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Deep Reinforcement Learning with Dynamic
Graphs for Adaptive Informative Path Planning
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Abstract—Autonomous robots are often employed for data
collection due to their efficiency and low labour costs. A key task
in robotic data acquisition is planning paths through an initially
unknown environment to collect observations given platform-
specific resource constraints, such as limited battery life. Adaptive
online path planning in 3D environments is challenging due to the
large set of valid actions and the presence of unknown occlusions.
To address these issues, we propose a novel deep reinforcement
learning approach for adaptively replanning robot paths to map
targets of interest in unknown 3D environments. A key aspect of
our approach is a dynamically constructed graph that restricts
planning actions local to the robot, allowing us to react to
newly discovered static obstacles and targets of interest. For
replanning, we propose a new reward function that balances be-
tween exploring the unknown environment and exploiting online-
discovered targets of interest. Our experiments show that our
method enables more efficient target discovery compared to state-
of-the-art learning and non-learning baselines. We also showcase
our approach for orchard monitoring using an unmanned aerial
vehicle in a photorealistic simulator. We open-source our code
and model at: https://github.com/dmar-bonn/ipp-rl-3d.

Index Terms—Motion and Path Planning, Reinforcement
Learning, Robotics and Automation in Agriculture and Forestry

I. INTRODUCTION

EFFICIENT data collection is a key requirement in many
monitoring tasks, such as environmental mapping [1–

5], precision agriculture [6–8], and exploration [9–11]. Au-
tonomous robots are becoming popular tools for mobile sens-
ing applications since they offer labour- and cost-effective
alternatives to using conventional platforms, manual ap-
proaches [12], or static sensing methods [13]. A key challenge
in this context is planning paths that maximise the information
value of collected data in large environments with limited
onboard resources, e.g. mission time or battery capacity.

In this work, our goal is to map a set of targets of interest
in an initially unknown 3D environment using an unmanned
aerial vehicle (UAV) with a unidirectional sensor as efficiently
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Fig 1: Our reinforcement learning approach for adaptive informative
path planning applied in an orchard monitoring scenario using an
unmanned aerial vehicle (UAV). Blue squares are candidate way-
points output by our planner, while the green square is the chosen
next waypoint to visit. The inset windows show the onboard camera
view and semantic segmentation for discovering apples. By planning
collision-free paths for the UAV online, we maximise the number of
apple fruits discovered under flight-length constraints.

as possible. Possible applications for such a system are finding
apples in an orchard, victims in a search and rescue scenario,
or components in a warehouse. We cast this problem as the
informative path planning problem, which aims to maximise
the information value of obtained sensor observations subject
to resource constraints, e.g. maximum path length or battery
capacity. Our problem considers adaptively replanning robot
paths to account for observations collected online. In our
setting, adaptive replanning is challenging due to unknown
view-dependent occlusions in the 4D action space, i.e. the
UAV 3D position and yaw angle.

Classical approaches for this problem precompute a path
before the mission starts [9, 14–16] without considering
online-collected observations for replanning, likely leading
to sub-optimal performance. In contrast, adaptive informative
path planning approaches allow robots to replan their paths
online based on newly collected data [4, 10, 17–28]. How-
ever, these methods are typically computationally inefficient
in complex environments involving high-dimensional action
spaces, such as UAV-based applications. Recently, approaches
using deep reinforcement learning have been proposed for
adaptive informative planning that outperform non-learning
methods in various scenarios [29–32]. These methods are
not directly applicable to our problem setting as they do not
adjust the sensor orientation [29–31] or assume obstacle-free
workspaces [30, 32]. Extending these approaches for obstacle
avoidance is non-trivial, requiring updating the action space
as the obstacles are discovered.

https://github.com/dmar-bonn/ipp-rl-3d
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The main contribution of this paper is a deep reinforcement
learning-based approach for adaptive replanning in unknown
3D environments to maximise the discovered targets of in-
terest. A key aspect of our approach is a dynamically con-
structed graph representing the action space, which supports
sequentially selecting the next best waypoint for the robot
to visit. Our dynamic graph restricts planning to actions in
the robot’s local region at each timestep of the mission. In
contrast to previous works [10, 17, 30] reasoning about static
predefined action spaces, this enables us to plan informative
collision-free paths, even without prior knowledge about the
environment. Combining our dynamic graph with sequential
decision-making through reinforcement learning allows us to
plan long-horizon paths. To capture the adaptive informative
planning objective, we propose a new reward function that
encourages the robot to both explore unknown regions and
exploit discovered targets. Fig. 1 exemplifies our approach
applied on a UAV to discover fruits in an orchard.

In sum, we make the following three claims. First, our ap-
proach enables more efficiently discovering targets of interest
compared to state-of-the-art non-learning-based and learning-
based planning methods, including in previously unseen envi-
ronments. Second, by adapting the action space online, our
dynamic graph ensures collision-free navigation in initially
unknown environments while performing on par with or out-
performing static global representations. Third, our proposed
reward function outperforms using purely exploratory rewards.
We validate the performance of our approach in a realistic
orchard monitoring UAV application.

II. RELATED WORK

Informative path planning approaches are extensively ap-
plied in autonomous exploration and monitoring tasks. Clas-
sical methods [9, 14–16] either plan a path offline or optimise
paths to cover the complete robot workspace [33]. These
combinatorial methods do not allow for online replanning due
to the large computational burden incurred when exhaustively
evaluating all possible paths through the environment.

Generally, computational complexity is reduced by dis-
cretising the continuous action space by sampling and connect-
ing candidate waypoints through platform-dependent paths.
The robot visits only the sampled waypoints, traversing pre-
defined paths formed by static global graphs representing the
entire environment. Recent approaches [34–36] incrementally
build the graph based on the current robot pose, reducing
the replanning time. However, like classical approaches, these
methods are non-adaptive to already collected observations for
online replanning during a mission.

Adaptive informative path planning approaches [4, 10, 17–
28] replan robot paths online and consider gathered obser-
vations to inform subsequent decision steps. Several studies
apply evolutionary algorithms to optimise paths for UAVs [18,
23, 27] , autonomous surface vehicles [10], or autonomous
ground vehicles [26] for adaptive replanning in a receding-
horizon manner. Meera et al. [23] utilise covariance matrix
adaptation evolution strategy (CMA-ES) to optimise the global
path to map 2D target distributions using downward-facing

cameras. Bouman et al. [26] maximise the environment cov-
erage, planning in the robot’s local region over 2D action
spaces using omnidirectional sensors. Ercolani et al. [17] map
gas distributions using nano aerial vehicles, separating path
planning into global and local stages reasoning over clusters
of waypoints. Similarly, Lim et al. [19] cluster waypoints by
solving a group Steiner problem and frame UAV path planning
as a travelling salesman problem over clusters. Oßwald et al.
[28] combine globally optimal travelling salesman problem
solutions on a coarse scale with effective local exploration
adapting to the environment. Rückin et al. [4] and Mascarich
et al. [21] derive information-theoretic planning objective
to guide a UAV to cater for sensing uncertainty assuming
obstacle-free workspaces. Schmid et al. [20] propose new
techniques for node rewiring in sampling-based path planning
strategies utilising a point sensor. A major limitation of
adaptive replanning methods is the computationally expensive
online evaluation of information values of many candidate
paths in complex environments.

Recent studies combine neural networks and reinforcement
learning to solve the informative path planning problem [29–
32, 37]. Reinforcement learning-based solutions offer the
benefits of computational efficiency at deployment and the
ability to generalise to similar environments not seen during
training. While Rückin et al. [32] combine Monte Carlo tree
search with a convolutional neural network, Choi and Cielniak
[31] consider advantages of paths planned by multiple low-
level controllers. A further work by Cao et al. [30] propose an
attention-based neural network to achieve context-aware path
planning in 2D workspaces, whereas Wei and Zheng [29] use
recurrent neural networks trained with Q-learning to plan the
path. These methods are not directly applicable to our problem
setup as they assume obstacle-free environments [29–32], map
2D information distributions [30, 32], or do not account for
UAV yaw [29–31]. Our approach is most similar to Cao
et al. [30], which plans over a probabilistic roadmap-based
environment representation in obstacle-free 2D workspaces. A
key difference with respect to their work is our reinforcement
learning-based framework restricting robot’s actions to local
area, enabling planning in the presence of unknown obstacles.
Moreover, our proposed reward function not only encourages
exploratory behaviour, as done in previous studies [29, 30],
but also incentivises exploiting newly collected information.
We show that policies learned on our reward function outper-
form the ones learned on purely exploratory rewards.

III. OUR APPROACH

We propose a novel deep reinforcement learning-based in-
formative path planning approach for maximising the number
of discovered targets of interest in unknown 3D environ-
ments. Fig. 2 overviews our method. A key aspect of our
approach is a graph restricting planning to actions in the
robot’s known local workspace, ensuring collision-free action
transitions and allowing generation of collision-free paths.
We call this environment representation a dynamic graph as
it evolves to account for newly gathered observations. We
estimate each action’s utility value in the current dynamic
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Fig 2: At each mission timestep t, our approach samples collision-free waypoints in the robot’s local environment. These waypoints, with
considered yaw directions, generate action nodes. Each action node is associated with utility value and uncertainty of the utility value,
regressed from the Gaussian process, to generate the dynamic graph. Our actor-critic network uses the dynamic graph to output the robot’s
state value and predicts the next action to execute, which generates a reward and observations from the environment. Blue arrows indicate
the robot control loop and green indicate variables stored in the experience buffer to train the actor-critic network via on-policy learning.

graph as the number of targets observed upon executing it
and its corresponding uncertainty using a Gaussian process.
At each timestep, our policy network outputs a probability
distribution over the actions in the dynamic graph. We use the
obtained observations to train the Gaussian process, update
the occupancy map, and generate rewards reflecting the infor-
mative planning objective. We develop a new reward function
that considers both the reduction in utility uncertainty and the
number of observed targets. An experience buffer collects the
robot’s dynamic graph, sampled action, predicted state value,
and reward over several training episodes to train the actor-
critic network using on-policy reinforcement learning.

A. Environment Modelling

Our aim is to map the distribution of targets of interest
in a 3D environment with unknown obstacles assumed to be
static, non-moving. We use Gaussian processes to model the
view-dependent number of observed targets. We also maintain
an occupancy map to plan collision-free paths. Our mission
budget B ∈ R+ is defined as the maximum cost of the
traversed path. We define the robot workspace A as a set
of actions ai = [xi, yi, zi, di]

>, where xi, yi, zi ∈ R are
the robot 3D position coordinates within environment bounds
and dt ∈ D is the yaw of the unidirectional onboard sensor,
e.g., an RGB-D camera. The robot takes observations at each
distance interval h as it travels. The set D denotes a user-
defined set of possible robot yaw directions. During planning,
at each mission timestep t, we plan over a set of L candidate
actions in the set At ⊆ A, |At| = L. The candidate actions
are sampled uniformly at random from the C-neighbourhood
around at−1 within known free space and are checked for
collision-free reachability along straight lines, where C is a
constant specifying the extent of the robot’s local region. In
this work, we assume quasi-holonomic motion constraints for
evaluating reachability of candidate actions. The reachability
check can be adapted for non-holonomic motion constraints.

After executing an action at, the robot observes a certain
number of targets. Each action at ∈ A in the robot workspace
is associated with its utility value u(at) ∈ R+ reflecting the
number of targets observed. The number of observed targets is

normalised by the total number of targets in the environment
for stable policy training.

As the utility function u : A → R+ is (partially) unknown
for actions at, we need to estimate it. To this end, we utilise
Gaussian processes widely used to estimate spatially correlated
phenomena [10, 29, 30, 38]. We train a Gaussian process
on the utility values of the actions executed in the past and
exploit its utility estimates to inform the planning policy.
The estimated variance allows our policy to consider the
uncertainty over estimated utilities during planning.

A Gaussian process is characterised by a mean func-
tion m(ai) , E[u(ai)] and a covariance function
k(ai,a

′
i) , E[(u(ai) − m(ai))(u(a′i) − m(a′i))] as u(ai) ∼

GP (m(ai), k(ai,a
′
i)), where E[·] is the expectation operator

and ai,a
′
i ∈ A. Hence, considering a set of candidate

actions At at timestep t for which we wish to infer the
utility, let the actions in set At correspond to a feature
matrix At, where each ith row corresponds to the action
vector ait ∈ At. The set of all previously executed actions
{a0,a2, . . . ,at−1} is represented by feature matrix A′t−1.
Utility values corresponding to previously executed actions
are represented by the vector u′t−1 = [u(a1), . . . , u(at−1)]>.
We predict the utility values of candidate action set At by
conditioning the Gaussian process on the observed utility
values ut | A′t−1,u

′
t−1,At ∼ N (µ,P):

µ(At,A
′
t−1) = m(At) + K(At,A

′
t−1) [K(A′t−1,A

′
t−1)

+ σ2
nI]
−1
(
u′t−1 −m(A′t−1)

)
, (1)

P(At,A
′
t−1) = K(At,At)−K(At,A

′
t−1)[K(A′t−1,

A′t−1) + σ2
nI]
−1K(At,A

′
t−1)> , (2)

where σ2
n ∈ R+ is a hyperparameter describing the measure-

ment noise variance, I is an n × n identity matrix where
n = t− 1, and K(·, ·) corresponds to the covariance matrix.

B. Adaptive Informative Path Planning

We model the path followed by the robot as a sequence of
consecutively executed actions ψT0 = (a0,a1, . . . ,aT ) where
a0 denotes the start action, i.e. the initial robot pose, and aT is
the final action upon depletion of the budget B. The general
informative path planning problem aims to find an optimal
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path ψ∗T0 ∈ Ψ in the space of all possible paths Ψ to optimise
an information-theoretic objective function:

ψ∗T0 = argmax
ψ∈Ψ

I (ψ), s.t. C(ψ) ≤ B , (3)

where I : ψT0 → R+ is the information gained from observa-
tions obtained along path ψT0 , the cost function C : ψT0 →
R+ maps path ψT0 to its execution cost.

Our robot traverses a straight line between two consecutive
actions. Observations are equidistantly collected along the path
ψT0 at a frequency h and are used to update the Gaussian
process and generate a reward. Hence, we model the informa-
tive path planning problem as a sequential decision-making
process. As we aim to maximise the number of observed
targets, we define a function ν : A×Ψ→ R+ as the number of
new targets observed upon executing an action at ∈ A after
following the path ψt−1

0 . Note that information ν(at, ψ
t−1
0 )

and utility u(at) differ as the utility measures the number
of all targets observed upon executing an action, whereas
information considers only targets that were newly observed
after executing the action. Hence, modelling ν(at, ψ

t−1
0 ) with

a Gaussian process would require including the temporal
variations of an action’s utility value, increasing the Gaussian
process and policy training complexity. We therefore choose
to model utility with a Gaussian process, as it only depends
on a single action at.

We define the information obtained along a path as:

I (ψT0 ) =

T∑
t=1

ν(at, ψ
t−1
0 ) , (4)

where we aim to plan a path ψT0 to maximise information I .
For informative planning, we leverage our Gaussian process

defined in Sec. III-A to regress the utility and uncertainty
associated with actions. We apply an upper confidence bound
to the set of candidate actions At to obtain a subset of high-
interest actions Ât used in our reward function:

Ât = {ai,t ∈ At |m(ai,t) + βk(ai,t,ai,t) ≥ µth} , (5)

where m(ai,t) and k(ai,t,ai,t) are the mean utility of ac-
tion ai,t and corresponding variance inferred from the Gaus-
sian process. The parameter β ∈ R controls the confidence
interval width and µth is a user-defined threshold.

We introduce a new reward function that balances exploring
the environment and exploiting collected information. The
information criteria in previous works [29, 30] consider en-
vironment exploration only. However, our problem considers
discovering targets, therefore requiring a measure of informa-
tion value in the reward. At each timestep t, the robot executes
action at, collects observations and receives a reward rt ∈ R+.
Our reward function consists of an exploration term re,t and
an information term ru,t:

rt(Ât,A
′
t−1,A

′
t,at, ψ

t−1
0 ) =

αre,t(Ât,A
′
t−1,A

′
t) + βru,t(at, ψ

t−1
0 ) ,

(6)

with:

re,t(Ât,A
′
t−1,A

′
t) =

Tr(P(Ât,A
′
t−1))− Tr(P(Ât,A

′
t))

Tr(P(Ât,A′t−1))
,

ru,t(at, ψ
t−1
0 ) = ν(at, ψ

t−1
0 ) ,

(7)

where Tr(·) is the trace operator of a matrix and α and β are
constants used to trade off exploration and exploitation.

The variance reduction of the Gaussian process measures
exploration re,t. To this end, we maximise the decrease in the
covariance matrix trace following the A-optimal design crite-
rion [39]. Scaling the reward by Tr(P (Ât,A

′
t−1)) stabilises

the actor-critic network training [30]. The term ru,t measures
the new information gained after executing at.

C. Dynamic Graph Representation

Adaptive informative path planning requires reasoning about
the information distribution in the environment. We propose a
dynamic graph that models the collision-free reachable action
space and information distribution in the robot’s neighbour-
hood by sampling actions as defined in Sec. III-A, as opposed
to a static global non-obstacle-aware representation [10, 17,
30]. Our robot’s policy relies on the representation of the
current knowledge about the environment in the dynamic
graph to predict next action Sec. III-D.

At each timestep t, we (re-)build a fully connected graph
Gt = (Nt, Et), where the node set Nt is the set of candidate
actions At defined in Sec. III-A, to account for newly gathered
observations. We randomly sample K candidate positions
[xi, yi, zi]

> within a C-neighbourhood of the current robot
position and create L = K × |D| nodes by associating each
position with possible yaws D. The edge set Et connects each
pair of actions such that ei,j,t = (i, j, ci,j) ∈ Et, where the
cost ci,j is the edge weight, i, j ≤ L, and i 6= j. The edge set
Et and the cost ci,j are based on the robot’s motion constraints,
defining the path traversed from action ai to aj . In this work,
we consider a holonomic UAV travelling between two actions
on a straight line, hence the cost ci,j is defined as the sum of
the actions’ Euclidean distance and a small constant cost Cs
if the robot yaw changes.

To better inform the planning policy, we leverage our
Gaussian process to create node features utilised in our actor-
critic network. At each timestep t, the node feature matrix Mt

of graph Gt consists of the robot’s candidate actions and the
mean and variance values queried from the Gaussian process.
The ith row of Mt relates to the ith action:

Mt(i) = [ai,t, m(ai,t), k(ai,t,ai,t)] , (8)

where ai,t = [xi,t, yi,t, zi,t, di,t]
>, and m(ai,t) and

k(ai,t,ai,t) are the regressed action’s utility and variance.

D. Actor-Critic Neural Network for Reinforcement Learning

We exploit the dynamic graph to model collision-free ac-
tions for the planning policy to reason about and represent the
current knowledge of the information distribution in the envi-
ronment. As the Gaussian process only predicts the utility of
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greedily executing a single next action, we use reinforcement
learning to train our policy for informative path planning over
long-horizon paths.

We use an attention-based neural network to parameterise
our stochastic planning policy π(Gt, ψt−1

0 , Br, µth) ∈ [0, 1]L

that predicts a probability distribution over all L actions At
based on the current dynamic graph Gt, previously executed
path ψt−1

0 , remaining budget Br, and the mean threshold
µth defining actions of interest in Eq. (5). We follow the
network structure proposed by Cao et al. [30] consisting of an
encoder and a decoder module. The attention-based encoder
learns the dependencies between actions in Gt. We condition
the learned actions’ latent dependencies on a planning state
consisting of previously executed actions ψt−1

0 , the remaining
budget Br, and the threshold µth. A budget mask filters out
actions not reachable within the remaining budget. Based on
the conditioned latent action dependencies, a decoder outputs
a probabilistic policy reasoning over all actions in the dynamic
graph. During training, the decoder also estimates the value
function V (Gt, ψt−1

0 , Br, µth) ∈ R following the current
policy at ∼ π(Gt, ψt−1

0 , Br, µth). The estimated values, sam-
pled actions, dynamic graphs, planning states, and rewards are
stored in the experience buffer utilised to train the policy with
an on-policy actor-critic reinforcement algorithm. In this work,
we use proximal policy optimisation [40]. During deployment,
at each time step t, we choose the most informative action
from π(Gt, ψt−1

0 , Br, µth).

IV. EXPERIMENTAL RESULTS

We experimentally validate our three claims on the task
of UAV-based fruit monitoring in apple orchards. First, our
approach enables more efficiently discovering targets of in-
terest compared to non-learning baselines and learning-based
methods. Second, our dynamic graph action space enables
collision-free path planning in unknown environments while
performing on par with state-of-the-art static global graph rep-
resentations. Third, our new reward function more effectively
manages the exploration-exploitation trade-off compared to
using purely exploratory rewards, leading to more efficient
targeted mapping. We demonstrate the performance of our
approach in a realistic orchard simulation, showcasing its
applicability for a practical monitoring task in a previously
unseen environment.

A. Experimental Setup

Environment. Our environment consists of trees and fruits
bounded in a scale-agnostic unit cube. We maintain an oc-
cupancy map with 50 × 50 × 50 voxels. During test phase,
trees are generated at random positions in the environment
but are arranged in a regularly spaced 5 × 5 array during
training. Fig. 3 shows examples of a training and a testing
environment. In both cases, fruits are attached to generated
trees at random positions. The occupancy grid map of the
environment is initialised as unknown space and is updated
via sensor observations with free space, observed fruits, and
trees. For each observation, the utility value is used to train
the Gaussian process detailed in Sec. III-A. We tune the

Fig 3: Examples of testing and training orchard environments used
in our experiments. Left: Testing environment with trees placed at
random locations. Right: Training environment with trees placed in a
regular square array. Thin and dark blue lines represent tree outlines
and tree bases, respectively. Green stars indicate fruits.

hyperparameters in a small representative environment using
the Matérn 1/2 kernel with µth = 0.4 and β = 1 in Eq. (5).
For our reward function defined in Eq. (3), we set α = 1.0
and δ = 0.01 to keep values of both terms numerically similar
to balance between exploration and exploitation.

We consider a UAV platform with an onboard RGB-D
camera of 90◦ field of view (FoV). Since the confidence in
discovered targets decreases with distance, we constrain the
maximum detection range to 24% of the environment size.
The UAV can choose between yaw angles of [0, π2 , π,

3π
2 ] rad

at the current altitude. Note that our method can be easily
extended to finer discretisations.

Training An episode consists of a UAV mission with a
budget B. We train in a grid-based environment as a randomly
initialised policy learns efficiently from this structure and
transfers to randomised test environments. The total number
of fruits varies between 200 and 250. We fix the number
of positions K in the dynamic graph and set the initial
UAV pose to [0, 0, 0, π2 ]>. To keep our policy scale-agnostic,
we normalise the robot’s internal environment representation
and action coordinates. Hence, the budget B is unitless and
randomly generated for each episode within the range [7, 9].
We fuse an observation into the occupancy map and Gaussian
process each time the UAV travels 0.2 units from the position
of the previous observation.

We terminate an episode if the maximum number of exe-
cuted actions exceeds 256. To speed up training, we run 12
environments in parallel. The policy is trained for 8 epochs
using a batch size of 64 and the Adam optimiser with a
learning rate of 10−4, which decays by a factor of 0.96 each 32
optimisation steps. The policy gradient epsilon-clip parameter
is set to 0.2. Our model is trained on a workstation equipped
with an Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz and one
NVIDIA Quadro RTX 5000 GPU. Our policy is trained for
∼ 440, 000 environment interactions.

B. Comparison Against Baselines

The first set of experiments shows that our dynamic graph-
based reinforcement learning approach outperforms state-of-
the-art baselines. We generate 25 test environments corre-
sponding to different random seeds and run 20 trials on each
environment instance with a budget of 10 units.
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Fig 4: Comparison of our approach against baselines in a UAV-
based fruit monitoring scenario. Solid lines indicate means over 500
trials and shaded regions show standard deviations. In our approach,
using our exploration-exploitation reward function with a dynamic
graph action space for reinforcement learning enables more efficiently
discovering targets of interest (fruit) during a mission.

TABLE I: Comparison of our approach against baselines in a UAV-
based fruit monitoring scenario. Our dynamic graph-based rein-
forcement learning approach outperforms learning and non-learning
baselines while maintaining low replanning time.

Baseline % targets Time (s)

Our approach K = 20 65.49± 6.23 1.58
CAtNIPP (ts.) 57.14± 7.60 44.51
CAtNIPP (g.) 56.49± 7.65 1.28
MCTS 50.15± 8.98 218.83
CMA-ES 48.72± 8.36 165.41
RIG-tree (Re.H.) 47.43± 6.51 80.27
Random agent 43.91±12.64 0.28

For our approach, we consider K = 20 sampled waypoints,
L = 80 nodes in the dynamic graph, and the reward function
described in Eq. (3). The learning-based baseline for evalu-
ation is CAtNIPP [30], the state-of-the-art approach closest
to our work which uses global graph-based planning. Since
CAtNIPP considers obstacle-free environments and modifying
its global graph to account for unknown obstacles is a non-
trivial task, we allow the UAV to pass through obstacles to
ensure a fair comparison.

We compare against: (i) CAtNIPP with a zero-shot policy
(CAtNIPP g.) where the highest probability action is executed;
(ii) CAtNIPP with a trajectory sampling policy [30] (CAtNIPP
ts.) where four 8-step paths are planned and the path with
highest uncertainty reduction is executed for 3 steps; (iii) a
random policy on K = 20 dynamic graph construction
(random agent); (iv) non-learning rapidly exploring random
information gathering trees [34] applied in a receding-horizon
manner (RIG-tree Re.H.); (v) non-learning Monte Carlo Tree
Search [41] (MCTS); and (vi) non-learning Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [42]. To evaluate
planning performance, we measure the percentage of discov-
ered targets of interest (apples) during the test. We also report
average replanning time per step.

Fig. 4 and Table I illustrate our results. Our approach
outperforms all baselines by a significant margin. This can be
attributed to the new reward function that balances between ex-
ploring the environment and exploiting collected information.

(a) CAtNIPP (g.) (b) Our approach

Fig 5: Comparison of paths planned by (a) the global graph-based
CAtNIPP [30] baseline and (b) our dynamic graph-based reinforce-
ment learning approach with K = 20 in a fruit monitoring scenario.
The blue line shows the executed UAV path, with the brown and pink
circles indicating start and end positions. Red dots are targets not yet
observed, while green stars are observed targets.

TABLE II: Graph structure ablation study. All methods use our pro-
posed exploration-exploitation reward. The dynamic graph structure
performs slightly better than the global representation of CAtNIPP.

Graph Structure % targets Time (s)

K = 10 60.85± 7.51 1.40
K = 20 65.49± 6.23 1.58
K = 30 64.20± 6.62 1.99
K = 40 66.53± 6.28 2.75
K = 50 64.20± 6.80 3.80
CAtNIPP [30] 63.27± 6.89 1.28

Both CAtNIPP variants perform worse than our method since
they only focus on utility variance reduction. In Table I, the
approaches using reinforcement learning require significantly
less replanning time than non-learning methods, justifying the
use of learning-based strategies. Our proposed approach is
more compute-efficient than CAtNIPP (ts.), and almost as
efficient as CAtNIPP (g.), which facilitates its deployment in
real-world scenarios.

Fig. 5 qualitatively compares the paths planned by our
approach and CAtNIPP g. for the ground truth environment
illustrated in Sec. IV-A. The visualisations correspond to paths
executed at 50% of the budget. Our approach favours actions
that discover more targets. This is because CAtNIPP con-
siders a purely exploratory objective, assuming a continuous
distribution of utility, which leads to re-observing the high-
interest regions in an oscillatory manner. Our approach does
not encounter this issue. Since we reduce both uncertainty
and maximise the number of discovered targets using our
reward function, we obtain a more widespread distribution of
observations in the environment.

C. Ablation Studies

Next, we systematically study the impact of our dynamic
graph action space and proposed reward function on the
informativeness of the planned paths to demonstrate their
benefits. Our test environment is the same as in Sec. IV-B.
We compare our approach against CAtNIPP [30], which uses
a static graph action space based on probabilistic roadmaps
and a purely exploratory reward function.

Graph Structure. To investigate the influence of the
number of sampled waypoints K on planning performance,
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TABLE III: Reward function ablation study. Both dynamic graph-
and global graph-based policies trained on our reward function
outperform those learned on a purely exploratory reward.

Model and reward function % targets

K = 20, exploration 54.75± 7.66
K = 20, our reward 65.49± 6.23
CAtNIPP [30], our reward 63.27± 6.89
CAtNIPP [30], exploration 56.52± 8.29

we compare our approach using dynamic graphs with
K ∈ {10, 20, 30, 40, 50} against CAtNIPP. Here, we use
our new reward function that combines both exploitation of
obtained information and exploration of unknown regions, as
described in Eq. (6), ensuring that the performance variations
can be attributed to the graph structure alone. Table II sum-
marises the results. We observe performance improvements
from K = 10 to K = 20 and similar performance for K ≥ 20
at the cost of increasing computation time. The performance
of our dynamic graph structure with K ≥ 20 is slightly better
than the global graph of CAtNIPP. Hence, our dynamic graph
can actively account for unknown obstacles while performing
similarly to, or better than, the global graph structure.

Reward Function. Next, we investigate the effects of
training a policy on our reward function against a purely
exploratory reward function. We compare our dynamic graph-
based approach trained on K = 20 waypoints and 80 action
nodes against CAtNIPP trained on K = 200 waypoints
and 800 action nodes. We tune the hyperparameters for best
performance and consider two variants of each method with
the different reward functions. For the purely exploratory
reward, we set α = 1 and δ = 0 in Eq. (6). Table III sum-
marises the results. Both our dynamic graph and the CAtNIPP
global graph trained on our new reward function outperform
the corresponding policies trained using purely exploratory
rewards. This confirms that learning from exploration rewards
alone cannot guide the robot to adaptively focus on targets of
interest since it incentivises actions that reduce overall utility
variance. In contrast, our reward function incorporating both
uncertainty reduction and targeted information gathering yields
better target discovery performance as it allows the policy to
learn the trade-off between exploration and exploitation. The
new reward function benefits both our dynamic graph and the
global graph, showing its general applicability for different
informative planning algorithms.

D. Realistic Simulation

We demonstrate the applicability of our dynamic graph-
based reinforcement learning approach with K = 20 sampled
waypoints in an orchard environment simulator created with
Unreal Engine and AirSim. The Airsim simulator resembles
real-world UAV dynamics, while Unreal Engine provides pho-
torealistic imagery. Our apple orchard environment is bounded
by a 95 m ×95 m ×18 m cuboid with 9 trees arranged in a 3×3
array and a total of 225 red apples at random locations on the
trees as illustrated in Fig. 1. We assume perfect localisation
and use ground truth apple object discovery. The UAV moves
at a maximum speed of 2 m/s.

Fig 6: Comparison of our reinforcement learning-based approach
against baselines in a photorealistic fruit monitoring simulator. Solid
lines indicate means over 10 trials and shaded regions show standard
deviations. Our approach performs almost as well as the near-optimal
baseline, despite being trained in different environments and not
relying on ground truth knowledge.

We compare our approach trained in the synthetic simulation
described in Sec. IV-A against (i) a random planner over our
K = 20 dynamic graph and (ii) a near-optimal planner to
reflect performance upper bound using the metric of percent-
age discovered fruits. We record the coordinates of discovered
fruits to ensure that the same fruit is not counted multiple
times. We design the near-optimal planner to exploit ground
truth information of the environment, such as tree coordinates,
size, and best altitude, to generate a coverage-like path for
observing maximum fruits. We run several instances of this
planner and choose the three best-performing paths to compare
against our approach. For our planner and the random planner,
results are reported over 10 trials in the environment with a
mission budget of 7.5 units.

Fig. 6 compares the three planners. Our approach out-
performs non-informative random planning. The near-optimal
planner performs best since it exploits ground truth knowl-
edge to avoid viewpoint-dependent occlusions. However, our
approach reaches similar performance without relying on any
prior knowledge, making it suitable for unknown fruit distri-
butions. Fig. 1 visualises the path executed by our planner.
These findings support the applicability of our method on a
UAV platform in a practical monitoring scenario.

V. CONCLUSION AND FUTURE WORK

We present a deep reinforcement learning approach for
adaptively discovering targets of interest in unknown 3D
environments. A key aspect of our method is a dynamic graph
constructing a detailed environment representation to constrain
planning in the robot’s local region. We also present a new
reward function enabling our learned policy to balance explor-
ing the environment and exploiting obtained information. Our
experimental results support our three claims: (i) our approach
outperforms the state-of-the-art learning-based approaches and
non-learning baselines in environments unseen during training;
(ii) our dynamic graph approach leads to performance on
par, or better, than static global graph based state-of-the-
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art methods; (iii) our new reward function outperforms a
purely exploratory reward function. We validate our approach
in a UAV-based fruit monitoring scenario to demonstrate
its practical applicability. Future work includes developing
advanced sampling strategies, considering dynamic obstacles,
and transferring our policy to a real robot under localisation
and perception uncertainty.
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