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Abstract. In this this paper, we present a solution to the simultaneouslocaliza-
tion and mapping (SLAM) problem for a robot equipped with a single perspective
camera. We track extracted features over multiple frames toestimate the depth in-
formation. To represent the joint posterior about the trajectory of the robot and a
map of the environment, we apply a Rao-Blackwellized particle filter. We present
a novel method to match features using a cost function that takes into account
differences between the feature descriptor vectors as wellas spatial information.
To find an optimal matching between observed features, we apply a global opti-
mization algorithm. Experimental results obtained with a real robot show that our
approach is robust and tolerant to noise in the odometry information of the robot.
Furthermore, we present experiments that demonstrate the superior performance
of our feature matching technique compared to other approaches.

1 Introduction

Mapping is one of the fundamental problems in mobile robotics since representations
of the environment are needed for a series of high level applications. Without an ap-
propriate model of the environment, for example, delivery tasks cannot be carried out
efficiently. A large group of researchers investigated the so-called simultaneous local-
ization and mapping (SLAM) problem. The majority of approaches focuses on prox-
imity sensors to perceive the environment such as laser range finders, sonars, radars, or
stereo vision cameras.

In this paper, we address the problem of learning maps using amobile robot equipped
with a single perspective camera only. Compared to a laser range finder, cameras have
the advantage that they are cheap and lightweight. One of theproblems, however, is the
missing distance information to observed landmarks. This information is not provided
by a perspective camera. We present a mapping system that canuse this sensor setup
to learn maps of the environment. Our approach applies a Rao-Blackwellized particle
filter to maintain the joint posterior about the trajectory of the robot and the map of the
environment. We furthermore present a novel method to establish the data association
between features. It takes into account the individual feature descriptor vectors as well
as spatial constraints. Our approach is able to compute the optimal matching between
observed and already tracked features. To achieve this, we apply the Hungarian method
which is an efficient global optimization algorithm. Experiments carried out with a real
robot illustrate the advantages of our technique for learning maps with robots using a
single perspective camera.



2 Related Work

Davison et al. [1,2] proposed a visual SLAM approach using a single camera that
does not require odometry information. The system works reliable in room-size en-
vironments but is restricted in the number of landmarks it can handle. Landmarks are
matched by looking back into the image at the expected regionand by perfoming a lo-
cal match. Sim et al. [3] use a stereo camera in combination with FastSLAM [4]. SIFT
features [5] in both cameras are matched using their description vectors as well as the
epipolar geometry of the stereo system. The matching between observations and land-
marks is done using the SIFT descriptor only. In the bearing-only algorithm of Lemaire
et al. [6], the feature depth is estimated using a mixture of Gaussians. The Gaussians
are initialized along the first observation and they are pruned in the following frames.

3 Visual SLAM and Feature Matching

The joint posterior about the robot’s trajectory and the mapis represented by a Rao-
Blackwellized Particle Filter (RBPF) similar to FastSLAM [4]. It allows the robot to
efficiently model the joint posterior in a sampled fashion.

To obtain landmarks, we extract speeded-up visual features(SURF) [7] out of the
camera images. These features are invariant to translationand scale. They can be ex-
tracted using a Fast-Hessian keypoint detector. The 64-dimensional feature descriptor
vectord is computed using horizontal and vertical Haar wavelet responses. A rotational
dependent version of SURF is used since the roll angle of the camera is fixed when it is
attached to a wheeled robot.

In order to obtain spherical coordinates of a feature given its position in the image,
we apply a standard camera model. In this way, pixel coordinates of detected keypoints
are transformed into the azimuthal angleθ and the spherical angleφ . The distanceρ to
the observed feature cannot be measured since we use only a monocular camera. The
tuple(θ ,φ) is referred to as bearing-only observationz.

3.1 Observation Model

In this section, we assume that a map of 3D-landmark is given.Each landmarkl is
modeled by a 3D Gaussian(µ ,Σ). Moreover, we assume data association problem be-
tween observed features and landmarks is solved. These assumption are relaxed in the
subsequent sections.

For each particlek, each observationz = (θ ,φ)T perceived in the current frame is
matched with a landmarkl ∈ M[k], whereM[k] is the map carried by particlek. For each
complete assignment of the currently observed features to map features, an update of
the Rao-Blackwellized particle filter is carried out.

In order to determine the likelihood of an observationz in the update step of the
particle filter, we need to compute the predicted observation ẑ of landmarkl = (µ ,Σ)
for particlek. To achieve this, we have to apply two transformations. First, we transform
world coordinatesµ = (µ1,µ2,µ3)

T into camera-centric coordinatesc = (c1,c2,c3)
T



using the functiong. Afterwards, the camera-centric Cartesian pointc is transformed
into camera-centric spherical coordinatesẑ = (ρ̂ , θ̂ , φ̂ )T using the functionh:

ẑ = h(g(µl ,x
[k])) (1)

Here, x[k] is the current pose of particlek. The corresponding measurement uncer-
taintyQ is predicted using the JacobeanG = h′(g′(µl ,x[k])) as

Q = G ·Σ ·GT +diag(σρ ,σθ ,σφ ). (2)

Here,Σ is the covariance matrix corresponding to landmarkl , andσθ andσφ rep-
resent the uncertainty over the two spherical angles. The uncertainty over the depthσρ
is set to a high value in order to represent the bearing-only aspect of the update. The
observation likelihoodλ is based on a Gaussian model as

λ = |Q|−
1
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Since the depthρ to the observed feature is unknown, the pretended innovation (ρ − ρ̂)
is set to zero. We weight each particlek with respect to its observation likelihoodλ .

Finally, the Kalman gain is calculated byK = Σ ·GT ·Q−1 so that the landmark
(µ ,Σ) can be updated using anextended Kalman filter(EKF) approach.

3.2 Depth estimation and Landmark Initialization

Although it is possible to integrate bearing-only observations into the RBPF, the full
3D information is necessary in order to initialize landmarks in a 3D map. We track fea-
tures over consecutive frames and estimate the depthρ of the features using discrete
probability distributions similar to [1] but in a bottom-upmanner. When a featuref is
initially observed, a 3D ray is cast from the camera origino towards the observed fea-
ture. Equally weighted binsb[ j ] – representing different distancesρ [ j ] – are distributed
uniformly along this ray within a certain interval. This reflects the fact that initially
the distance to the feature is unknown. To get an estimate about the depth of the fea-
tures, they are tracked over consecutive frames (the next subsection explains the feature
matching process). In case the initial featuref is matched with a featurēf in the con-
secutive frame, the bins are projected back into that frame.They lie on the so-called
epipolar line[8], the projection of the 3D ray into the image. The depth hypothesesρ [ j ]

are weighted according to the distance to the pixel locationof feature f̄ using a Gaus-
sian model. Figure 1 illustrates the estimation process fortwo features in consecutive
frames. As soon as the variance of the histogramVar(ρ [ j ]) falls below a certain thresh-
old, the depth is estimated by the weighted average over the histogramρ = ∑ j h

[ j ] ·ρ [ j ].
If it is not possible to initialize a landmark withinn frames, the corresponding feature
is discarded (heren=5).



O

Fig. 1. This figure shows the depth estimation process for two features (crosses). Left: A ray is
cast from the camera origin through the initial feature. Center: The ray is re-projected in the
consecutive frame. This line (dashed) is calledepipolar line. Depth hypotheses (circles) were
distributed uniformly on the ray in the Cartesian space, which results in an irregular distribution in
the image space. Right: Hypotheses are weighted according to their distance to the corresponding
feature.

Depth Estimation as Preprocessing Step The robot’s pose at the point in time, when
the corresponding feature is observed initially, determines where the 3D ray is located
in the world. Naı̈vely, for each particle a histogram of depth hypotheses has to be main-
tained so that the bins can be updated accordingly to the individual particle poses. How-
ever, this would lead to an overhead in computation time and memory. Fortunately, it
is possible to maintain a depth histogram independently of the particles. The 3D ray is
described by the anglesθ , φ and an arbitrary origino. Over the followingn frames, the
relative motion is added too, so that the projection of the hypotheses’ positions into the
current frame can be calculated. Since the motion noise for wheeled robots is negligible
within n frames, it can be omitted for the depth estimation process only.

Landmark Initialization Once a feature is reliably tracked and the depth of a feature is
estimated, a landmarkl is initialized. This has to be done for each particlek individually.
Using the particle pose at the timet f when featuref was observed for the first time, the
global Cartesian landmark positionµ can be calculated by

µl := g−1
(

h−1(

ρ f ,θ f ,φ f
)

,x[k]
t f

)

, (4)

whereas the landmark uncertainty results from

Σ := G−T ·H−1 ·R·H−T ·G−1. (5)

The uncertainty over the depth estimation process is reflected by the diagonal covari-

ance matrixR= diag(Var(ρ [ j ]
f ),σθ ,σφ ).

3.3 Data Association

Finally, we describe how to match the current feature observations with landmarks in
the map as well as with tracked features which are not yet contained in the map. This
is done using the Hungarian method [9]. The Hungarian methodis a general method
to determine the optimal assignment under a given cost function. In our case, we use a
cost function that takes into account differences of the feature descriptor vectors as well
as well as spatial information to determine matches betweenobservations and tracked
features as well as between observations and landmarks.



Feature Matching Intuitively, features that are tracked to obtain the corresponding
depthρ can be matched based on their descriptor vectors using the Euclidean distance.
However, this approach has a serious short-coming. Its performance is low on similar
looking features since it completely ignores the feature positions. Thus, we instead use
the distance of the descriptor vectors as a hard constraint.Only if the Euclidean distance
falls below a certain threshold, a matching is considered. We define the cost function
by means of the epipolar line introduced in Section 3.2. By setting the matching cost
to the distance of the feature to this line in the image space (see Figure 2), not only the
pixel locations of the comparing features are considered but also the relative movement
of the robot between the corresponding frames is incorporated.

Landmark Matching Using Observation Likelihoods Similarly, during the match-
ing process between landmarks and observations we use the distance of the descriptor
vectors as a constraint. Landmarks are matched with observations using their positions.
Since the observations are bearing-only, the distance to the landmark position cannot
be computed directly. For this reason, the observation likelihood in Eq. (3) is used. It is
high if and only if the distance between the observation and prediction is small. Thus,
the cost is defined by the reciprocal of the observation likelihood 1/λ . If the observa-
tion likelihood lies below a certain threshold, the cost areset to a maximum value. This
refers to the fact that the features are regarded as different features with probability one.

4 Experimental Results

The first mapping experiment is performed on a wheeled robot equipped with a per-
spective camera and a laser range scanner (see Figure 3). Therobot was steered through
a 10m by 15m office environment for around 10 minutes. Two camera frames per sec-
ond and odometry data was recorded. In addition, laser rangedata is stored in order to
calculate a ground truth estimate of the robot’s trajectoryusing scan matching on the
laser data [10].

The results are illustrated in Figure 4. Following the presented approach, the average
error of the robot path in terms of the Euclidean distance in thex/y-plane is 0.28m. The
error in the orientation averages 3.9◦. Using the odometry of the robot only, one obtains
an average error of 1.69m in thex/y-plane and 22.8◦ in orientation.

We compared our feature matching approach using the Hungarian method on the
distance to the projected line to other three techniques. Figure 5 shows a qualitative

Fig. 2. Hungarian Matching: The cost function is set to the
distance between the epipolar line and the feature location
in the image space.

Fig. 3. Wheeled robot
equipped with a perspective
camera.
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Fig. 4. The robot’s trajectory is shown on the left, the corresponding error functions and uncer-
tainty are shown on the right. Top: If the robot explores an unknown environment, the error values
go up as well as the uncertainty. As soon as the loop is closed,the estimation error and uncertainty
decreases, whereas the odometry error still goes up. Bottom: Complete trajectory.

evaluation of our approach on a difficult example – a heater which has a number of very
similar looking features close to each other. Furthermore,we compare the Hungarian
method quantitatively to the nearest neighbor approach, both using the distance to the
epipolar line as cost function. If the Hungarian method is used, approximately 2% more
landmarks are initialized. This number – obtained by four different sequences of 500
images each – can be explained by the fact that mismatches arelikely to yield too high
variances in the depth estimation. Landmarks, however, areinitialized only if the depth
can be estimated with low variance. By manual inspection, one can see that the data
association has less errors than the nearest neighbor approach (see Figure 5).

5 Conclusions

In this paper, we presented a novel technique for learning maps with a mobile robot
equipped with a single perspective camera only. Our approach applies a RBPF to main-
tain the joint posterior about the trajectory of the robot and the map of the environment.
Using our approach, the robot is able to compute the optimal data association between
observed and already mapped features by applying the Hungarian method. Experiments
carried out with real a robot showed the effectiveness of ourapproach.
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