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Abstract— Maps are an important component of most robotic
navigation systems and building maps under uncertainty is
often referred to as simultaneous localization and mapping or
SLAM. Most SLAM approaches start from scratch and build
a map only based on their own observations and odometry
information. In this paper, we address the problem of how
additional information can be exploited, for example from
OpenStreetMap. We extend the standard graph-based SLAM
formulation by relating the nodes of the pose-graph with an
existing map. As this paper suggests, we can relate the newly
built maps with information from publicly available maps with
the laser range finder data from the robot and in this way
improve the map quality. We implemented and evaluated our
approach using real world data taken in urban environments.
We illustrate that our extension to graph-based SLAM provides
better aligned maps and adds only a marginal computational
overhead.

I. INTRODUCTION

Maps are needed for wide range of robotic applications
and most navigation systems rely on grid maps or feature
maps. Computing such maps under uncertainty is often
referred to as the simultaneous localization and mapping or
SLAM problem. Over the last 25 years, a large variety of
different solutions to this problem have been prosed in the
robotics community.

An intuitive way to model the SLAM problem is via a
graph. Solving a graph-based SLAM problem requires to
construct a graph with nodes and edges. The nodes represent
robot poses or landmark locations. An edge between two
nodes represents a sensor measurement that constrains the
two connected pose. In most cases, we have a larger number
of edges than nodes and as a result of that, the constraints will
be contradictory as observations are always affected by noise.
The goal of the optimization step in graph-based SLAM
consists of finding a configuration of the nodes such that the
overall graph is maximally consistent with the observations.
This involves solving an error minimization problem with a
large number of unknowns. Given this methodology robot
can construct the map by exploiting their own sensor data.

In addition to maps built for and from mobile robots,
there are also other maps available. This includes Google
maps, Open Street Maps (OSM), or maps from the cadastre.
Such maps are typically made for human users, but they
provide relevant information for most outdoor environments
on earth. Therefore, several researchers investigate means
for exploiting this information, for example for localizing
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Fig. 1: Including the OpenStreetMap information to align robot’s
trajectory. Left: trajectory before alignment. Right: trajectory after
alignment.

a robot in Open Street Maps [8] or using Google Street
View [1], [17]. Although this information is frequently used
for localization, it is seldom used for augmenting the mobile
robot SLAM problem1.

The main contribution of this work is to incorporate
building information from existing maps into the pose-graph-
based SLAM systems, see Fig. 1 for a small example. Our
method considers building information from OpenStreetMap,
cadastre information, or similar sources in the optimization
process in order to produce better maps of the environments.
We fuse the information about the layout of building with
the sensor data recorded by the robot. We derive additional
constraints for the pose-graph that align the robot’s poses
with the given map. This yields a better alignment so that
the robot’s perceptions could also be used to extend the maps.
In our evaluation, we show that we can (i) improve the map
alignment with our approach, (ii) can handle the situations
in which the map data is partially outdated, for example if
buildings have been demolished or new buildings have been
built, and (iii) all operations yield only a small computational
overhead compared to a standard graph-based SLAM system.

II. RELATED WORK

The first work in robotics that addressed SLAM through
least squares was the paper by Lu and Milios [16]. Subse-
quently, Gutmann and Konolige [11] focused on means for
constructing such graph and for detecting loop closures. Over
the last 15 years, a large number of different approaches
to graph-based SLAM have been proposed, e.g.,[3], [9],
[19] Most SLAM approaches assume Gaussian errors in
the constraints. This renders them sensitive to data associa-
tion outliers. A number of approaches has been proposed

1Although [8] is called OpenStreetSLAM, the approach performs local-
ization on the road network provided by Open Street Maps.



to overcome this problem. For example, the approach of
Sünderhauf and Protzel [20] scales the effect of potential
outlier constraints while Agarwal et al. [2] proposed dynamic
covariance scaling as an alternative scaling approach that
does not increase the number of variables that need to be
optimized.

Recently, several localization approaches were proposed
that use the information from OpenStreeMaps [12] to im-
prove robot localization. Most of them incorporate this
information into the observation model of the Monte Carlo
localization. For example, Hentschel et al. [13] represent
buildings as 2D line features. This line map is then used
to calculate the expected range measurement at a certain
robot’s locations and combines MCL with a form of Kalman
filtering. In our work, we also use the information about
buildings, but integrate the correspondences through an ICP-
based matching procedure into a graph-based SLAM frame-
work. Another approach, which is proposed by Floros et
al. [8] uses champfer matching to align robot’s trajectory
with the road network extracted from publicly available
maps. Each particle in MCL is weighted according to the
reported champfer matching cost. Ruchti et al. [18] also use
the information about the road network. Instead of relying on
visual odometry as Floros et al., they classify the 3D laser
scans into road/non-road surfaces and the classification result
is incorporated into the weight of the particles in the Monte
Carlo localization. In contrast to that, our work incorporates
buildings information obtained from OpenStreetMap into the
graph-based SLAM as additional edge constraints.

Global consistency can also be achieved by aligning
the robot’s perceptions to aerial images as proposed by
Kümmerle et. al [15]. The authors extract the features from
the 3D point clouds and match them against planar structures
extracted by Canny edge detection from the aerial images.
Thus, this is related to our approach, which exploits building
information from OSM. Kümmerle et. al furthermore apply
Monte-Carlo Localization to localize the robot in the aerial
images before generating a pose graph for solving the SLAM
problem.

III. GRAPH-BASED SLAM EXPLOITING EXISTING MAPS
AS BACKGROUND KNOWLEDGE

The optimization step in graph-based SLAM systems aims
at finding the configuration of the nodes that minimizes
the error induced by observations. We consider pose-graphs,
i.e., SLAM graphs in which the nodes correspond to robot
poses. This yields a state vector X = (x1, . . . , xn)> where
xi is the pose of node i. The error function eij(X) for a
single constraint between the nodes i and j is often the
difference between an expected measurement f(xi, xj) and
the obtained measurement zij :

eij(X) = eij(xi, xj) = f(xi, xj)− zij . (1)

Note that alternative representations can be used to avoid
problems resulting from singularities in the angular compo-
nents, see [10] for details.

As the error functions are typically non-linear, we linearize
eij(X) around the current best estimate

eij(X + ∆X) ' eij(X) + Jij∆X. (2)

Here, Jij is the Jacobian of the non-linear error function
computed in the current state. The resulting minimization
problem can be written as

X∗ = argmin
X

∑
ij

eij(X)>Λijeij(X), (3)

where Λij is the information matrix associated to a con-
straint. Up to this point, this is the standard formulation of
pose-graph SLAM.

A. Error Function Exploiting Existing maps

Eq. (3) is the error function to minimize in standard pose-
graph SLAM. The main goal of our approach is to incorpo-
rate additional knowledge into the optimization process and
relate the pose-graph to existing data. To achieve this, we
extend the error function

X∗ = argmin
X

∑
ij

eij(X)>Λijeij(X) + Fmap(X), (4)

where Fmap(X) is the error introduced by the mismatch
between the robot’s observation and the map information.
Analogous to pose-pose constraints, we split up the com-
ponent Fmap(X) into individual constraints between robot
poses and the openStreetMap information:

Fmap(X) =
∑
i

emap
i (X)>Λie

map
i (X). (5)

The key elements in Eq. (5) are the error function emap
i (X)

and corresponding information or weight matrix Λi.
In the remainder of this section, we describe how to

construct an error function emap
i (X) and Λi. Intuitively, the

error function adds an additional constraint to the graph that
anchors a pose of the robot to the specific location in the
map. The key challenge here is to make the correct data
association between the map and the robot’s own sensor
readings, obtained from the pose stored in the node of the
pose-graph. Once this data association is solved and the
correct coordinate transformations between the robot’s poses
and the map are computed, least square error minimization
will provide us with the global alignment.

To make the data association between the map and the
robot’s poses, we use the building information in the map
and the data from a 2D or 3D laser range finder installed on
the robot. We do not consider the road network information
in this work, as we do not want to restrict the robot to
navigating on streets but allow for operating on sidewalks,
foot paths, or in pedestrian zones. When aligning laser range
data with the building information from OSM, a central
challenge is that the laser scanner observes a large number of
objects in the scene that are not stored in the map. Examples
for such objects, which are not present in the publicly
available map, are trees, cars, pedestrians. Therefore, we
focus on large planar object seen by the laser scanner and



Fig. 2: An example of the robot’s pose correction based on the
aligning of the scan (blue) to the buildings in the map (black).
Left: initial position of the robot. Right: position reported by ICP.

neglect most small or non-planer objects in the scene for the
alignment.

B. Error Function Exploiting Building Information for
Robots Equipped with Laser Range Scanners

In our work, we use the information about the buildings’
geo-locations to enable the robot to take paths, independently
from the road network. We obtain the building information
directly from OpenStreetMap, which can be downloaded in
form of an XML-file. Inside this file, the individual buildings
are stored as separate nodes. Each node is a closed polygon
describing the geo-referenced walls of the building, which
directly yields a map of lines that shows the walls of the
buildings in the environment. See the black polygons in
Fig. 2 for an example.

As mentioned before, the laser scanner typically provides
the scan of the environment covering a large number of
objects that are not buildings and does that at a comparably
high level of detail. This may hinder the matching procedure
to make the correct data association between map and laser
scan. Therefore, we filter the range scans so that most of the
non-building objects are removed.

We investigated several techniques and in the end opted
for an unsupervised approach that performs filtering based
on line extraction and this does not require manually labeled
training data and can be executed efficiently. We employ the
Douglas-Peuker algorithm for converting the raw 2D range
scan into a polyline. We convert the polyline into a set of
potentially disconnected lines based on two parameters: the
length of a line and the number of laser end points assigned
to each line. In our current implementation, we maintain
only lines with a length of at least 5 m containing at least
100 end points (for a scanner with a 0.25 deg resolution).
This clearly eliminates also end-points belonging to walls,
but overall, it keeps the number of false-positives small —
which is more important for us in order to obtain a robust
alignment between laser scan and map.

Since our aim is to incorporate the knowledge about
the environment from the map into the graph optimization
procedure to refine the robot’s trajectory, the error function
for this constraint should reflect the misalignment between
the current robot’s pose and the map. Intuitively, the bigger
is the misalignment between the scan and the buildings in

the map, the bigger the error should be. To estimate the
(mis-)alignment, we use the Iterative Closest Point (ICP) [5]
algorithm to match between the current laser scan and the
map of building. For finding the correspondences in ICP,
standard nearest neighbor data association is applied.

More precisely, the error term emap
i (xi) is defined based

on the pose difference between the current robot’s pose
xi and the pose x̂i, computed by aligning the scan in
the building map. The state of the robot xi consists of
translational ti and rotational θi components, i.e., forms an
element in SE(2). The same holds for the state x̂i. Thus,
we can express the error function as:

emap
i (xi) =

(
R̂>i (ti − t̂i)
θi − θ̂i

)
, (6)

with R̂i being the standard 2D rotation matrix corresponding
to the angle θ̂i.

For the ICP algorithm to operate reliably, one needs to
have a good initial guess. In our setup, the initial guess
is achieved by either manually specifying the first pose of
the robot on the map or by using an initial guess from a
consumer GPS. The initial guess of all successive poses is
then automatically obtained from the odometry constraints of
the graph or by incremental scan to scan alignment typically
used in graph-based SLAM with laser range finders.

The Jacobian Ji of the error function given in Eq. 6 is

Ji =
∂emap(xi)

∂xi
=

(
R̂>i 0
0 1

)
. (7)

Finally, we have to compute the information matrix Λi

of a map constraint, which is the inverse of the covariance
matrix of the ICP alignment, i.e., Λi = (ΣICP

i )−1. We
compute the covariance matrix ΣICP

i from the ICP result by
using Hessian method proposed by Bengtsson et al. [4]. An
alternative method for propagating the noise from the scans
to the covariance estimation of the robot’s pose is described
in [7] but we opted for the simpler approach by Bengtsson
et al.. This method assumes the error function eICP used in
the ICP algorithm to be quadratic near the optimal solution,
i.e.,

eICP =
∑
k

‖Tpk − qk‖2 , (8)

where pk are the point that belong to the detected buildings
and qk are the corresponding closest points in the build-
ings taken from the publicly available maps. The optimal
transformation T that the ICP algorithm reports is found by
minimizing the function eICP with the covariance matrix of
T as

ΣICP
i = cov(T ) = 2σ2

(
∂2

∂T 2
eICP

)−1
= 2σ2H−1, (9)

where H is the Hessian matrix of eICP and σ2 is the variance
factor and depends on the sensor used.

So far, we described how to obtain the error function for
2D range data. We can also apply the same method using
3D range data. Here, we consider two setups. One is a



Fig. 3: Robots used in our experiments. Left: robot equipped with
Velodyne VLP-16 laser scanner mounted parallel to the ground.
Right: Profile scanner Z+F mounted in the back of a car.

horizontally mounted 3D range scanner, here the 16-beam
Velodyne Puck, and a 2D laser scanner using in profile mode
as it is used in most surveying applications (see Fig. 3).
For the Velodyne scan, we can basically perform the 2D
procedure for the individual lasers (each ring) and merge the
consistently found lines that may correspond to walls. For
3D point clouds obtained with a profile scanner, we build
local point clouds and generate new virtual 2D laser scans
given the planar surfaces in the cloud. We basically follow
the approach proposed by Wulf et al. [21], which is also
used in [6], [13].

C. Error Minimization

Given the error function emap
i with corresponding infor-

mation matrix Λmap
i and Jacobian Ji, we can solve the

optimization problem given in Eq. (3), for example using
Levenberg-Marquardt. This yields to iteratively solving a
linear system of the form

(H + λI)∆X∗ = −b, (10)

with

H =
∑
ij

J>ij ΛijJij +
∑
i

J>i ΛiJi (11)

and

b =
∑
ij

J>ij Λijeij +
∑
i

J>i Λie
map
i . (12)

H and b are the key elements and are computed from
the linearized error terms and λ is the damping factor
used in Levenberg-Marquardt. The term ∆X∗ refers to the
increments that are added to the graph configuration in order
to minimize our error function in the current iteration. In our
implementation, we use the g2o framework [14] to conduct
the minimization with dynamic covariance scaling [2] as a
robust kernel. This yields an update of the graph configura-
tion in every iteration of the form:

X ← X + ∆X∗. (13)

In practice, we do not execute this procedure in a batch
fashion but incrementally or in small trajectory chunks (e.g.,
after 25 m of driving). This has two advantages. First, the
data is available already online during mapping. Second, the
correction of the trajectory up to a point in time t1 will
simplify the data association for the ICP step for subsequent

Fig. 4: Example of aligning the robot’s trajectory with the buildings
on the map and as a result of it improved loop closure, which also
leads to more consistent robot map.

matching with t > t1 and, thus, has the potential to provide a
better alignment. As a result of that, we obtain an optimized
pose-graph that is aligned with the provided map.

IV. EXPERIMENTS

The evaluation is designed to illustrate the performance
of our approach and to support the three main claims made
in this paper. These key claims are that (i) we can improve
the map alignment with our approach, (ii) can handle the
situations in which the map data is partially outdated, for
example if buildings have been demolished or new buildings
have been built, and (iii) all operations yield only a small
computational overhead compared to a standard graph-based
SLAM system. We furthermore illustrate that our approach
is independent from the sensor setup and can successfully
be used with 2D as well as 3D laser scanners.

A. SLAM Given Open Street Map Data

Our first set of experiments is designed to show that
our approach exploits publicly available maps to locate the
robot within these maps. Furthermore, by considering the
individual robot’s scans in alignment procedure, we may
even find loop closures that are missed by the pose-graph
SLAM otherwise. Fig. 4 shows a trajectory of the robot
overlayed on the map when using traditional 2D graph-based
optimization (red), i.e. without considering map information,
and incorporating the map structure into the optimization
process (green). As it can be seen, not only the robot’s own
map is better aligned with the structure of the environment,
but also the loop closure was correctly detected due to
the aligning laser scans to the buildings. Fig. 5 represents
another example of the robot’s trajectory, here using a 3D
Velodyne data, which spans over a significantly larger area
than the previous example. In Fig. 5, only the laser end
points that do not belong to the ground plane are plotted.
As it can be seen, the map produced by the robot is filled
with substantial clutter in the environment, which makes
the aligning procedure more challenging. Nevertheless, our
approach is able to fix the misalignments that come from
the inaccuracy of the initial position, see Fig. 5 middle
column upper and bottom image, as well as loop closing
error introduced by the pure pose-graph approach, see Fig. 5
middle center.



Fig. 5: Left: Overlayed trajectory before the optimization. Right: Trajectory after optimization. Middle: Zoom in parts of the trajectory;
Top: Case of corrected misalignment at the beginning of the trajectory; Bottom: fixed misalignment at the end of the trajectory; Center:
successfully closed loop.

Fig. 6: Cases with map inconsistency. Left: the building is not in
the map. Right: the building was extended.

B. Map Inconsistencies

The second experiment is designed to show that our
approach is also robust against the map inconsistencies at
least up to some degree. These inconsistencies may result
from different sources, for example a building was wrongly
mapped, a building was demolished, but is still present in the
map, or a building that was built after the time of the map
creation. All these cases may lead to inconsistencies in the
resulting map built by the robot. As we take into account the
matching-dependent uncertainty, the information about the
inconsistencies is incorporated into the optimization process.
Fig. 6 depicts two examples of the map inconsistencies that
are successfully handled by our approach. The left image
depicts a situation in which the building is visible in the scan
and not present in the map and the image to right shows the
case, where the building is wrongly mapped (building in the
map is too small). Our system can deal with inconsistencies
through the use of a robust kernel function. Fig. 7 shows
the effect of disabling the robust kernel function. As it can
be seen, the map gets distorted near the wrongly mapped
buildings, see zoomed views in Fig. 6 and circles in Fig. 7.

C. Different Sensor Setups

Next, we illustrate that our approach works rather indepen-
dently from a specific laser scanner. In our experiments, we
are using three types of laser scanners: a 2D Hokuyo UTM-
30, a 3D Velodyne Puck (VLP-16), and a Zoller+Fröhlich
Profile scanner without any manual postprocessing of the
data. Fig. 3 depicts the robot setups used in our experiments.

Fig. 7: Enabling / Disabling robust kernel function (DCS). Left:
optimization using DCS. Right: optimization without robust kernel
functions.

Fig. 8: The alignment of the robot’s trajectory created using
Zoller+Fröhlich scanner.

Figures 4, 5, 8 show the datasets obtained using three
different sensors. As can be seen, all setups allow for an
appropriate alignment of observed buildings with the open
street map data.

D. Sensitivity to the Initial Guess

In our optimization procedure, the alignment starts with
the initial guess about the first pose of the robot in the
map. The initial pose is assumed to be roughly known. This
can happen through GPS or can be provided manually. In
this experiment, we show the sensitivity and stability of the
system with respect to different initial robot pose. Depending
on the structure of the environment and the result of the
building detection algorithm in different datasets, we obtain
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Fig. 9: Ability to correct the alignment given an initial deviation
from the ground truth in the robot’s heading. For deviations of more
that ±45◦, the alignment error increases substantially.

TABLE I: Timing results for processing the whole dataset (full) and
processing a chunk (per chunk) of the dataset of ≈ 30m.

full per chunk
dist pose-graph osm pose-graph osm

dataset 1 168 m 9.89 s 0.9 s 1.75 s 0.16 s
dataset 2 336.6 m 62 s 0.83 s 5.52 s 0.074 s
dataset 3 579.6 m 41.5 s 4.93 s 2.14 s 0.25 s
dataset 4 1040 m 86 s 4.1 s 2.48 s 0.11 s

that the maximum allowed error in orientation varies between
±40◦ and ±50◦, whereas the inaccuracy for the position
may vary between 5m to 10 . An example for the resulting
alignment error depending on the deviation from the true
heading is shown in Fig. 9. As can be seen, from deviation
of more than ±45◦, our approach does not find a proper
alignment. In general, the approach is more sensitive to
deviations in the orientation than to deviations in the x/y
location.

E. Runtime

For mobile robots to operate in real world environments
the computational load of the underlying algorithms should
be small. In this experiment, we show that our approach
adds only a small, if not negligible, computational overhead
to the simultaneous localization and mapping process. We
have run our algorithm on several different datasets with
various size and complexity and summarize the runtime
results in the Tab. I. As it can be seen, the time needed
to process additional map knowledge (osm, 4th and 6th

columns) is almost negligible in comparison to the time
needed for the pose graph SLAM (pose-graph, 2d and 5th

columns). This means that our extension can be included into
the optimization procedure without adding any significant
computational overhead.

V. CONCLUSION

In this paper, we proposed a novel extension to graph-
based SLAM that allows for exploiting existing map in-
formation such as OpenStreetMap data. We extended the
standard graph-based SLAM formulation by introducing an
additional term in the error function. This term relates the
nodes of pose-graph with building information from publicly
available maps. Our methods has a minimal computation
overhead compared to standard graph-based SLAM and has
the possibility to improve the map quality. We implemented
our approach within the g2o framework, evaluated it on real
world data taken in urban environments, and illustrated the
benefits of our method for the mapping process.
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