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Fig. 1: Point cloud maps (blue) generated by our proposed odometry pipeline on different datasets with the same set of parameters. We depict
the latest scan in yellow. The scans are recorded using different sensors with different point densities, different orientations, and different
shooting patterns. The automotive example stems from the MulRan dataset [15]. The drone of the Voxgraph dataset and the segway
robot used in the NCLT dataset [5] show a high acceleration motion profile. The handheld Livox LiDAR [[17] has a completely different
shooting pattern than the commonly used rotating mechanical LiDAR.

Abstract—Robust and accurate pose estimation of a robotic
platform, so-called sensor-based odometry, is an essential part
of many robotic applications. While many sensor odometry
systems made progress by adding more complexity to the ego-
motion estimation process, we move in the opposite direction. By
removing a majority of parts and focusing on the core elements,
we obtain a surprisingly effective system that is simple to realize
and can operate under various environmental conditions using
different LiDAR sensors. OQur odometry estimation approach
relies on point-to-point ICP combined with adaptive thresholding
for correspondence matching, a robust kernel, a simple but
widely applicable motion compensation approach, and a point
cloud subsampling strategy. This yields a system with only a few
parameters that in most cases do not even have to be tuned
to a specific LIDAR sensor. Our system performs on par with
state-of-the-art methods under various operating conditions using
different platforms using the same parameters: automotive plat-
forms, UAV-based operation, vehicles like segways, or handheld
LiDARs. We do not require integrating IMU data and solely rely
on 3D point clouds obtained from a wide range of 3D LiDAR
sensors, thus, enabling a broad spectrum of different applications
and operating conditions. Our open-source system operates faster
than the sensor frame rate in all presented datasets and is
designed for real-world scenarios.

Index Terms—Mapping; Localization; SLAM

I. INTRODUCTION

DOMETRY estimation is an essential building block for

any mobile robot that needs to autonomously navigate in
unknown environments. In the LiDAR sensing domain, current
odometry pipelines typically use some form of iterative closest
point (ICP) to estimate poses incrementally [10], [26], [31],
[33]. Even though LiDAR odometry has been an active area
of research for the last three decades, the design of current
systems is usually coupled with assumptions about the robot
motion [I0] and the structure of the environment [28] to
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achieve accurate and robust alignment results. To the best of
our knowledge, no existing 3D LiDAR odometry approach is
free of parameter tuning and works out of the box in different
scenarios, using arbitrary LiDAR sensors, supporting different
motion profiles, and consequently types of robots, such as
ground and aerial robots.

This paper returns to the roots: classical point-to-point ICP,
introduced 30 years ago by Besl and McKay [3]. We aim
to tackle the inherent problems of sequentially operating Li-
DAR odometry systems that prohibit current approaches from
generalizing to different environments, sensor resolutions, and
motion profiles using a single configuration. We present simple
yet effective reasoning about the robot kinematics and the
sequential way LiDAR data is recorded on a mobile platform,
as well as an effective downsampled point cloud representation
that allows us to minimize the need for parameter tuning.

Our system challenges even extensively hand-tuned and
optimized existing simultaneous localization and mapping
(SLAM) systems. Our design uses neither sophisticated feature
extraction techniques, learning methods, nor loop closures.
The same parameter set works in various challenging scenarios
such as highway drives of robot cars with many dynamic
objects, drone flights, handheld devices, segways, and more.
Thus, we take a step back from mainstream research in LiDAR
odometry estimation and focus on reducing the components to
their essentials. This makes our system perform extraordinarily
well in various real-world scenarios, see Fig. E}

The main contribution of this paper is a simple yet highly
effective approach for building LiDAR odometry systems that
can accurately compute a robot’s pose online while navigating
through an environment. We identify the core components and
properly evaluate the impact of different modules on such
systems. We show that with the proper use of ICP that builds
on basic reasoning about the system’s physics and the sensor
data’s nature, we obtain competitive odometry. Besides motion
prediction, spatial scan downsampling, and a robust kernel, we
introduce an adaptive threshold approach for ICP in the context
of robot motion estimation that makes our approach effective
and, at the same time, generalizes easily.

We make three key claims: Our “keep it small and simple”
approach exploiting point-to-point ICP is (i) on par with
state-of-the-art odometry systems, (ii) can accurately compute
the robot’s odometry in a large variety of environments and
motion profiles with the same system configuration, and (iii)
provides an effective solution to motion distortion without
relying on IMUs or wheel odometers. In sum, “good old point-
to-point ICP” is a surprisingly powerful tool, and there is little
need to move to more sophisticated approaches if the basic
components are done well.

We provide an open-source implementation at: https:/
github.com/PRBonn/kiss-icp, that precisely follows the de-
scription of this paper.

II. RELATED WORK

Point cloud registration has been an active area of research
for the last three decades [3]], [9] and is still relevant nowadays.
The ICP algorithm can solve the problem of finding a transfor-
mation that brings two different point clouds into a common

reference frame, and it is a special case of the absolute
orientation problem in photogrammetry. ICP typically consists
of two parts. The first one is to find correspondences between
the point clouds. The second one computes the transformation
that minimizes an objective function defined on the corre-
spondences from the first step. One repeats this process until
a convergence criterion is met. Most ICP variants [L], [10],
L1, [26], [21], [35] utilize a maximum distance threshold
in the data association module plus a robust kernel [6] and
a maximum number of iterations. In contrast, we propose a
threshold estimation method that adapts to changing scenarios
by reasoning about the system kinematics and the nature
of the data in combination with a robust kernel. We avoid
controlling the number of iterations of the ICP to achieve
better generalization.

ICP can be used to obtain an odometry estimation from
streaming data from a sensor such as RGB-D cameras [19]
or LiDARs [10]. In this work, we focus on the problem of
LiDAR odometry estimation, although the ideas presented can
be easily extended to other range-sensing technologies.

Nearly all modern SLAM systems build on top of odom-
etry algorithms. Zhang et al. [35] proposed lidar odometry
and mapping (LOAM) that computes the robot’s odometry
by registering planar and edge features to a sparse feature
map. LOAM inspired numerous other works [27]], [33], such as
Lego-LOAM [28], which adds ground constraints to improve
accuracy, and recently F-LOAM [33]], which revised the orig-
inal method with a more efficient optimization technique en-
abling faster operation. However, these methods rely on hand-
tuned feature extraction, which typically requires tedious pa-
rameter tuning that depends on sensor resolution, environment
structure, etc. In contrast, we only rely on point coordinates
removing this data-dependent parameter adaptation.

Behley and Stachniss [[1]] propose the surfel-based method
SuMa to achieve LiDAR odometry estimation and mapping.
It has also been extended to account for semantics [8]] and
explicitly handle dynamic objects [7]. In contrast to the surfel-
based mapping, Deschaud [11] introduced IMLS-SLAM [/11]]
selecting an implicit moving least square surface [16] as map
representation. Along these lines, Vizzo et al. [31] exploited
a triangular mesh as the internal map representation. All the
above approaches rely on a point-to-plane [24] metric to regis-
ter consecutive scans. This requires normal estimation, which
introduces additional data-dependent parameters. Furthermore,
noisy 3D information can impact the normal computation and
subsequently the registration in a negative way. We will show
that by minimizing a simpler point-to-point metric, we obtain
on-par or better odometry performance. Moreover, this design
choice enables us to represent the internal map as a voxelized,
downsampled point cloud, simplifying the implementation.

Recently, several new approaches [[10], [21]], [27] have been
proposed to solve the odometry estimation problem. Most of
these works focus on the runtime operation of the system
as well as on the accuracy. Pan et al. [21]] propose a multi-
metric system (MULLS) that obtains good results in many
challenging scenarios at the cost of tuning many parameters for
each run. Dellenbach et al. [[10] introduced a novel approach,
called continuous time ICP (CT-ICP), which incorporates the
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motion un-distortion into the registration showing great results
but adding more complexity. Additionally, the robots’ motion
profile must be known a priori, as, for example, a car will have
a different profile than a segway platform. We challenge the
need for sophisticated optimization techniques to cope with
motion distortion requiring only the constant velocity model.
Furthermore, our system only relies on a few parameters, and
we do not need to know the motion profile in advance.

Many state-of-the-art odometry systems [1], [LO], [21], [27]
also rely on pose graph optimization to achieve a better
alignment. In contrast, we do not exploit such techniques
and state that pose graph optimization is orthogonal to the
presented approach and can be easily integrated. In sum, we
step back from the common mainstream work on LiDAR
odometry and propose a system that solely relies on a point-to-
point metric and does not employ pose graph optimization [[1]],
[LO], [21], [27]. Our system can run on different types of
mobile robots, drones, handheld devices, and segways, without
the need to fine-tune the system to a specific application.

III. KISS-ICP — KEEP IT SMALL AND SIMPLE

This work aims to incrementally compute the trajectory of
a moving LiDAR sensor by sequentially registering the point
clouds recorded by the scanner. We reduced the components
to a minimal set needed to build an effective, accurate, robust,
and still reasonably simple LiDAR odometry system.

For each 3D scan in form of a local, egocentric point
cloud P = {p, | p; € R®}, we perform the following four steps
to obtain a global pose estimate T; € SFE(3) at time ¢. First,
we apply sensor motion prediction and motion compensation,
often called deskewing, to undo the distortions of the 3D data
caused by the sensor’s motion during scanning. Second, we
subsample the current scan. Third, we estimate correspon-
dences between the input point cloud and a reference point
cloud, which we call the local map. We use an adaptive
thresholding scheme for correspondence estimation, restricting
possible data associations and filtering out potential outliers.
Fourth, we register the input point cloud to the local map using
a robust point-to-point ICP algorithm. Finally, we update the
local map with a downsampled version of the registered scan.
Below, we describe these components in detail.

A. Step 1: Motion Prediction and Scan Deskewing

We advocate for rethinking the point cloud registration in
the context of mobile robots, which continuously record data.
One should not think of it as registering arbitrary pairs of
3D point clouds. Instead, one should phrase it as estimating
how much the robot’s actual motion deviates from its expected
motion by registering consecutive scans.

Different approaches can be used to compute the robot’s
expected motion before considering the LiDAR data. The three
most popular choices are the constant velocity model, wheel
odometry obtained through encoders, and IMU-based motion
estimation. The constant velocity [29] model assumes that a
robot moves with the same translational and rotational velocity
as in the previous time step. It requires no additional sensors

(no wheel encoder, no IMU) and thus is the most widely
applicable option.

Our approach uses the constant velocity model for two
reasons: first, it is generally applicable, requires no additional
sensors, and avoids the need for time synchronization between
sensors. Second, as we will show in our experimental evalua-
tion, it works well enough to provide a solid initial guess when
searching for data associations and deskewing 3D scans. This
follows from the fact that robotic LiDAR sensors commonly
record and stream point clouds at 10Hz to 20Hz, i.e., every
0.05s to 0.1s. In most cases, the acceleration or deceleration,
i.e., the deviations from the constant velocity model that occurs
within such short time intervals, are fairly small. If the robot
accelerates or decelerates, the constant velocity estimation of
the robot’s pose will be slightly off, and therefore, we need to
correct this estimate through registration. These accelerations
determine the possible displacements of the (static) 3D points.

The constant velocity model approximates the trans-
lational and angular velocities, denoted as v; and wy
at time t respectively, by using the previous pose esti-
mates T¢—1=(R;_1,t;—1) and T;—o=(Ri_2,t;—_2), repre-
sented by a rotation matrix R, € SO(3) and a translation
vector ¢, € R? for the time step ¢t. We first compute the relative
pose Tpreq,+ that we will use as motion prediction as:

Tyas = | -2 flot Aot —tia)] g

then derive the corresponding velocities as:

_ R/, (tio1—ti2)

(%7 At 9 (2)
Log(R, , R;_
w, = LB i) 3

where At is the acquisition time of one LiDAR sweep,
typically 0.05s or 0.1s, and Log: SO(3) —R3 extracts the
axis-angle representation.

Note that also wheel odometry or an IMU-based motion
prediction approach can be used instead to compute v; and
w; for each time step. This will not change the remainder of
our approach. For example, if one has good wheel odometry
available, this can also be used. However, we use constant
velocity as a generally applicable approach.

Within the acquisition time At of one LiDAR sweep,
multiple 3D points are measured by the scanner. The relative
timestamp s; € [0, At] for each point p, € P describes the
recording time relative to the scan’s first measurement. This
relative timestamp allows us to compute the motion compen-
sation resulting in a deskewed point p; € P* of the corrected
scan P* reading by

p; = Exp(s;w)p; + sivy, 4

where Exp: R3 — SO(3) computes a rotation matrix from an
axis-angle representation. Note that Exp(s;w;) is equivalent
to performing SLERP in the axis-angle domain.

This form of scan deskewing, especially with the constant
velocity model, is easy to implement, generally applicable, and
does not require additional sensors, high-precision time syn-
chronization between sensors, or IMU biases to be estimated.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2022.

As we show in Sec. this approach often performs even
better than more complex compensation systems [10], at least
as long the motion between the start and end of the sweep is
small as it is for most robotics applications.

B. Step 2: Point Cloud Subsampling

Identifying a set of keypoints in the point cloud is a common
approach for scan registration [14]], [24], [35]. It is typically
done to achieve faster convergence and/or higher robustness in
the data association. However, complex filtering of the point
cloud usually comes with an extra layer of complexity and
parameters that often need to be tuned.

Rather than extracting 3D keypoints, which often requires
environment-dependent parameter tuning, we propose to com-
pute only a spatially downsampled version P* of the deskewed
scan P*. Downsampling is done using a voxel grid. As we will
explain in Sec. [[lI-C| below in more detail, we use a voxel grid
as our local map, where each voxel call has a size of v X v X v
and each cell only store a certain number of points. Every time
we process an incoming scan, we first downsample the point
cloud of the scan to an intermediate point cloud Py, which
is later used to update the map when the relative motion of
the robot has been determined with ICP. To obtain the points
in Perge> We use voxel size av with o€ (0.0,1.0] and keep
only a single point per voxel.

For the ICP registration, an even lower resolution scan
is beneficiary. Thus, we compute a further reduced point
cloud P* by downsampling Pp..,. again using a voxel size of
Bv with 8 €[1.0,2.0] keeping only a single point per voxel.
This further reduces the number of points processed during
the registration and allows for a fast and highly effective
alignment. The idea of this “double downsampling” stems
from CT-ICP [10], the so far best performing open-source
LiDAR odometry system on KITTIL.

Most voxelization approaches, however, select the center of
each occupied voxel to downsample the point cloud [25], [36].
Instead, we found it advantageous to maintain the original
point coordinates, select only one point per voxel for a single
scan, and keep its coordinates to avoid discretization errors.
This means the reduced cloud is a subset of the deskewed one,
ie., P CP*. In our implementation, we keep only the first
point that was inserted into the voxel.

C. Step 3: Local Map and Correspondence Estimation
In line with prior work [1], [10], [19], [35)], we register

the deskewed and subsampled scan P* to the point cloud
built so far, i.e., a local map, to compute an incremental
pose estimate ATi,. We use frame-to-map registration as
it proves more reliable and robust than the frame-to-frame
alignment [[1], [19]]. To do that effectively, we must define a
data structure representing the previously registered scans.
Modern approaches have used very different types of rep-
resentations for this local map. Popular approaches are voxel
grids [35]], triangle meshes [31], surfel representations [1]], or
implicit representations [L1]. As mentioned in Sec. [[[I-B] we
utilize a voxel grid to store a subset of 3D points. We use
a grid with a voxel size of v X v X v and store up to Nyax

points per voxel. After registration, we update the voxel grid
by adding the points {T;p|p € Py} from the new scan
using the global pose estimate T;. Voxels that already contain
Nmax points are not updated. Additionally, given the current
pose estimate, we remove voxels outside the maximum range
Tmax- Lhus, the size of the map will stay bounded.

Instead of a 3D array, we use a hash table to store the voxels,
allowing a memory-efficient representation and fast nearest
neighbor search [10], [20]. However, the used data structure
can be easily replaced with VDBs [18]], [32], Octrees [30],
[34], or KD-Trees [2].

D. Adaptive Threshold for Data Association

ICP typically performs a nearest neighbor data association
to find corresponding points between two point clouds [3].
When searching for associations, it iS common to impose a
maximum distance between corresponding points, often using
a value of 1m or 2m [1], [31], [35)]. This maximum distance
threshold can be seen as an outlier rejection scheme, as all
correspondences with a distance larger than this threshold are
considered outliers and are ignored.

The required value for this threshold 7 depends on the
expected initial pose error, the number and type of dynamic
objects in the scene, and, to some degree, the sensor noise. It
is typically selected heuristically. Based on the considerations
about the constant velocity motion prediction in Sec. we
can, however, estimate a likely limit from data by analyzing
how much the odometry may deviate from the motion predic-
tion over time. This deviation AT in the pose corresponds
exactly to the local ICP correction to be applied to the
predicted pose (but it is not known beforehand). Intuitively,
we can observe the robot’s acceleration in the magnitude of
AT. If the robot is not accelerating, then AT will have a
small magnitude, often around zero, meaning that the constant
velocity assumption holds and no correction has to be done
by ICP.

We integrate this information into our data association
search by exploiting the so-far successful ICP executions.
We can estimate the possible point displacement between
corresponding points in successive scans in the presence of
a potential acceleration expressed through AT as:

5(AT) = rot(AH) + 5tranS(At)a )

where AR € SO(3) and At € R? refer to the rotational and
translational component of the deviation, given by

Orot(AR) = 2 rpax sin (; arccos (tr(AZ)—l)) (6)

Sirans (AL) = || At||2. (N

The term d,(AR) represents the displacement that occurs
for a range reading with maximum range rp,x subject to the
rotation AR, see also Fig. 2l Note that Eq. (3)) constitutes an
upper bound for the point displacement as

[ARp + At — pll2 < §ia(AR) + Suyans(Al), (®)

which follows from the triangle inequality.
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For obtaining d,, other approaches could be considered,
like taking into account the individual ranges for the adaptive
threshold computation [4]. In our tests, we did not see any
difference in the results but a 3-fold increase of the overall
runtime; thus, we use 7y, instead of r for computing dyo.

To compute the threshold 7; at time ¢, we consider a
Gaussian distribution over ¢ using the values of Eq. over
the trajectory computed so far whenever the deviation was
larger than a minimum distance dp,, i.€., situations where the
robot’s motion was deviating from the constant velocity model.
Its standard deviation is

1
= [— 0(AT;)?, 9
o \/thiezm (AT;) 9)

where the index set M, of deviations up to ¢ is given by

My ={i|i <t ANS(AT;) > Smin}- (10)

This avoids reducing the value of o; too much when the
robot is not moving or is moving at constant velocity for
a long time. In our experiments, we set this threshold d;,
to 0.1 m. We then compute the threshold 7 as the three-sigma
bound 7, = 3 04, which we use in the next section for the data
association search.

E. Step 4: Alignment Through Robust Optimization

We base our registration on classic point-to-point ICP [3].
The advantage of this choice is that we do not need to
compute data-dependent features such as normals, curvature,
or other descriptors, which may depend on the scanner or
the environment. Furthermore, with noisy or sparse LiDAR
scanners, features such as normals are often not very reliable.
Thus, neglecting quantities such as normals in the alignment
process is an explicit design decision that allows our system
to generalize well to different sensor resolutions.

To obtain the global estimation of the pose T; of the
robot, we start by applying our prediction model Tpeq+ to
the scan P* in the local frame. Successively, we transform
it into the global coordinate frame using the previous pose
estimate T;_1, resulting in the source points

S= {Si :thlTpred,tp‘petp*}' (11

For each iteration j of ICP, we obtain a set of cor-
respondences between the point cloud S and the local
map Q=1{q, | q; € R®} through nearest neighbor search over
the voxel grid (Sec. considering only correspondences
with a point-to-point distance below 7. To compute the current
pose correction ATy j, we perform a robust optimization
minimizing the sum of point-to-point residuals

2.

(s,9)€C(T¢)

(12)

ATesl,j = argmin p(HTS - q||2)7

where C(7;) is the set of nearest neighbor correspondences
with a distance smaller than 7; and p is the Geman-McClure

" ARp + At
Q0 B
%\vf’ ! /. .A_t_ .
. './_7"/" \
St
Lo AR
P ( /', ":
20 -q/—_v;r—m/&_—)p

Juans (At) Ot (AR)

Fig. 2: Exemplary computation of the maximum point displacement
0(AT) caused by a rotational and translational deviation (AR, At)
from the predicted motion.

robust kernel, i.e., an M-estimator with a strong outlier rejec-

tion property, given by

e?/2
O't/3 +€2 ’
~—~

Kt

ple) = (13)

where the scale parameter «; of the kernel is adapted online
using oy. Lastly, we update the points s;, i.e.,

{Si $— ATest,jSi | S; € S}, (14)

and repeat the process until the convergence criterion is met.

As a result of this process, we obtain the transformation
Tt = ATicp,tthlTpred,ts where ATiCp,t = H] ATest,j~ While
we apply the prediction model Tyreq s (i.€., the constant ve-
locity prediction) to the local coordinate frame of the scan,
we perform the ICP correction ATicpyt in the global reference
frame of the robot. This is done for efficiency reasons as it
allows us to transform the source points S only once per ICP
iteration. With this, the local pose deviation AT, at time ¢
used in the Eq. (5) can be expressed as

ATt = (Tt—lTpred,t)_1 ATicp,thﬁ—lTpred,t- (15)

A standard termination criterion for the ICP algorithm
is to control the number of iterations. Additionally, most
approaches also have a further criterion based on the minimum
change in the solution. Conversely, we found that controlling
the number of iterations does not allow the algorithm to always
find a good solution. Thus, we only employ the termination
criterion based on the applied correction being smaller than ~,
without imposing a maximum number of iterations.

Finally, the ICP correction is applied to the point
cloud Py, and the points are integrated into the local map.

F. Parameters

Our implementation depends on a small set of seven param-
eters. All are shown in Tab. [l We use the same parameters
for all experiments. Most other approaches use a substantially
larger set of parameters: MULLS [21] has 107 parameters,
SuMa [1]] has 49 parameters, and CT-ICP [10] has 30 pa-
rameters in their respective configuration files. In contrast,
our approach only has two parameters for the correspondence
search, four for the map representation and scan subsampling,
and one for the ICP termination. Note that the maximum range
of a scanner is a value that depends on the specific sensor in
use and, as such, we do not consider it a system parameter.
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Parameter I Value | Method || Seq.00-10 | Seq.11-21

Initial threshold ¢ 2m = SuMa-++ [1] 0.70 1.06

Min. deviation threshold i, 0.1m 5 MULLS [21]] 0.52 -
Max. points per voxel Nmax 20 0 CT-ICP [10] 0.53 0.59

Voxel size map v 0.01 rmax

Factor voxel size map merge o 0.5 - IMLS-SLAM [11] 0.55 0.69
Factor voxel size registration /3 1.5 2 MULLS [21] 0.55 0.65
ICP convergence criterion -y 104 § F-LOAM [33] 0.84 1.87
8 SuMa [1] 0.80 1.39
TABLE I: All seven parameters of our approach. Ours 0.50 0.61

However, for some scenarios, the value of ry,,x might also be
adapted to the specific environment in which the system is
operating, e.g., not considering far away measurements that
are usually less accurate.

IV. EXPERIMENTAL EVALUATION

This work provides a simple yet effective LIDAR odometry
pipeline that comes with a small set of parameters. We present
our experiments to show the capabilities of our method. The
results of our experiments support our key claims, namely
that our approach (i) is on par with more complex state-
of-the-art odometry systems, (ii) can accurately compute the
robot’s odometry in a large variety of environments and motion
profiles with the same system configuration, and (iii) provides
an effective solution to motion distortion without relying on
IMUs or wheel odometers.

A. Experimental Setup

We use numerous datasets and common evaluation methods.
We start with the KITTI odometry dataset [12] to evaluate our
system against state-of-the-art approaches to LiDAR odometry.
To investigate how we perform in other autonomous driving
datasets employing a different sensor, we evaluate our ap-
proach on the MulRan dataset [[15]. Additionally, we show that
our approach can be used in different scenarios, such as the
one present in the NCLT dataset [5], a segway dataset, and the
Newer College dataset [22] recorded using a handheld device.
We also analyze our method’s different components, such as
the motion-compensation scheme and the adaptive threshold.

Please note that due to space limitations we omit to show
the results of the trajectories and a detailed runtime evaluation
in this manuscript but refer the reader to the official project
page where all the plots and per-sequence evaluation on the
runtime performances are available

B. Performance on the KITTI-Odometry Benchmark

This experiment evaluates the performance of different
odometry pipelines on the popular KITTI benchmark dataset.
Since most systems do not do motion compensation, we use
the already compensated KITTI scans for a fair comparison
and disable the motion compensation for our approach and CT-
ICP [10] in this first analysis (the performance of the motion
compensation module will be studied later in Sec. [V-DI).
Tab. || exhibits how our system challenges most state-of-the-
art systems, which are typically more sophisticated than our
point-to-point ICP. Based on the official KITTI Benchmark,

Uhttps://www.github.com/PRBonn/kiss-icp/tree/main/evaluation

TABLE II: KITTI Benchmark results with motion compensated data.
We report the average relative translational error in % [13]. We
compare across SLAM methods employing pose-graph optimization
for improved results (fop) and odometry methods (bottom). We
omit the relative rotational error, but these results are available at
https://www.cvlibs.net/datasets/kitti/eval_odometry.php

we rank second among the open-source approaches (behind
CT-ICP [10]]) and ninth among all submissions. This indicates
that our comparably simple system still performs better than all
the publicly available systems out there, except CT-ICP [10].
Note that CT-ICP is a complete SLAM system, and it uses loop
closures to correct for the accumulated drift of the odometry
estimation. We in contrast obtain our results using only open-
loop registration without any loop closing.

C. Comparison to State-of-the-Art Systems on Other Datasets

We proceed to analyze the performance of our system on
different datasets, scenarios, and types of robots. For that,
we use the MulRan dataset [15], a handheld device [22],
and a segway dataset [5]. Odometry pipelines typically deal
with those challenging scenarios but employ IMUs [27] or
a different system configuration [10]. Our system performs
on par with state-of-the-art systems using the same parameter
values for all experiments and datasets. For this experi-
ment, we compare against state-of-the-art odometry systems,
namely MULLS [21], SuMa [1]], F-LOAM [33], and CT-
ICP [10]. Note that we do not provide an evaluation of CT-ICP
for the MulRan dataset since CT-ICP does not provide support
for this dataset.

For the MulRan dataset [15], we test the systems under
evaluation on all available public sequences. Since the dataset
provides three similar runs for each sequence, we report the
average number of each sequence in Tab. Our method
outperforms all state-of-the-art approaches by a large margin
in both relative and absolute error.

We use both available sequences to evaluate the Newer Col-
lege dataset and achieve similar results on the short experiment
compared to CT-ICP. For the long experiment, the perfor-
mance gap can be explained by the additional loop closing
module of CT-ICP, which is a complete SLAM system. For
the NCLT dataset experiment, we use the sequence evaluated
on the original work of CT-ICP. We could not reproduce
the results reported in CT-ICP [10] and therefore report the
results given in the original paper [10] in Tab. We achieve
similar results than CT-ICP. However, we observed errors in
the GPS ground-truth poses and missing frames. Therefore,
the numbers on NCLT should be taken with a grain of salt
and rather provide an estimate of how the systems perform.
We discourage using NCLT to evaluate odometry systems:


https://www.github.com/PRBonn/kiss-icp/tree/main/evaluation
https://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Sequence Method Ave. Ave. ATE ATE
tra. rot. tra. rot.

MULLS [21] 2.94 0.86 37.24 0.11

SuMa [T] 5.59 1.73 43.61 0.14

KAST 1l proam 33 | 343 099 | 4617 | 0.5
Ours 2.28 0.68 17.40 0.06

MULLS [21] 2.96 0.98 38.35 0.12

DCC SuMa [T] 5.20 1.71 36.22 0.11
F-LOAM [33] | 3.83 1.14 42.70 0.13

Ours 2.34 0.64 15.16 0.05

MULLS [21] 542 221 91.16 0.16

Riverside SuMa [T] 13.86 2.13 22724 | 038
1verst F-LOAM [33] 5.47 1.18 138.09 0.22
Ours 2.89 0.64 49.02 0.08

MULLS [21] 5.93 0.84 | 2151.00 | 0.49

Seioner || FFLOAM [33] | 7.87 120 | 344897 | 0.2
Jjong Ours 4.69 070 | 1369.54 | 0.33

TABLE III: Quantitative results on the MulRan dataset [15]. We
report the relative translational error and the relative rotational error
using the KITTI [13] metrics. Additionally, we show the absolute
trajectory error for translation inm and for rotation in rad.

NCD NCD NCLT
Method ‘ ‘ 01-short 02-long ‘ ‘ 2012-01-8
MULLS [21] 0.82 1.23 i
F-LOAM [33] 202 fails .
CT-ICP (10] 0.48 0.58 117
Ours 0.51 0.96 1.27

TABLE IV: Quantitative results for Newer College and NCLT. We
report the relative translational error in % [13].

misalignments in the ground truth poses, missing frames, and
inconsistencies in the data make the evaluation of odometry
systems on such a dataset not a good evaluation tool from our
perspective. However, we provide the results for completeness.

We show qualitative results in Fig. [T] generated using
our KISS-ICP poses. Using a single system configuration,
we can produce consistent maps on different sensor setups
(Velodyne/Ouster vs. Livox) and different motion profiles (car,
drone, segway, handheld) with the same parameters.

D. Ablation Studies

To understand how each component of our system impacts
the odometry performance, we conduct ablation studies on
the different components of our approach, namely, the motion
compensation scheme and the adaptive threshold. To carry out
these studies, we use the KITTI odometry dataset [12] as it is
probably the best-known one.

1) Motion Compensation: To assess the impact of our
motion compensation scheme, we utilize the raw LiDAR point
clouds without any compensation applied. Note that the KITTI
odometry benchmark point cloud data [12] is already compen-
sated and, therefore, cannot be used for this study. Thus, we
use the KITTI raw dataset [13]. We present the results in a fa-
miliar fashion, selecting only the sequences that correspond to
the ones on the motion-compensated datasets [12]. As we can
see in Tab. |V| our motion compensation scheme can produce
state-of-the-art results and is on par with substantially more
sophisticated and thus complex compensation techniques such
as the one introduced by CT-ICP [10]]. Additionally, we study

Method || Avg.tra | Avg.rot | Avg. freq.
MULLS [21] 1.41 - 12Hz
IMLS-SLAM [11] 0.71 - 1Hz
CT-ICP [10] 0.55 - 15Hz
Ours without deskewing 0.91 0.27 51Hz
Ours + Deskewing (IMU) 0.51 0.19 38Hz
Ours + Deskewing (CV) 0.49 0.16 38 Hz

TABLE V: Results of evaluating different state-of-the-art systems
on KITTI-raw dataset (without motion compensation). We report the
relative translational error and the relative rotational error using the
KITTI [13]] metrics. Additionally, we report the runtime operation of
the systems being in consideration for this experiment.

Data-Association Threshold 7

Dataset H 03m ‘

05m | 1.0m | 20m | Ours

KITTI Seq. 00 0.54 0.51 0.53 0.55 0.51
KITTI Seq. 04 0.39 0.41 0.37 0.39 0.36
KITTI Avg. Seq. 00-10 || 053 | 051 | 051 | 053 | 0.50

TABLE VI: Comparison of different fixed thresholds vs. our proposed
adaptive threshold on the KITTI dataset. We report the relative
translational error in % [13].

how our system performs without applying motion compen-
sation, as shown in Tab. We also evaluate the performance
of our constant velocity model for motion compensation. To
assess this, we compare the same compensation strategy but
replace the velocity estimation with sensor data taken by the
IMU. As seen in the results, our velocity estimation is on par
or even slightly better with the IMU.

Besides the fact that CT-ICP’s elastic formulation yields
good results, our much simpler approach produces even better
results. This result shows that the constant velocity model
employed in our approach for compensating motion distortion
is sufficient to cope with the slight reduction in performance
when no compensation is applied. Consequently, we believe
that more sophisticated techniques are unnecessary for most
robotic odometry estimation.

2) Adaptive Data-Association Threshold: We finally evalu-
ate how the adaptive threshold 7, impacts the performance
of our system by comparing it to a different set of fixed
thresholds commonly used in open-source systems. To conduct
this experiment, we identify the two KITTI sequences with
the largest (00) and the smallest (04) average acceleration
indicating different motion profiles. As we can see in Tab.
the best fixed threshold for sequence 00 is 0.5m and 1.0m
for sequence 04. This means that a fixed threshold has to be
tuned depending on the motion profile and thus to the dataset
to achieve top performance. In contrast, our adaptive algorithm
exploits the motion profile to estimate the threshold online,
which results in on-par or better performance without the need
to find a new fixed threshold for each sequence. Finally, our
proposed adaptive threshold strategy achieves the best average
result on the KITTI training sequences.

Please note that all the experiments from this ablation study
use the robust kernel. For space reasons, we omitted the results
of the evaluation of our system when no kernel is employed
and only report the results averaged over the sequences. Not
using the kernel produces 0.67% for the translational error and
0.25% for the rotational error [13]].
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V. CONCLUSION

This paper presents a simple yet highly effective approach
to LIDAR odometry and shows that point-to-point ICP works
very well — when used properly. Our approach operates solely
on point clouds and does not require an IMU, even when
dealing with high-frequency driving profiles. Our approach
exploits the classical point-to-point ICP to build a generic
odometry system that can be employed in different challeng-
ing environments, such as highway runs, handheld devices,
segways, and drones. Moreover, the system can be used with
different range-sensing technologies and scanning patterns. We
only assume that point clouds are generated sequentially as
the robot moves through the environment. We implemented
and evaluated our approach on different datasets, provided
comparisons to other existing techniques, supported all claims
made in this paper, and released our code. The experiments
suggest that our approach is on par with substantially more
sophisticated state-of-the-art LiDAR odometry systems but
relies only on a few parameters, and performs well on various
datasets under different conditions with the same parameter
set. Finally, our system operates faster than the sensor frame
rate in all presented datasets. We believe this work will be a
new baseline for future sensor odometry systems and a solid,
high-performance starting point for future approaches. Our
open-source code is robust and simple, easy to extend, and
performs well, pushing the state-of-the-art LiDAR odometry
to its limits and challenging most sophisticated systems.
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