDAR sensors and face
significant challenges in adverse conditions such as low light
or featureless environments. To overcome these limitations, we
propose a novel Doppler-aided radar-inertial and LiDAR-inertial
SLAM framework that leverages the complementary strengths
of 4D radar, FMCW LiDAR, and inertial measurement units.
Our system integrates Doppler velocity measurements and spatial
data into a tightly-coupled front-end and graph optimization
back-end to provide enhanced ego velocity estimation, accurate
odometry, and robust mapping. We also introduce a Doppler-
based scan-matching technique to improve front-end odometry in
dynamic environments. In addition, our framework incorporates
an innovative online extrinsic calibration mechanism, utilizing
Doppler velocity and loop closure to dynamically maintain sensor
alignment. Extensive evaluations on both public and proprietary
datasets show that our system significantly outperforms state-
of-the-art radar-SLAM and LiDAR-SLAM frameworks in terms
of accuracy and robustness. To encourage further research, the
code of our Doppler-SLAM and our dataset are available at:
https://github.com/Wayne-DWA/Doppler-SLAM.

Index Terms—Odometry, Mapping, Localization, SLAM, Au-
tonomous Vehicle Navigation

I. INTRODUCTION

IN the pursuit of robust and reliable navigation solutions, si-
multaneous localization and mapping (SLAM) has emerged

as a cornerstone technology that enables autonomous systems
to perceive and interpret their environment while estimating
their own position. Traditional SLAM methods often rely on
visual or LiDAR sensors. Those modalities, however, can be
susceptible to poor lighting, extreme weather, or featureless
terrain. SLAM using radar sensing has the potential to increase
robustness to environmental variability and operate effectively
under challenging conditions.

Manuscript received: April 14, 2025; Revised: May 29, 2025; Accepted:
July 20, 2025. This paper was recommended for publication by Editor Javier
Civera upon evaluation of the Associate Editor and Reviewers’ comments.
This work was in parts supported by the Federal Ministry for Economic Affairs
and Climate Action (BMWK) on the basis of a decision by the German
Bundestag under the grant number KK5150106RL4.

D. Wang and A. Nüchter are with Julius-Maximilians-Universität Würzburg,
Germany. Andreas Nüchter is also with the Zentrum für Telematik e.V.,
Würzburg and currently International Visiting Chair at U2IS, ENSTA, Institut
Polytechnique de Paris, France. H. Haag and S. May are with Nuremberg
Institute of Technology Georg Simon Ohm, Germany. D. Casado Herraez is
with CARIAD SE and the University of Bonn, Germany. C. Stachniss is with
the Center for Robotics, University of Bonn, and the Lamarr Institute for
Machine Learning and Artificial Intelligence, Germany.

Digital Object Identifier (DOI): see top of this page.

GroundtruthDoppler-SLAM (radar) Doppler-SLAM (LiDAR)

IMU FMCW LiDAR4D radar

Fig. 1: Generalizability of our proposed Doppler-SLAM on the
HeRCULES dataset "Sports Complex". Left: radar map and trajectory
(blue) generated with Doppler-SLAM. Right: FMCW LiDAR map
and trajectory (green) generated with Doppler-SLAM.

In recent years, integrating radar and LiDAR sensors with
inertial measurement units (IMUs) has improved the accuracy
and reliability of SLAM systems [1] [2] [3]. Doppler velocity
from 4D radars and frequency-modulated continuous wave
(FMCW) LiDARs provides direct motion information that,
when fused with inertial data, enhances motion estimation
and mapping [4] [5]. However, reliable SLAM in complex or
dynamic environments remains challenging, and most methods
either focus on a single sensor type or fail to fully exploit
Doppler information in a unified framework.

This paper presents a novel approach to Doppler-aided
radar-inertial and FMCW LiDAR-inertial SLAM, leveraging
the complementary capabilities of radar, FMCW LiDAR, and
IMU. By incorporating Doppler velocity measurements and
spatial data into the SLAM framework, we aim to achieve
enhanced odometry estimation and a more robust mapping
process. The proposed methodology is designed to operate
in complex and dynamic environments, offering a reliable
solution for ground vehicles.

The main contribution of this paper is a novel, unified
SLAM approach that combines a tightly-coupled front-end [1]
with a graph optimization back-end [2], seamlessly integrat-
ing IMU, radar or FMCW LiDAR, and Doppler velocity
measurements. Additionally, we propose an innovative online
extrinsic calibration mechanism between radar-IMU or FMCW
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LiDAR-IMU, aided by Doppler velocity and loop closure [6],
to ensure consistent sensor alignment during operation, and
a novel Doppler-based scan-matching method for front-end
odometry, significantly improving accuracy in dynamic sce-
narios. Our proposed SLAM system is thoroughly evaluated
on various open-source datasets alongside our dataset. The
results significantly outperform current state-of-the-art radar-
SLAM and FMCW LiDAR-SLAM frameworks. Finally, we
make our Doppler-SLAM system open-source to foster further
research and development within the community.

II. RELATED WORK

In this section, we review state-of-the-art SLAM approaches
based on LiDAR and radar, including traditional frameworks
and recent methods that leverage Doppler information. We
also discuss techniques that integrate these sensors with IMU
measurements and present our proposed method in the context
of Doppler-aided SLAM for radar and FMCW LiDAR.

LiDAR-based Odometry and SLAM have significantly
evolved with the development of various registration and
optimization techniques. One of the fundamental methods for
point cloud registration is the iterative closest point (ICP)
algorithm, which aligns 3D shapes by minimizing point-to-
point distance [7]. Generalized-ICP (GICP) [8] extends this
by combining point-to-plane and point-to-point constraints,
improving registration robustness. Building on these founda-
tions, LOAM introduces a two-thread approach where one
thread estimates motion in real-time while another refines the
map [9]. KISS-ICP has recently been proposed as a point-
to-point scan-to-map matching and keyframe-based LiDAR
odometry technique that leads to high accuracy while main-
taining computational efficiency [10]. However, LiDAR-only
approaches struggle with featureless environments and motion
distortion in highly dynamic platforms. The integration of an
IMU improves the accuracy and robustness of LiDAR odom-
etry by providing a reliable scan distortion and an initial pose
for ICP. In addition, the high-frequency IMU measurements
help to correct for motion distortion within LiDAR scans,
which is particularly beneficial in dynamic environments
where motion blur degrades scan quality. Tightly-coupling
LiDAR and IMU data has also been explored through direct
LiDAR-inertial fusion methods. Methods like tightly-coupled
3D LiDAR-inertial odometry [11] and LINS [12] demonstrate
improved state estimation accuracy through real-time opti-
mization techniques. Graph-based approaches such as LIO-
SAM also integrate LiDAR and inertial data for more accurate
and globally consistent odometry [2]. To enhance computa-
tional efficiency and real-time performance, FAST-LIO [13]
introduces a tightly-coupled iterated Kalman filter framework
for robust LiDAR-inertial odometry, which is later improved
with FAST-LIO2 by reducing computational complexity while
maintaining accuracy [1]. Recent improvements in FMCW
technology have paved the way for a novel iteration of LiDAR,
namely FMCW-LiDAR, which has the additional capability
of measuring the relative radial velocity (Doppler velocity) of
each point [14] [15]. Doppler iterative closest point extends
ICP by leveraging Doppler information to improve robustness

in high-speed scenarios [16]. FMCW-LIO [17] and Doppler-
Odom [18] incorporate Doppler LiDAR measurements with
IMU to refine motion estimation and mitigate drift in dynamic
environments.

4D-radar-based Odometry and SLAM have gained re-
markable attention due to their robustness in adverse environ-
mental conditions, such as fog, rain, and low-light scenarios.
Several approaches leverage radar-inertial fusion, probabilistic
estimation techniques, and deep learning-based feature ex-
traction to enhance odometry performance. Since 4D radar
is capable of estimating the 3D ego velocity from a single
scan [19] [20], radar-only SLAM approaches can utilize the
estimation of ego velocity to increase the accuracy of scan-
matching [21] [22] [23]. Casado Herraez et al. [24] propose
a point-to-point ICP with Doppler velocity constraint tech-
nique specifically designed to harness the velocity information
provided by radar sensors. Their approach has recently been
extended to integrate IMU information, enabling fusion and
optimization through global and local factor graphs [25]. A
scan-to-submap Normal distribution transform is presented for
radar point cloud registration, while velocity pre-integration
is used to improve optimization performance [26]. Zhang
et al. [3] proposes an adaptive probability distribution-GICP
to address radar measurement noise, considering the spatial
probability distribution of each point in GICP [8]. Another
approach to improving the matching quality of sparse radar
data is 4DiRIOM [5]. Here, point matching is expressed
in terms of distribution-to-multiple-distribution constraints,
which is achieved by matching the current scan with a sub-
map constructed by the mapping module, rather than scan-to-
scan matching. Huang et al. [27] leverage the radar cross sec-
tion information to refine the point-to-point correspondence,
thus improving the estimation of poses based on radar point
matching. However, radar-only SLAM methods often struggle
with low spatial resolution and cluttered environments, mak-
ing robust feature extraction and scan-matching challenging.
Integrating 4D radar data with inertial measurements has been
shown to enhance odometry accuracy and robustness. Tightly-
coupled radar-inertial odometry methods, such as DGRO [28],
DRIO [29], and multi-state EKF-based radar-inertial odom-
etry [30], integrate Doppler velocity measurements and IMU
readings to provide accurate motion estimation. These methods
leverage persistent landmarks and extended Kalman filtering
to reduce drift in odometry estimation. Additionally, a tightly
coupled factor graph formulation for radar inertial odome-
try [31] has been proposed to enhance global consistency
through optimization-based approaches. Despite their advan-
tages, radar-inertial SLAM techniques remain susceptible to
sensor noise and require accurate calibration to ensure ro-
bustness. Recent studies in deep learning and probabilistic
estimation have led to novel radar odometry techniques. Zhou
et al. [32] leverage deep neural networks to extract robust
features from radar scans for odometry estimation. Addition-
ally, methods such as AutoPlace [33] and SPR [34] focus on
extracting point-wise features and generating scene descriptors
to improve place recognition. However, these methods rely on
large training datasets and may generalize poorly to unseen en-
vironments, limiting their adaptability in dynamic conditions.
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Inspired by previous works [1] [5] [16] [17], we propose
our Doppler-SLAM approach, which significantly enhances
existing methods by unifying 4D radar-inertial and FMCW
LiDAR-inertial SLAM into a single framework that directly
incorporates Doppler velocity for distortion correction, scan-
matching and online calibration, enabling robust SLAM in
dynamic environments.

III. DOPPLER-SLAM

To represent the various mathematical and physical quan-
tities used in our research, we use the following conventions
in this paper. Scalars will be printed as lowercase, non-bold
letters (e.g., b), and constants will be printed as uppercase,
non-bold letters (e.g., B). Matrices will be printed as bold
upper case letters, like B. Vectors will be represented by bold
lowercase letters, like b. Subscripts and superscripts are used
to denote different frames of reference. For example, a vector
b in the radar frame {}r will be denoted as br, and the
rotation from frame {}r to frame {}w will be represented
by either the matrix Bw

r or the quaternion bw
r . The global

world frame is represented by {}W . To simplify the exposition,
the subsequent references to radar in this paper refer to 4D
radar. Similarly, FMCW-LiDAR with Doppler measurements
is abbreviated as LiDAR.

A. Framework Overview

Fig. 2 illustrates the overall system architecture, highlighting
four key modules: (i) velocity filter, (ii) motion compensation,
(iii) state estimation, and (iv) online calibration with graph
optimization. The following subsections describe the design
and implementation of each module in detail.

B. Front-end

1) System Input and State: The primary input of our
system is provided by an IMU and a LiDAR or a radar sensor.
The measurement u from an IMU is defined as Eq. (1):

u ≜ [ω̂t ât] , ω̂t = ωt + bω + nω,

ât = RWB
t (at − g) + ba + na,

(1)

where ω̂t and ât are the raw IMU measurements in IMU frame
{}B at time t. ω̂t and ât are influenced by the slowly varying
bias b and white noise n. RWB

t is the rotation matrix from
world frame {}W to IMU (body) frame {}B . The term g refers
to the constant gravity vector in the world frame. Although
the measurement principles of 4D radar and FMCW-LiDAR
are somewhat different, their output data is reformulated into
a unified representation. Let i denote the index of radar or
LiDAR scans and let the points m̂ in the scan be represented as
sSi = {m̂0, m̂1, m̂2, · · · }, which are sampled at the local radar
or LiDAR coordinate frame {}S at the end of the scan. Each
point m̂S

j provides three-dimensional geometric point [x, y, z]
and radial Doppler velocity vSj along the point’s direction.
The measured point m̂S

j is typically affected by noise terms
nS and ηS , which account for geometric noise and velocity
noise, respectively. Eliminating this noise recovers the true

location and Doppler velocity of the point in the local sensor
coordinate frame.

m̂S
j = mS

j + nS
j , v̂Sj = vSj + ηSj . (2)

The system state x evolves on a 24-dimensional manifold
and comprises the body frame’s rotation Rb, position pb,
and vb relative to the world frame (i.e., the initial body frame),
the gyroscope and accelerometer bias bg and ba, as well as
the radar-IMU or LiDAR-IMU extrinsic parameters Rsb and
psb:

x ≜
[
R⊤

b p⊤
b R⊤

sb p⊤
sb v⊤

b b⊤
g b⊤

a g⊤]⊤. (3)

2) Velocity Filter: We propose a velocity filter module that
fuses Doppler velocities and IMU measurements to distinguish
between dynamic and static points and effectively eliminate
outliers. Assume that the optimal state estimate after fusing
the last sensor scan is xi with the covariance matrix ξi. As
proposed in FAST-LIO2 [1], forward propagation starts when
an IMU measurement is received and stops upon receiving a
new sensor scan. The continuous model is discretized at the
IMU sampling period [35] based on the operation ⊞ and the
derivative of the discrete model f defined in FAST-LIO [13].
Let ∆t denote the sampling period between two consecutive
IMU measurements and w represent the noise. Then, the
predicted state from the IMU is formulated as follows:

xi+1 = xi ⊞ (f (xi,ui,wi)∆t)

wi ≜
[
n⊤
ω n⊤

a n⊤
bω n⊤

ba

]⊤
.

(4)

At any given moment, the ego velocity is represented
by vS . The measured Doppler velocity vSj from each target
is considered as taking the magnitude of the projection of the
relative velocity vector between the target and the sensor onto
the ray connecting the target and the sensor. This calculation
involves the dot product of the target’s velocity vS in the
sensor frame {}S and the unit vector pointing from the sensor
towards the target:

−vSj =
mS

∥mS∥
· vS = rS · vS = rSx v

S
x + rSy v

S
y + rSz v

S
z . (5)

Considering the rigid body transformation detailed in [5],
the velocity vb obtained from IMU forward propagation is
transformed into the LiDAR or radar coordinate system {}S
by:

v̂S = R⊤
sb(R

⊤vb + (ωt − bω)× p⊤
sb). (6)

By substituting Eq. (6) into Eq. (5), we obtain the predicted
Doppler velocity for each point:

v̂Sj = rS · v̂S = rSx v̂
S
x + rSy v̂

S
y + rSz v̂

S
z . (7)

Introducing a predetermined threshold Υ to mitigate low-
amplitude fluctuations caused by sensor noise, the velocity
filter is defined by the condition |v̂Sj − vSj | ≤ Υ. This
formulation ensures that a point m̂S

j is considered valid only if
the discrepancy between its predicted Doppler velocity v̂Sj and
measured Doppler velocity vSj is below Υ, effectively filtering
out dynamic outliers and ghost points. A key advantage
of our proposed velocity filter over traditional least-squares
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Fig. 2: Pipeline of Doppler-SLAM consists of four main modules: velocity filter (Sec. III-B2), motion compensation (Sec. III-B3), state
estimation (Sec. III-B4), and loop closure with graph optimization (Sec. III-C). The graph on the right illustrates the workflow of online
extrinsic calibration between the IMU and either radar or LiDAR using graph optimization. In this approach, we combine the IMU pre-
integration factor, odometry factor, and ego velocity factor to construct a factor graph. Once a loop closure factor is detected, additional
optimization refines the extrinsic transformation.

Fig. 3: Velocity Filter in a highly dynamic scenario with a moving
tram. The top panel presents the camera view, the left panel shows
the radar point cloud after processing by our proposed velocity filter,
where purple indicates dynamic points and green indicates static
points, and the right panel illustrates the traditional least-squares
method, in which green points are inliers (static objects) detected
by the method and red points are outliers (dynamic objects). The
least-squares method relies on the Doppler velocities of all inliers
to fit the ego velocity profile (blue curve) but struggles in highly
dynamic environments because it incorrectly incorporates Doppler
measurements from moving objects (tram). In contrast, our IMU-
based velocity filter effectively distinguishes between dynamic and
static points, yielding more accurate ego velocity estimates and robust
performance in complex, real-world scenarios.

methods [36] is that it does not require the assumption that
most targets in the environment are stationary, which is often
an unrealistic assumption, as illustrated in Fig. 3. This benefit
is especially evident in highly dynamic outdoor environments,
where least-squares approaches often fail.

3) Motion Compensation: To mitigate motion-induced dis-
tortion, our method performs a two-stage compensation of the
LiDAR measurements. For radar, there is no motion distortion
since its data acquisition method captures point cloud and
Doppler velocities instantaneously, effectively bypassing the
temporal distortions inherent in sequential LiDAR scanning.

Geometry Compensation: For a point m̂S
j sampled at

timestamp tji in the scan sS with scan-end time ti, we adopt

the backward propagation method from FAST-LIO [13] to
compensate for the geometric motion distortion. Eq. (4) is
backward propagated as x̂i−1 = x̂i ⊞ (−f (x̂i,ui, 0)∆t). The
earlier IMU measurement is used as the input for all points
sampled between two consecutive IMU measurements. Subse-
quently, we use the relative pose between tji and ti to transform
the local measurement m̂S

j into its corresponding scan-end
measurement. In this way, the transformed points in the scan
are considered to have all been scanned simultaneously at the
scan-end time ti.

Doppler Compensation: The measured Doppler veloc-
ity vSi for each point is influenced by both the target’s motion
and the sensor’s motion. Dynamic targets are first filtered out
by the velocity filter. Inspired by FMCW-LIO [17], we remove
the sensor’s motion over a scan period by subtracting its
projected velocity change from the measured Doppler value.
The relative velocity between tji and ti is also calculated by
the backward propagation with IMU measurements.

4) State Estimation: To estimate the state vector given in
Eq. (3), we employ an iterated extended Kalman filter (IEKF).
The IEKF iteratively linearizes the nonlinear system around
the most recent state estimate, thereby refining the estimate
and enhancing the overall accuracy of the state estimation
process. Keeping the first-order terms from Eq. (4) and setting
the noise term w to zero, the error state δx and the covariance
P̂ evolve according to the following linear model:

δxi+1 = Fδxiδxi + Fwiwi,

P̂i+1 = Fδxi
P̂iF

⊤
δxi

+ Fwi
QiF

⊤
wi
.

(8)

Here, Fδxi
and Fwi

denote the transition matrix and noise
Jacobian matrix, respectively, both linearized at x̂i [17]. The
noise covariance Qi is obtained from IMU calibration. As-
suming that the system state and covariance are denoted as
x̂i and P̂i when a new scan of radar or LIDAR arrives, the
iteration of the system state is described below.

Geometry Residual: We first project each measured
point mS

j in the new scan to the global frame m̂W
j =

T̂wbT̂bs

(
mS

j + nS
j

)
, where T̂wb consisting of Rb and pb

represents the body frame’s pose relative to the world frame
and T̂bs = inv(T̂sb) represents radar-IMU or LiDAR-IMU
extrinsic transform, which are all contained in the predicted
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Fig. 4: Geometry and Doppler Residual

state x̂i from Eq. (8). The five nearest neighbors of the
transformed point m̂W

j are selected in the map using the ikd-
Tree [1]. These neighboring points are then utilized to fit a
local planar patch characterized by the normal vector uj and
centroid qW

j . Ideally, m̂W
j should lie exactly in the fitted plane.

This leads to the following equation:

0 = u⊤
j (T̂wbT̂bs

(
mS

j + nS
j

)
− qW

j ). (9)

Summarizing Eq. (9) into a compact form and linearizing
the measurement using a first-order Taylor expansion about x̂i

yields the following simplified form:

0 = ghj
(
xi,m

S
j + nS

j

)
≃ ghj (x̂i, 0) +

gHi
jx̃i + ni,

0 = grij +
gHi

jx̃i + ni,
grij = uT

j (T̂wbT̂bs

(
mS

j + nS
j

)
− qW

j ),

(10)

where xi = x̂i ⊞ x̃i, gHi
j denotes the Jacobian matrix of

geometry measurement function ghj with respect to error
state x̃i. Furthermore, ni models the raw measurement noise
associated with nS and grij is defined as the geometry residual.

Doppler Residual: One of the key innovations of this
paper is our dual matching strategy, which leverages both the
observed 3D geometry and the Doppler velocity residuals for
each point. The geometric residuals ensure precise alignment
of the 3D point cloud, while the Doppler velocity residuals
provide critical information about the motion state, enhancing
overall matching accuracy. From Eq. (6) and Eq. (7), we easily
get the Doppler residual drij for each point mS

j in the new
scan:

0 = σi(v̂
S
j − vSj ) ≃ dhj (x̂i, 0) +

dH
i

jx̃i + ηi,

dr
i

j =
dH

i

jx̃i + ηi

= σi(r
SR⊤

sb(R
⊤vb + (ωt − bω)× p⊤

sb)− vSj ),

(11)

where σi is the time interval between this frame and the
previous one. Then, combining the prior distribution with the
likelihoods derived from all geometric and Doppler observa-
tions, we obtain an equivalent maximum a posteriori (MAP)
estimate [37] given by

min
x̃i

∥xi ⊟ x̂i∥2P̂i
+

m∑
j=1

∥∥∥grij +
gHi

jx̃i +
dr

i

j +
dH

i

jx̃i

∥∥∥2
Rj


(12)

where P̂i, Rj represent the covariance of error state and
the measurement noise, respectively. ⊟ is defined in FAST-

LIO [13]. Let H =
[(

dHi
1 +

gHi
1

)
, · · · ,

(
dHi

m + gHi
m

)]⊤
,

R = diag (R1, · · · ,Rm), this MAP problem is solved using
an IEKF with Kalman gain K and partial differentiation of
error state J, as below:

K = (H⊤R−1H+P−1)−1H⊤R−1,

P = J−1P̂J−⊤.
(13)

Finally, after the IEKF converges, the optimal state x̄i and
its corresponding covariance P̄i are given by:

x̄i = x̂i+1
i , P̄i = I− (KH)P. (14)

C. Graph Optimization

Online calibration and back-end optimization incorporate
five principal components: IMU pre-integration, odometry, ego
velocity, extrinsic transform, and loop closure factors. Among
them, the IMU pre-integration, ego velocity, and extrinsic
transform factors are only needed when online calibration is
activated. Consequently, if the extrinsic transform between
IMU and radar or LiDAR is already known, the back-
end optimization is simplified to the classical loop closure
optimization. The odometry and extrinsic transform factors
are derived from Eq. (14), while the ego velocity factor
is calculated using the least squares method combined with
our proposed velocity filter. The IMU pre-integration factor
connects keyframes to assist pose prediction and maintain
graph constraints. Loop closure, based on ScanContext [6],
encodes relative poses to reduce drift, and also constrains the
extrinsic estimation globally.

IV. EXPERIMENTAL EVALUATION

A. Hardware Setup and Dataset Collection

As displayed in Fig. 5, our experimental platform consists
of a 4D Altos V2 radar sensor operating at 77 GHz, two
Livox Mid-70 LiDAR, and a Spatial Phidget IMU. Near
ground truth data was obtained using U-Blox F9 RTK-
GNSS combined with inertial navigation systems, providing
centimeter-level positioning accuracy and enabling precise
evaluation of our method. All sensors are time-synchronized
and rigidly mounted on a roof rack on top of the test
vehicle to ensure accurate spatial alignment. We collect data
in diverse scenarios, including urban, suburban, and highway,
under varying weather and lighting conditions. LiDAR-to-IMU
extrinsic calibration is performed using the method proposed
in LI_Init [38], and radar-to-IMU extrinsic calibration is
computed through the online calibration approach introduced
in this paper.

We implement Doppler-SLAM in C++ with ROS1 and
GTSAM [39] and perform evaluations on a computer equipped
with a 4.6 GHz AMD Ryzen 5600x CPU and 32 GB of RAM.
Our evaluation metrics include absolute pose error (APE) and
relative pose error (RPE) per frame. To thoroughly evaluate
the performance of Doppler-SLAM, we conduct extensive
experiments targeting accuracy, robustness, and generalization
across diverse scenarios and sensor types, including various
radar and LiDAR sensors. The system is benchmarked on mul-
tiple publicly available datasets, including (i) Snail-Radar [40]
using Continental ARS548 radar; (ii) NTU4DRadLM [41]
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Fig. 5: Experiment setup (left: sensor platform mounted on a car,
right: CAD Model of the platform)

employing the Oculii Eagle radar; (iii) HeRCULES [42]
using Continental ARS548 radar paired with an Aeva FMCW
LiDAR; and (iv) our newly introduced IMADAR dataset with
the Altos V2 radar.

B. Comparison to State-of-the-Art Methods

In the first experiment, we analyze the performance of our
system and compare it to state-of-the-art methods. The results
show that our proposed Doppler-SLAM achieves superior
radar-SLAM performance compared to existing methods using
the Snail-Radar dataset [40]. Next, we showcase the cross-
modality generalization by comparing Doppler-SLAM with
state-of-the-art radar- and LiDAR-SLAM approaches on the
HeRCULES dataset [42], using both FMCW LiDAR and
4D radar data. All Snail-Radar and HeRCULES trajecto-
ries are evaluated in the plane, with some results adapted
from [25]. We further validate Doppler-SLAM’s versatility
on NTU4DRadLM [41] and our IMADAR dataset, which
include both vehicle-mounted and handheld scenarios. For
NTU4DRadLM and IMADAR, 3D pose accuracy is as-
sessed by evaluating the vertical direction as well, confirming
Doppler-SLAM’s robustness and effectiveness in diverse and
dynamic environments.

We benchmark Doppler-SLAM against several state-
of-the-art methods, including 4DRadarSLAM (Radar-only
SLAM) [3], Graph-RIO (Radar-inertial odometry) [43], Radar-
ICP (Doppler velocity aided Radar-only odometry) [24], Go-
RIO (Doppler velocity aided Radar-inertial odometry) [21],
KISS-ICP (LiDAR odometry approach on radar) [10], FAST-
LIO2 (LiDAR-inertial odometry) [1], and RIV-SLAM (Radar-
inertial SLAM) [44].

Quantitative results on the Snail-Radar dataset are presented
in TABLE I. FAST-LIO2 with loop closure (FAST-LIO2-LC)
on LiDAR data serves as the baseline, while all other methods
operate on radar data. KISS-ICP provides good local accuracy
on radar point clouds but suffers from increased drifts in
large dynamic scenes. Both Radar-ICP and 4DRadarSLAM
are radar-only, point-to-point matching methods that, without
motion constraints, are prone to incorrect matches in large-
scale or highly dynamic sequences such as 20240115/2 and
20240123/2. Radar-IMU-based methods, such as Graph-RIO
and RIV-SLAM, despite using IMU as motion constraints, also
exhibit significant errors due to their failure to detect loop
closure in dynamic environments. Doppler-Odometry (without
loop closure) outperforms all other radar-based methods by
utilizing Doppler velocities to improve motion estimation.
Notably, Doppler-SLAM further enhances performance by

incorporating loop closure, achieving accuracy on radar data
that is comparable to LiDAR-based SLAM.

TABLE II presents the evaluation of Doppler-SLAM’s
performance and generalizability on the HeRCULES dataset,
examining both radar and FMCW LiDAR data. To highlight
the improvements of Doppler-SLAM over traditional LiDAR-
SLAM methods on FMCW LiDAR, we provide a comparative
analysis with FAST-LIO2 [1]. Thanks to the robustness of
the velocity filter in dynamic scenarios and the tight cou-
pling between IMU measurements and Doppler velocities,
Doppler-SLAM consistently outperforms FAST-LIO2 in the
sequences "Street Day", characterized by highly dynamic
conditions and rain, "Library Day", and "Parking Lot", no-
table for frequent sharp turns. These results demonstrate
that Doppler-SLAM maintains remarkable robustness in harsh
conditions where competing methods suffer significant perfor-
mance degradation. These capabilities are further highlighted
on the NTU4DRadarLM dataset, as shown in TABLE III,
which employs the Oculii Eagle radar with both handheld and
vehicle-mounted data acquisition.

However, the datasets mentioned above are mostly low-
speed (below 50 km/h) driving scenarios. To more compre-
hensively evaluate the performance of Doppler-SLAM in
high-speed, long-distance scenarios, we conduct additional
experiments using our own IMADAR dataset, benchmarked
against FAST-LIO2 (FAST-LIO2-Multi for two LiDARs with
asynchronous update) with loop closure for comparative anal-
ysis. TABLE IV presents the evaluation of three different
sequences: "WoehrSee" and "HBF", both representing urban
traffic scenarios where the main challenges are complex dy-
namic conditions (as shown in Fig. 3) and degraded environ-
ments such as tunnels, and the "N4" sequence, representing
high-speed and long-distance conditions with vehicle speeds
up to 110 km/h. Benefiting from a higher frequency of asyn-
chronous updates and a larger field-of-view angle, FAST-LIO-
Multi performs best on all three sequences. The quantitative
results indicate that although both Doppler-SLAM and FAST-
LIO2 show performance degradation over the three sequences,
Doppler-SLAM using radar is still comparable to state-of-
the-art LiDAR approaches and even outperforms FAST-LIO
with LiDAR in highly dynamic environments on sequences
"HBF" (as illustrated in Fig. 7) and "N4". These results further
validate our proposed online extrinsic calibration method, as it
is consistently employed for radar-to-IMU calibration across
all three sequences.

C. Ablation Studies

We perform ablation studies to evaluate the contributions
and computation time of individual components within the
Doppler-SLAM framework. To isolate and eliminate sensor-
related effects, we select sequence 20240113/3 from the Snail-
Radar for the radar-based Doppler-SLAM and the sequence
"Street Day" from HeRCULES for FMCW LiDAR-based
ablation study. Both sequences represent dynamic and complex
environments. As presented in TABLE V, the results clearly
demonstrate that the integration of Doppler velocity into both
radar and FMCW LiDAR systems greatly improves accuracy
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Method 20240113/3 (4.6 km) 20240113/1 (0.5 km) 20240115/2 (6.6 km) 20240123/2 (8.5 km) 20240123/3 (2.2 km)

RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m]

FAST-LIO2-LC (LiDAR) 0.007 0.011 1.870 0.010 0.013 0.359 0.007 0.008 1.183 0.022 0.005 9.889 0.009 0.008 0.693
KISS-ICP (radar) 0.240 0.155 68.40 0.118 0.179 4.389 0.232 0.134 147.1 0.269 0.117 167.8 0.222 0.155 45.86
Radar-ICP 0.238 0.156 18.24 0.120 0.174 3.946 0.229 0.131 31.62 0.252 0.112 37.47 0.221 0.151 7.893
4DRadarSLAM 0.737 1.170 53.23 0.460 1.074 8.908 0.663 1.179 491.2 0.864 0.901 454.5 0.503 0.983 142.1
Graph-RIO - - - 0.169 0.172 9.523 0.195 0.172 763.4 - - - 0.266 0.168 497.0
RIV-SLAM 0.213 0.142 30.17 0.113 0.171 4.131 0.219 0.128 33.1 0.224 0.101 35.51 0.201 0.140 6.120

Doppler-Odometry(radar) 0.151 0.113 3.375 0.083 0.167 0.285 0.175 0.102 9.391 0.199 0.095 10.59 0.156 0.117 2.608
Doppler-SLAM(radar) 0.150 0.111 1.532 0.082 0.160 0.316 0.174 0.098 5.651 0.198 0.095 5.810 0.156 0.116 1.556

TABLE I: Comparison of SLAM methods on Snail-Radar dataset. Bold: best results, underlined: best radar results.

Method Mountain Day 1 (4 km, mountain) Library Day 1 (1.6 km) Sports Complex Day 1 (1.4 km) Parking Lot 3 Night (0.5 km) Street Day 1 (1 km, rain)

RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m]

FAST-LIO2-LC (LiDAR) 0.085 0.061 4.595 0.095 0.072 5.234 0.084 0.073 2.114 0.091 0.092 1.828 0.028 0.026 2.966
RIV-SLAM (radar) 0.077 0.084 206.9 0.014 0.064 4.175 - - - 0.020 0.075 2.380 0.010 0.042 10.74
Radar-ICP (radar) 0.055 0.067 118.6 0.049 0.064 10.23 0.049 0.071 7.125 0.058 0.089 3.414 0.022 0.028 11.66

Doppler-SLAM (radar) 0.059 0.068 43.05 0.012 0.094 13.24 0.081 0.065 2.718 0.015 0.078 0.717 0.013 0.039 7.448
Doppler-SLAM (LiDAR) 0.128 0.054 4.498 0.085 0.061 3.365 0.093 0.067 2.069 0.101 0.077 1.642 0.029 0.024 2.813

TABLE II: Comparison of SLAM methods on HeRCULES dataset. Bold: best LiDAR results, underlined: best radar results.

Method cp (handcart, 0.25 km) loop2 (car, 4.79 km) loop3 (car, 4.23 km)

RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m]

4DRadarSLAM 0.129 0.255 0.861 1.337 0.308 43.67 1.216 0.455 334.7

Go-RIO 0.079 0.661 1.035 - - - 0.991 1.035 52.74

Doppler-Odometry 0.022 0.109 3.267 0.260 0.179 50.56 0.209 0.162 48.34

Doppler-SLAM 0.079 0.267 1.508 0.261 0.126 4.278 0.188 0.169 8.182

TABLE III: Comparison of SLAM methods across sequences on
NTU4DRadarLM dataset. Bold: best results, underlined: second best
results.

Groundtruth Doppler-SLAM (radar) FAST-LIO2 (LiDAR) FAST-LIO2-Multi (LiDAR)

Fig. 6: Qualitative results on sequence "WoehrSee" from IMADAR
dataset.

Groundtruth Doppler-SLAM (radar) FAST-LIO2 (LiDAR) FAST-LIO2-Multi (LiDAR)

Fig. 7: Qualitative results on sequence "HBF" from IMADAR
dataset.

Method WoehrSee (7.1 km) HBF (4.7 km) N4 (15.4 km)

RPE [m] APE [m] RPE [m] APE [m] RPE [m] APE [m]

FAST-LIO2 (LiDAR) 0.22 24.89 0.29 15.56 0.252 138.77

FAST-LIO2-Multi (LiDAR) 0.115 18.65 0.104 2.50 0.153 58.75

Doppler-SLAM (radar) 0.178 30.55 0.21 8.46 0.216 102.9

TABLE IV: Comparison of SLAM methods across sequences on
IMADAR dataset. Bold: best results, underlined: second best results.

and robustness by reducing false matches in dynamic scenes.
The computation time for each module is summarized in
TABLE VI. The velocity filter and online calibration modules
are highly efficient, each contributing less than 0.2 ms per
frame. Doppler residual computation is also lightweight, with
slightly higher cost on LiDAR due to increased point cloud
density. As expected, loop closure is the most computationally
intensive component, but it remains within real-time capability
for both sensor types. This confirms the efficiency and suitabil-
ity of Doppler-SLAM for real-time radar and FMCW LiDAR
applications.

Method 20240113/3 (radar) Street Day (FMCW LiDAR)

RPE [m] RPE [°] APE [m] RPE [m] RPE [°] APE [m]

w/o velocity filter 0.216 0.3730 16.07 0.112 0.102 11.06

w/o Doppler residual 0.149 0.1111 5.671 0.071 0.080 3.350

w/o online calibration 0.159 0.1112 4.140 0.052 0.038 3.476

w/o loop closure 0.151 0.113 3.378 0.046 0.039 2.940

Doppler-SLAM 0.150 0.1110 1.532 0.029 0.024 2.813

TABLE V: Ablation evaluation on radar and FMCW LiDAR se-
quences. Bold: best results, underlined: second best results.

velocity filter Doppler residual online calibration loop closure

20240113/3 (radar) 0.024 1.877 0.036 37.72

Street Day (FMCW LiDAR) 0.175 10.8 0.097 137

TABLE VI: Computation time of each module (ms).

V. CONCLUSIONS

This paper proposes Doppler-SLAM, a novel Doppler-aided
radar-inertial and LiDAR-inertial SLAM framework. By incor-
porating Doppler velocities into scan-matching, our approach
unifies FMCW LiDAR- and 4D radar-based SLAM systems
into a single framework, enabling robust SLAM performance
under challenging dynamic conditions. This tightly integrated
system fuses IMU data with either 4D radar or FMCW
LiDAR to deliver odometry, ego velocity estimation, mapping,
and extrinsic calibration between the IMU and the radar or
LiDAR sensor. Our innovative online calibration technique,
enhanced by Doppler velocity and loop closure, ensures con-
sistent sensor alignment. Thorough evaluations demonstrate
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clear advantages over existing state-of-the-art radar-SLAM and
FMCW LiDAR-SLAM frameworks, and by releasing Doppler-
SLAM and our IMADAR dataset as open-source software, we
encourage continued advancement and further research within
the SLAM community.
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