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Abstract. In this this paper, we present a solution to the simultanémadiza-
tion and mapping (SLAM) problem for a robot equipped withragé perspective
camera. We track extracted features over multiple framestimate the depth in-
formation. To represent the joint posterior about the ttajey of the robot and a
map of the environment, we apply a Rao-Blackwellized plerfitter. We present
a novel method to match features using a cost function thkastato account
differences between the feature descriptor vectors asaselpatial information.
To find an optimal matching between observed features, wiy apglobal opti-
mization algorithm. Experimental results obtained witleal robot show that our
approach is robust and tolerant to noise in the odometryrimdicion of the robot.
Furthermore, we present experiments that demonstrateiffegier performance
of our feature matching technique compared to other appesac

1 Introduction

Mapping is one of the fundamental problems in mobile rolsotince representations
of the environment are needed for a series of high level egipdins. Without an ap-
propriate model of the environment, for example, delivaigsks cannot be carried out
efficiently. A large group of researchers investigated thealled simultaneous local-
ization and mapping (SLAM) problem. The majority of apprioas focuses on prox-
imity sensors to perceive the environment such as laseerfaimders, sonars, radars, or
stereo vision cameras.

In this paper, we address the problem of learning maps usimaée robot equipped
with a single perspective camera only. Compared to a lasgierinder, cameras have
the advantage that they are cheap and lightweight. One gfrdi#ems, however, is the
missing distance information to observed landmarks. Tfizrmation is not provided
by a perspective camera. We present a mapping system thaseahis sensor setup
to learn maps of the environment. Our approach applies aBRackwellized particle
filter to maintain the joint posterior about the trajectofyhee robot and the map of the
environment. We furthermore present a novel method to kstiahe data association
between features. It takes into account the individualfieadlescriptor vectors as well
as spatial constraints. Our approach is able to computeptimal matching between
observed and already tracked features. To achieve thispplg the Hungarian method
which is an efficient global optimization algorithm. Expegnts carried out with a real
robot illustrate the advantages of our technique for le@ymhaps with robots using a
single perspective camera.



2 Redated Work

Davison et al. [1,2] proposed a visual SLAM approach usindgngls camera that
does not require odometry information. The system workigkd in room-size en-
vironments but is restricted in the number of landmarks it kandle. Landmarks are
matched by looking back into the image at the expected regioinby perfoming a lo-
cal match. Sim et al. [3] use a stereo camera in combinatitmmastSLAM [4]. SIFT
features [5] in both cameras are matched using their déggripectors as well as the
epipolar geometry of the stereo system. The matching betwbservations and land-
marks is done using the SIFT descriptor only. In the beaoinly-algorithm of Lemaire
et al. [6], the feature depth is estimated using a mixture afigdians. The Gaussians
are initialized along the first observation and they are pd.n the following frames.

3 Visual SLAM and Feature Matching

The joint posterior about the robot’s trajectory and the rizapepresented by a Rao-
Blackwellized Particle Filter (RBPF) similar to FastSLAM]][ It allows the robot to
efficiently model the joint posterior in a sampled fashion.

To obtain landmarks, we extract speeded-up visual fea{®@RF) [7] out of the
camera images. These features are invariant to transkatiorscale. They can be ex-
tracted using a Fast-Hessian keypoint detector. The 64mbonal feature descriptor
vectord is computed using horizontal and vertical Haar waveletaasps. A rotational
dependent version of SURF is used since the roll angle ofgdheeca is fixed when it is
attached to a wheeled robot.

In order to obtain spherical coordinates of a feature git®pasition in the image,
we apply a standard camera model. In this way, pixel cootdinaf detected keypoints
are transformed into the azimuthal an§lend the spherical angtg The distance to
the observed feature cannot be measured since we use onlgacutar camera. The
tuple (8, @) is referred to as bearing-only observation

3.1 Observation Model

In this section, we assume that a map of 3D-landmark is gizach landmark is
modeled by a 3D Gaussidp, > ). Moreover, we assume data association problem be-
tween observed features and landmarks is solved. Thesmpsisn are relaxed in the
subsequent sections.

For each particlé, each observation= (8, )" perceived in the current frame is
matched with a landmaike MK, whereM¥ is the map carried by particle For each
complete assignment of the currently observed featuresafo features, an update of
the Rao-Blackwellized patrticle filter is carried out.

In order to determine the likelihood of an observatioim the update step of the
particle filter, we need to compute the predicted obsermdtiof landmarkl = (u,2)
for particlek. To achieve this, we have to apply two transformationstfive transform
world coordinatesu = (uy, p2, u3)" into camera-centric coordinates= (cy,Cp,c3)"



using the functiorg. Afterwards, the camera-centric Cartesian paii transformed
into camera-centric spherical coordinates (9,0, )" using the functiorh:

2=h(g(m,x¥)) 1)

Here, x| is the current pose of particke The corresponding measurement uncer-
tainty Q is predicted using the Jacobe@nr=h'(g/ (i, x¥)) as

Q=G> -G +diag 0y, 0, 0y). (2)

Here,Z is the covariance matrix corresponding to landmadndag and oy, rep-
resent the uncertainty over the two spherical angles. Thertainty over the deptt,
is set to a high value in order to represent the bearing-aspget of the update. The
observation likelihood is based on a Gaussian model as

0 \' 0
A=|Q Zexp _%(e_é) Ql(e—q) . 3)
p—9¢ ()

Since the dept to the observed feature is unknown, the pretended innavétie- p)
is set to zero. We weight each parti&levith respect to its observation likelihoad

Finally, the Kalman gain is calculated b= > - G" - Q! so that the landmark
(1, %) can be updated using axtended Kalman filtefEKF) approach.

3.2 Depth estimation and Landmark Initialization

Although it is possible to integrate bearing-only obsepra into the RBPF, the full
3D information is necessary in order to initialize landnsairka 3D map. We track fea-
tures over consecutive frames and estimate the demththe features using discrete
probability distributions similar to [1] but in a bottom-upanner. When a featureis
initially observed, a 3D ray is cast from the camera origiiowards the observed fea-
ture. Equally weighted binis'il — representing different distance8! — are distributed
uniformly along this ray within a certain interval. This mdts the fact that initially
the distance to the feature is unknown. To get an estimataetabe depth of the fea-
tures, they are tracked over consecutive frames (the nbsestion explains the feature
matching process). In case the initial featdirss matched with a featuré in the con-
secutive frame, the bins are projected back into that frarhey lie on the so-called
epipolar line[8], the projection of the 3D ray into the image. The depthd‘tjnpsesom
are weighted according to the distance to the pixel locatidieaturef using a Gaus-
sian model. Figure 1 illustrates the estimation processworfeatures in consecutive
frames. As soon as the variance of the histog\;@n@p[”) falls below a certain thresh-
old, the depth is estimated by the weighted average overishagnamp = 3 ; hlil . plil.

If it is not possible to initialize a landmark withimframes, the corresponding feature
is discarded (here=5).
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Fig. 1. This figure shows the depth estimation process for two feat(grosses). Left: A ray is

cast from the camera origin through the initial feature. t€enThe ray is re-projected in the
consecutive frame. This line (dashed) is calegdpolar line Depth hypotheses (circles) were
distributed uniformly on the ray in the Cartesian spacechésults in an irregular distribution in

the image space. Right: Hypotheses are weighted accomlthgit distance to the corresponding
feature.

Depth Estimation as Preprocessing Step The robot’s pose at the point in time, when
the corresponding feature is observed initially, detegsiwhere the 3D ray is located
in the world. Naively, for each particle a histogram of delpypotheses has to be main-
tained so that the bins can be updated accordingly to theichdil particle poses. How-
ever, this would lead to an overhead in computation time aacthary. Fortunately, it
is possible to maintain a depth histogram independentli®ptrticles. The 3D ray is
described by the anglés @ and an arbitrary origin. Over the followingn frames, the
relative motion is added to, so that the projection of the hypotheses’ positions inéo th
current frame can be calculated. Since the motion noiselfi@eled robots is negligible
within n frames, it can be omitted for the depth estimation procels on

Landmark Initialization Once a feature is reliably tracked and the depth of a feature i
estimated, a landmatks initialized. This has to be done for each particiedividually.
Using the particle pose at the timyewhen feature was observed for the first time, the
global Cartesian landmark positipncan be calculated by

1 (e K
=g (0 (or, 61, 1) 4 ). (4)
whereas the landmark uncertainty results from
S=GT-HLRHT.GL (5)

The uncertainty over the depth estimation process is refidoy the diagonal covari-
ance matribR = diag(Var(pP]), 0g, ).

3.3 DataAssociation

Finally, we describe how to match the current feature olaems with landmarks in

the map as well as with tracked features which are not yetagwed in the map. This

is done using the Hungarian method [9]. The Hungarian meth@dgeneral method
to determine the optimal assignment under a given costifumdn our case, we use a
cost function that takes into account differences of theufeedescriptor vectors as well
as well as spatial information to determine matches betwbservations and tracked
features as well as between observations and landmarks.



Feature Matching Intuitively, features that are tracked to obtain the cqroesling
depthp can be matched based on their descriptor vectors using ttiel&an distance.
However, this approach has a serious short-coming. ltopaence is low on similar
looking features since it completely ignores the featurgtmms. Thus, we instead use
the distance of the descriptor vectors as a hard constéihy.if the Euclidean distance
falls below a certain threshold, a matching is considereel.défine the cost function
by means of the epipolar line introduced in Section 3.2. Biirggthe matching cost
to the distance of the feature to this line in the image spsee Figure 2), not only the
pixel locations of the comparing features are considerédllso the relative movement
of the robot between the corresponding frames is incorpdrat

Landmark Matching Using Observation Likelihoods Similarly, during the match-
ing process between landmarks and observations we usestih@ck of the descriptor
vectors as a constraint. Landmarks are matched with olig@mrsaising their positions.
Since the observations are bearing-only, the distanceetéatidmark position cannot
be computed directly. For this reason, the observatiofili@ed in Eq. (3) is used. It is
high if and only if the distance between the observation aediption is small. Thus,
the cost is defined by the reciprocal of the observationitikeld 1/A . If the observa-
tion likelihood lies below a certain threshold, the costsetto a maximum value. This
refers to the fact that the features are regarded as diffegatures with probability one.

4 Experimental Results

The first mapping experiment is performed on a wheeled rofoipped with a per-
spective camera and a laser range scanner (see Figure 3pbidievas steered through
a 10m by 15m office environment for around 10 minutes. Two carframes per sec-
ond and odometry data was recorded. In addition, laser rdaigeis stored in order to
calculate a ground truth estimate of the robot’s trajectaiyng scan matching on the
laser data [10].

The results are illustrated in Figure 4. Following the présd approach, the average
error of the robot path in terms of the Euclidean distancléxty-plane is 028m. The
error in the orientation average®3. Using the odometry of the robot only, one obtains
an average error of. @9m in thex/y-plane and 23° in orientation.

We compared our feature matching approach using the Huargarethod on the
distance to the projected line to other three techniquegirei5 shows a qualitative
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Fig. 2. Hungarian Matching: The cost function is set to the ]

distance between the epipolar line and the feature location ~ Fig-3.  Wheeled  robot

in the image space. equipped with a perspective
camera.
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Fig.4. The robot’s trajectory is shown on the left, the correspogdirror functions and uncer-

tainty are shown on the right. Top: If the robot explores aknamvn environment, the error values

go up as well as the uncertainty. As soon as the loop is cltise@stimation error and uncertainty
decreases, whereas the odometry error still goes up. Bo@omplete trajectory.

evaluation of our approach on a difficult example — a heatéchvhas a number of very
similar looking features close to each other. Furthermaeecompare the Hungarian
method quantitatively to the nearest neighbor approadh, lising the distance to the
epipolar line as cost function. If the Hungarian method sdjspproximately 2% more
landmarks are initialized. This number — obtained by fodfedent sequences of 500
images each — can be explained by the fact that mismatchékedyeo yield too high
variances in the depth estimation. Landmarks, howevemdiaized only if the depth
can be estimated with low variance. By manual inspectioe, can see that the data
association has less errors than the nearest neighboragbpisee Figure 5).

5 Conclusions

In this paper, we presented a novel technique for learningsméth a mobile robot
equipped with a single perspective camera only. Our apprapplies a RBPF to main-
tain the joint posterior about the trajectory of the robat e map of the environment.
Using our approach, the robot is able to compute the optimi@ dssociation between
observed and already mapped features by applying the Hiamgaethod. Experiments
carried out with real a robot showed the effectiveness obpproach.
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Fig. 5. Starting from the current frame at timewe look back to evaluate how many features in
the current frame were reliable tracked over the last foamfs. The nearest neighbor assign-
ment on SURF descriptors (left) results in 10 matches andisghaiches, whereas our approach
results in 20 matches and 4 mismatches (right). Our appraksthoutperforms the two other

combinations: nearest neighbor assignment using thegbesidine (14 matches, 7 mismatches)
and the Hungarian method on the SURF descriptors (14 matémaismatches).
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