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Abstract— Robots that are supposed to interact with or
manipulate objects in the world must be able to track the poses
of objects in their sensor data. Thus, Detecting and tracking
the 6-DoF poses of targeted objects is important for aerial
manipulation and is still in the early stage due to the high
dynamics and limited onboard capacity of such systems. In
this paper, we propose ICK-Track, a novel method for onboard
category-level object 6-DoF pose tracking that can be applied to
aerial manipulation without using any pre-defined object CAD
models. It first utilizes a semi-supervised video segmentation
to detect objects in the eye-in-hand RGB-D camera stream to
segment the 3D points of objects. Then, canonical keypoints are
extracted using iterative farthest point sampling. We propose
a novel inter-frame consistent keypoints generation network
to generate the corresponding keypoint pairs, which are used
together with ICP to estimate the pose changes of objects
for tracking. Experimental results show that our method is
more robust to viewpoint changes and runs faster than the
state-of-the-art methods on category-level pose tracking. We
further test our proposed method on a real aerial manipulator.
A demo video showing the use of our method on a real
aerial manipulator and the implementation of our method are
available at: https://github.com/S-JingTao/ICK-Track.

I. INTRODUCTION

Estimating accurate 6 degree-of-freedom (6-DoF) poses
of objects in the 3D space plays a central role in many
applications over the past decades, such as human-robot
interaction [11], autonomous driving [31], augmented real-
ity [29], and manipulation [16]. Previous works have already
explored instance-level 6-DoF pose estimation, often requir-
ing corresponding CAD models of objects with shape and
size information [21], [23]. Despite good tracking results,
the dependence on 3D models hinders this type of method
for flexible applications, e.g., using objects that have never
been seen before or objects with no CAD model available.
Category-level 6-DoF object pose estimation [9], [20] con-
stantly gains more attention. It leverages temporal consis-
tency to dynamically estimate and track 6-DoF object poses
over image sequences without using predefined models.

Although a large number of works have been done, the
online object 6-DoF pose tracking for aerial manipulation
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Fig. 1: Applying our proposed novel category-level 6-DoF object
pose tracking method on an aerial manipulator. Our method exploits
neural networks to generate inter-frame consistent keypoints from
RGB-D frames to track the object pose changes for the aerial
manipulation task.

is still challenging due to the limited onboard resources
and high-speed requirements of UAVs. Recently, RGB-D
sensors have been used more frequently than before for
aerial manipulation [12], [34] due to their favorable size
and weight for UAVs, and furthermore providing both color
and depth information. In this paper, we aim at developing
a lightweight and robust 6-DoF pose tracker on RGB-D
data that generalizes to new objects without using pre-
defined 3D models. Existing RGB-D based object 6-DoF
pose tracking methods [26], [32] do not perform well for
aerial manipulation when deployed on real UAVs due to the
limited onboard resources and fast-changing views hindering
the tracking performance.

The main contribution of this paper is a novel category-
level 6-DoF object pose tracker for aerial manipulators.
To deal with the above-mentioned problems, our proposed
method tracks a set of corresponding keypoints of inter-
frames and estimates the changes in the object pose observed
by an RGB-D image stream during the aerial operations, as
shown in Fig.1. Our approach first exploits a semi-supervised
video segmentation network to semantically segment the
objects in the RGB-D data and generates point clouds of
target objects in the video stream. Then, it extracts canonical
keypoints using the iterative farthest point sampling algo-
rithm in the previous frame, and feeds together with the
corresponding object points in the current frame to the pro-
posed inter-frame consistent keypoints generation network to
construct keypoint pairs. In the end, those keypoint pairs are
used together with the iterative closest point (ICP) algorithm
to estimate the pose changes of objects between two frames.

https://github.com/S-JingTao/ICK-Track


By repeating this procedure, our method achieves category-
level object 6-DoF pose tracking for aerial manipulation.

In sum, we make the following three key claims. Our
approach is able to: (i) track the 6-DoF pose of objects
without using predefined 3D CAD models, and generalize
better to different category objects than the state-of-the-art
methods, (ii) operate online on a real aerial manipulator,
and (iii) be more robust to fast view changes with a higher
success rate of object pose tracking. All claims are backed
up by the paper and our experimental evaluation.

II. RELATED WORK

There are many works have been done for 6-DoF ob-
ject pose tracking, which can be divided into two groups,
instance-level and category-level approaches [22]. The dif-
ference between instance-level and category-level is that
instance-based methods estimate 6-DoF poses of seen ob-
jects, which usually works with the known 3D CAD model
of the object, while category-level focus on estimating the
6-DoF poses of unseen objects, whose models are not
available during operation.

A large number of scientific work have been done for
instance-level approaches [2], [8], [13], [27], [30], [33],
where the target object instances are known, and pre-defined
3D CAD models are needed in the process of network
training and testing. Conventional methods also treat this
task as template matching or object positions regression
techniques, where they align the target point cloud to a
3D CAD model using registration approaches such as the
iterative closest point (ICP) [8] algorithm or based on hand-
crafted feature descriptors [2]. Recently, deep neural net-
works have been widely used for this task. For example,
Wang et al. [27] propose DenseFusion, which employs CNN
to extract features from RGB-D data to estimate the 6D
pose of a set of known objects. Xiang et al. [33] propose
PoseCNN estimating the 3D translation of an object by
localizing its center in the RGB image, and the 3D rotation is
estimated by regressing to a quaternion representation. Li et
al. [13] propose a deep neural network for 6-DoF object pose
matching named DeepIM, which iteratively refines the pose
by matching the rendered image against the observed image.
Similarly, Wen et al. [30] also network to track the poses
of objects in the RGB-D data. Their network is trained only
with synthetic data and can work over real images.

In contrast to the instance-level methods, category-level
approaches estimate the pose of unseen object instances in
the scene without relying on pre-defined CAD models. One
pioneer work is proposed by Wang et al. [28], which uses a
normalized object coordinate space (NOCS) feature as the
shared canonical representation used for the 6-DoF pose
tracking of different objects in a particular category. Several
works have also been proposed to improve NOCS. For
example, Li et al. [14] further develop an articulation-aware
normalized coordinate space hierarchy to achieve 6-DoF
pose tracking specifically for articulated objects. Chen et
al. [3] propose the canonical shape space feature, a unified
representation for a variety of instances of a certain object

category to improve the estimation results. Nonetheless, the
above-discussed methods use only single frame information
to extract features and cannot leverage temporal information
from the continuous stream or previous frames. Weng et
al. [31] propose a multi-object tracking method on point
cloud data, which uses the Kalman filter to exploit the
temporal information. Based on that, Chen et al. [5] propose
an online motion detection method with a deep network [4]
using object tracking for autonomous driving. These methods
achieve online object tracking, however, with the assumption
that there is no fast change in pitch and roll of the objects
on the road, which does not apply to aerial manipulation.

Recently, Wang et al. [26] propose an RGB-D video-
based 6-DoF pose tracker named 6-PACK, which uses an
unsupervised learning approach that detects the set of 3D
keypoints for tracking. Similarly, Weng et al. [32] propose
CAPTRA that handles both 6-DoF pose and correspond-
ing bounding box tracking for rigid-body object instances
exploiting sequential information. Our method also exploits
temporal information between two continuous frames to gen-
erate keypoint pairs. However, different from 6-PACK using
general keypoints for all instances, our method generates for
each instance specific keypoint pairs using our proposed ICK
network. CAPTRA produces pose-canonicalized point clouds
to achieve pose regression between different scales, while our
method uses spherical normalization to handle different sizes
and scales of points.

Although both 6-PACK and CAPTRA achieve 6-DoF
object pose tracking, they are not designed for aerial manipu-
lation. Both methods focus more on ground-based robots and
do not work so well when run on a UAV. Very few works
in the literature focus on the 6-DoF object pose tracking
for aerial manipulators. Most existing works are either for
tracking the UAV’s trajectory [7] or tracking the end effector
of the aerial manipulators. The most related work to our
method is the one by Kumar et al. [10], which enables
an aerial manipulator to perform multiple complicated tasks
using deep learning networks including the tracking of the
objects observed in the camera stream. However, it only
achieves object tracking in the image level but not the 6-DoF
pose tracking of the objects. Our work presents a novel
deep neural network-based method and demonstrates that our
method achieves category-level 6-DoF object pose tracking
on a real aerial manipulator.

III. OUR APPROACH

A. Problem Formulation

Our work aims to continuously detect and track the 6-DoF
poses of target objects from known categories during the
flight of an aerial manipulator, where the onboard camera
is set to eye-in-hand mode. We assume that the object
instances are within visual range. Taking one object as an
example, with the initial pose in 3D space T 0 ∈ SE (3),
our problem can be defined as: given the stream of RGB-D
frames {It }t≥1 , the goal is to track the poses of the
targeted object within the frames in an online manner, as
shown in Fig.1. More specifically, given two consecutive



Fig. 2: Overview of our proposed ICK-Tracker. It takes the consecutive RGB-D video stream as the inputs and firstly uses a semi-supervised
video segmentation to produce pixel-wise object masks per frame to generate object point clouds. Then, the sphere normalization and
IFPS are exploited to extract the canonical keypoints and normalized current object point cloud, which are fed to the proposed ICK-Net.
Our ICK-Net then directly generates the corresponding inter-frame consistent keypoint pairs, and uses them with ICP to calculate the
inter-frame object pose change.

frames It−1 and It, we estimate the change of pose of
object ∆T t = [∆Rt,∆tt] ∈ SE(3), where ∆Rt ∈ SO(3)
represents the change in rotation, and ∆tt ∈ R3 is the
change of translation. The absolute pose can be calculated by
applying recursively the last change of pose of each object:

T t = ∆T t · T t−1 = ∆T t ·∆T t−1 · ... · T 0. (1)

B. Overview of the Proposed Method

An overview of our proposed category-level 6-DoF pose
tracking framework is depicted in Fig. 2. It consists of
three main modules, video segmentation, canonical feature
generation, and inter-frame consistent keypoint generation.
Following the initialization introduced in [26], our method
also assumes the targeted objects together with their initial
poses are given. Taking one object as an example, it starts
at the location indicated by a given initial pose T0. For
the next every two continuous RGB-D frames It and It−1,
our method firstly feeds them to a semi-supervised video
segmentation network to obtain pixel-wise object masks Mt

and Mt−1, for both the current and previous frames. Using
the predicted object masks, we filter out the background
points generated from the RGB-D sensor and only use the
points belonging to the targeted objects as the input for the
following procedures. Based on the points of the objects,
our method then utilizes the iterative farthest point sampling
(IFPS) [6] algorithm to generate canonical keypoints Ft−1
in the previous frame It−1. They are generated based on
geometric information and used to guide the following
keypoint extraction network yielding more robust keypoint
pairs. In the third step, the canonical keypoints Ft−1 of the
previous frame and the point cloud of the objects Xt in
the current frame are fed into our proposed ICK network
for generating the corresponding keypoints Ft in the current
frame. For each keypoint in Ft−1 of the previous frame, our
network generates one corresponding keypoint in Ft. In the
end, the keypoint matches of the current and previous frames
are passed to the iterative closest point [1] algorithm, a point-

based registration method, to calculate the inter-frame object
6-DoF pose changes.

C. Semi-Supervised Video Object Segmentation

The first step is to use an object segmentation network
to separate the objects from the background in the RGB-D
image stream. Unlike ground robots, the observations of the
onboard camera in the eye-in-hand mode change rapidly
during the flight of the aerial robot and the operation of the
manipulator. This challenge breaks the assumption of most
existing video object segmentation approaches, which rely on
temporal consistency, assuming that objects do not change
too much between one frame and the next. To overcome
this, we adopt a per-frame video object segmentation method
by Maninis et al. [15], which separates an object from the
background in the video in a continuous manner given the
object mask in the first frame and is able to overcome the
occlusions or missing frames caused by the camera motion
in a certain range. To automatically generate the object
mask for the first frame, we use an RGB-D based instance
segmentation method by Papon et al. [17]. It uses a seeding
methodology based on 3D space and a flow-constrained local
iterative clustering using color and geometric features.

D. Inter-Frame Canonical Feature Generation

Given the object mask from the video object segmentation
network, we then separate the raw object points out of
the whole point cloud generated by the RGB-D sensor by
checking the pixel-point correspondences. Based on object
points, the goal of this module is to extract a set of canonical
keypoints that represents the geometric features of the object
at the previous frame. We denote the original object points as
Ci

t = {pj ∈ R3}NP
j=1, where NP is the number of the points,

and i represents the i-th object in the frame It. We omit
the index i from now on for notation simplicity. To make
the keypoints robust against different scales for all object
points, we normalize them into a unit sphere space for the



same objects in different frames, and use Xt to represent the
normalized object points by:

Xt = (Ct − p̄)/σ

p̄ = 1
NP

∑
pj∈Ct

pj

σ = max
pj∈Ct

{‖pj − p̄‖2}
, (2)

where p̄ is the centroid of the raw object points Ct, and σ
is the scale factor that transforms the original points into the
unit scale.

After the normalization, we then use the IFPS algorithm
to sample the object points Xt and extract a sparse set
of keypoints Ft. IFPS [6] is a classical method to extract
canonical keypoints from a point cloud based on the idea
of repeatedly placing the next sample point in the middle
of the least-known area of the sampling domain. We refer
more details to the original paper [6]. Here, we only extract
canonical keypoints on the previous frame and use them
together with the raw object points in the current frame
as the input to our ICK network to generate corresponding
keypoints in the current frame.

E. Inter-Frame Consistent Keypoints Generation Network

For estimating the pose changes of objects between two
frames, the previous approaches [25], [26] usually have two
steps. They first extract keypoints in each frame indepen-
dently and then match them for the pose estimation. In
this way, however, the network does not fully exploit the
inter-frame information in keypoint generation and matching.
Different from the two-step methods, we treat the 6-DoF ob-
ject pose tracking as an inter-frame corresponding keypoints
generation and registration problem. Our approach directly
generates the keypoint pairs without explicitly matching
them, making the proposed method more robust to wrong
matches.

As mentioned before, a set of canonical keypoints is
generated for the previous frame by using IFPS. Based on
that, we propose an inter-frame consistent keypoints gener-
ation network, called ICK-Net. It learns the correspondence
among intra-class instances and generates for each canonical
keypoint in the previous frame a corresponding keypoint
from the raw object points in the current frame. Unlike prior
work on keypoint detection individually on each frame, our
proposed method maintains canonical keypoints from the
previous frame as a precondition, which provides references
for current corresponding keypoints reconstruction so as to
enable adjacent data association together with the latest
observation.

As depicted in the right part of Fig. 2, we take both the
canonical keypoints Ft−1 of the previous frame together with
the normalized object points of the current frame Xt as
the input to our ICK-Net. To encode the temporal-spatial
information from both parts, we propose a novel rotation
invariant encoder (RIE). Inspired by Sun et al. [24], we
design the RIE as two branches, as shown in Fig. 2. In the
main backbone (lower branch), it first uses a point projection

operation (PPO) to map the 3D coordinates of keypoints into
a 4-dimensional features Ω by:

Ω = {f(α, x1), f(α, x2), . . . f(α, xN )} ∈ RN×4, (3)

where, α represents the three new axes (α1, α2, α3), and
f(α, xi) denotes the point projection as:

f(α, xi) = (cos(α1, xi), cos(α2, xi), cos(α3, xi), |xi|). (4)

After generating rotation-invariant 4D features for each
keypoint, RIE uses a multiLayer perceptron (MLP) layer to
further abstract pointwise features.

The upper side branch aims to extract features from
local regions. It exploits the K nearest neighbor points of
a keypoint and uses a PPO and graph aggregation operation
(GAO) to form a local feature. GAO consists of a graph
convolutional layer and a max-pooling layer to update fea-
tures and encode a descriptor that contains the local neighbor
information. We refer the reader to [24] for more details
of GAO. In the end, the features from two branches are
concatenated to generate rotation-invariant features with size
of 1024. For the point-wise encoder, we use the one from
PointNet by Qi et al. [19] to generate features for each
keypoint.

The proposed ICK-Net first applies an RIE and a point-
wise encoder (PWE) separately on the canonical keypoints
Ft−1 of the previous frame to obtain rotation-invariant fea-
tures fRt−1 with size of Nt−1 × 1024 and pointwise features
fPt−1 with the same size respectively. It then concatenates
the fRt−1 and fPt−1 to generate a global feature vector for
each canonical keypoint in the previous frame. In parallel,
another RIE is also applied to the object points Xt in
the current frame and generates rotation-invariant features
fRt , followed by a max-pooling layer to obtain a global
representation for the whole current object points. Then we
replicate this representation Nt−1 times and concatenate it
with the features from the previous keypoints to form a
global latent vector fL in size of Nt−1 × 3072.

After all encodings, we get the feature fL. It combines
both the current and previous, local and global features, and
contains rich inter-frame information. We then use a decoder
consisting of several MLPs and a linear layer to integrate
the latent feature map into an ordered set of correspondence
keypoints Ft; thus, the generated keypoints in the current
frame are one-to-one matched with the canonical keypoints
in the previous frame. Our method then calculates the rela-
tive pose between them via the ICP algorithm. Conducting
this procedure for every incoming two frames, our method
achieves tracking objects through the RGB-D image stream.

F. Loss Function

There are two parts in our loss function: inter-frame
keypoint consistency loss and inter-frame pose estimation
loss. The inter-frame keypoint consistency loss measures the
difference between the keypoints generated in consecutive
frames. The inter-frame pose estimation loss directly takes
the difference in poses between the ground truth and esti-
mated ones as the loss.



For the inter-frame keypoint consistency loss LK , the
objective is to minimize the residuals between the generated
keypoints of the current frame to the corresponding canonical
keypoints in the previous view after transforming them into
the same viewpoint using the ground truth relative pose. We
take the average residual over all pairs as the final loss, which
can be formalized as:

LK =
1

Nt−1

Nt−1∑
k=1

∥∥∥∆T̂ t · pk
t−1 − pk

t

∥∥∥, (5)

where ∆T̂ t = [∆R̂t|∆t̂t] is the ground truth relative pose
between t − 1 frame and t frame. Nt−1 is the number of
keypoints extracted by our network.

To guide the network learning to estimate the change of
pose, we further add an inter-frame pose estimation loss,
which consists of both the translation loss Lt and the rotation
loss LR:

Lt =
∥∥∆t̂t −∆tt

∥∥ , (6)

LR = 2 arcsin

(
1

2
√

2

∥∥∥∆R̂t −∆Rt

∥∥∥
F

)
, (7)

where ∆Rt and ∆tt are the estimated inter-frame relative
pose based on the corresponding keypoint sets using ICP.
‖ · ‖F is the Frobenius norm to calculate the difference
between two rotation matrices. To avoid the ambiguities
brought by symmetric instances, we adopt the strategy in-
troduced by Wang et al. [26] to redefine the inter-frame
consistency loss and rotation loss for symmetric categories.

In summary, the overall loss function is:

L = µLK + (1− µ)(Lt + LR), (8)

where 0 ≤ µ ≤ 1 is a weight factor.

G. Implementation Details

We implement our network based on the PyTorch li-
brary [18]. All the building blocks are trained using an
ADAM optimizer with an initial learning rate of 10−3 and
a batch size of 20. The training epoch number is set as
100. We employ batch normalization and RELU activation
units in every MLP. We fine-tune the OSVOS network [15]
for the video segmentation and the inputs size of canonical
keypoints Ft−1 from previous frame is set to Nt−1 = 500.

The experiments on the public datasets are conducted on a
desktop computer with an Intel Xeon Gold 6226R@2.90GHz
processor and a single NVIDIA RTX A6000 GPU. We
furthermore deploy the proposed method on a real aerial
manipulator equipped with a Pixhawk-v2 flight controller,
an NVIDIA Jetson Xavier as the core controller. We design
a series structured 4-DoF manipulator using the ROBOTIS
Dynamixel MX-28 servo motors. For the eye-in-hand con-
figuration, we use an Intel RealSense D435i camera. An
OptiTrack Motion Capture System measures the position and
yaw orientation of the robot, and detailed data flow and
configuration can be seen in Fig. 4.

IV. EXPERIMENTAL EVALUATION

We present our experiments to show the capabilities of our
method and to support the claims that our approach is able to:
(i) track the 6-DoF pose of objects without using predefined
3D CAD models and generalize better to different category
objects than the state-of-the-art methods, (ii) operate online
on a real aerial manipulator, and, (iii) be more robust to
quick-changing view with a higher success rate of object
pose tracking.

A. Experimental Setup

Dataset. We evaluate different methods using both a
public dataset and also on the data collected by our own
using a real aerial manipulator. There are not many real-
world benchmark datasets for category-level object 6-DoF
pose tracking, and we use the NOCS-REAL275 dataset by
Wang et al. [28]. It contains six categories: bottle, bowl,
camera, can, laptop and mug. This dataset consists of two
parts: The real RGB-D videos and synthetic rendering ob-
jects. The real videos are with ground truth object poses
depicting in total three instances of objects of each category.
Following Wang et al. [26], we use seven real videos together
with all synthetic data for training and six real videos for
testing, which contain three different unseen instances for
each object category with 3,200 frames in total. Besides
the public dataset, we also deploy our tracking method to
a real aerial manipulator and evaluate the performance of
different methods using the RGB-D data collected by our
aerial manipulator. An OptiTrack Motion Capture System
provides the ground-truth poses.

Baseline methods. In all experiments, we compare our
method to two state-of-the-art category-level 6-DoF pose
tracking methods, 6-PACK by Wang et al. [26] and CAPTRA
by Weng et al. [32]. 6-PACK uses the anchor-based keypoints
for category-level 6-DoF pose tracking. CAPTRA directly
predicts pose changes using the point cloud at the current
frame and the estimated pose from the last frame. For
comparison on the public dataset, we directly use the results
reported in the original papers of the baseline methods. For
experiments on our real aerial manipulator, we use their
open-sourced implementations with default parameters to
generate the 6-DoF pose tracking results.

Evaluation Metrics. In line with the baseline methods, we
use the following metrics for fair comparisons: (1) 5◦5 cm
refers to the percentage of estimating and tracking results
with orientation error < 5◦ and translation error < 5 cm;
(2) IoU25 represents the percentage of volume overlap
between the prediction and ground-truth 3D bounding box
that is larger than 25%; (3) Rerr , means of the orientation
error in degrees, and (4) Terr , means of the translation error
in centimeters.

B. Evaluation Results on the NOCS-REAL275 Dataset

The first experiment evaluates our method on the public
NOCS-REAL275 dataset. The results support our first claim
that our method tracks the 6-DoF pose of objects without



TABLE I: Quantitative results on the NOCS-REAL275 dataset. With the metrics of 5◦5 cm and IoU25, the higher value the better. On
contrary, the lower the better for the Rerr and Terr metrics. The baseline results are taken from their original papers.

Methods Metrics Bottle Bowl Camera Can Laptop Mug Average

6-PACK [26]

5◦5 cm ↑ 24.5 55.0 10.1 22.6 63.5 24.1 33.3
IoU25 ↑ 91.1 100.0 87.6 92.6 98.1 95.2 94.2
Rerr ↓ 15.6 5.2 35.7 13.9 4.7 21.3 16.0
Terr ↓ 4.0 1.7 5.6 4.8 2.5 2.3 3.5

CAPTRA [32]

5◦5 cm ↑ 79.5 79.2 0.41 64.7 94.0 55.1 62.2
IoU25 ↑ 72.1 79.6 2.5 62.5 87.2 80.7 64.1
Rerr ↓ 3.3 3.5 17.8 3.4 2.2 5.4 5.9
Terr ↓ 2.6 1.4 35.5 5.7 1.5 0.8 7.9

Ours

5◦5 cm ↑ 78.2 73.4 89.5 79.3 96.1 89.9 84.4
IoU25 ↑ 73.6 66.3 87.8 67.4 85.6 78.9 76.6
Rerr ↓ 4.7 6.2 1.9 2.3 5.7 6.0 4.5
Terr ↓ 3.4 4.6 1.4 3.8 2.7 2.5 3.1

Fig. 3: Qualitative visualization sample of our ICK-Track and representative comparison baselines on NOCS-REAL275 dataset.
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Fig. 4: Illustration of our real aerial manipulator platform and
experiment setup for online pose tracking for aerial manipulation.

using predefined 3D CAD models, and generalize better to
different category objects than the state-of-the-art methods.

Quantitative results and qualitative visualization on the
testing set of the NOCS-REAL275 dataset are depicted
in Tab. I and Fig. 3 respectively. As shown in Tab. I,

our method outperforms the state-of-art methods in terms
of 5◦5 cm, Rerr and Terr . Note that, the baseline meth-
ods sometimes fail in tracking certain types of objects. In
contrast, our method successfully tracks all different cate-
gory objects, which shows the robustness and generalization
ability of our proposed method. Furthermore, our method
performs generally well in all metrics indicating that our
method can both estimate good pose changes of objects as
well as track the shape of the objects. The qualitative results
are shown in Fig. 5, which also illustrates that our method is
more robust than baseline methods and does not lose track
of objects caused by rapid changes in view.

C. Experiments on an Aerial Manipulator

The results of the second experiment support our last two
claims that our method can operate online on a real aerial
manipulator and is more robust to fast view changes with
a higher success rate of tracking than baseline methods. In
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Fig. 6: Qualitative results on dynamic object pose tracking in an air-ground robots collaborative scenario, where the aerial manipulator
follows a ground vehicle and tracks the onboard objects. It is a highly dynamic scenario, and only our method works.

TABLE II: Pose tracking runtime and success rate evaluated on the
onboard platform

Methods 6-PACK CAPTRA Ours

FPS 5.22 9.67 11.38

Success Rate [%] 70.32 75.46 96.87

this experiment, we deploy our method trained on the public
dataset directly to a real-world aerial manipulator platform,
as shown in Fig. 4. A scenario for aerial 6-DoF pose tracking
task is designed as shown in the top row of Fig. 5, where
the task consists of two phases: the aerial manipulator takes
off and hovers where the target object can be detected,
and then it flies around the object to find a good picking
up position, while the 6-DoF pose tracking method works
online. We compare the tracking performance on several
unseen instances of known categories, such as bowl, bottle,
can, and mug.

Visualization results in Fig. 5 demonstrate that our pro-
posed tracker successfully generalizes to unseen instances in
real scenarios with a high success rate. For each object in
each RGB-D frame, if the difference between the estimated

center and the ground truth center is smaller than its radius,
we count it as correct tracking. When all the objects inside
one frame are correctly tracked, we count that frame as a
success tracking frame. In Fig. 5, the success tracked frames
are labeled with green boundary and failed one with red
boundary. As can be seen, our method achieves a higher
success rate than the baseline methods when applied to a
real aerial manipulator.

The same conclusion can also be drawn from statistical
results reported in Tab. II. We calculate the success tracking
rate using 1500 frames collected from one real flight, and
the success rate of our method is much higher (more than
absolute 20%) than other methods. Meanwhile, we test the
runtime of all methods on the real UAV platform as shown
in II. Our method takes on average 11.38 Hz with less than
12.5% of the GPU storage (16 GB in total), while the actual
speed of both 6-PACK and CAPTRA is slower than 10 FPS.

We further test our method in a more challenging air-
ground robots collaborative scenario shown in Fig. 6, where
the aerial manipulator follows a ground vehicle and tracks
the onboard objects. It is a highly dynamic scenario where
only our method works while the other two baselines fail



to track the objects. A video of our real flight demo can be
found here: https://github.com/S-JingTao/ICK-Track.

V. CONCLUSION

In this work, we presented our proposed ICK-Tracker,
a category-level 6-DoF object pose tracking method for
aerial manipulation. Our tracker is based on a novel inter-
frame consistent keypoints generation network that generates
consistent keypoint pairs for different instances of the same
category between consecutive frames to estimate the inter-
frame pose changes. Experiments on both, a public dataset
and a real aerial manipulator, demonstrate that our method
achieved comparable performance to state-of-art baselines
and successfully tracked all different category objects. We
furthermore test our method on an aerial manipulator plat-
form, and the experimental results show that our method
is more robust than the state-of-the-art methods in tracking
unseen objects under fast-changing views with faster runtime
and a much higher success tracking rate.

REFERENCES

[1] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-d
point sets. IEEE Trans. on Pattern Analalysis and Machine Intelligence
(TPAMI), PAMI-9(5):698–700, 1987.

[2] P. Azad, D. Münch, T. Asfour, and R. Dillmann. 6-dof model-
based tracking of arbitrarily shaped 3d objects. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA), 2011.

[3] D. Chen, J. Li, Z. Wang, and K. Xu. Learning canonical shape space
for category-level 6d object pose and size estimation. In Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2020.

[4] X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and
C. Stachniss. Moving Object Segmentation in 3D LiDAR Data: A
Learning-based Approach Exploiting Sequential Data. IEEE Robotics
and Automation Letters (RA-L), 6:6529–6536, 2021.

[5] X. Chen, B. Mersch, L. Nunes, R. Marcuzzi, I. Vizzo, J. Behley, and
C. Stachniss. Automatic Labeling to Generate Training Data for Online
LiDAR-based Moving Object Segmentation. arXiv preprint, 2022.

[6] Y. Eldar, M. Lindenbaum, M. Porat, and Y.Y. Zeevi. The farthest
point strategy for progressive image sampling. IEEE Trans. on Image
Processing, 6(9):1305–1315, 1997.

[7] S.A. Emami and A. Banazadeh. Simultaneous trajectory tracking
and aerial manipulation using a multi-stage model predictive control.
Aerospace Science and Technology, 112, 2021.

[8] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun. Pvn3d: A deep
point-wise 3d keypoints voting network for 6dof pose estimation. In
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

[9] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, et al. Bop: Benchmark for
6d object pose estimation. In Proc. of the Europ. Conf. on Computer
Vision (ECCV), 2018.

[10] A. Kumar, M. Vohra, R. Prakash, and L. Behera. Towards deep
learning assisted autonomous uavs for manipulation tasks in gps-
denied environments. In Proc. of the IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2020.

[11] S. Lemaignan, F. Garcia, A. Jacq, and P. Dillenbourg. From real-time
attention assessment to “with-me-ness” in human-robot interaction.
In ACM/IEEE Intl. Conf. on Human-Robot Interaction (HRI), pages
157–164, 2016.

[12] L. Li, T. Zhang, H. Zhong, H. Li, H. Zhang, S. Fan, and Y. Cao.
Autonomous removing foreign objects for power transmission line
by using a vision-guided unmanned aerial manipulator. Journal of
Intelligent and Robotic Systems (JIRS), 103(2):1–14, 2021.

[13] P. Li, T. Qin, and S. Shen. Stereo Vision-based Semantic 3D Object
and Ego-motion Tracking for Autonomous Driving. In Proc. of the
Europ. Conf. on Computer Vision (ECCV), 2018.

[14] X. Li, H. Wang, L. Yi, L.J. Guibas, A.L. Abbott, and S. Song.
Category-level articulated object pose estimation. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2020.

[15] K.K. Maninis, S. Caelles, Y. Chen, J. Pont-Tuset, L. Leal-Taixé,
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