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Abstract— Accurate localization is crucial for the autonomous
operation of mobile robots. Specifically for indoor scenarios,
localization algorithms typically rely on a previously gener-
ated map. However, many real-world sites like warehouses or
healthcare environments violate the underlying assumption that
the robot’s surroundings are mainly static. In this paper, we
introduce a new dataset plus a benchmark that enables evaluat-
ing and comparing indoor localization methods in complex and
changing real-world scenarios. While several datasets for indoor
scenes exist, only a few combine the long-term localization
aspect of repeatedly revisiting the same environment under
varying conditions with precise ground truth over multiple
rooms. Our dataset comprises various sequences recorded with
a wheeled robot covering an office environment. We provide
data from two 2D LiDARs, multiple consumer-grade RGB-D
cameras, and the robot’s wheel odometry. By densely placing
fiducial markers on every room ceiling, we can also provide
accurate pose information within a single global frame for the
whole environment, estimated through an additional upward-
facing camera. We evaluate existing localization algorithms on
our data and make the dataset together with a server-based
benchmark evaluation publicly available. This facilitates an
unbiased evaluation of localization approaches and enables
further research on their application in challenging indoor
scenarios.

I. INTRODUCTION

Localization is a key component for autonomously op-

erating mobile robots deployed in indoor sites like facto-

ries, warehouses, or healthcare facilities [9], [22] to enable

safe navigation and interaction with objects therein. Due

to limited access to external positioning systems such as

GNSS, robots typically localize themselves within prebuilt

maps of the environment. However, the aforementioned

environments oftentimes contain short-term changes due to

moving people or objects, as well as long-term changes like

rearrangements of items in the scene. These can impede the

localization quality over time, potentially posing a safety risk

for robot localization. Rebuilding the map when changes

occur may solve this issue, but it discards all previously

collected information about the environment despite large

parts of the scene potentially remaining unchanged. Localiza-

tion algorithms that maintain their accuracy in the presence

of commonly occurring changes, therefore, offer a more
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Fig. 1: A colored point cloud of the office environment where we
recorded our long-term indoor localization dataset, with sample
sensor data from RGB images, depth images, and 2D LiDAR scans.

efficient solution. Public datasets and benchmarks play a

relevant role in investigating the performance of localization

algorithms under such conditions as they allow an unbiased

and reproducible evaluation. Especially when working with

robots, they also both reduce the research community’s effort

in data collection and circumvent the work and costs required

to build a hardware platform.

Although numerous indoor datasets with various sensor

modalities exist, many aim to challenge simultaneous lo-

calization and mapping (SLAM) algorithms already during

the mapping stage [18], [20], [21], [44], [45]. However,

evaluating the effective usage of a previously generated map

requires datasets in which the robot repeatedly traverses the

same environment. In addition, generating accurate ground

truth for indoor scenes with multiple rooms remains chal-

lenging. While being accurate, standard external tracking

methods, such as motion capture systems or laser trackers,

require a line-of-sight to the robot and, therefore, constrain

the space with known pose information for evaluation of

localization performance [30], [31], [35], [44].

The main contribution of this work is a new dataset

plus a benchmark that extends existing work in these as-

pects, specifically designed for evaluating long-term indoor

localization algorithms for ground robots. The dataset is

recorded in an office environment with multiple rooms,

as shown in Fig. 1. It contains sequences collected under

various conditions, such as short-term dynamics through

moving people or objects and long-term changes in the

scene. We provide data from 2D LiDAR sensors, RGB-D



cameras, and wheel encoders, as well as pose ground truth

in a single global frame across all rooms. In sum, we

contribute: (i) a dataset tailored to the evaluation of long-term

localization algorithms with various challenging scenarios,

including dynamic and long-term changes in the scene, that

also provides accurate ground truth across the complete

environment, (ii) the evaluation of existing algorithms on

our dataset, providing insights into shortcomings of existing

methods and thus incentives for possible future research

directions, and (iii) a public benchmark that performs server-

based evaluation on a test set with hidden ground truth

to enable an objective comparison of submitted results.

Our dataset website and a link to the benchmark challenge

are available at: https://www.ipb.uni-bonn.de/

html/projects/localization_benchmark/.

II. RELATED WORK

Localization for mobile robots is a well-explored re-

search topic [38], [43]. To enable mobile robots to localize

themselves in previously unseen environments using solely

onboard sensors, a large body of work addresses the SLAM

problem. Researchers have developed a wide range of ap-

proaches, encompassing various map representations, sensor

modalities, and estimation algorithms [4], [6], [34]. Partic-

ularly in indoor settings, mobile robots typically operate

within restricted environments, such that the problem can

often be simplified to localization within a known map once

the environment has been mapped. Monte-Carlo localization

(MCL), as introduced by Dellaert et al. [10], is a widely

established method for indoor localization of ground robots.

Several extensions to the original MCL framework exist,

including improvements to its efficiency [14] and robustness

[26], [36], [37]. While MCL is most commonly used with

LiDAR sensors [1], [10], [14], [23], [42], there also exist

approaches utilizing cameras [2], [19], [41] and other sensor

information, such as WiFi [19], [32]. Earlier studies have

conducted extensive evaluations of the accuracy of existing

localization methods [29], [33], underlining their achievable

precision.

In this context, publicly available datasets and benchmarks

avoid duplicating complete experimental setups and thus

further simplify the development, testing, and comparison

of newly designed methods. Therefore, public datasets and

benchmarks recently gained importance for driving advances

in robotics research, as demonstrated by seminal works

in multiple domains [3], [16], [35]. Specifically for in-

door ground vehicles, early contributions provided extensive

datasets covering complete floors [7], multiple floors [12],

or even different indoor sites [28]. Advances in sensor tech-

nologies stimulated a trend towards increasingly multimodal

sensor setups in recent datasets, including combinations

of 3D LiDARs, multiple RGB-D cameras [21], and event

cameras [15], [20], [44]. Many existing datasets address

the presence of degenerate conditions, e.g., dynamics and

rearrangement of furniture [12], [20], [31]. Furthermore,

impairments of the sensor’s information are considered,

e.g., varying lighting conditions [28], [44], lack of visual
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(a) Omnidirectional Clearpath Dingo robot. (b) AprilTag markers.

Fig. 2: The sensor platform used for data collection, with two
2D LiDAR scanners, three RGB-D cameras, and a fisheye camera
used to detect AprilTags on the ceiling for ground truth generation.

features [18], [21], and common issues with moving mobile

platforms [20], [45], [46]. Few datasets also address collabo-

rative localization or SLAM with multiple robots [13], [24].

Evaluation of the pose accuracy of localization and SLAM

algorithms requires ground truth, i.e., time-stamped positions

and orientations of the platform—if possible, obtained with

high accuracy and using an orthogonal sensing modality.

While motion capture systems and total stations provide

accurate pose information, they require a line of sight from

a fixed station to the robot. Their application to multi-

room environments is hence cumbersome or restricts robot

trajectories to confined spaces [18], [31], [44]. Other ap-

proaches register exteroceptive sensor data to high-fidelity

scans of the environment [15], [20], [46], or to building

floor plans [12], which requires to handle structural changes

and dynamics in the sensor data. Furthermore, solely using

the exteroceptive sensors of the robot together with existing

SLAM or odometry estimation algorithms only provides pose

accuracy in the order of the algorithms aimed to be evaluated

[5], [28], [45].

We circumvent these shortcomings using fiducial markers

instead, as depicted in Fig. 2b, similar to previous work [21],

[27]. However, we place markers densely in all rooms and

obtain accurate ground truth in a single global reference

frame by jointly optimizing the marker positions, which we

extract from highly accurate terrestrial laser scanner (TLS)

data. We provide an overview of this process in Fig. 3.

Moreover, as most of the aforementioned datasets tar-

get SLAM algorithms, they aim to cover a wide variety

of conditions between individual sequences and, therefore,

perform recordings in distinct places. Instead, to facilitate

the evaluation of localization algorithms, we follow the

principle of repeatedly revisiting the same environment under

changing conditions, similar to works of Shi et al. [31],

Pronobis et al. [28], and Fallon et al. [12], which are

the closest to our research. Our work combines several

key elements: it provides sequences all recorded within the

same environment under varying conditions, with a dedicated

mapping run covering the whole scene for the initial map

generation, comes with accurate ground truth in a single

reference frame across a multi-room setting, and establishes

https://www.ipb.uni-bonn.de/html/projects/localization_benchmark/
https://www.ipb.uni-bonn.de/html/projects/localization_benchmark/
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Fig. 3: Our method for obtaining all AprilTag corner coordinates in one global reference frame. (i) We collect TLS scans in all parts
of the environment. (ii) We generate an orthophoto from each TLS scan capturing the ceiling-mounted AprilTags and detect their corner
points. (iii) We assign poses to all corner points based on the tag orientation and jointly optimize the corner poses and the local TLS
frame poses using a pose graph. (iv) The final result comprises globally consistent AprilTag corner positions on the complete floor.

a public benchmark challenge for an automatized assessment

of methods on non-public ground truth data using server-side

automatic evaluations. The previously mentioned datasets

only partially cover the combination of these aspects. As

a result, we present a new benchmark tailored explicitly to

long-term localization.

III. A LONG-TERM INDOOR LOCALIZATION DATASET

We collected our dataset in an office environment consist-

ing of multiple office rooms of different sizes and a kitchen.

We provide 2D LiDAR, RGB-D, and wheel odometry data,

which we, for convenience, make available both as ROS bag

files and at the same time as individual data files, i.e., images

in PNG format, time series in .txt files, and parameters in

.yaml files.

A. Hardware Platform

Our recording platform is a Clearpath Dingo omnidirec-

tional wheeled robot equipped with two 2D LiDAR scanners,

three RGB-D cameras, and an upward-facing marker camera

with a fisheye lens solely used to detect ceiling-mounted

AprilTag markers for referencing, as depicted in Fig. 2. We

jointly estimate and provide intrinsics and extrinsics of all

exteroceptive sensors using the approach by Wiesmann et

al. [40]. To estimate the transformation between these sensors

and the wheel odometry’s reference frame, we solve a least-

squares problem using sample trajectories from the wheel

odometry and the marker camera used in our ground truth

system, see Fig. 2. All sensor time stamps are relative to

the onboard PC. The marker camera is synchronized via

the IEEE 1588 precise time protocol (PTP) [11], while the

RGB-D cameras use the manufacturer’s internal software

synchronization mechanism.

B. Ground Truth System

Our ground truth system consists of fiducial markers with

known 3D coordinates obtained from a TLS and that are

densely attached to all ceilings. An upward-facing marker

camera tracks these markers to estimate the robot’s pose,

providing ground truth poses with the camera’s frequency

of 20Hz. As shown in Fig. 2b, we mounted in total 213
AprilTags [25] of family 36h11 with a spacing between tags

such that we obtain a density of approximately 1 tag/m2.

Our method to obtain the poses of all AprilTags in one

global frame is visualized in Fig. 3. First, we iteratively scan

the complete floor using a Faro Focus3D-X130 TLS, which

produces high-density point clouds with millimeter accuracy.

We then generate orthophotos from each scanned point cloud

using an orthogonal projection of the scan points along the

local TLS frame’s z-axis, i.e., the ceiling normal direction.

The orthophotos then capture the AprilTags on the ceiling,

enabling us to detect the AprilTag’s corners to get their

coordinates relative to the TLS’s local reference frame. To

combine all tag coordinates in one global reference frame, we

first assign a full pose to each corner by aligning coordinate

frame axes based on each tag’s four corner positions. Then,

we jointly optimize the TLS scan poses and all AprilTag

corner poses. We, therefore, optimize a pose graph with

relative poses between corners and scan poses as factors

using least squares and obtain global position coordinates

of the AprilTag corners as a final result. With our method,

we obtain a root mean squared error (RMSE) of 4.7mm
over all scans between the resulting global AprilTag corner

coordinates and the transformed local corner points relative

to the optimized TLS scan poses.

To obtain the ground truth robot poses themselves, we

detect AprilTag corners within each image captured by

the upward-facing marker camera at a frequency of 20Hz.

We can then estimate the camera’s pose by solving a

least-squares perspective-n-point (PnP) problem between the

detected AprilTag corners and their known respective 3D

coordinates from the TLS data. While the accuracy is difficult

to measure over a complete floor and depends on the number

of visible tags in the camera image, we compared our local-

ization system against a commercial motion capture system

available in a single room. We first measured an average

accuracy of 1.2 cm and 1◦ for translation and rotation,

respectively. The majority of the error, however, stems from

the time synchronization between the robot and the motion

capture system. We are able to reduce the offsets to 3mm and

0.1◦ after compensating for a constant time offset between

the systems. Since most rooms covered in the dataset contain

fewer tags and with potential additional errors due to the TLS

scan alignment, we overall expect a slightly lower accuracy

than 3mm and 0.1◦ for our dataset’s ground truth.



TABLE I: Overview of our dataset’s statistics, grouped by the
characteristics of the sequences.

type
number of
sequences

duration size distance
[s] [GB] [m]

mapping 1 812.0 56.4 217.8
static 7 2857.8 198.5 1025.1

dynamics 5 1261.2 87.6 375.8
long-term changes 6 2688.0 186.7 979.0

long-term changes + dynamics 2 1206.0 83.8 437.2

overall 21 8824.9 612.9 3034.8

C. Collected Data

Our dataset consists of a total of 21 sequences that we

recorded with our hardware platform. In Tab. I, we give an

overview of the statistics of our collected data. While our

dataset website provides a description for each individual

sequence, we here classify the sequences by their character-

istics as follows:

1) Mapping Sequence: To enable the generation of an

initial map representation of the scene to be used by the

localization system under evaluation, we provide a mapping

sequence with ground truth poses in which the robot visits

each room.

2) Static Conditions: To evaluate the localization per-

formance under optimal conditions, we recorded multiple

runs, preserving the state of the mapping sequence. These

sequences also serve well for debugging purposes. In addi-

tion, we recorded sequences representing conditions during

a regular day in the office.

3) Short-Term Dynamics: We collected data that contains

varying degrees of short-term dynamics in the scene. In

particular, we include multiple sequences that contain up to

10 people moving in the vicinity of the robot, a sequence

where cardboard boxes are additionally pushed through the

sensor’s field of view, and a sequence where the robot follows

a person carrying a large board.

4) Long-Term Scene Changes: We include sequences with

long-term scene changes compared to the mapping sequence.

The sequences differ in the severity of the changes, ranging

from daily situations, e.g., closed doors that were previously

open, to objects being newly added or moved. For the latter,

we rearranged the furniture in some rooms, e.g., tables,

chairs, and sofas, and added cardboard boxes and boards

to the environment to obstruct previously visible geometry.

5) Combination of Long-Term Scene Changes and Dy-

namics: Finally, we combined the former aspects in se-

quences where people move through a scene that contains

long-term changes compared to the mapping sequence.

IV. BASELINE RESULTS

The main focus of this work is to provide a bench-

marking setup that enables the evaluation of localization

algorithms, specifically in their long-term localization perfor-

mance. We design our experiments to showcase the featured

characteristics of our dataset by evaluating existing methods

for LiDAR-based MCL on a representative subset of our

dataset’s sequences and highlighting remaining challenges

in the research field.

Fig. 4: Occupancy grid map generated from the mapping sequence.

A. Experimental Setup

We evaluate algorithms on a pre-built map for local-

ization, which we generate using the front 2D LiDAR’s

deskewed scans from the mapping sequence. We refine the

laser scanner’s poses using pose graph optimization, where

the ground truth poses from the AprilTag system serve as

unary factors, and we add edges between nodes with relative

transformations obtained using scan matching. We thereby

use the approach from Choi et al. [8] with the implemen-

tation provided in the Open3D library [47] and add edge

candidates between nodes within a radius of 1m. These are

tested for validity and filtered during the optimization stage.

Fig. 4 shows an occupancy grid map generated from the

laser scans. For our evaluation, we considered four different

baselines. We use the AMCL ROS-package that was built

based on the work of Fox [14], a MCL implementation from

the Sapienza Robust Robotics Group (SRRG) [17], which

we abbreviate with SRRG-Loc, LocNDF [39], and ENM-

MCL [23]. While AMCL and SRRG-Loc utilize the pre-built

occupancy map in Fig. 4 with a grid resolution of 5 cm,

LocNDF and ENM-MCL use a learning-based implicit map

representation to query the Euclidean distance (LocNDF) or

both the Euclidean and projective distance (ENM-MCL) to

occupied space. We train the learning-based approaches on

the same laser scans used to generate the grid map in Fig. 4.

We limit the range of particles for AMCL between 1,000

and 10,000 and use a fixed particle size of 10,000 for all

other algorithms. While SRRG-Loc runs in real-time using

all laser beams, we use a subset of 100 beams for AMCL to

achieve real-time performance with the maximum number

of particles. LocNDF and ENM-MCL run offline, where

LocNDF uses all beams, and ENM-MCL uses a reduced

number of 128 beams due to memory limitations.

For the evaluation, we select a subset of four sequences

from our data, each representing one of our dataset’s different

characteristics. Fig. 5 depicts the qualitative properties of the

sequences.

An entirely static sequence Ss without any scene changes

compared to the mapping sequence serves as a reference for

the localization performance of the algorithms under optimal

conditions. The other sequences contain inconsistencies with

the mapping run, where sequence Sd contains dynamics in

the form of moving people, sequence Slc includes long-term
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Fig. 5: Overview of the four localization sequences considered in our evaluation. For each sequence, we depict the ground truth trajectory
together with potential changes in the environment compared to the mapping sequence. We highlight these changes both in exemplary
camera images and the laser data in the enlarged map views.

changes through rearranged furniture or objects added to the

scene, and sequence Slc+d has combinations thereof. We di-

vide our evaluation into two aspects: global localization and

pose tracking performance. This enables us to isolate how

map inconsistencies affect convergence to the correct pose

and impede pose-tracking accuracy even after convergence.

B. Global Localization

The first experiment evaluates the global localization per-

formance of the considered algorithms in each sequence.

Therefore, we let the algorithms initialize particles uniformly

in the free space of the map and test for convergence to the

correct global pose. We define convergence as the first point

in time when the standard deviation corresponding to the

largest eigenvalue both of the translational and rotational part

of the localizer’s reported pose covariance matrix falls below

a threshold of 0.2m and 10◦, respectively. We run each algo-

rithm 10 times and measure the success rate and convergence

TABLE II: Global localization success rate and convergence times
for the four sample sequences from our dataset over 10 runs each.

sequence method
success rate convergence time

[%] ↑ mean± std [s] ↓

Ss

AMCL 60 11.77± 5.42
SRRG-Loc 100 9.33± 4.19
LocNDF 100 13.93± 3.72

ENM-MCL 100 7.95± 2.24

Sd

AMCL 30 19.18± 13.07
SRRG-Loc 90 11.46± 2.02

LocNDF 80 13.95± 5.3
ENM-MCL 70 16.09± 5.23

Slc

AMCL 10 11.83± 7.95

SRRG-Loc 60 14.65± 2.95
LocNDF 30 18.47± 12.74

ENM-MCL 90 12.09± 4.47

Slc+d

AMCL 60 12.29± 4.73
SRRG-Loc 100 11.18± 3.26

LocNDF 100 12.63± 3.93
ENM-MCL 90 13.74± 2.84



TABLE III: Absolute trajectory error (ATE) in position and orientation for pose tracking for the four considered sample sequences of our
dataset. Each entry reports mean ± standard deviation over 10 runs.

seq. method
position orientation

RMSE max. < 5 cm < 10 cm RMSE max. < 2◦ < 4◦

↓ [cm] ↓ [cm] ↑ [%] ↑ [%] ↓ [◦] ↓ [◦] ↑ [%] ↑ [%]

Ss

AMCL 3.12± 0.05 7.72± 0.45 93.87± 0.73 100± 0 1.86± 0.01 5.39± 0.3 70.39± 0.44 96.78± 0.2
SRRG-Loc 4.73± 0.01 10.29± 0.1 60.88± 0.37 99.89± 0.06 1.82± 0 5.47± 0.05 71.7± 0.17 96.28± 0.08
LocNDF 2.94± 0 7.77± 0.07 94.66± 0.17 100± 0 1.6± 0 5.33± 0.04 78.36± 0.1 98.28± 0.07

ENM-MCL 3.32± 0.01 15.16± 0.4 92.56± 0.2 99.83± 0.01 1.83± 0 6.11± 0.04 71.13± 0.08 97.13± 0.07

Sd

AMCL 3.21± 0.2 8.56± 0.51 89.56± 2.42 100± 0 1.87± 0.02 4.83± 0.21 73.57± 0.57 95.28± 1.18
SRRG-Loc 4.87± 0.03 9.58± 0.14 58.3± 0.57 100± 0 1.83± 0.01 6.25± 0.09 76.38± 0.11 95.06± 0.07
LocNDF 3.31± 0.03 8.53± 0.14 90.26± 0.37 100± 0 1.48± 0 4.86± 0.04 83.02± 0.11 97.37± 0.17

ENM-MCL 3.4± 0.03 21.41± 0.48 90.97± 0.54 99.17± 0.02 1.87± 0 8.26± 0.06 79.89± 0.31 92.98± 0.11

Slc

AMCL 13.51± 0.74 70.3± 5.23 61.41± 1.84 82.89± 0.79 4.49± 0.31 25.31± 2.91 61.56± 0.66 84.01± 0.85

SRRG-Loc 258.2± 213.8 803.2± 372.3 24.18± 6.45 55.22± 14.94 40.97± 23.25 151.6± 41.49 45.9± 12.01 62.69± 15.08
LocNDF 660.1± 217.3 1709± 532.1 22.35± 13.47 31.87± 18.03 74.2± 17.66 179.7± 0.59 32.59± 12.76 42.42± 16.09

ENM-MCL 9.51± 0.08 40.93± 0.3 62.02± 0.75 82.24± 0.33 3.69± 0.02 25.5± 0.4 63.69± 0.25 83.76± 0.24

Slc+d

AMCL 11.13± 1.68 72.07± 18.53 64.18± 1.33 87.34± 0.96 2.75± 0.22 20.34± 2.85 68.54± 0.62 90.09± 0.61

SRRG-Loc 828.1± 160.5 1999± 252.6 10.76± 2.65 18.2± 4.89 79.59± 22.01 173.9± 14.91 19.43± 6.46 27.08± 8.15
LocNDF 972.2± 255 2522± 431.2 18.62± 5.23 21.41± 7.2 106.7± 25.22 179.9± 0.14 21.69± 10.55 26.96± 13.06

ENM-MCL 898.5± 397.5 2149± 1256 14.14± 1.54 19.19± 2.37 91.41± 41.24 166.6± 24.81 20.87± 10.65 27.84± 15.56

times over all runs in each sequence. We consider a run

successful if, at the point of convergence, the error both in

translation and orientation is below three times the thresholds

for the standard deviations used in the convergence criterion

defined previously. We report the results thereof in Tab. II.

Overall, the results indicate that AMCL has the lowest

localization performance on our sequences and does not

always converge to the correct solution, even for a completely

static environment. In comparison between the sequences, the

success rate notably decreases for sequences Sd and Slc due

to observations from the laser scans that are inconsistent with

the map. While sequence Slc+d holds the same environmental

changes as Slc, the localization performance remains close

to the static case since the sequence starts in a part of

the environment without drastic scene changes. In terms of

convergence times, the algorithms mostly show results of

a similar magnitude. However, in many cases, convergence

times increase in the presence of environmental changes.

C. Pose Tracking

The second evaluation analyzes the tracking performance

of the methods after convergence. Therefore, we ignore

the aspect of global localization and initialize the parti-

cles around the initial ground truth pose. For this, we

sample particles from a Gaussian with standard deviations

[0.2m, 0.2m, 10◦] along global x and y coordinates and

the yaw angle, respectively. To measure pose accuracy, we

independently consider the absolute trajectory error (ATE)

for translation and rotation and run each baseline again 10

times per sequence. We show the obtained results in Tab. III.

We report RMSE over the complete trajectory and maximum

of the pose error as well as proportions of the pose errors

below a selection of thresholds. The results show that the

static sequence Ss and sequence with dynamics Sd in general

report similar and low errors, where most of the localizers

show errors over nearly the entire trajectory below 10 cm
in translation and 5◦ in orientation. The robustness of the

algorithms against dynamics can be explained by the fact
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Fig. 6: Qualitative results of AMCL on sequences Sd and Slc.

that the algorithms strongly rely on odometry information,

such that, even with short-term inconsistencies between the

LiDAR sensor information and the map, the prediction of the

robot’s movement remains relatively accurate. In contrast,

the tracking performance in the sequences Slc and Slc+d

drastically reduces, where the scene changes in some rooms

are so significant that large parts of the laser scans are

inconsistent with the map over a longer time, as shown

in Fig. 5. While ENM-MCL and AMCL report the lowest

errors in sequence Slc and Slc+d, respectively, their maximum

errors of 40 cm and above remain potentially unsafe for



indoor navigation. The other algorithms, as well as ENM-

MCL for sequence Slc+d, sometimes entirely diverge and do

not recover to the correct pose, hence reporting RMSEs in

meter range. Besides the inconsistencies between the sensor

data and the map, SRRG-Loc additionally suffers from its

assumptions for the movement of particles in the map, as

it removes particles when they enter occupied space. While

this is advantageous in a static environment as it filters out

implausible particles, it becomes particularly detrimental in

situations as depicted in Fig. 5 for sequence Slc. Since the

robot traverses a part of the environment covered by furniture

during the mapping run, the assumption prevents particles

from traversing the newly freed space. We depict exemplary

qualitative results of AMCL on the sequences Sd and Slc in

Fig. 6. While the localization accuracy in the dynamic case is

high enough to make the difference to the ground truth nearly

unnoticeable, the method’s trajectory shows clear deviations

for the sequence with long-term changes Slc. Here, it is

evident that the localization performance mainly decreases

in certain rooms that contain the most drastic scene changes.

In summary, our evaluation suggests that existing localiza-

tion methods achieve good pose estimation accuracy under

static conditions and demonstrate robustness against short-

term dynamics. However, large-scale and long-term scene

changes pose a considerable challenge to the investigated

methods, both during global localization and pose tracking.

How to consider environmental changes in the localization

algorithm, potentially by integrating additional information

provided by the cameras, can be subject to further research.

This motivated us to release, together with our data, a public

benchmark with non-public ground truth for the remaining

sequences of our dataset. Our benchmark website comes

with an automated tool to evaluate and rank the performance

of participating algorithms on these sequences. Therefore,

we evaluate submitted localization pose results against our

ground truth poses and provide a set of standardized evalua-

tion metrics. In this way, we enable a fair comparison of the

algorithms on our sequences that cover diverse and ongoing

challenges and thus aim to stimulate further research.

V. CONCLUSION

In this paper, we presented a new benchmark and dataset

for indoor localization in a multi-room office scenario, in-

cluding ground truth poses. Our dataset is collected with

a mobile robot platform and contains recorded data from

RGB-D cameras, laser scanners, and the robot’s wheel

odometry. It covers diverse scenarios, including short-term

dynamics and long-term scene changes, and comes with

accurate ground truth in a single global frame. Furthermore,

we evaluated existing localization algorithms on a selection

of representative sequences from our dataset and pointed

out challenging scenarios. Here, especially long-term scene

changes revealed themselves as remaining difficult to handle.

To enable the research community to approach these chal-

lenges and motivate further research in this field, we release

a public benchmark challenge with non-public ground truth

and server-side evaluations together with our data.
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