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Abstract— Many tasks that would be of benefit to users
in domestic environments require that robots manipulate ar-
ticulated objects such as doors and drawers. In this paper,
we present a novel approach that simultaneously estimates
the kinematic model of an articulated object based on the
trajectory described by the robot’s end effector, and uses this
model to predict the future trajectory of the end effector.
One advantage of our approach is that the robot can directly
use these predictions to generate an equilibrium point control
path for operating the mechanism. Additionally, our approach
can improve these predictions based on previously learned
articulation models. We have implemented and tested our
approach on a real mobile manipulator. Through 40 trials,
we show that the robot can reliably open various household
objects, including cabinet doors, sliding doors, office drawers,
and a dishwasher. Furthermore, we demonstrate that using the
information from previous interactions as a prior significantly
improves the prediction accuracy.

I. INTRODUCTION

Applications in domestic environments are envisioned as a
promising area for mobile service robots. For many beneficial
tasks, robots operating in such environments would have
to deal with articulated objects such as doors or drawers.
Typically, a large variety of doors, drawers, and similar
mechanisms are present in human environments. This makes
it hard to pre-program a robot to operate the objects that it
would encounter while performing its job.

In this paper, we consider the problem of modeling and op-
erating articulated objects with a mobile manipulator. Articu-
lated objects are objects with movable parts such as a cabinet
with doors or drawers. Our approach enables a real robot
to learn articulation models, which describe the kinematics
of the corresponding parts of the object. Furthermore, we
utilize these models to control the motion of the manipulator.
In the past, several researchers have addressed the problem
of estimating and handling doors and drawers [5, 9, 12,
19]. Most of these approaches, however, are either entirely
model-free or assume substantial knowledge about the model
and its parameters. Whereas model-free approaches release
designers from providing any a-priori model information,
the knowledge about objects and their articulation properties
supports state estimation, motion prediction, and planning.
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Fig. 1. Our service robot successfully opens various articulated objects
(here: a dishwasher) by generating equilibrium control points from the
kinematic model that it learns online from its end effector trajectory.

The contribution of this paper is two-fold: First, we present
an approach to learn the kinematic model of an articulated
object while the robot is operating it with its end effector. For
the manipulation of the object, the predictions of the model
are directly used to generate an equilibrium point control path
for the manipulator. Our model not only supports rotational
and prismatic joints, but also more complex mechanisms
which the robot estimates through non-parametric learning.
Figure 1 shows an illustrative example in which our robot
opens the door of a dishwasher using this approach. As
a second contribution, we enable the robot to improve its
model estimation capabilities over time. The learned model
is used as prior information in future manipulation tasks.
As we will demonstrate in the experimental section, this
information can help a robot make better predictions about
the movements of an object given that the robot has seen a
similar object before.

II. RELATED WORK

Several researchers have addressed the problem of oper-
ating articulated objects with a manipulator. A large number
of these techniques have focused on handling doors and
drawers [1, 3, 5, 9, 10, 12, 19]. The majority of approaches,
however, have assumed an implicit kinematic model of the
articulated object. Meeussen et al. [12] describe an integrated
navigation system for mobile robots including vision- and
laser-based detection of doors and door handles that enables
the robot to successfully open doors using a compliant arm.
Diankov et al. [3] formulate door and drawer operation as
a kinematically constrained planning problem and propose
to use caging grasps to enlarge the configuration space.



Wieland et al. [19] combine force and visual feedback to
reduce the interaction forces when opening kitchen cabinets
and drawers. In contrast to our work, these approaches do
not learn a kinematic model while manipulating an object
and thus cannot re-use information learned during previous
interactions. Moreover, as we show in our experiments, our
method can successfully operate a variety of mechanisms,
even when encountering them for the first time.

Estimating kinematic models and the kinematic structure
from observation has been studied previously [7, 18, 22]
without subsequently using the models for manipulation.
Katz and Brock [8] have enabled a robot to first interact
with a planar kinematic object on a table top in order to
visually learn a kinematic model, and then manipulate the
object using this model to achieve a goal state. In contrast,
our approach learns from the 3D kinematic trajectory of the
robot’s end effector. It also simultaneously learns a model
and manipulates the object to achieve its goal.

The articulated objects found within typical household
settings tend to exhibit common kinematic structure. Con-
sequently, learning models of articulated objects offers the
possibility to increase the performance of a mobile manipu-
lation system over time. Whenever a robot that learns models
for articulated objects operates a previously unseen object, it
needs to decide whether to merge the novel information into
an existing model or to learn a new model from scratch. This
can be formulated as a model selection problem [11]. The
Bayesian Information Criterion (BIC) [16] has often been
used in clustering applications. For example, Pelleg et al. use
the BIC in the X-means algorithm [15] to efficiently estimate
the right number of clusters for a set of data points in
Euclidean space. In this paper, we use the BIC to estimate the
number of models for the motion trajectories of articulated
objects.

To actually operate an articulated object, we use equilib-
rium point control (EPC) [6] which is a form of impedance
control inspired by the equilibrium point hypothesis. Using
EPC, the motion of the robot’s arm is commanded by
adjusting the position of a Cartesian-space equilibrium point
(CEP) that denotes where the robot’s end effector would
settle in the absence of externally applied forces other than
gravity. Previous robotics research has looked at similar
robotic control strategies in simulation [4], in free-space
motions [20], legged locomotion [13], rhythmic manipulation
from a fixed base [21], and in the design and control of
compliant actuators [14, 2].

In previous work [6], we demonstrated how a robot can
use equilibrium point control and low mechanical impedance
to open cabinet doors, whose axes of rotation are paral-
lel to gravity, and open cabinet drawers. We furthermore
presented a technique [18] for learning kinematic models
of objects where we assumed that a person manipulates
the object and that the robot only observes these activities.
In contrast to this, the approach presented here enables a
robot to learn kinematic models, to predict the motion of
the articulated object, and feed this information into the
controller of the manipulator. To the best of our knowledge,

Fig. 2. Left: The mobile manipulator used in this work. Right: Examples
of a human using his hand as a hook and corresponding orientations for the
robot’s hook end effector.

none of the previous approaches learns a kinematic model
in 3D of the manipulated object and simultaneously uses
the corresponding predictions in the controller. In addition,
we show how a robot can exploit its own experience from
previous manipulations to improve the prediction accuracy
of the articulation models.

III. OUR APPROACH TO OPERATING ARTICULATED
OBJECTS USING PREVIOUS EXPERIENCE

The robot we use for this research is a statically stable
mobile manipulator equipped with a hook as the end effector
(see Fig. 2). Whereas the left image of Fig. 3 shows an
overall block diagram for the complete system, the right
image of Fig. 3 illustrates the idea with an example. The
robot observes the pose of its end effector in Cartesian space,
denoted by x ∈ R3. While operating the mechanism, the
robot records the trajectory x1:t over time as a sequence of
poses. In Section III-A, we describe how we fit a model M
to such a trajectory online. The robot then uses this model
to predict the continuation of the trajectory including the
Jacobian Ĵt at the estimated current configuration of the
mechanism. In Section III-B, we explain how we include
prior information in the model fitting step and how a joint
model is learned from previously observed trajectories. Fi-
nally, in Section III-C, we describe how our implementation
of the equilibrium point control employs the prediction of
the kinematics of the mechanism to generate a set of control
points xCEP

1:t .

A. Learning Models of Articulated Objects

Since we do not know what kind of kinematic mechanism
exists between the handle and the cabinet, we fit several
candidate models representing different kinds of links. This
set includes a rotational model for doors Mrot, a prismatic
model for drawers Mprism, a rigid model for non-articulated
objects Mrigid, and a more flexible model based on Gaus-
sian processes MLLE/GP that can describe any other 1-DOF
trajectory, for example 2-bar-links in garage doors.

For the moment, we consider a single trajectory obtained
from a mechanism and denote this observed trajectory as
D = x1:t. Later, we will explain how the model fitting can
be improved by additionally using data from previous trials
for the estimation.

1) Model Fitting: For estimating the parameters of any
of the above-mentioned models, we need to find a parameter



Fig. 3. Left: Overall control structure. The robot observes the trajectory x1:t of its end effector. From that, it estimates the model M, θ and projects the
current pose x̂t onto the model, and estimates the Jacobian Ĵt at this point. Using these estimates, it generates the next Cartesian equilibrium point xCEP

t .
Right: Example trajectory illustrated for the right cabinet door (top view). The generated CEP trajectory smoothly pulls the door open, while keeping the
hook robustly on the handle.

vector θ ∈ Rk that maximizes the data likelihood given this
model, i.e.,

θ̂ = argmax
θ

p(D | M, θ) (1)

This estimation procedure (and the number of parameters k)
is different for each of the models. For example, the prismatic
model is parametrized by a 3D line (k = 5). We estimate
one point on the line as the mean of the trajectory and
the direction vector as the principal component using SVD.
The rotational model is parametrized by the rotation center,
the rotation axis, and the radius. We estimate the k = 7
parameters of this model using two RANSAC steps: first, we
recover the rotational plane, then we fit a circle on the inliers
on the plane. For further details on the used models and
their estimators, we refer the interested reader to our previous
work by Sturm et al. [18]. All mechanisms that we consider
here (except for the rigid link) have a latent variable q ∈ R
that describes the configuration of the mechanism. In the case
of a door, for example, the variable q describes the opening
angle.

2) Model evaluation: To evaluate how well a single pose
observation x can be explained by a model, we have to
evaluate

p(x | M, θ) =

∫
p(x | q,M, θ) p(q | M, θ) dq. (2)

Under the assumption that no configuration state q is more
likely than another one, this simplifies to

p(x | M, θ) =

∫
p(x | q,M, θ) dq. (3)

If we assume that p(x | q,M, θ) is an uni-modal distribution,
an approximation of the integral is to evaluate it only at the
expected configuration q̂ given the observed pose x, i.e.,

q̂ = EM,θ[ q | x ]. (4)

For this configuration, we can compute the expected pose x̂,

x̂ = EM,θ[ x | q̂ ]. (5)

If we now assume that the error between the observed pose
x and the expected pose x̂ given the model M and its pa-
rameter θ is normally distributed, the observation likelihood
from Eq. 2 can be approximated as

p(x | M, θ) ∝ exp
(
−||x̂− x||2/σ2

)
. (6)

Note that the expectations of Eq. 4 and Eq. 5 for the models
in our candidate set have a closed form solution [18]. In the

case of the prismatic model, for example, this corresponds
to projecting the noisy observation x onto the line model;
the difference ||x̂ − x|| then corresponds to the observa-
tion error that we assume to be normally distributed with
||x̂− x|| ∼ N (0, σ). Given this, we can efficiently compute
Eq. 6. Finally, the marginal data likelihood over the whole
trajectory becomes

p(D | M, θ) =
∏
x∈D

p(x | M, θ). (7)

3) Model Selection: For Bayesian model selection, we
need to compare the posterior probability of the models given
the data

p(M, θ | D) =
p(D | M, θ)p(θ | M)p(M)

p(D)
. (8)

While the direct evaluation of the posterior generally is
difficult, it can be approximated efficiently based on the
Bayesian Information Criterion (BIC). Let k be the number
of parameters and n the number of observations (n = |D|).
Then, the BIC is defined as

BIC(M) = −2 log p(D | M, θ̂) + k log n, (9)

where θ̂ is the maximum-likelihood (ML) parameter vector.
Model selection now reduces to selecting the model that has
the lowest BIC, i.e.,

M̂ = argmin
M

BIC(M). (10)

Given a partial trajectory x1:t of the end effector, the robot
continuously estimates the kinematic model of the articulated
object. By deriving the expected pose x̂t given in Eq. 5
w.r.t. the configuration of the object, the robot can compute
the Jacobian from the model at its current configuration as

Ĵt =
∂x̂(q̂)

∂q̂
. (11)

B. Using Prior Information to Improve Model Prediction

Using the approach described above, a robot always starts
from scratch when observing movements of a new articulated
object. From a learning perspective, this may be seen as
unsatisfactory since most articulated objects encountered in
man-made environments belong to few different classes. For
example, in a specific office or kitchen, many cabinet doors
will tend to be the same size. Furthermore, in some countries
the size of such furniture is standardized. Thus, a robot
operating in such environments can significantly boost its



Fig. 4. Images showing the robot after it has operated the five mechanisms used in the experiments. The objects are (from left to right): a cabinet door
that opens to the right, a cabinet door that opens to the left, a dishwasher, a drawer, and a sliding cabinet door.

performance by learning priors over the space of possible
articulated object models.

Our key idea here is to identify a small set of represen-
tative models for the articulated objects and utilize this as
prior information to increase the prediction accuracy when
handling new objects.

To keep the notation simple, consider the case that the
robot has interacted with two articulated objects. Their
observed motion is given by two data trajectories D1 and
D2. The robot has to decide if both trajectories should be
described by two distinct models M1 and M2 or by a joint
modelM1+2, each with corresponding maximum-likelihood
parameter vectors. In the first case, this results in having n =
n1+n2 data points, k = k1+k2 parameters, and a marginal
data likelihood of L = p(D1 | M1, θ̂1)p(D2 | M2, θ̂2).

In the latter case both trajectories are explained by a
single, joint modelM1+2 with a parameter vector θ̂1+2, that
is estimated from the joint data D1 ∪ D2 as described in
Section III-A. This model also is learned from n = n1 + n2
data points, using only a single set of parameters k′ =
k1 = k2. The marginal data likelihood for this hypothesis
is L′ = p(D1,D2 | M1+2, θ̂1+2). We can evaluate whether
describing the data using a joint model instead of two
separate models is beneficial by evaluating

BIC(M1,M2) > BIC(M1+2) (12)
−2 logL+ k log n > −2 logL′ + k′ log n. (13)

If more than two trajectories are considered, one has to
evaluate all possible assignments of these trajectories to
models and select the assignment with the lowest BIC.
However, this quickly becomes intractable. Thus, we use
an approximation and consider the trajectories sequentially,
in the order the robot observes them. We check whether
merging the new trajectory with one of the existing models
is more beneficial in terms of the BIC compared to adding
a new model for that trajectory to the set of previously
encountered models.

After having identified a set of models as prior infor-
mation, we can exploit this knowledge for making better
predictions when observing a so far unseen articulated object.
Consider the situation in which a partial trajectory of a new
object has been observed. To exploit the prior information,
we proceed exactly as before. We compute and compare the
BIC according to Eq. 12 treating the newly observed data
points as a new model or merge them into one of the m

TABLE I
PERFORMANCE OF THE ROBOT ON THE 5 MECHANISMS.

Mechanism Angle/Distance Estimated Radius Max Inter- Success
Pulled (True Radius) action forces Rate

Right Door 96.5◦± 6.4◦ 0.38m ± 0.01m 20.4N ± 3.0N 7/8
(0.39m)

Left Door 90.5◦± 7.6◦ 0.35m ± 0.02m 36.3N ± 2.3N 7/8
(0.34m)

Dishwasher 72.0◦± 4.0◦ 0.66m ± 0.03m 22.5N ± 10.4N 7/8
(0.65m)

Drawer 0.44m ± 0.00m 38.4N ± 2.6N 8/8
Sliding Cabinet 0.54m ± 0.09m 26.4N ± 7.5N 8/8

previously identified models by

BIC(Mnew ,M1, . . . , ,Mm) >

argmin
j=1,...,m

BIC(M1, . . . ,Mj+new , . . . ,Mm). (14)

If the newly observed data is merged with an existing
model, the parameter vector is estimated from a much larger
dataset (Dj ∪ Dnew instead of Dnew ) which leads to a
better estimation. Note that this step is carried out after
each observation of the new sequence. Thus, if the currently
manipulated object ceases to be explained by the known
models, the method instantaneously creates a new model.
After successful object manipulation, this model serves as
additional prior information for the future.

C. Equilibrium Point Control using Learned Articulation
Models

The equilibrium point controller uses these estimates to
generate Cartesian equilibrium point (CEP) trajectories in
a fixed world frame, attached to the initial location of the
handle. At each time step t, the controller computes a new
equilibrium point xCEP

t as

xCEP
t = xCEP

t−1 + vmechanism
t + vhook

t , (15)

where vmechanism
t is a vector intended to operate the mecha-

nism, and vhook
t is a vector intended to keep the hook from

slipping off of the handle. This incremental update of xCEP

is illustrated in Fig. 3.
The controller computes

vmechanism
t = dmechanism Ĵwt

||Ĵwt ||
(16)

as a vector of length dmechanism = 0.01m along the estimated
Jacobian of the mechanism. For vhook

t , we use a proportional
contoller that tries to maintain a force of 5N between the
hook and the handle in a direction perpendicular to Ĵwt . This



controller uses the force measured by the wrist force-torque
sensor of the robot.

We then transform xCEP from the world coordinate frame
into the local coordinate frame of the robot using odometry
from the mobile base. Finally, we use inverse kinematics to
compute an equilibrium angle for each joint of the robot
corresponding to the CEP in the local coordinate frame.
The equilibrium angles are an input to the real-time arm
controllers that implement virtual springs in the arm.

It is important to note that we control the arm to have low
mechanical impedance and the CEP trajectory (xCEP

1:t ) will be
different from the end effector trajectory (x1:t) unless there
are no external forces other than gravity. We refer the reader
to our previous work [6] for details about our implementation
of equilibrium point control, including how it can be used
to coordinate the motion of a mobile base and a compliant
arm.

IV. EXPERIMENTS

We evaluated the performance of our approach on five
different mechanisms: a cabinet door that opens to the right,
a cabinet door that opens to the left, a dishwasher, a drawer,
and a sliding cabinet door. We performed 8 trials for each
mechanism. The robot started approximately 1m from the
location of the handle. We specified manually the grasp
location by selecting a point in a 3D point cloud taken
by the robot, an orientation for the hook end effector, and
the initial pulling direction to the robot. The task for the
robot was to navigate up to the mechanism and operate
it, while learning the articulation model using the methods
described in Section III-C and Section III-A. We deemed a
trial to be successful if the robot navigated to the mechanism
and opened it through an angle greater than 60◦ for rotary
mechanisms or 0.3m for linear mechanisms.

A. Task Performance

Fig. 4 shows the robot after it has pulled open each of the
five mechanisms in one of the trials and Table I summarizes
the performance of the robot. The robot successfully opened
the 3 rotary mechanisms in 21 out of 24 trials and the 2 linear
mechanisms in all 16 trials. Overall the robot was successful
in 37 out of 40 trials (92.5%).

All three failures were due to the robot failing to hook
onto the handle prior to operating the mechanism, most likely
due to odometry errors and errors in the provided location of
the handle. In our experiments, we did not observe that the
model learning caused any errors. In principle, however, the
hook could slip off the handle if a wrong model had been
estimated.

B. Evaluation of Model Fitting and Selection

In our previous work, we used different estimators to find
the model parameters. In [6], we used a gradient-descent
minimizer with 3 degrees of freedom. This estimator was
only suitable for planar motions and required two initial
poses for left and right doors, while a drawer was assumed
when the estimated radius exceeded 5m. In [17], we use
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Fig. 5. Comparison of the performance of the model estimators in terms
of the average prediction error, evaluated on the full trajectory. For this
experiment, we excluded the dishwasher, because its door does not move
in the horizontal plane.

a RANSAC-based estimator for rotational models that de-
termines all degrees of freedom including the plane of the
rotation, the center of the rotation, the radius, and the object
orientation.

A quantitative evaluation of the accuracy of the estimators
is shown in Fig. 5. We compared the average prediction
error of the in-plane minimizer versus the in-plane and full
RANSAC estimator. We found that the RANSAC-based esti-
mators outperform the minimizer, probably due to the outlier
rejection. Using our RANSAC-based technique, estimating
the plane of rotation comes at no additional cost and allows
us to improve the accuracy of our models. The runtime of
our estimators is linear in the number of data points. At the
moment, the whole model fitting and selection step takes
5ms for a trajectory of 100 data points on a single 2.4 GHz
Intel Core.

Further, we found that our approach selected the correct
model candidate for all 37 trajectories after fully observing
them, i.e., a rotational model for the left door, the right door,
and the dishwasher, and a prismatic model for the drawer and
the sliding cabinet door.

C. Improving Model Estimation based on Experience

By using the approach described in Section III-B on data
from the robot operating the mechanisms in the 37 trials
of Section IV-A, we search for the set of models for all
trajectories with the lowest overall BIC. Figure 6 shows the
result of this experiment. The colors indicate the cluster to
which the trajectories have been assigned to. Our approach
correctly recognized that the robot had operated 5 different
mechanisms and assigned the 37 different trajectories cor-
rectly to the corresponding models.

In theory, our incremental clustering method may lead
to different models depending on the order in which the
data arrives. In order to evaluate this, we randomized the
order of the previously recorded dataset and analyzed the
resulting assignment of trajectories to models. We found
that the trajectories from different mechanisms were never
assigned to the same model. However, in 26 of 100 trials,
the trajectories of one of the five objects were clustered into
two models instead of one. After carefully inspecting the
data, we found that this happens when the first model for
an object is created from a trajectory where the robot was
slightly de-localized.
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We measured the average prediction error with and without
learning prior models (see Fig. 7), using leave-one-out cross-
validation and a randomized ordering of the trajectories.
We found that the prior models reduce the prediction error
considerably especially if the new trajectory is observed only
partially. When 30% to 70% of the new trajectory have been
observed, the prediction error is reduced by a factor of three
and more. As a result, the robot comes up with a substantially
more accurate model early and can utilize this knowledge for
better controlling its manipulator.

Throughout all experiments described so far, we used a
fixed global noise term of σ = 0.05m. This accounts for
inaccuracies in the observation of the end effector position,
due to variations in the hooking position, and small errors
in the kinematic forward model and robot base localization.
We found in repeated experiments that in the range between
0.02m ≤ σ ≤ 0.20m, the results are similar to our previous
results obtained with σ = 0.05m. Only for significantly
smaller values of σ, more models are created, for example
due to small variations of the grasping point and other
inaccuracies. For much larger values, observations from
different mechanisms are clustered into a joint model. Thus,
our results are insensitive to (small) variations in σ.

V. CONCLUSION

In this paper, we presented a novel approach that combines
kinematic model learning with equilibrium point control of
articulated objects. We implemented and tested our proposed
system on a real mobile manipulator. We showed that with
our approach the robot can reliably learn and operate various
mechanisms typically found in household environments. In

addition to that, we showed that a robot can gain experience
during manipulation and exploit information from previously
manipulated mechanisms to significantly improve the predic-
tion accuracy of its model.
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