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Abstract— Accurately localizing in and mapping an envi-
ronment are essential building blocks of most autonomous
systems. In this paper, we present a novel approach for LiDAR
odometry and mapping, focusing on improving the mapping
quality and at the same time estimating the pose of the vehicle.
Our approach performs frame-to-mesh ICP, but in contrast to
other SLAM approaches, we represent the map as a triangle
mesh computed via Poisson surface reconstruction. We perform
the surface reconstruction in a sliding window fashion over a
sequence of past scans. In this way, we obtain accurate local
maps that are well suited for registration and can also be
combined into a global map. This enables us to build a 3D
map showing more geometric details than common mapping
approaches relying on a truncated signed distance function or
surfels. Our experimental evaluation shows quantitatively and
qualitatively that our maps offer higher geometric accuracies
than these other map representations. We also show that our
maps are compact and can be used for LiDAR-based odometry
estimation with a novel ray-casting-based data association.

I. INTRODUCTION

Without a map of the environment as well as the knowl-
edge about their pose, most autonomous systems cannot
navigate effectively. Thus, localization, mapping, as well as
simultaneous localization and mapping [4], [34] are impor-
tant building blocks of autonomous systems.

We employ a rotating LiDAR sensor to map the envi-
ronment and investigate the usage of an alternative scene
representation for mapping and registration. Scene represen-
tation is essential since it is used to register incoming scans.
To obtain accurate relative pose estimates and compelling
mapping results, a scene representation must capture and
represent the environment with a high level of detail.

Our paper aims at improving the geometrical accuracy of
LiDAR-based mapping while simultaneously estimating the
pose of the vehicle with low-drift over time. We achieve
this by using a triangle mesh representation computed via
the Poisson surface reconstruction technique [15]. This is in
contrast to other state-of-the-art approaches which often use
either surfels [1] or a truncated signed distance function [7],
[23] as a representation, that often provide a rather low
reconstruction quality, at least for large outdoor scenes.
With our approach, we reconstruct meshes from robotic
3D LIDAR data for outdoor environments with a quality
that was previously common only at the object level, for
indoor scenes, by using terrestrial scanners, or by aggregating
multiple passes over the same scene.
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Fig. 1: Qualitative comparison between the different mapping
techniques for sequence 00 of the KITTI odometry benchmark [11].

The main contribution of this paper is a novel LiDAR
odometry and mapping system that builds upon a surface
reconstruction method providing geometrical accurate maps.
We aggregate individual scans into a local point cloud and
use these to reconstruct a triangular mesh of the scene. Our
experimental evaluation shows that such a triangle mesh
is well-suited for the registration of 3D LiDAR scans as
it is comparably compact, preserves rather detailed struc-
tures, and allows for accurate frame-to-mesh registration.
This yields a new 3D LiDAR-based mapping approach that
provides geometrically accurate maps and can be used for
pose estimation, as shown in Fig. [l We show that the
proposed map representation (i) is a geometrically accurate
representation of the environment, (ii) has better memory
efficiency as compared to other map representations, and
(iii) allows for accurate registration of the incoming scans
with the model using a novel frame-to-mesh registration
algorithm. We support these claims through experimental
evaluation on synthetic and real-world data.



II. RELATED WORK

Simultaneous localization and mapping (SLAM) has been
investigated for decades [4], [34] and here we concentrate
on 3D LiDAR-based approaches.

Laser-based SLAM systems either rely on sparse fea-
tures [39], [22] or perform registration with a dense map
representation [1], [8]. Deschaud [8] propose to use im-
plicit moving least squares (IMLS) surfaces for the map
representation. Behley and Stachniss [1] perform mapping
with a surfel-based map representation. In contrast to these
approaches, we register LiDAR scans to a dense map repre-
sentation using triangular meshes instead of surfels or IMLS
surfaces.

A common technique to obtain triangular meshes from
point clouds is 3D surface reconstruction [2]. Traditional
approaches determine an implicit function modelling the
underlying surface, for example, using tangent planes [12],
radial basis functions [5], truncated signed distance func-
tions (TSDF) [7], or polynomial representations [17]. Pois-
son surface reconstruction [14], [15] provides geometrically
accurate reconstruction based on this principle.

In contrast to feature-based SLAM systems, dense ap-
proaches aim to use all the input data and aggregate them into
a dense map representation. A popular approach is using the
aforementioned TSDFs popularized by Newcombe et al. [23]
for RGB-D mapping. Most TSDF approaches need to know
a priori the volume of the environment as they rely on a fixed
voxel grid, but Whelan et al. [37] propose to use a rolling grid
to alleviate this limitation and store the intermediate results
in a triangular mesh. Other approaches use an octree [35]
or allocate blocks on demand [24], [26]. Contrary to these
methods, we do not make any assumption of the size of
the environment to map or make use of any optimized data
structures.

In robotics, the triangular mesh representation for recon-
struction was employed by Marton et al. [19]. In recent
years, such representations were also explored for visual-
inertial systems [30], LiDAR-based approaches [6], [31] and
purely vision-based systems [27]. In contrast to our work,
these approaches typically compute a sparse reconstruction
of the traversed environment, while we aim to reconstruct a
continuous triangle surface capturing geometric details.

Also, 3D LiDAR-based approaches use variants of TSDF
working towards larger volumes and building globally con-
sistent maps [21], [25], [28], [29]. Kiihner et al. [18] exploit
a TSDF for large outdoor environments, but they need
multiple passes over the same scene to obtain compelling
reconstruction results. We propose a method that needs only
a single pass to obtain a high level of detail.

III. OUR APPROACH

We perform the following three steps for each scan: First,
we compute per-point normals, second, we register the scan
to the local map, and third, we fuse the registered scan into a
global map. We furthermore propose a novel frame-to-mesh
registration strategy that exploits that the map is represented
by a triangle mesh.

Our approach distinguishes between a local map and the
global map. The local map is used to perform the odometry
estimation and is build from the last N localized scans. The
global map is the aggregated mesh of the entire environment.

A. Normal Computation and Point Cloud Registration

For computing the normals, we project the point cloud
into a range image using a spherical projection and estimate
the normal vectors using the cross product from neighbor-
ing pixels [1]. While this is sometimes less accurate than
estimating normals via principal component analysis on the
covariance of a point neighborhood, it is far more efficient
as it does not need to determine a point neighborhood.

For point cloud registration, we iteratively perform data
association of the point cloud with the triangular mesh and
determine pose increments to minimize an error metric.

For the data association between point clouds, the clos-
est point association found via neighbor search or projec-
tively [32] is a common choice. We can also use this strategy
with our mesh representation by searching neighbors over the
triangle vertices, but this is suboptimal as we will show in
the experimental evaluation.

We propose to use ray-casting to determine ray-triangle
intersections. For each intersection, we extract the point and
associated normal of the intersected triangle. To this end,
we first apply the last estimated pose at time ¢ — 1, ie.,
T, 1 € R**4, to the current scan as an initial alignment.
We then create a set of n rays R = {r;}. Each ray r; is
defined by o; + 7d; with the origin o; = t¥ at the currently
estimated sensor position and directions d; = TFp;, passing
through all points p; of the current scan. Here, T¥ is the
estimated pose at iteration k and tF € R* is the translational
part of TF.

The intersection of each ray r; € R with the mesh results
in the correspondence for point p;, denoted as q;, and
the normal of the intersected triangle is the corresponding
normal n;. To compute the relative transformation between
the scan and the mesh, we can now use different error metrics
E(-,-), such as point-to-point, point-to-plane, or plane-to-
plane error [3], [32], [33].

The data association step can also result in wrong corre-
spondences, where a given point from a surface is associated
with an intersected point in the mesh from another surface.
This typically happens when the ray does not hit any close
by surface and hits a far away triangle. Therefore as outlier
rejection, we remove correspondences (p;,q;) € C from the
set of correspondences C that satisfy ||pi — qi|| > d4. In our
implementation, we use d; = 1 m.

To obtain the estimated pose of the vehicle at time ¢, we
then optimize the following objective:

T* = argmin E E(TTfflpiyqi), (D
T
(pi,qi)eC

considering the error metric E(p,q) between points p,q
and an increment TF = T*TF~' at iteration k. In our
experiments, we found out that the best performing metric
is the point-to-plane metric [32]. To reduce the influence of



outliers that were not filtered by the outlier rejection, we use
a Huber weighting kernel [13].

The main advantage of the proposed data association is
that it does not need to compute nearest neighbors, instead,
the association step exploits the map representation through
ray-casting the mesh, which as shown in the experiments
can be executed faster, especially when dealing with high-
resolution meshes. Nonetheless, this approach does not prop-
erly handle large rotational motions and requires a good
initial estimate to converge, even though this also holds for
nearest neighbor approaches.

B. Meshing Algorithm

A common technique to performing 3D surface recon-
struction with point sets is to build an implicit function that
aims to recover the underlying surface of the input data [12].
Such implicit function f is usually defined as a scalar field
in R3, ie., f : R? — R, where typically the zero set
of f represents the surface we aim at modeling. A popular
technique in robotics and SLAM is to approximate f by the
signed distance function [7], i.e., the projected distance, from
the sensor to the surface.

Our work, in contrast, explores the use of Poisson surface
reconstruction [14], [15] to build consistent, smooth, high-
quality maps for mobile robots, in particular, for autonomous
vehicles. We refer to the original publications [14], [15]
for details on the reconstruction algorithm. Our goal is to
investigate the use of triangular meshes in SLAM besides
the particular choice of the algorithm being used for the
reconstructior!]

Next, we explain out mesh post-processing. The afore-
mentioned Poisson reconstruction is designed to recover
closed surfaces of a single object in 3D as illustrated
in Fig. P} Our 3D world, especially outside environments,
is not composed of closed surfaces. Therefore, we need
to refine the reconstructed surface and perform a post-
processing step, which involves removing vertices with low
density. The density §(v) of a vertex v on the mesh measures
how many points from the input point cloud support the
vertex v. Intuitively, a low value means that the vertex is
only supported by a low number of points, and therefore,
is not densely measured in the original LiDAR scan or
not measured at all (as the Poisson surface reconstruction
algorithm will also extrapolate points where there is no data).
After reconstructing the mesh, we compute the distribution
of the per-vertex densities, as illustrated by the histogram
in Fig. ] right to the legend. The vertices of interest have
a high density, i.e. those that are closer in space to point
cloud data and are colored in yellow to red in the figure.
We trim away the low-density vertices independently of the
size of the triangles of the mesh. We make that decision
only based on the density 6(v) of a vertex. We consider the
cumulative histogram of densities starting with the highest
density values and trim those vertices that belong to the last

'We only consider horizontally placed LiDAR sensors, therefore, we do
not examine LiDARs shooting towards the sky, like profiler scanners.

density
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Fig. 2: Cross-section view of the vertex densities for an urban
scene reconstruction, where the colors represent the density of the
vertices, as shown in the colorbar. We trim away 10% of the vertices
based on the density threshold §(v).

10%. This means we trim away 10% of the vertices with the
smallest density values.

This post-processing produces a tighter reconstruction of
the input data, showing little artifacts, which allow us to
incrementally build the global mesh as described in Sec. [ITT7]
[Cl Note that without this step, it is not possible to build a
global map of the environment, due to the artifacts shown in
blue in Fig. 2

Note that, as an interesting side-effect, this density-based
filtering also tends to eliminate most of the moving objects in
the scene, since 3D points on the surface of moving objects
often only support a small number of triangles as the position
of the surface changes in every scan. This leads to low-
density triangles on moving objects and thus no surface will
be reconstructed at these locations.

C. Local and Global Map

In our approach, we distinguish between a local and a
global map. The local map is built from the last N aggregated
scans. The global map is only used for visualization and for
reporting the final output but is not used inside our approach,
which will change in case we add loop closing. A new mesh
is reconstructed from the local map each time a new LiDAR
frame has been registered to the local map. This produces a
rolling grid-like mesh that moves with the estimated pose of
the vehicle and stores enough information for the registration
of new incoming scans. During the initial N scans, we
disable the mesh reconstruction module and rely on standard
point-to-plane ICP for estimating the pose of the vehicle.
After M scans have been registered, the last generated local
mesh is integrated into the global mesh map. This means
that the global mesh will be updated only after M scans
have arrived and registered (in contrast to the local mesh
that is updated every time a new scan arrives). To do so, we
add all the triangles in the local mesh to the global one and
then we remove the duplicated triangles that can occur due
to overlaps in the local map region. In our implementation
we use N = M = 30.

IV. EXPERIMENTAL EVALUATION

We implemented our approach on top of the Open3D
library [40] and use Intel’s Embree library [36] for effi-



TSDF [21]
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Fig. 3: Qualitative examples showing the map accuracy. The first row exhibits the three map representations, TSDF, surfels and our
approach, respectively. The second row depicts the dense GT point clouds used to compute the metrics in Tab. m Along with the GT
clouds, we highlight in yellow the points in the GT model whose distances to the closest point in the built models shown in the first row
are greater than J; = 3 cm. Intuitively, the greater number of yellow points, the more mistakes or gaps a model contains.

cient ray-to-triangle intersection queries. Our algorithm runs
entirely on CPU and was tested on an Intel Xeon W-2145
with 8 cores @3.70 GHz with 32 GB RAM. The source code
of our approach is available at: https://github.com/
PRBonn/pumal

For all our experiments we used the default SuMa settings
and a voxel size of 0.10m for TSDF. For our approach,
we set the depth of the octree used in the Poisson surface
reconstruction [14] to Agee = 10.

A. Datasets

We use simulated and real-world data for our evaluation.
For assessing the accuracy of our map, we need ground
truth data and thus we generate synthetic sensor data for
an urban environmenﬂ To obtain the ground truth (GT)
model of the scene, we sample points from the CAD using
a virtual LiDAR sensor model with the same field of view
and properties as the one used to obtain the scans, however
using 320 beams instead of 64. This way we obtain a dense
ground truth point cloud but only from the parts of the scene
that can be observed with the sensor which is key to a fair
comparison of the built 3D model. The final GT point cloud
contains 62.5 million points and is shown in the second row
of Fig. 3

For real-world experiments, we use the odometry bench-
mark from the KITTI Dataset [11].

B. Mapping Accuracy

The first set of experiments is designed to show the
geometrical accuracy of our map representation. We compare
our mesh generation pipeline with two commonly used map
representations: surfels [1] and TDSF [21]. To decouple
errors in the resulting map caused by the representation itself
and the pose estimation accuracy of the SLAM approaches,

2The data is available at http://www.ipb.uni-bonn.de/data/
mai-city-dataset,

Chamfer Distance Precision Recall F-score

Method dep(P,G) P(6q)  R(ba) F(dq)
TSDF [21] 0.66 79.96 85.42 82.6
Surfels [1] 0.11 75.54 98.43 85.48
Ours 0.05 93.28 98.69 95.91

TABLE I: Distance evaluation metrics for mapping accuracy. In all
experiments d4 = 0.03m

we use the same poses provided by the ground truth for all
systems for a fair comparison.

For a quantitative evaluation of the accuracy of the map-
ping systems, we densely sample the map representations
with a density of 1,000 points per cm?. Sampling the evalu-
ated map representation allows us to have a fair comparison
between each approach and the GT model using standard
point-cloud metrics [16], [9].

For our evaluation, we use the following metrics. Let P
be the point cloud sampled from the map and let G be the
GT point cloud. For a point p € P, we define the distance
to the GT model as:

d(p,9) :gleirglllpfgll, (2)

where ||| is the L2 norm. Analogously, we define the
distance for a point g € G to the reconstructed map
as d(g,P) = minpepl|/g — p||. For computing precision,
recall, and f-score metrics, we follow exactly the work by
Knapitsch et al. [16].

We also define the Chamfer distance [9] as:

1 1
dep(P,G) = 2P| Z;)d(p,g)Q + 20| ng(g,P)Q. 3)
PE gec

The results for the mapping accuracy are shown in Tab. [I]
We are especially interested in the areas where the 3D models
deviate from the ground truth. Therefore, we highlighted all
points that have an error of §; > 3 cm in yellow (second row

of Fig. [3).


https://github.com/PRBonn/puma
https://github.com/PRBonn/puma
http://www.ipb.uni-bonn.de/data/mai-city-dataset
http://www.ipb.uni-bonn.de/data/mai-city-dataset

T T T T T
Sec}yzeMnB():e 04 = Point clouds
[~ Surfel map i
EEBOO TSDF
oy = = Our approach
S— 400 F ]
[
N
@ 200 .
0 b= - = ST T T
Sequence 07 0 50 100 150 200 250
(306 MB) 3000 T T T T
e = Point clouds
Surfel map
@ 2000 [ TSDF .
i = = Our approach
" 5
o9
) N 1000 ]
(2]
0 ———— s T ST T T T
0 200 400 600 800 1000

# of frames

Fig. 4: Memory consumption for different map representations for
two KITTI sequences. On the left, we show the triangular mesh
maps built by our approach along with their final size. Sequence 04
is a country environment and sequence 07 was recorded in an
urban scenario. We see that point clouds and surfels result in higher
memory usage. TSDF performs similarly to our approach in terms
of memory usage, but as seen in Fig. [3] our approach outperforms
TSDFs in terms of geometrical accuracy.

We can see that the TSDF-based approach fails to recon-
struct important distinctive objects of the scene such as trees,
pedestrians, or poles. Is important to remark that this is a
limitation of the method as the framework used [20] does
not drop any input scans. The surfel-based approach often
provides more accurate reconstructions, however, it also adds
spurious artifacts to the reconstructed scene. Our approach
outperforms both in terms of accuracy and correctness of the
model since it does not miss important features and does not
add artifacts at the same time.

C. Memory Efficiency

To use these high definition maps in practice, it is nec-
essary to be able to represent this map efficiently. The
second evaluation is designed to investigate the memory
requirements of different map representations. We show that
our map representation, based on triangular meshes, is a good
choice in terms of a trade-off between geometrical accuracy
and the corresponding memory footprint. We evaluate the
amount of memory needed to represent a given map using
our approach, TSDFs [21], surfels [1], and the LiDAR point
clouds, only considering the raw geometric model, not any
other additional information (such as normals, color infor-
mation, etc.) that could be stored. The voxel size of 0.10 m
for the TSDF-based [21] approach is chosen such that the
spatial resolution of the extracted mesh results similar to the
one built with our approach. SuMa [1] does not provide a
mechanism to control its map size.

For a mesh-based map representation, the minimum
amount of memory needed to represent a triangular mesh
is given by N, ¥size + Ny feze, Where N, and Ny are the
numbers of vertices and faces in the model respectively and
Usize and fiie are the size of a vertex and a triangular face
respectively.

In the case of a TSDF based map representation, Whelan
et al. [37] shows that it is not directly feasible to store

the TSDF volume as a map representation for large outdoor
environments in general. In practice, we need to extract
the triangular mesh from the TSDF volume to store these
maps. As a result, while comparing the memory footprint
of the TSDF approach, we use the size of the extracted
mesh instead of the TSDF volume. For a surfel, we need
to represent the center position of the surfel, the normal,
and a radius. Therefore, the size of a surfel map is given
by Ng (Csize + Nsize + Tsize), Where Ng is the number of
surfels, cg,e is the size of the center position, ng,e is the
size of the normal vector, and 7, is the size of the radius.
For the case of a point cloud map, the size of the map is
given by Np pgize, Where Np is the number of points and pgize
is the size of a point.

Fig. [] shows the memory consumption of the different
approaches over time for two different sequences of the
KITTI odometry benchmark. We see that our approach scales
well with the number of input scans, while surfel-based maps
or point cloud maps require much more memory, which
makes it not feasible to run on mobile platforms. TSDF-
based maps exhibit similar memory consumption, however
with a reduced mapping accuracy, as shown in Sec.

D. Odometry and Localization Accuracy

In this experiment, we illustrate that our approach is well-
suited for estimating the pose of the vehicle by registering the
LiDAR scans using our map representation. We evaluate our
performance on the KITTI dataset [11] where we estimate the
poses by registering the 3D LiDAR scans incrementally. We
compare our approach to commonly used registration algo-
rithms based on ICP, namely point-to-point ICP [3], point-
to-plane ICP [32] and generalized-ICP [33]. For all these
three approaches, we use the same optimization framework
described in Sec. [[II-A] including also a Huber loss [13]
function to reject outliers. As we do with our approach,
we also initialize the ICP with the last increment estimate
obtained at time ¢ — 1. Additionally, we consider a different
scenario for these three methods, instead of performing
frame-to-frame ICP, we perform frame-to-model ICP, where
the model is the last N aggregated scans. This is represented
as point cloud map in Tab. I} This way we can evaluate the
benefits of running the reconstruction algorithm on this local
map or not. For performing data-associations on the three
ICP variants, we employ nearest neighbors search. Lastly, we
also consider a different data-association scenario, the pro-
jective data association. For this, we compare our approach
to frame-to-frame SuMA [1]. The TSDF [20] framework
does not provide pose estimates and therefore is omitted in
this experiment. It is important to remark that to compare
all methods equally, we use the same normal computation
for all approaches as described in Sec. This normal
computation will generally decrease the performance of any
normal-based metric for estimating the pose.

In terms of estimation performance, we can see in Tab.
that our approach provides solid pose estimate performance
when comparing the poses provided by our system to the
ground truth poses provided by KITTIL.
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e point-to-plane ICP [32] - NN (51" 499 1760 270 101 521 117 084 116 147 547  3.15

2043 434 9310 1070 221 8370 156 142 119 233 2180 237
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- 215 314 432 191 134 209 156 141 18 197 180 221

g Ouws@Que=100 NN Y49 104 073 107 146 107 072 136 110 082 167

= Ours (A — 100 RC LS5 146 338 186 160 163 120 088 072 144 151 138

tree = 074 068 100 072 110 092 061 042 055 061 066 084

TABLE II: Odometry estimation results for the KITTI Odometry benchmark [10]. The rows highlighted in gray correspond to the
translational error and the row below to the rotational error. All errors are averaged over trajectories of 100 to 800 m length. The
translational error is in % and the relative rotational error in degrees per 100 m. DA for data association, RC for ray casting, NN for
nearest neighbor. Bold numbers indicate the best approach for the given sequence.

E. Registration Algorithm

We briefly show that the novel registration scheme de-
picted in Sec. is superior in terms of accuracy and
speed. We compare our registration pipeline against a stan-
dard point-to-plane ICP [32], where the source in both cases
is the incoming scan from the LiDAR sensor and the target
is set to be the triangular mesh built for our approach.
We compare two different registration algorithms, one that
sample all vertices and normals of the mesh to obtain a point
cloud, and the second, that uses our novel data association
algorithm based on ray-casting (RC) as explained in Sec.
[Al While traditional ICP makes use of nearest neighbor
searches, we perform ray-casting through the mesh to obtain
the target correspondences and the normal information. The
registration is evaluated by running our registration algorithm
in the full KITTTI training sequences, registering all LiDAR
scans to the local mesh-map (Sec. [[II-C), using different map
resolutions, i.e., by setting different resolutions of the Agyee
on the Poisson surface reconstruction [15]. To investigate the
accuracy of the registration method we compute the average
translational and rotational errors overall training sequences
of the dataset. We see that the proposed registration algorithm
scales better when the size of the input mesh increases. The
results of this experiment are shown in Tab.

F. Runtime

The pre-processing and the normal estimation take 45 ms
on average per scan, and the scan-matching algorithm takes
another extra 500 ms. However, the bottleneck is the meshing
algorithm which takes on average 5s when executed on a
CPU. This makes our approach infeasible for online opera-
tion on autonomous vehicles. In this work, we have primarily
focused on the use of triangular meshes in developing SLAM

Mesh vertex-sampling Mesh ray-casting

Atree  Vertices terr Terr runtime terr Terr runtime
8 30K 282 1.23 682 1.73  0.90 395
9 100K 205 1.08 645 1.53  0.74 418
10 300K 2,14 1.17 789 1.56 0.74 535

TABLE III: Ray-casting vs mesh-sampling registration evaluation in
the full KITTI [11] training sequences. Relative errors are averaged
over trajectories of 100 to 800m length. Relative translational
error (ter) in % and relative rotational error (ren) in degrees per
100 m. The runtime values are expressed in milliseconds.

pipelines and show that both the reconstruction quality and
the pose estimation accuracy are promising. In future work,
we need to investigate techniques for optimizing the meshing
algorithm to enable online performance, for instance, running
the reconstruction algorithm on the GPU, additionally, GPU-
enabled ray tracing engines, like the NVIDIA OptiX™, can
be used to accelerate the ray-casting registration algorithm.

V. CONCLUSION

In this publication, we presented a novel approach for
simultaneous odometry and mapping with 3D LiDARs. Our
approach performs a novel frame-to-mesh registration but
in contrast to other SLAM or odometry and mapping ap-
proaches, we represent the map as a triangle mesh estimated
using Poisson surface reconstruction in a sliding window
over a sequence of past scans. We show that we obtain high-
quality local meshes that show more details than common
alternative methods such as state-of-the-art TSDF or surfel
representations. We also show that our map representation
is well-suited for incremental scan registration for pose
estimation. For future work, our system can be extended by
incorporating loop closures [38] and a pose graph optimiza-
tion framework for efficient dense map correction.
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