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Abstract— Robots need to know where they are in the world
to operate effectively without human support. One common first
step for precise robot localization is visual place recognition. It
is a challenging problem, especially when the output is required
in an online fashion, and the current state-of-the-art approaches
that tackle it usually require either large amounts of labeled
training data or rely on parameters that need to be tuned
manually, often per dataset. One such parameter often used
for sequence-based place recognition is the image similarity
threshold that allows to differentiate between pairs of images
that represent the same place even in the presence of severe
environmental and structural changes, and those that represent
different places even if they share a similar appearance.
Currently, selecting this threshold is a manual procedure and
requires human expertise. We propose an automatic similarity
threshold selection technique and integrate it into a complete
sequence-based place recognition system. The experiments on
a broad range of real-world and simulated data show that our
approach is capable of matching image sequences under various
illumination, viewpoint and underlying structural changes,
runs online, and requires no manual parameter tuning while
yielding performance comparable to a manual, dataset-specific
parameter tuning. Thus, this paper substantially increases the
ease of use of visual place recognition in real-world settings.

I. INTRODUCTION

Any device moving through the real world, be it a mobile
robot, autonomous vehicle, drone, or an augmented real-
ity (AR) device, must be capable of recognizing places it
knows from before as part of its ability to localize itself.

Recognizing places in the real world is challenging as
environments typically do not remain static but undergo
changes over time. These can be changes in illumination,
appearance, geometry, or even a combination of any of the
above. For example, an image taken during the daytime
typically looks vastly different from one taken at night.
In construction environments, a new wall might have been
built between data acquisitions, changing both, the place’s
appearance and geometry. On a larger temporal scale, trees
can change their colors and leaf coverage from summer to
winter. All of these changes lead to tricky data association
problems and make a robust solution to the problem of
detecting previously seen places in real-world and large-scale
environments a challenge.
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Fig. 1. Each row shows a pair of matching images from a different dataset.
The query images are on the left and the reference ones are on the right.
Our adaptive sequence-based place recognition approach was able to match
all of these sequences without any manual parameter tuning.

Researchers in robotics and computer vision communities
often aim to localize their devices using various sensors
like LiDARs [2], [25], cameras [6], [20], [24], and even
radars [4], [10], [17] in either maps or “previous experi-
ences,” often defined as sensor readings collected in the
environment.

In this paper, we consider a monocular camera as our
only sensor because cameras are cheap, small, and versatile.
They can be found on most robots, AR devices, and even
on phones. Such general availability provides the poten-
tial to develop a widely applicable framework capable of
detecting previously visited places. Over the years, there
has been steady progress in recognizing previously visited
places from camera images by designing better traditional as
well as deep-learning feature descriptors and treating place
recognition as an end-to-end learning task. Some approaches
use single images, while others consider image sequences or
video streams to robustify the recognition of places. Despite
all the progress made, there is still no perfect recognition
approach and they all still can fail in the presence of drastic
changes in the scene.



In this work, we utilize the fact that cameras operating in
the real world, especially in robotics applications, generate
image streams. We build upon our previous approach [22],
which formulates sequence-based place recognition as a
graph-based sequence matching technique that operates on-
line and provides matching candidates between the current
image stream (query) and existing reference sequences. Even
though this approach has demonstrated strong performance
even in complicated scenarios, its performance is sensitive
to the so-called similarity threshold, i.e., a value that defines
a minimum image similarity such that places are allowed
to be considered the same place. Setting a good similarity
threshold requires expertise and has often been done man-
ually in the past [18]. This limitation, however, prevents
the widespread use and deployment of such a system. The
challenge of choosing a good threshold is exacerbated by the
fact that robots require online operation in changing or novel
environments, i.e., any manual parameter tuning should be
avoided.

The main contribution of this paper is a sequence-based
place recognition approach that uses, at its core, an adaptive
technique to determine image similarity for sequence-based
place recognition. Our approach adjusts the image similarity
criterion based on the similarity values and matching results
computed so far by learning a threshold over a small batch
of data for every incoming query image. This approach
adapts to changes between image sequences, e.g., the query
sequence was recorded in summer while the reference one in
winter, as well as the changes within the sequences, e.g., the
images get progressively lighter or darker within a sequence,
which is typical if the data were recorded at dusk or dawn
outdoors, or when entering or leaving tunnels or buildings.
Thus, our approach presented here turns our prior work [22]
into an approach that requires no manual parameter tuning
and is thus directly usable in new environments. Fig. [I| shows
examples of various data on which our method is able to
match sequences of images without any manual parameter
tuning.

In sum, we present an image sequence-based place recog-
nition approach that: (i) automatically selects the similarity
threshold to provide consistent, reliable place recognition
performance without the need for manual threshold selection;
(ii) enables place recognition in long deployment scenar-
ios with discrete and continuous changes within the query
sequences; (iii) works in an online fashion and thus is
suitable for mobile system deployment. The paper and our
experimental evaluation back up all these claims.

II. RELATED WORK

Visual place recognition is a well-studied topic, especially
if seen as an image retrieval problem where for every image,
we need to find an image that represents the same place in
the database, if it exists.

Robots, however, perceive the world not in individual
detached snapshots but rather as a stream or a sequence of
images. Using such sequential data simplifies the problem of
searching for similar images. Ho et al. [8] was one of the first

to use sequence information to detect if the robot revisited
a place it has visited before, also called loop closures.
They construct and examine a similarity matrix and propose
to use the Smith-Waterman algorithm to find significant
local alignments similar to what we refer to as paths in a
similarity matrix. Similar to this, Lynen et al. [13] propose
a loop closure detection system that examines the similarity
matrix and looks for the off-diagonal places with high local
intensities for potential loop closures. In our approach, we are
inspired by their use of the Kolmogorov-Smirnov statistical
test to detect parts of the similarity matrix with potentially
high-similarity regions. Cummins et al. [3] propose a loop
closure detection system that has a probabilistic formulation
and allows to search for loop closure candidates in the space
of appearances rather than on the basis of individual images.
Milford and Wyeth [15] propose to use a similar concept
but in the context of alignment of two image sequences that
were recorded in different period in time rather than for loop
closure candidate selection in SLAM. They propose to fit
lines to the similarity matrix and thus obtain correspondences
between the query and the reference sequence. Naseer et
al. [16] relax the assumption of linear movement and propose
to match image sequences using graph-based formulation.
In our previous work [22], [23], [24], we address the main
limitations of their work and propose an approach for online
place recognition where the matching hypothesis is updated
on the fly for every incoming image.

The selection of the image feature descriptor is almost
as important as the matching algorithm itself. Lowe [12]
proposed a SIFT descriptor that is invariant to rotation,
translation, and illumination changes. Even though the SIFT
descriptor had an enormous impact and is still used to-
day, its performance degrades in the presence of strong
visual appearance changes, like seasonal changes, weather
conditions, and day-night changes [21]. Recently proposed
learning-based descriptors are able to tackle a variety of
such challenges [1], [7], [11]. Our approach is orthogonal
to the approaches that focus on finding better features
for image matching and can use any such features. As
better approaches emerge we directly benefit from their
advances and are able to push our method even further. In
this spirit, we rely on recently proposed DinoV2 SALAD
features [9]. The majority of place recognition approaches
need to estimate at some point if a pair of image or
sequence descriptors [S5], [14] represent the same place.
This is typically done by manually setting some form of
a similarity threshold. Neubert et al. [18] raises the point
that setting such a threshold once is usually not enough to
achieve good place recognition performance. They stress that
in case of “discrete” or “continuous” changes within the
query sequence the similarity threshold might change and
needs adaptation to provide robust place recognition esti-
mates. Motivated by these challenges, we tackle the problem
of automatically selecting such a threshold for sequence-
based place recognition approaches and present an adaptive
similarity threshold selection approach that, when integrated
into a sequence-based place recognition framework is able to
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Fig. 2. Examples of various paths through a similarity matrix, showing the
path correctly found by our adaptive method (left), as well as two situations
when a similarity threshold was manually chosen to be either too high
(middle) or too low (right) which leads to poor overall performance. When
the similarity threshold is too high, all of the potential matches have low
confidence, shown in blue. When it is too low, the matching process becomes
over-confident and diverges from the real path.

match sequences of images that exhibit such “discrete” and
“continuous” changes over a wide selection of real-world
datasets without any manual parameter tuning.

III. ADAPTIVE SEQUENCE-BASED PLACE RECOGNITION
A. Sequence-based Place Recognition

We approach place recognition as an image sequence
matching problem. Originally presented by Naseer et al. [16],
the sequentiality of the data can be represented by a graph
where every node n;; represents the fact that a query image
1 was compared to a reference image j. The weights on
the edges of this graph correspond to the similarity score
of comparing two images. The most intuitive representation
of such a graph is a similarity matrix, as seen in Fig. 2]
Every element m;; of this matrix stores the similarity score
between a query image ¢ and a reference image j. As a
result, brighter parts of this matrix correspond to images
with higher similarity, likely representing the same physical
location in the environment. The task of matching image
sequences then morphs into one of finding a path that follows
brighter areas in a similarity matrix, such as shown by the
red lines in Fig. 2] (left).

To be able to find such paths robustly, current state-of-the-
art methods [22], [23] perform the search inside the graph
structure and inevitably rely on a user-defined similarity
threshold 6 to differentiate between the nodes that represent
the same place and those that do not. The nodes along
the shortest path that are above 6, are valid nodes and are
reported as image matches; the ones that are below 6 are
considered hidden. They are not considered image matches
but are kept within the path to ensure sequentiality. It is
normal to have a small number of hidden nodes along the
path, which usually corresponds to a temporary obstruction.
However, a higher number of hidden nodes usually indicates
that the path hypothesis is wrong and must be revised. We
refer the reader to our previous works [22], [23] for the
details. In Fig. [2]and later in our experiments, we show valid
nodes as red and hidden ones as blue.

The choice of the similarity threshold is critical for op-
timal performance of the sequence-based place recognition
approach. Intuitively we want the path to follow bright lines
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Fig. 3. For a patch of the similarity matrix (left), we fit a two-
mode Gaussian mixture model to its values (middle) and, after obtaining
the similarity threshold as the decision boundary between the Gaussian
distributions, tint the similarity values above this threshold purple (right).
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in the similarity matrix. If the threshold is too high, only
matches with very high similarity constitute valid matches
and many nodes are considered hidden. If the threshold is
too low, every match is considered valid and the path diverges
easily. Fig. 2] shows all of these cases on a similarity matrix
computed from real-world data.

Note that selecting a good threshold is a complex task and
requires expert knowledge as well as data observability. To
address this, we propose an approach to set this similarity
threshold automatically such that there is no need for an
expert user to select it beforehand. Furthermore, by selecting
this threshold automatically, our approach is able to adapt to
changes that can occur within query sequence in long-term
deployment scenarios.

B. Patch Selection Procedure

As a result of sequence-based place recognition, for every
query image i, we have access to the current best path
hypothesis. This hypothesis contains the matching estimate
m;; between the latest query ¢ and some matching image j
in the reference sequence, as well as for all the queries from
0 to 7. We extract a patch over the similarity matrix of size
p with its bottom right element corresponding to the latest
best estimate m;; and other elements being the similarities
computed for the queries ¢ — p. We continuously select these
patches at every step and update the similarity threshold 6
in a sliding window fashion.

C. Estimating Separation Threshold

If, for some query image ¢, we select a patch of values
in the similarity matrix that were observed previously, as
shown in Fig. [3] we observe that these values typically can
be divided into those likely belonging to a valid path and
those that do not. These two groups of similarity values form
an unknown bimodal distribution, i.e., a distribution of valid
matches and a distribution of non-valid ones. We seek to
find a threshold that would reasonably separate these two
distributions.

We approach this task, by fitting a 1D Gaussian mixture
model (GMM) to our data as shown in the middle of Fig. E}
GMM provides us with means and standard deviations of
two Gaussian distributions. Based on these parameters, we
estimate the similarity threshold as the decision boundary
between the two Gaussian distributions, a value 6 such that:

PN (p1,01) | 0) = P(N (u2,02) | 0), (1
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Fig. 4. A patch with no visible path (left). A unimodal Gaussian describes
the underlying data well (middle). The KS test accepts the null hypothesis
and reports that no path was detected in the patch.
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Fig. 5. A patch with a visible path (left). A unimodal Gaussian fits the
similarity value distribution poorly (middle). The KS test rejects the null
hypothesis because the distance between the CDFs is too big.

where N (u1,01) and N (ug, 02) are the two Gaussian dis-
tributions estimated with the GMMs. Following the Bayes
rule, using 7; to denote prior probabilities given by the GMM
weights, and using g(0, u;, 0;) to denote a probability density
function of a Gaussian distribution, we can rewrite Eq. :

T g(ev M1, 01) = T2 g(ea 2, 02)a
which, once expanded, becomes a quadratic equation:
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Solving this equation for # we typically get one or two
solutions, one of which lies between the means of our
Gaussian distributions. If this solution exists, we choose it as
the measurement of the current similarity threshold. We can
use this threshold to decide which similarity values belong
to a path and which do not. The right image in Fig. [3] shows
values that belong to the path shaded purple.

To capture long-term trends in the similarity threshold
rather than adapting to individual estimates, we smooth the
similarity threshold update with a 1D Kalman filter (KF).

D. Statistical Test for Path Detection

The threshold estimation procedure described above relies
on the presence of a valid path within the examined patch.
Not every patch in the similarity matrix, however, contains
a path. In fact most of randomly picked patches will not
contain a discernible path. In typical sequence matching sce-
narios, even the best path hypothesis can lead to examining
patches with no path at the start of the matching process,
when the query and reference trajectories deviate or when
the camera remains stationary for a prolonged time in both
query and reference sequences.

Having no path in a patch means that the distribution of
patch values is not bimodal, but rather unimodal. In this
situation, running the GMM threshold estimation procedure,
as described in Sec. can produce degenerate results.

Moreover, the GMM can be a costly operation. To avoid
unnecessary computation and unnecessarily updating the
similarity threshold, we propose first checking if the patch
contains a path. Inspired by Lynen et al. [13], we use
the Kolmogorov-Smirnov statistical test (KS test) to check
whether a patch under consideration contains a path, i.e. it
is formed by a bimodal distribution.

Intuitively, the KS test allows one to test whether a set
of given samples comes from a proposed distribution with
known parameters. We assume that if the patch contains no
discernible path as in Fig. 4| (left), the values are distributed
according to a Gaussian distribution, while if there is a
visible path as in Fig. [§] (left), the values are distributed
differently. Formally, our objective is to reject a null hy-
pothesis Hj that states that the samples, that is, the values in
the patch, originate from a Gaussian distribution with known
parameters.

In order to test this hypothesis, we need to first find the
parameters of the target Gaussian distribution, which we
estimate by fitting a Gaussian distribution to all values found
in the patch as seen in the middle images of Fig.[4]and Fig.[3]
The KS test compares the cumulative density function (CDF)
of this theoretical distribution with the empirical CDF com-
puted directly on the patch values. If the difference between
the theoretical and empirical CDFs is smaller than a “critical
value” defined by the KS test we accept the null hypothesis,
see Fig. [ (right). Otherwise, if the difference between CDFs
is large, we reject the null hypothesis, see Fig. [5] (right). If
the null hypothesis is accepted, we consider that there is no
path found in the patch and do not use this patch for updating
the similarity threshold.

Strictly speaking, rejecting the null hypothesis only gives
a guarantee that the distribution of the values in the patch
is not a unimodal Gaussian, but in our experience in most
cases if this distribution is not unimodal the patch contains a
path. Once we reject the null hypothesis, we proceed with the
estimation of the similarity threshold as described in Sec.
[C] and shown in Fig. 3] Note that the KS test provides
statistical guarantees and in all our experiments we use the
significance value of 0.05.

IV. EXPERIMENTAL EVALUATION

The core of our place recognition system is an adaptive
similarity threshold selection approach for sequence-based
place recognition in changing environments and our experi-
ments are designed to showcase its performance and to sup-
port our key claims, that (i) our adaptive threshold selection
procedure delivers stable place recognition performance that
does not depend on sensitive parameters and requires no
expert user input, (ii) the adaptive nature of our approach
allows for place recognition in the presence of discrete and
continuous change within the data, and that (iii) our approach
is applicable for online deployment scenarios where we
might have only limited information about the similarity
values within the patch used to learn the similarity threshold.

As a first experiment, we show that our approach is able to
match images between sequences and provides stable place



TABLE I
F1 SCORES FOR VARYING INITIAL SIMILARITY THRESHOLDS

dataset adaptive previous best one best five
min | max | min | max | min | max
Bonn 0.91 0.0 0.99 0.0 0.99 | 0.01 1.0
Freiburg 0.88 0.0 0.98 0.0 0.98 0.0 1.0
Nordland 0.98 0.0 0.98 0.0 0.98 0.0 1.0
Construction 0.59 0.0 0.72 0.0 0.56 0.0 0.8
Discrete 0.99 0.67 | 099 | 0.26 | 0.99 | 0.26 1.0
Bike 0.91 0.0 0.9 0.0 0.99 0.0 0.98
Kyiv 0.88 0.0 0.96 0.0 0.96 0.0 0.97
max-min | - | 0.83 | 0.88 | 0.9

recognition results. For this, we ran our approach on a wide
variety of data collected in the real world. These span from
classical datasets like Nordland [19], or Freiburg and Bonn
datasets [23], through our self-recorded datasets that consist
of GoPro images exhibiting strong illumination changes that
we match against the Google Street View imagery, to a
dataset recorded in two sessions with a month between
these sessions on a real construction site exhibiting both
dynamic and structural changes in the environment. In all
presented datasets, the images were extracted from recorded
videos with 1 fps and 2 fps for handheld data collection
in ”Construction”. The construction dataset is enabled by
Design++ and ETH Ziirich in collaboration with Halter
AG. In the Nordland dataset, we used the first 500 images
extracted with 1 fps, where winter represented the reference
sequence and summer the query one, respectively. Moreover,
the size of the patch is fixed to 20 images, as increasing the
patch size to 30 or 50 does not lead to higher accuracy,
according to our experiments.

We show the performance of our approach on all of these
data in terms of F1 score in the adaptive column of the Tab.
We compare our approach to the prior work in sequence-
based matching [22] (previous) as well as two baseline
strategies that select for every query the best candidate (best
one) and five best candidates (best five). Here we operate on
a fully precomputed similarity matrix as the best one and the
best five strategies can only be used in this setting.

In Tab. [l we show that our approach (adaptive) ex-
hibits similar place recognition performance to the previous
sequence-based matching strategy in terms of an F1 score
over a variety of datasets. In this experiment, we varied the
initial similarity threshold for all the baseline methods by
performing a full grid search for every dataset and show the
best resulting place recognition performance in terms of F1
score in columns max and the minimal achieved score min.
Please note that this choice is a complicated task and, in
our experience, requires deep expert knowledge and often
access to the ground truth information. The row max-min
shows that the average difference between picking the best
possible threshold and picking the worst one varies between
80 and 90% for the baseline methods, whereas the adaptive
provides a potentially slightly worse but unique solution.

To showcase this further, we focus on the ”Construction”
dataset from Tab. [I} This is a very challenging dataset that
contains strong structural changes between the query and the
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Fig. 6. The images (top: reference, bottom: query) are taken 1 month apart
on an active construction site and reported as a match by our algorithm.
The right side shows a precision-recall plot comparing the performance of
various methods on this dataset with our approach labeled as “adaptive”.
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Fig. 7. Left: Similarity matrix where the top part exhibits day-to-
day matching and the bottom part night-to-day matching. Bottom right:
Similarity threshold evolution. The red line indicates the discrete change
from day to night.

reference sequences. On the left side of Fig. [6] we show one
such change where there is clutter, new wall panels, and a
new door in the top image, which are not present in the ref-
erence sequence image shown at the bottom. These changes
make picking the right threshold for matching images a hard
task. The right side of Fig. [6] shows a precision-recall plot
which we create by varying the similarity threshold. Through
this plot, we observe that while it might be possible to
manually pick a good similarity threshold, there are many
more possibilities to pick one that leads to heavily degraded
performance. Note that a choice of a good threshold is highly
dataset-dependent and usually involves having access to all
the pair-wise image matching scores between the query and
reference sequences. Therefore, not only choosing a good
threshold is hard but, in case of online operation, it might
even be impossible, as such matching scores are not available
beforehand. Our adaptive approach, produces a single result
shown as a light-blue dot as there are no parameters tunable
by the user. This result is only marginally worse (around
13%) than the result produced by picking the best possible
parameters for the existing method. We believe that the
absence of manual parameter tuning in our method is crucial
to enable its stable real-world deployment and is one of its
biggest strengths.

Our next two experiments are designed to support our
second claim that our approach enables place recognition in
long-term deployment scenarios with discrete and continuous
changes within the query sequence.
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Fig. 8. Similarity threshold evolution in challenging scenario of matching
GoPro camera imagery to Google street view images.

To showcase the adaptability of our approach to discrete
changes within an image sequence, we look at two image
sequences recorded from a car driving in Bonn. In both cases,
the car drove the same route but once during the day and the
other time during the night. We use the day dataset as our
reference sequence and construct an artificial query sequence
by stacking the day sequence on top of the night sequence.
This approximates the scenario of a robot operating during
the day and having near-perfect matching images in its
reference sequence and then restarting its operation during
the night, where the image matching scores become much
worse. We illustrate how the similarity threshold learned by
our method is able to cope with this situation in Fig.
We show the full similarity matrix on the left, a pair of
representative images from day and night on the top-right and
a plot that shows the evolution of the similarity threshold on
the bottom-right. The two red lines, one across the similarity
matrix and one across the similarity threshold evolution plot
indicate the same spot in the query sequence where day
abruptly changes to night. Comparing the adaptive similarity
threshold values on both sides of the red line, we see that it
converges to a new value in the presence of an abrupt discrete
change in the query sequence. Overall, our method achieves
the F1 score of 0.99 on this dataset, see the ”Discrete” label
in Tab. [l

Similarly to discrete changes within an image sequence,
our approach handles continuous changes during data ac-
quisition. To showcase this, we collected a dataset in Kyiv,
where the image sequence that we use as our query sequence
was recorded at dusk with a GoPro camera mounted onto a
car. As the sun sets, the images become progressively darker.
We match this sequence against the Google Street View
imagery collected during the day. This causes the images in
the query and reference sequences to become progressively
less visually similar. Fig. [§] shows illustrative examples of
query-reference image pairs at the start (top image row) and
towards the end of the route (bottom image row) as well as
a plot of how our method adapts the similarity threshold
continuously. Note how the similarity threshold is lower
towards the end of the trajectory. Our approach successfully
found most of the matching image pairs and reached the F1
score of 0.91 for this dataset denoted as “Kyiv” in Tab.

Furthermore, we perform an experiment in a controlled
setting on simulated data. Here, we control the amount
of change in the similarity values and observe the evolu-
tion of the similarity threshold estimated by our method.
Fig. 0] shows a similarity matrix for perfectly aligned query
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Fig. 9. When the similarity scores change over the course of the dataset,
our approach is able to adapt the similarity threshold as shown here on
simulated data.

Fig. 10.
with similarity values (orange square). (Right) In online scenario, the patch
for adaptive thresholding might not be complete. Our approach provides
matches of equally high quality in both cases.

(Left) Adaptive thresholding operates on the patch fully populated

and reference sequences where the simulated data becomes
harder to match with time, making similarity values drop,
which can be seen from a darkening diagonal. In our setup,
the similarity of the non-matching images is very low, so the
off-diagonal elements are dark. The corresponding similarity
threshold evolution plot shows that our method behaves
as we expect, and the threshold adapts to the observed
similarities.

Our final experiment is designed to support our third claim
that the performance of our adaptive similarity threshold
selection does not degrade in an online setup. In this case,
there is no pre-computed similarity matrix and we rely only
on the similarity values computed during the graph search.
Thus, it may happen that the patch with the similarity values
is not complete. Fig. [I0] shows that our place recognition
approach works even in such setting and provides data
associations of the same high quality as when it has access
to all similarity values.

V. CONCLUSION

In this paper, we propose a sequence-based place recog-
nition approach that eliminates the need for manual tuning
of the image similarity threshold. Most approaches require
a minimum image similarity threshold to consider image
pairs a match — a parameter to be set by a human expert
with access to ground truth, often in an offline fashion. We
eliminate this manual tuning by proposing a way to estimate
the parameter online during operation and without supervi-
sion, i.e., no positive or negative examples must be provided
manually. We estimate the distribution of image similarities
and determine a plausible separation by combining Gaussian
mixture model estimation and statistical testing. Our results
show that we perform similarly or only slightly worse than
an approach operating with hand-tuned parameters.
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