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Effective Visual Place Recognition Using
Multi-Sequence Maps

Olga Vysotska and Cyrill Stachniss

Abstract—Visual place recognition is a challenging task, espe-
cially in outdoor environments as the scenes naturally change
their appearance. In this paper, we propose a method for visual
place recognition that is able to deal with seasonal changes,
different weather condition as well as illumination changes. Our
approach localizes the robot in a map, which is represented
by multiple image sequences collected in the past at different
points in time. Our approach is also able to localize a vehicle in
a map generated from Google Street View images. Due to the
deployment of an efficient hashing-based image retrieval strategy
for finding potential matches in combination with informed
search in a data association graph, our approach robustly
localizes a robot and quickly relocalizes it if getting lost. Our
experiments suggest that our algorithm is an effective matching
approach to align the currently obtained images with multiple
trajectories for online operation.

Index Terms—Localization, Visual Place Recognition

I. INTRODUCTION

LOCALIZATION is a key building block for most robot
navigation systems, as robots need to know where they

are in order to take navigation decisions. One form of lo-
calization, which is also relevant for performing loop-closing
within the simultaneous localization and mapping problem,
is the ability to identify that the robot is currently at a
place already observed in the past, also known as ”weak”
localization. Solving this global data association problem is
especially challenging for robots operating in dynamic and
changing environments. A robust localization system should be
able to deal with the substantial appearance changes that occur
in real-world outdoor environment due to seasonal change,
weather, or modifications in the scene, see Fig. 1 for an
example. Thus, the goal of all such localization systems is
to relate the current observation with respect to a previously
recorded one or a model of the environment.

Image matching-based localization, also under substantial
scene changes, is an active research field and multiple ap-
proaches have been proposed [6], [7], [16], [21], [22]. One
group of approaches relies on sequence information, i.e., they
exploit the fact the images are not recorded in a random
order but according to the motion of the robot or vehicle
through the environment. This allows for handling certain
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Fig. 1: Given a sequence of query images (black trajectory), our
approach is able to localize the robot within multiple reference
sequences (colored) of different length, shape, and visual appearance.

types of changes in the appearance better than when consider-
ing single images. Sequence-based approaches, however, often
face the challenge that they must provide means for efficient
localization even if the robot has deviated from a previously
taken route. Furthermore, the majority of approaches in this
area considers only the matching of two trajectories although
there are exceptions such as the experience-based navigation
paradigm [6], which can fuse multiple trajectories into a graph
combining topological and metric information.

The main contribution of this paper is a new sequence-
based visual place recognition system that localizes against
a map consisting of multiple image sequences. Our system is
particularly robust against drastic visual appearance changes
due to a combination of expressive image features from a layer
of convolutional neural network with adapted graph-based
search in maps consisting of multiple trajectories of camera
images. A property of our new method is that the reference
sequences can be of arbitrary shape and represent places under
different seasons or weather conditions. Additionally, there are
no restrictions imposed on the length or amount of overlap
between the trajectories as well as on synchronization, i.e.,
the reference trajectories do not need to be image-to-image
synchronized. We address the problem of relocalization by
deploying a hashing-based image retrieval with the search
through a data association graph.

We evaluate our approach on different datasets to illustrate
the following properties of our approach. First, it can recognize
previously visited places within the map of multiple sequences.
The map can consist of multiple independently collected
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sequences or be constructed from the publicly available data,
like Google Street View. Second, the sequence can be collected
using different setups, e.g., in cars or on bikes. Third, our
matching approach is an online approach, which is fast enough
to be executed on a mobile platform.

II. RELATED WORK

Localization in real-world outdoor environments is an active
field of research and one popular, image-based approach is
FAB-MAP2 [7]. In order to deal with substantial variations
in the visual input, however, it is useful to exploit sequence
information for the alignment, compare [10], [14], [15], [16].
Another popular approach for visual place recognition pro-
posed by Galvez-Lopez et al. [8] proposes a bag of words
approach using binary features for fast image retrieval. Or-
thogonal to the exploitation of sequences, different types of
features and their use for place recognition have been studied.
Some approaches use variants of HOG features such as [16]
or Bag of Words models optimized for seasonal changes [17].
More recently, multiple researchers apply learned features such
as those proposed by Sermanet et al. [19] and suggested for
place recognition by Chen et al. [5]. These CNN features yield
a high matching quality but are rather high-dimensional, i.e.,
comparisons are computationally expensive. This motivates
the binarizations of such features and efficient comparisons
using the Hamming distance [3]. Another recent approach by
Maffra et al. [12] proposes a system for viewpoint tolerant
place recognition for UAV navigation. This approach uses
3D structure of the environment obtained from visual-inertia
keyframe-based SLAM to be able to perform robust place
recognition in presence of dramatic view-point changes. In
our approach we proposed pure image based place recognition
without building a 3D map of the environment.

The experience-based navigation paradigm [6] takes
into account multiple sequences and stores multiple im-
ages/experiences for individual places. It extends the place
model whenever matching the current images to previous
ones becomes challenging. Extension of experience-based
navigation targets large-scale localization by exploiting a pri-
oritized collection of relevant experiences so that the number
of matches can be reduced [10]. SeqSLAM [15] aims at
matching image sequences under strong seasonal changes
and computes an image-by-image matching matrix that stores
similarity scores between the images in a query and database
sequence. Milford et al. [14] present a comprehensive study
about the SeqSLAM performance on low-resolution images.
Related to that, Naseer et al. [16] focus on offline sequence
matching using a network flow approach and Vysotska et
al. [22] extended this idea towards an online approach with
lazy data association and build up a data association graph
online on demand. To not restrict query trajectory to follow
the reference one all the time, we proposed in our paper [23]
an extension that allows for flexible trajectories. To be able
to achieve this flexibility, we proposed an efficient hashing
based relocalization strategy as well as how to apply traditional
hashing based techniques within the graph-search sequence
matching framework.
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Fig. 2: Graph structure inherited from [22]. Nodes correspond to
possible image matches, edges represent transitions between the
matches. Green circles denote expanded nodes (for which two feature
vectors are compared); red circle - match; blue - non match, but
support the path hypothesis.

Typical approaches to visual place recognition start with
collecting the datasets, sequences or experiences to recognize
later on the places against. Collecting these maps is a time and
resource consuming operation. Recently, there started to ap-
pear several approaches in the literature that tried to overcome
the burden on collecting the reference dataset by exploiting
already exciting sources, like Google Street View or other
publicly available sources. Badino et al. [4] proposed a method
for long term vehicle localization that can localize a vehicle
with respect to previously collected topometric map as well
as Google Street View. Their method deploy local keypoint
features U-SURF and performs localization and tracking by
applying discreet Bayes filter. To implement the state transition
probability function, the authors assume to know the velocity
of the robot at every point in time, whereas our approach only
relies on maximal possible velocity or in other words maxi-
mum possible distance in frames (fanout). Another approach
by Majdik et al. [13] uses Google Street View to localize a
micro aerial vehicle. This setup imposes particular viewpoint
challenge which they overcome by generating virtual views
and match them against the street view images. Agarwal
et al. [1] also uses the imagery from Google Street View
to perform a metric robot localization. They compute rigid
body transformation between input image stream from the
monocular camera and geotagged rectilinear panoramic views.
Afterwards, they perform a two phase nonlinear least square
estimation to obtain the refined robot poses. The authors rely
on an inaccurate GPS to preselect the set of panoramas to
perform metric localization against. Our approach can directly
provide the matching street view image to perform a more
precise metric localization.

III. OUR APPROACH

A. Graph-Based Sequence-to-Sequence Localization

Most related work on sequence matching consider one
sequence to localize against. They seek to find for every
image in a query sequence, e.g. the sequence of incoming
images, the corresponding image in reference sequence, e.g.
sequence recorded beforehand. In this subsection, we briefly
summarize the main principles of graph-based image visual
place recognition described by Vysotska and Stachniss in [22].
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We preserve the sequential information by constructing a
graph structure, where every node corresponds to the potential
match between a pair of images, from query and reference
sequences, and the edges represent possible transitions be-
tween the potential matches. Intuitively, the edges show if
a pair of images is considered a match, where to look for
the next matches, e.g. pair of matching images, see Fig. 2
for illustration. In some cases due to potentially severe visual
appearance changes, for example, caused by glare or occlu-
sions, the images that correspond to the same place produce
low matching scores. To compensate for this issue the nodes
in the graph are represented by two states real (red) / hidden
(blue). A node becomes hidden if the cost of matching two
images is higher than predefine non-matching cost m. This
preserves the sequential behavior of the search, but discards
visually bad matches. Given the proposed graph structure, the
correspondence between images is found through the search
for the shortest path in the graph. Furthermore, we adapted
the proposed method to operate in online fashion, where for
every incoming image, we expand only a fraction of the graph
following the current best matching hypothesis and update the
search. Due to the ideas of lazy data associations, we are
able to track multiple hypotheses for the image matchings.
For more details, please refer to [22].

One of the weaknesses of the described approach is its
inability to efficiently handle flexible trajectories. We say that
trajectories are ”flexible” if they do not follow the same route.
By using the described above graph construction procedure,
we implicitly assume that both image sequences roughly
follow the same physical trajectories. This means that for most
of the incoming images there should be an image representing
the similar place in the reference sequence. However, in real-
world scenarios this is not always the case due to differently
planned routes or specific map geometry. Typical problems
within flexible trajectories are loops within reference trajectory
and deviations of the query routes, since both cases violate the
smoothness assumptions of the search. To tackle this issue,
we have introduced additional edges in the graph structure
that allows to handle loops within reference trajectories and
proposed an efficient relocalization techniques for finding the
re-entry point in case of query sequence detours. For more
details please refer to [23].

In this paper, we propose an adaptation of our graph-based
image sequence matching algorithm that handles multiple ref-
erence trajectories. Additionally, we describe how to leverage
information available from Google Street View within our
multi-sequence place recognition algorithm.

B. Multi-Trajectory Place Recognition
In realistic scenarios, one reference trajectory is typically

not sufficient to cover the operational environment of the
vehicle. Thus, we extend our approach to deal with multiple
reference trajectories and in this way allow our system to grow
a map and thus improve the coverage of the environment, both
in terms of space and different appearances. In this subsection,
we describe how to perform image sequence matching in
the case of multiple reference sequences, also called ”one-
to-many” matching.

For consistency, we briefly repeat here the relocalization
strategy. In previous paper, we proposed a relocalization
technique based on the feature dimensionality analysis and
inverted index structure. This method works better and faster
than Multi-Probe Locality Sensitive hashing (LSH) [11] for
very high-dimensional feature vectors, for example features
from OverFeat convolutional neural network [19] or VGG-
16 [20]. In this paper, we opted for newer smaller feature
vectors, namely the feature vectors obtained from NetVLAD
convolutional neural network [2]. The advantages of these
features are comparably small size (4092) and robustness
against visual appearance changes. Due to the vector size,
we selected Multi-Probe Locality Sensitive hashing as a fast
alternative to perform relocalization. Whenever the robot is
lost, defined by the fact that there are more than 80% hidden
nodes in the sliding window around current best match, we
pick the top candidates from all the images using Multi-
Probe LSH and select the most promising one. This matching
candidate becomes a real node if the respective matching
cost is lower than non-matching threshold m and a hidden
node otherwise. Afterwards, we connect it to the current best
matching hypothesis. We consider the relocalization to be
successful if no more than 80% of the nodes within the sliding
window of 5 frames in path hypothesis are hidden nodes.

The novelty of this work is the fact that the map consists
of multiple sequences of the images collected in different
points in time, recorded from different viewpoints, and with
different frame rates. We may synchronize the sequences
by performing the pairwise sequence-to-sequence matching,
i.e. given our approach described so far, for all reference
sequences. From this matching information, we can define
an in-reference matching function M(j, t) that returns for the
image j from reference trajectory t all images (image index
and trajectory index) that match to image j from t. If there
are no corresponding images, the function returns the empty
set. To enhance the localizability capabilities of the system,
we have changed the representation of the map in comparison
to [22] to be able to match against multiple image sequences.
To incorporate this map of multiple reference sequences into
our search procedure, we need to redefine the edges of the
data association graph. This also leads to a slight change into
the notation: Here, every node in ”one-to-many” strategy is
specified as xijt, where i refers to the image id in the query
sequence. The subscript jt refers to the image with id j in the
reference sequence t, see Fig. 3 (Right) for visualization.

The search starts with constructing the source node xs.
Since from the beginning the robot has no information about
its location, we perform a relocalization action, which includes
hashing the first query image q0 and retrieving potential
candidates from a hash table C(q0), forming the first type
of edges called Es in the data association graph, given by:

Es = {(xs, x0
c)}c∈C(q0) (1)

During the search, every node that is worth expanding given
the heuristic proposed in [22] is connected to its children
within the same sequence using the set of edges EX :

EX = {(xijt, xi+1
kt )}k=j−K,...,j+K (2)
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Fig. 3: Left: Evaluating per image data associations between query
and reference sequences. Blue crosses denote the matches found
by our algorithm. Green squares denote the ground truth solutions.
TP-true positive, TN - true negative, FP - false positive, and FN
- false negative. Right: Es (pink circles) relocalization edges; Em

- correspondence edges; M(j, t) (green arrow) corresponds to the
images that represent the same place from different image sequences.

At the same time, we allow for transitions between reference
sequences given the identified correspondences through the
function M(). Thus, the set of edges Em interconnects the
images along the different reference trajectories, i.e.:

Em = {(xijt, xi+1
γ )}γ=M(j,t)−K,...,M(j,t)+K (3)

Finally, in case the vehicle looses track of its localization,
either due to a failure or due to the fact that it had left
the previously mapped area, the last node of the current
best matching hypothesis xi∗ is connected to the set of the
candidates obtained from our hashing scheme:

El = {(xi∗, xi+1
c )}c∈C(qi+1) (4)

Each edge e ∈ E, independently of type, has a weight
w(e) assigned to it. The weight is inverse proportional to the
similarity score between the images. If an edge connects two
nodes (xijt, x

i+1
j′t′ ), the weight w(e) = 1/zi+1

j′t′ , where zi+1
j′t′

is the cosine distance between query image feature i + 1
and reference image feature (j′, t′). In this paper, we use
NetVLAD features that were designed to be compared with
Euclidean distance, so w(e) is given by the Euclidean distance
between two feature vectors now.

C. Leveraging Google Street View For Multi-trajectory Visual
Place Recognition

As presented in previous section, our algorithm is able
to recognize places within multiple image sequences. These
reference sequences should be collected beforehand which
may be a tedious work to do. Instead, we can also use already
publicly available sources, like Google Street View, which
provides panorama images from all over the world. Using
Google Street View API, we query images from Street View
given a GPS coordinate as well as a selected heading. To ex-
ploit this information within our place recognition framework,
we perform a sequence of transformations that turn a set of
unordered images into the map of image sequences.

We form image sequences by combining the Street View
Images along streets. Then each individual street turns to be

a reference image sequence. The synchronization of the ref-
erence sequences then comes naturally from incorporating the
information about street crossings. Further, we will describe a
way to arrange a set of images into sequences.

As a first step, we extract the GPS coordinates of the streets
from OpenStreetMaps [18]. Obtaining the street coordinates
from OpenStreetMaps requires only parsing the provided xml
file. The OpenStreetMaps API provides for every street a set
of GPS coordinates in form of street segments. The size of the
line segment, e.g. the distance between the GPS coordinates,
depends on the shape and curvature of the street. If the street
is long and straight, we should expect small amount of GPS
points with large distance between them and vice versa if the
street is curvy, we get a lot of small segments that describe the
physical shape of this street. Afterwards, for every segment we
compute the heading of this street with respect to the North,
since this is one of the parameters from Google Street View
API. Heading defines basically which way the car is facing
the street. Since the road segments can be quite long, we
interpolate the points in between the segment endpoints to get
more locations to query a panorama image from. Having GPS
coordinates with associated headings for every street allows
us to directly query images into sequences.

Performing visual place recognition against Street View
imagery imposes several further challenges. In addition, to
being collected in different point in time, with respect to query
sequence as well as within the panoramas sequences itself, the
frame rate of the panoramas is not constant. There are parts
of the street where the density of panorama images is higher,
which gives better place coverage in comparison to the places
where the density is lower. Furthermore, the viewpoint change
can get severe, firstly because the camera on the Google car
was mounted on the poll on the rooftop, whereas the camera
in our experiments is mounted inside of the car. Secondly, it
is not guaranteed that the cars have taken the same lanes. This
becomes particularly challenging for carrying out recognition
tasks in the cities with wide streets (6 lanes), since the same
place may look substantially different from different sides of
the street.

IV. EXPERIMENTAL EVALUATION

We designed the experimental evaluations to support the
claims made in this paper, which are the following ones:
Our approach for sequence-based visual place recognition
in changing environments is able to efficiently relocalize
against (i) multiple image sequences collected with similar
camera setup, (ii) imagery coming from different modalities,
sequences collected on bike as well as in the car, (iii) imagery
from Google Street View, and (iv) we are able to localize an
imagery from random YouTube video within the Google Street
View. Note, there are no constraints on shape, length or visual
change of the trajectories.

A. Evaluation Setup

To describe our evaluation setup, we first analyze the output
of the matching algorithm. Our place recognition system
reports for every query image if there is a matching image
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Fig. 4: Left: Query trajectory drawn in black and shifted artificially
for better visibility, others are reference trajectory. Right: Query
trajectory painted in the colors of the reference trajectories it was
matched to.

in the reference dataset as well as what exactly that image is.
We consider two images to match if their GPS coordinates lie
within the 30 meters range. There are 5 types of situations
that can happen while evaluating a match for a query image,
see Fig. 3. First case, true positive (TP) occurs when the
algorithm found a match that is in the set of ground truth
matches as for the query image 0 in Fig. 3. Second case, false
negative (FN) there is a match for a query image 3 in the
dataset, but the algorithm failed to detect it. Third case, false
positive (FP) when the algorithm has detected a match but
there should be no match for a query image, as for image
2. This typically happens when the query trajectory makes a
detour from the reference ones. Fourth case, true negative (TN)
there is no match in the ground truth set and the algorithm has
correctly not found it as in the image 4. The other possible
situation is that there exists at least one ground truth image
correspondence for a query image but the algorithm failed to
detect it and found a wrong match instead as for the image
1. Then, by our definition this match is a false positive as
well as false negative. To not penalize this situation twice,
we increment the set of FP and FN not by 1 as for the other
cases but by 0.5. Afterwards, we compute the accuracy for
individual dataset as

acc =
TP + TN

TP + TN + FP + FN
. (5)

Since the performance of our search algorithm depends on
the non-matching parameter m, we vary this parameter to
evaluate the behavior of the search. This allows to obtain the
accuracy curve. For the last experiment, we do not provide the
accuracy curve since we do not have GPS coordinates of the
YouTube video footage.

To provide comparative evaluations, we use an open-source
version of FABMAP [9] algorithm as well as open-source
version of DBow2 [8]. To adjust it to our setup, we trained
the vocabulary for both approaches on several extra datasets
that exhibit similar visual conditions, like viewpoint changes,
changes in environmental appearance, etc. We used the default
provided parameters for both approaches. Since FABMAP and
DBow2 do not explicitly work with reference data represented
with multiple trajectories, throughout all our experiments we
stacked reference trajectories into a single big trajectory. For

Fig. 5: Left: Accuracy plot for the dataset in Fig. 4. Right: accuracy
for a larger query sequence against three reference trajectories,
depicted in Fig. 1.

Fig. 6: Top: Matching image pair from query (bike) left and reference
(car) right. Bottom: Accuracy curve. DBoW2 and SeqSLAM perform
poorly on this dataset, since SeqSLAM was not designed to work
with multiple sequences and DBoW2 works with descriptors that are
unable to deal with seasonal changes.

FABMAP we select for every query image a matching image
if it has the highest probability. Whenever the probability
exceeds the predefined matching threshold, then the match is
considered valid, otherwise the query match does not have
a matching image in the reference dataset. To obtain the
accuracy curve, we vary the matching probability threshold
from 0 to 1. The same evaluation strategy holds for the DBow2
but there we threshold by the score and not by the probability.

Additionally, we compare our search strategy against the
algorithm that compares every query image to every image
in the reference dataset – a property that an online approach
cannot have. This algorithm operates with the same features
as ours, but selects the match with the smallest cost from all
the reference sequences, making it a fully informed search,
labeled as FI in the plots, also known as exhaustive search. A
match for a query image is accepted if the matching cost is
smaller than a non-matching cost parameter m. The curve is
generated by varying the non-match parameter.

Furthermore, we have compared our approach to the state
of the art approach in visual place recognition under dramatic
visual appearance changes, SeqSLAM [15]. Since SeqSLAM
is designed to match two sequences of images, we applied the
same strategy as for FABMAP and DBow2 to convert our ref-
erence map of multiple sequences into one reference sequence.
For clarification, the x-axis (Parameter) on all accuracy plots
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Fig. 7: An example matching image pair from the car perspec-
tive (left) and from Google Street View (right).

Fig. 8: Left: City streets for which panorama images were extracted
(blue), query trajectory driven by a car (pink). Right: Corresponding
accuracy plot.

correspond to the non-matching cost m for our algorithm
and FI search, to the probability threshold for FABMAP and
to weight threshold for DBoW2. The scale only shows how
many parameters are used. To evaluate our approach we have
collected several types of datasets. We used goPro Hero 6
camera with additional GPS for ground truth evaluations. The
camera was mounted on the front window of a car or on the
helmet of bicyclist. Throughout our experiments the images
were extracted at 1 fps.

B. Experimental Results

In the first experiment, we show that our system is able to
recognize previously visited places within multiple reference
trajectories. The query trajectory consists of 636 images and
was collected during the evening. There are three reference
trajectories (around 3k images in total) of different shapes that
were collected during the rainy morning, early and late evening
respectfully. Fig. 4 shows the GPS trajectories of the reference
sequences (pink, blue, cyan) as well as query (black) sequence.
Fig. 4 (right) shows the trajectory of a query sequence drawn
with the color of reference trajectory it was localized against.
Black corresponds to the fact that no reference image was
found. As can be seen most of the time, the query sequence
is localized successfully against reference trajectories (pink or
cyan) as well as almost no correct place associations made for
the cases, where query trajectory deviates from any reference
trajectories, the part where black trajectory deviates from all
reference trajectories. Quantitative evaluations are shown in
Fig. 5 (left). As can be seen, our approach shows similar
accuracy to the fully informed matching (FI) and outperforms
the FAB-MAP as well as DBow2 approaches. Fig. 5 (right)
depicts accuracy results for another dataset depicted in Fig. 1
with query trajectory of 2,022 images and shows similar
performance of our algorithm.

The second experiment is designed to show that our search
approach is able to perform reliable visual place recognition
for the cases when trajectories have been collected using

Fig. 9: A matching image pair found by our approach from a YouTube
video (left) and from Google Street View (right).

camera on the dashboard of a car and on a helmet of the
bicyclist. This setup imposes a particular viewpoint challenge,
see Fig. 6 (top) for an example of a matching pair between a
query (bike) image on the left and a reference (car) image on
the right, successfully found by our algorithm. Fig. 6 (bottom)
shows that our approach has a comparable performance to the
FI with around 80% accuracy and they both outperform FAB-
MAP, DBoW2, and SeqSLAM for this dataset.

The third experiment is designed to show that the ideas of
place recognition against multiple trajectories can be success-
fully applied to relocalize against Google Street View. As was
noted before, place recognition against street view is more
challenging due to irregular frame rate of panorama images,
partially drastic viewpoint changes on top of environmental
visual appearance changes. The query trajectory in this exper-
iment consists of 3,800 images whereas the total amount of
extracted panorama images is 10,272. Fig. 7 shows a typical
matching example from query and Street View. As can be seen
from Fig. 8 (right) taking sequence information into account
(our approach) outperforms the pure FI search and results
at best with 58% accuracy versus 48% for informed search.
Please note that DBoW2, FABMAP, and SeqSLAM were not
designed to operate on multiple reference image sequences,
which results in the poor performance of those algorithms in
the challenging conditions tackled in this paper.

The forth experiment is designed to show that our approach
can recognize places from a random street drive footage taken
from YouTube. The particular challenge of this experiment
lies in the fact that both query and reference sequences were
collected with different cameras as well as different unknown
to us positioning setup. Fig. 9 shows a matching pair that was
successfully found by our approach. This experiment shows
that our algorithm is robust to recognize places using images
only from unknown camera setups. We do not provide the
accuracy evaluations for this experiment due to the lack of
exact positioning information from the YouTube video.

C. Timings
In this experiment, we confirm that the proposed algorithm

allows for faster image matching than fully informed search.
We performed the runtime measuring on all of the previously
mentioned datasets by averaging the performance of individual
datasets within the 10 runs and selecting the non-matching
parameter that leads to the highest accuracy. Fig. 10 shows
average matching time for a query image with respect to
the size of reference dataset, e.g. total number of images
in reference sequences. Since FI algorithm matches a query
image to every image in the reference dataset, the time needed
for finding a match grows with increasing dataset size, whereas
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Fig. 10: Comparison of the running time for the proposed algo-
rithm (our) and for the fully informed search (FI). Every point depicts
the average time to find a match for a query image for the reference
datasets of various sizes.

our approach experiences only slight increase in running time.
In general, the performance of our algorithm is independent
from the size of the reference dataset. To show this, we
augmented the dataset that had 10,000 images with 4,000
additional ones and leaving the query trajectory the same. As
can be seen the runtime of the FI algorithm for the dataset is
increased whereas for our algorithm stayed almost the same.
The relocalization step in our approach, however, may lead to
an increase in runtime. Whenever the robot is lost, querying
the candidate locations in performed via a variant of hashing,
whose performance is directly influenced by the size of the
dataset. Also matching capability of the features influence the
search speed. The more distinctive the matching scores are,
e.g., the bigger the score difference between the matching pairs
and non-matching pairs is, the faster the search will reject
unpromising candidates and thus runtime will decrease.

D. Limitations
Since the matching performance of our algorithm depends

on the non-matching parameter m, selecting it correctly may
be not an obvious thing to do. Also we observe a performance
degradation whenever the visual appearance changes within
the query sequence. For example, if the sequence starts at
the evening and matching continues for a long time, so that
it gets dark outside, the same non-matching parameter that
reasonably described the non-matchiness of the sequence is
no longer valid.

V. CONCLUSION

We presented a novel approach for quickly finding cor-
respondences between a currently observed image stream
and a map of several previously recorded image sequences
given substantial appearance changes. Matching is performed
through an informed search in a data association graph that is
built incrementally. By deploying hashing technique, we are
able to relocalize the robot if it is lost as well as between
multiple image sequences. Additionally, we showed how to
leverage publicly available Google Street View imagery within
our framework. Our evaluations show that we can perform
place recognition faster than offline, fully informed search with
the comparable or better matching performance in presence
of drastic visual appearance changes as well as viewpoint
changes.

ACKNOWLEDGMENTS

We gratefully acknowledge Oleg Vysotskyy for his support
during data collection and Igor Bogoslavskyi for the fruitful
discussions.

REFERENCES

[1] P. Agarwal, W. Burgard, and L. Spinello. Metric Localization using
Google Street View. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 2015.

[2] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5297–5307, 2016.

[3] R. Arroyo, P.F. Alcantarilla, L.M. Bergasa, and E. Romera. Fusion
and Binarization of CNN Features for Robust Topological Localization
across Seasons. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2016.

[4] H. Badino, D. Huber, and T. Kanade. Visual topometric localization. In
2011 IEEE Intelligent Vehicles Symposium (IV), pages 794–799, 2011.

[5] Z. Chen, O. Lam, A. Jacobson, and M.Milford. Convolutional neural
network-based place recognition. In Proc. of the Australasian Conf. on
Robotics and Automation (ACRA), 2014.

[6] W. Churchill and P. Newman. Experience-Based Navigation for Long-
Term Localisation. Intl. Journal of Robotics Research (IJRR), 2013.

[7] M. Cummins and P. Newman. Highly scalable appearance-only SLAM -
FAB-MAP 2.0. In Proc. of Robotics: Science and Systems (RSS), 2009.

[8] D. Galvez-Lopez and J. D. Tardos. Bags of binary words for fast
place recognition in image sequences. IEEE Trans. on Robotics (TRO),
28(5):1188–1197, Oct 2012.

[9] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford, and G. Wyeth.
Openfabmap: An open source toolbox for appearance-based loop closure
detection. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 4730–4735, 2012.

[10] C. Linegar, W. Churchill, and P. Newman. Work Smart, Not Hard:
Recalling Relevant Experiences for Vast-Scale but Time-Constrained
Localisation. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), 2015.

[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe
lsh: efficient indexing for high-dimensional similarity search. In VLDB,
pages 950–961, 2007.

[12] F. Maffra, Z. Chen, and M. Chli. Viewpoint-tolerant place recognition
combining 2d and 3d information for uav navigation. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA). IEEE, 2018.

[13] A.L. Majdik, Y. Albers-Schoenberg, and D. Scaramuzza. Mav urban
localization from google street view data. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS), pages 3979–3986,
2013.

[14] M. Milford. Vision-based place recognition: how low can you go?
Intl. Journal of Robotics Research (IJRR), 32(7):766–789, 2013.

[15] M. Milford and G.F. Wyeth. SeqSLAM: Visual route-based navigation
for sunny summer days and stormy winter nights. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2012.

[16] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust Visual
Robot Localization Across Seasons using Network Flows. In Proc. of
the Conf. on Advancements of Artificial Intelligence (AAAI), 2014.

[17] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance Change Pre-
diction for Long-Term Navigation Across Seasons. In Proc. of the
Europ. Conf. on Mobile Robotics (ECMR), 2013.

[18] OpenStreetMaps. https://www.openstreetmap.org.
[19] P. Sermanet, D. Eigen, Z. Zhang, M. Mathieu, R. Fergus, and Y. LeCun.

Overfeat: Integrated recognition, localization and detection using con-
volutional networks. In Intl. Conf. on Learning Representations (ICLR),
2014.

[20] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint, abs/1409.1556, 2014.

[21] E. Stumm, C. Mei, S. Lacroix, and M. Chli. Location Graphs for Visual
Place Recognition. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), 2015.

[22] O. Vysotska and C. Stachniss. Lazy Data Association for Image
Sequences Matching under Substantial Appearance Changes. IEEE
Robotics and Automation Letters (RA-L), 2016.

[23] O. Vysotska and C. Stachniss. Relocalization under substantial appear-
ance changes using hashing. In Proc. of the IROS Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, 2017.


