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2Örebro University, AASS, Dept. of Technology, S-70182 Örebro, Sweden
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Abstract— In this paper, we consider the problem of learning a
two dimensional spatial model of a gas distribution with a mobile
robot. Building maps that can be used to accurately predict the
gas concentration at query locations is a challenging task due
to the chaotic nature of gas dispersal. We present an approach
that formulates this task as a regression problem. To deal with
the specific properties of typical gas distributions, we propose
a sparse Gaussian process mixture model. This allows us to
accurately represent the smooth background signal as well as
areas of high concentration. We integrate the sparsification of
the training data into an EM procedure used for learning the
mixture components and the gating function. Our approach has
been implemented and tested using datasets recorded with a real
mobile robot equipped with an electronic nose. We demonstrate
that our models are well suited for predicting gas concentrations
at new query locations and that they outperform alternative
methods used in robotics to carry out in this task.

Index Terms— Gas distribution modeling, gas sensing, Gaus-
sian processes, mixture models

I. INTRODUCTION

Gas distribution modeling has important applications in

industry, science, and every-day life. Mobile robots equipped

with gas sensors are deployed, for example, for pollution mon-

itoring in public areas [1], surveillance of industrial facilities

producing harmful gases, or inspection of contaminated areas

within rescue missions.

Although humans have a natural odor sensor, it is hard for

us to build a spatial representation of a sensed gas distribution.

Building gas distribution maps is actually a challenging task

due to the chaotic nature of gas dispersal. The complex interac-

tion of gas with its surroundings is dominated by two physical

effects. First, on a comparably large timescale, diffusion mixes

the gas with the surrounding atmosphere to achieve a homo-

geneous mixture of both in the long run. Second, turbulent

air flow fragments the gas emanating from a source into

intermittent patches of high concentration with steep gradients

at their edges [16]. Especially this chaotic system of localized

patches of gas makes the modeling problem a hard one. In

addition to that, gas sensors provide information about a small

spatial region only since gas sensor measurements require

direct interaction between the sensor surface and the analyze

molecules. This makes gas sensing different to perceiving the

environment with laser range finders or other popular robotic

sensors.

Fig. 1 illustrates actual gas concentration measurements

recorded with a mobile robot along a corridor containing a
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Fig. 1. Gas concentration measurements acquired by a mobile robot in a
corridor. The distribution consists of a rather smooth “background” signal and
several peaks indicating high gas concentrations.

single gas source. The distribution consists of a rather smooth

“background” signal and several peaks indicating high gas

concentrations. The challenge in gas distribution mapping is

to model this background signal while being able to cover

also the areas of high concentration and their sharp bound-

aries. Since performing measurements is a comparably costly

operation, one is also interested in reducing the number of

samples needed to build a representation. It is important to

note that the noise is dominated by the large fluctuations of

the instantaneous gas distribution and not by the electronic

noise of the gas sensors. From a probabilistic point of view,

the task of modeling a gas distribution can be described as

finding a model that best explains the observations and that is

able to accurately predict new ones. Thus, the data likelihood

in combination with cross validation is the standard criterion

to evaluate such a model.

Simple spatial averaging, which represents a straight-

forward approach to the modeling problem, disregards the

different nature of the background noise and the peaks result-

ing from areas of high gas concentrations and, thus, achieves

only limited prediction accuracy. On the other hand, precise

physical simulation of the gas dynamics in the environment

would require immense computational resources as well as

precise knowledge about the physical conditions, which is not

known in most practical scenarios.

To achieve a balance between model accuracy and tractabil-

ity, we treat gas distribution mapping as a two-dimensional

regression problem. We derive a solution by means of a

sparse mixture model of Gaussian process experts [21] that

is able to handle both physical phenomena highlighted above.



Formally, we interpret gas sensor measurements obtained from

static sensors or from a mobile robot at locations as noisy

samples from a time-constant distribution. This implies that the

gas distribution in fact exhibits a time-constant structure, an

assumption that is often made in unventilated and un-populated

indoor environments [22].

While existing approaches to gas distribution mapping such

as local averaging [6, 11], kernel extrapolation techniques [7],

or standard GP models represent the average concentration

per location only, our mixture model explicitly distinguishes

different components of the distribution, i.e., concentration

layers varying smoothly due to dispersion processes versus

those containing localized patches of gas. This leads to a

more accurate prediction of the gas concentration. Our model

actually allows us to do both, computing the average gas

concentration per location (as existing models supply) as well

as the multi-modal predictive densities.

The contribution of this paper is a novel approach that learns

gas distribution models from sensor data using a sparse Gaus-

sian process mixture model. As a by-product, we present an

algorithm that learns a GP mixture model and simultaneously

reduces the model complexity in order to achieve an efficient

representation even for large data sets. Our technique provides

gas concentration estimates for each location in space and also

the corresponding predictive uncertainties. The mixture model

allows us to improve the gas concentration estimate close

to the boundaries and in areas with high gas concentration

compared to standard models. As we will demonstrate in

experiments carried out with a real robot, our model has a

lower mean squared error and a higher data likelihood than

other methods and thus allows to more accurately predict gas

concentration at query locations.

This paper is organized as follows. After a discussion of

related work, we introduce in Sec. III Gaussian processes for

regression. Then, Sec. IV explains our approach to learn a

sparse GP mixture to model gas distributions from observa-

tions. Finally, we present the experimental evaluation of our

work with a real mobile robot.

II. RELATED WORK

A straightforward method to create a representation of the

time-averaged concentration field is to perform measurements

over a prolonged time with a grid of gas sensors. Equidistant

gas sensor locations can be used to represent the average

concentration values directly on a grid map. This method,

though with partially simultaneous measurements, was applied

by Ishida et al. [6]. A similar method was used in [11] but

instead of the average concentration, the peak concentration

observed during a sampling period of 20 s was considered to

create the map.

Consecutive measurements with a single sensor and time-

averaging over 2 minutes for each sensor location were used

by Pyk et al. [12] to create a map of the distribution of ethanol.

Methods, which aim at determining a map of the instantaneous

gas distribution from successive concentration measurements,

rely on the assumption of a time-constant distribution profile,

i.e., uniform delivery and removal of the analyze gas and stable

environmental conditions. Thus, the experiments of Pyk et al.

were performed in a wind tunnel with a constant airflow and a

uniform gas source. To make predictions at locations different

from the measurement points, they apply bi-cubic interpolation

in the case of equidistant measurements and triangle-based

cubic filtering in the case where the measurement points are

not equally distributed [12]. A problem with these interpo-

lation methods is that there is no means of “averaging out”

instantaneous response fluctuations at measurement locations.

Even if response values were measured very close to each

other, they will appear independently in the gas distribution

map with interpolated values in-between. Consequently, inter-

polation maps tend to get more and more jagged while new

measurements are added [8].

Histogram methods take the spatial correlation of concen-

tration measurements into account because of the implicit

extrapolation on the measurements by the quantization into

histogram bins. Hayes et al. [5] suggest a two-dimensional

histogram where the bins contain the accumulated number of

“odor hits” received in the corresponding area. Odor hits are

counted whenever the response level of a gas sensor exceeds

a defined threshold. In addition to the dependency of the

gas distribution map on the selected threshold, a problem

with using only binary information from the gas sensors is

that much useful information about fine gradations in the

average concentration is discarded. A further disadvantage

of histogram methods for gas distribution modeling is their

dependency on the bin size and that they require perfectly

even coverage of the inspected area.

Kernel extrapolation gas distribution mapping, which can

be seen as an extension of histogram methods, was introduced

by Lilienthal and Duckett [7]. Spatial integration is carried out

by convolving sensor readings and modeling the information

content of the point measurements with a Gaussian kernel.

As discussed in [8], this method has also an analogy with

non-parametric estimation of density functions using a Parzen

window method.

Model-based approaches as in Ishida et al. [6] infer the

parameters of an analytical gas distribution model from

the measurements. They depend crucially on the underlying

model. Complex numerical models based on fluid dynamics

simulations are computationally expensive and depend sensi-

tively on accurate knowledge of the state of the environment

(boundary conditions) which is not available in practical

situations. Simpler analytical models, on the other hand, often

rest on rather unrealistic assumptions and are of course only

applicable for situations in which the model assumptions

hold. Model-based approaches also rely on well-calibrated

gas sensors and an established understanding of the sensor-

environment interaction.

The majority of approaches proposed in the literature create

a two-dimensional representation and represent time-constant

structures in the gas distribution. Also the effort (either in

terms of time consumption or the number of sensors) of the

model-free approaches to converge to a stable representation,

scales quadratically with the size of the environment. None of

the approaches suggested so far models the variance together

with the time-average of the concentration field.



In contrast to those approaches, we apply Gaussian pro-

cesses in a mixture model setting to learn probabilistic gas

distribution maps. GPs allow us to model the dependency

between nearby locations by means of a covariance function.

They enable us to make predictions at locations not observed

so far and do not only provide the mean gas distribution but

also a predictive variance. Our mixture model can furthermore

model sharp boundaries of areas with high gas concentration.

Gaussian processes (GPs) are a non-parametric method

frequently used to solve regression and classification prob-

lems [13]. A drawback of the standard GP approach is its com-

putational complexity. However, several methods for learning

sparse GP models [18, 19] have been presented that overcome

this limitation and lead to a near-linear complexity [19].

Tresp [21] introduced a mixture model of GP experts to better

deal with spatially varying properties in the data. Extensions of

this technique using infinite mixtures have been proposed by

Rasmussen and Ghahramani [15] and Meeds and Osindero [9].

GPs have already received considerable attention within the

robotics community. Schwaighofer et al. [17] introduced a

positioning system for cellular networks based on Gaussian

processes. Brooks et al. [2] proposed a Gaussian process

model in the context of appearance-based localization with

an omni-directional camera. Ferris et al. [3] applied Gaus-

sian processes to locate a mobile robot from wireless signal

strength. Related Bayesian regression approaches have been

also followed for example by Ting et al. [20] to identify rigid

body dynamics and Grimes et al. [4] to learn imitative whole-

body motions.

III. GAUSSIAN PROCESSES FOR REGRESSION

The general gas distribution mapping problem, given a set

of gas concentration measurements y1:n acquired at locations

x1:n, is to learn a predictive model p(y∗ | x∗,x1:n, y1:n) for

gas concentrations y∗ at a query location x∗. We address

this estimation problem as a regression problem. Gaussian

processes (GPs) offer a flexible way of solving such regression

problems [13]. GPs are a “non-parametric” method, since no

parametric form of the underlying function x 7→ y is assumed.

The model is represented directly using the given training data.

GPs can be seen as a generalization of the Gaussian probability

distribution to a distribution over functions. A GP for real-

valued functions f is defined by a mean function m(·) and a

covariance function k(·, ·)

m(x) = E[f(x)] (1)

k(xp,xq) = E[(f(xp)−m(xp))(f(xq)−m(xq))]. (2)

In the following, we set m(x) = 0 for simplicity of notation

and apply the squared exponential covariance function

k(xp,xq) = σ2

f · exp

(

−
1

2

|xp − xq|
2

l2

)

. (3)

Observations y obtained from the process are assumed to be

affected by Gaussian noise, y ∼ N (m(x), σ2

n). The variables

Φ = {σf , l, σn} are the so-called hyperparameters of the

process which have to be learned from data.

Given a set D = {(xi, yi)}ni=1
of training data where xi ∈

R
d are the inputs and yi ∈ R the targets, the goal in regression

is to predict target values y∗ ∈ R at a new input point x∗. Let

X = [x1; . . . ;xn] be the n × d matrix of the inputs and X∗

be defined analogously for multiple test data points. In the GP

model, any finite set of samples is jointly Gaussian distributed
[

y

f(X∗)

]

∼ N

(

0,

[

K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

, (4)

where K(·, ·) refers to the matrix with the entries given by the

covariance function k(·, ·) and y the vector of the (observed)

targets yi. To actually make predictions at X∗, we obtain for

the predictive mean

f̄(X∗) := E[f(X∗)] = K(X∗, X)[K(X,X) + σ2

nI]−1y (5)

and for the (noise-free) predictive variance

V[f(X∗)] = K(X∗, X∗)

−K(X∗, X)[K(X,X) + σ2

nI]−1K(X,X∗), (6)

where I is the identity matrix. The corresponding (noisy)

predictive variance for an observation y∗ can be obtained by

adding the noise term σ2

n to the individual components of

V[f(X∗)].
GPs are a sound mathematical framework with many prac-

tical applications. The standard GP model as described above,

however, has two major limitations in our problem domain.

First, the computational complexity is high, since to compute

the predictive variance given in Eq. (6), one needs to invert

the matrix K(X,X) + σ2

nI , which introduces a complexity

of O(n3) where n is the number of training examples. As a

result, an important issue for GP-based solutions to practical

problems is the reduction of this complexity. This can, as we

will show in Sec. IV, be achieved by artificially limiting the

training data set in a way that introduces small loss in the data

likelihood of the whole training set while at the same time

minimizing the runtime. As a second limitation, the standard

GP model generates a uni-modal distribution per input location

x. This assumption hardly fits our application domain in which

a relatively smooth “background” signal is typically mixed

with high-concentration “packets” of gas. In the following,

we address this issue by deriving a mixture model of Gaussian

processes.

A. Mixtures of Gaussian Process Models

The GP mixture model [21] constitutes a locally weighted

sum of several Gaussian process models. For simplicity of no-

tation, we consider without loss of generality the case of single

predictions only (x∗ instead of X∗). Let {GP1, . . . ,GPm}
be a set of m Gaussian processes representing the individual

mixture components. Let P (z(x∗) = i) be the probability that

x∗ is associated with the i-th component of the mixture. Let

f̄i(x∗) be the mean prediction of the GPi at x∗. The likelihood

of observing y∗ in such as model is thus given by

h(x∗) := p(y∗ | x∗) =

m
∑

i=1

P (z(x∗) = i) · Ni(y∗;x∗) , (7)

where we define Ni(y;x) as the Gaussian density function

with mean f̄i(x) and variance V[fi(x)] + σ2

n evaluated at



y. One can sample from such a mixture by first sampling

the mixture component according to P (z(x∗) = i) and

then sampling from the corresponding Gaussian. For some

applications such as information-driven exploration missions,

it is practical to estimate the mean and variance for this multi-

modal model. The mean E[h(x∗)] of the mixture model is

given by

h̄(x∗) := E[h(x∗)] =
m

∑

i=1

P (z(x∗) = i) · f̄i(x∗) (8)

and the corresponding variance is computed as

V[h(x∗)] =
m

∑

i=1

(V[fi(x∗)] + (f̄i(x∗)− h̄(x∗))
2)

· P (z(x∗) = i). (9)

IV. LEARNING THE MIXTURE MODEL FROM DATA

Given a training set D = {(xj , yj)}
n
j=1

of gas concentration

measurements yj and the corresponding sensing locations xj ,

the task is to jointly learn the assignment z(xj) of data

points to mixture components and, given this assignment,

the individual regression models GPi. Tresp [21] describes

an approach based on Expectation Maximization (EM) for

solving this task. We take his approach, but also seek to

minimize the model complexity to achieve a computationally

tractable model even for large training data sets D. This

is of major importance in our application, since typical gas

concentration data sets easily exceed n = 1000 data points and

the standard GP model (see Sec. III) is of cubic complexity

O(n3). Different solutions have been proposed for lowering

this upper bound, such as dividing the input space into

different regions and solving these problems individually or

the usage of the so called sparse GPs. Sparse GPs [18, 19]

use a reduced set of inputs to approximate the full space.

This new set can be either a subset of the original inputs [18]

or a set of new pseudo-inputs [19] which are obtained using

an optimization procedure. This reduces the complexity from

O(n3) to O(nm2) with m≪ n, which in practice results in a

nearly linear complexity. In this section, we describe a greedy

forward-selection algorithm integrated into the EM-learning

procedure which achieves a sparse mixture model while also

maximizing the data likelihood of the whole training set D.

A. Initializing the Mixture Components

In a first step, we subsample n1 data points and learn a

standard GP for this set. This model GP1 constitutes the

first mixture component. To cover areas of gas concentrations

that are poorly modeled by this initial model, we learn an

“error GP” which models the absolute differences between

a set of target values and the predictions of GP1. We then

sample points according to the error GP and use them as the

initialization for the next mixture component. In this way, the

new mixture is initialized with the data points that are poorly

approximated by the first one. This process is continued until

the desired number m of model components is reached. For

typical gas modeling scenarios, we found that two mixture

components are often sufficient to achieve good results. In

our experiments, the converged mixture models nicely reflect

the bi-modal nature of gas distributions, having one smooth

“background” component and a layer of locally concentrated

structures as outlined in the introduction of this paper.

B. Iterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be used

to obtain a maximum likelihood estimate when hidden and

observable variables need to be estimated. It consists of two

steps, the so-called estimation (E) step and the maximiza-

tion (M) step which are executed alternately.

In the E-step, we estimate the probability P (z(xj) = i) that

the data point j corresponds to the model i. This is done by

computing the marginal likelihood of each data point for all

models individually. Thus, the new P (z(xj) = i) is computed

given the previous one as

P (z(xj) = i) ←
P (z(xj) = i) · Ni(yj ;xj)

∑m

k=1
P (z(xj) = k) · Nk(yj ;xj)

.(10)

In the M-step, we update the components of our mixture

model. This is achieved by integrating the probability that a

data point belongs to a model component into the individual

GP learning steps (see also [21]). This is achieved by modi-

fying Eq. (5) to

f̄i(X∗) = K(X∗, X)[K(X,X) + Ψi]−1y, (11)

where Ψi is a matrix with

Ψi
jj =

σ2

n

P (z(xj) = i)
(12)

and zeros in the off-diagonal elements. Eq. (6) is updated

respectively. The matrix Ψi allows us to consider the prob-

abilities that the individual inputs belong to the corresponding

components. The contribution of an unlikely data point to a

model is reduced by increasing the data point specific noise

term. If the probability, however, is one, only σ2

n remains as

in the standard GP model.

Learning a GP model also involves the estimation of its

hyperparameters Φ = {σf , l, σn}. To estimate them for GPi,

we first apply a variant of the hyperparameter heuristic used

by Snelson and Ghahramani [19] in their open-source imple-

mentation. We extended it to incorporate the correspondence

probability P (z(xk) = i) into this initial guess

l ← max
xj

P (z(xj) = i) ||xj − x̄|| (13)

σ2

f ←

∑n

j=1
P (z(xj) = i) (yj − E[y])2
∑n

j=1
P (z(xj) = i)

(14)

σ2

n ← 0.25 · σ2

f , (15)

where x̄ refers to the weighted mean of the inputs—each xj

having a weight of P (z(xj) = i).
To optimize the hyperparameters further given this initial es-

timate, one could apply, for example, Rasmussen’s conjugate-

gradient–based optimization technique [14] to minimize the

negative log marginal likelihood. In our experiments, however,

this approach lead to serious overfitting and we therefore

resorted to cross validation-based optimization. Concretely, we



randomly sample the hyperparameters and evaluate the model

accuracy according to Sec. IV-B on a separate validation set.

As a sampling strategy, we draw in each even iteration new

parameters from an uninformed prior and in each odd iteration,

we improve the current best parameters Θ′ by sampling from

a Gaussian with mean Θ′. The standard deviation of that

Gaussian decreases with the iteration. In our experiments,

this strategy found appropriate hyperparameters quickly while

significantly reducing the risk of overfitting.

C. Learning the Gating Function

In our mixture model, the gating function defines for each

data point the likelihood that it belongs to the individual mix-

ture components. The EM algorithm learns these assignment

probabilities for all inputs xj , maximizing the overall data

likelihood. These learned hidden variables are then used to

estimate the assignment at an unknown location x∗ by means

of regression. Concretely, we learn a gating GP for each

component i that uses the xj as inputs and the z(xj) obtained

from the EM algorithm as targets. Let f̄z
i (x) be the prediction

of z for GPi. Given this set of m GPs, we can compute the

correspondence probability for a new test point x∗ as

P (z(x∗) = i) =
exp(f̄z

i (x∗))
∑m

j=1
exp(f̄z

j (x∗))
. (16)

D. Illustrating Example

We have specified all quantities that are needed to model gas

distributions with sparse Gaussian process mixture models. To

summarize the approach, we use a a simple, simulated, one-

dimensional example.

The first part of the data points where uniformly distributed

around a y value of 2 while the second part was generated

with higher noise at two distinct locations. The left image of

Fig. 2 depicts the standard GP learned from the input data and

the right one the resulting error GP. Based on the error GP, a

second mixture component is initialized and used as the input

to the EM algorithm.

The individual images in Fig. 3 illustrate the iterations

of the EM algorithm. They depict the two components of

the mixture model. After convergence, the gating function

is learned using the hidden variables reported by the EM

algorithm. The learned gating function is depicted in the left

image of Fig. 4 and the final GP mixture model is shown

in the right image. It is obvious that this model is a better

representation of the distribution than the standard GP model

shown in the left image of Fig. 2 (averaged negative log

likelihood of -1.70 vs. -0.24).

V. EXPERIMENTS

We carried out pollution monitoring experiments in which

the robot followed a predefined sweeping trajectory covering

the area of interest. Along its path, the robot was stopped at a

pre-defined set of grid points to carry out measurements on the

spot between 10 s (outdoors) and 30 s (indoors). The spacing

between the grid points was set to values between 0.5 m to

2.0 m depending on the topology of the available space. The
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Fig. 2. Left: The standard GP used to initialize the first mixture component.
Right: The error GP used to initialize the next mixture component.

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

Fig. 3. Components during different iterations of the EM algorithm.
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Fig. 4. Left: The learned gating function. Right: Resulting distribution of
the GP mixture model.

sweeping motion was performed twice in opposite directions

and the robot was driven at a maximum speed of 5 cm/s in

between the stops (to reduce the risk of turbulent air flow due

to the motion of the robot). The gas source was a small cup

filled with ethanol.

Apart from a SICK laser range scanner used for pose

correction, the robot was equipped with an electronic nose

and an anemometer. The electronic nose comprises six Figaro

gas sensors (2 × TGS 2600, TGS 2602, TGS 2611, TGS

2620, TGS 4161) enclosed in an aluminum tube. This tube

is horizontally mounted at the front side of the robot (see also

Fig. 5). The electronic nose is actively ventilated through a fan

that creates a constant airflow towards the gas sensors. This

lowers the effect of external airflow and the movement of the

robot on the sensor response.

Note that in this work, we concentrate only on the gas

concentration measurements and do not consider the pose

uncertainty of the vehicle. One can apply one of the various

SLAM systems available to account for the uncertainty in the

robot’s pose.



Fig. 5. Pictures of the robot inspecting three different environments as well
as the corresponding sweeping trajectories.

TABLE I

AVERAGED NEGATIVE LOG LIKELIHOODS OF TEST DATA POINTS GIVEN

THE DIFFERENT MODELS

Dataset GP GPM GPM avg

3-rooms -1.22 -1.54 -1.50

corridor -0.98 -1.60 -1.58

outdoor -1.01 -1.77 -1.69

Three environments with different properties have been

selected for the pollution monitoring experiments. The first

experiment (3-rooms) was carried out in an enclosed indoor

area that consists of three rooms which are separated by

slightly protruding walls in between them. The area covered

by the path of the robot is approximately 14×6 m2. There

is very little exchange of air with the “outer world” in this

environment. The gas source was placed in the central room

and all three rooms were monitored by the robot. The second

location was a part of a corridor with open ends and a high

ceiling. The area covered by the trajectory of the robot is ap-

proximately 14×2 m2. The gas source was placed on the floor

in the middle of the investigated corridor segment. Finally, an

outdoor scenario was considered. Here, the experiments were

carried out in an 8×8 m2 region that is part of a much bigger

open area.

We used the raw sensor readings in all three environments

and applied our approach to learn gas distribution models.

In the experiments shown here, the robot moved through

the environment twice. Therefore, we used the first run for

learning the model and the second one for evaluating it. For a

comparison with our technique, we also computed a gas distri-

bution model using a standard GP. We furthermore compared

our mean estimates to the one of the grid-based method with

interpolation and the kernel extrapolation technique.
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Fig. 6. The 3-rooms dataset with one ethanol gas source in the central room.
The room structure itself is not visualized here. In all plots, blue represents
low, yellow reflect medium, and red refers to high values.

Fig. 6 depicts the learned models for the 3-room dataset.

The left plot in the first row illustrates the mean prediction

for the standard GP on the sub-sampled training set which

serves as the first mixture component. The right image depicts

the error GP representing the differences between the initial

prediction and a set of observations. Based on the error GP, a

new mixture component is initialized and the EM algorithm is

carried out. After convergence, the gating function is learned

based on the hidden variables reported by the EM (right image,

second row). The left image in the third row shows the final

mean prediction of our mixture model. As can be seen, the

“background” distribution is smoothly modeled while at the
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Fig. 7. Models learned from concentration data recorded in the corridor
environment (see Fig. 1 for the raw data). The gas source was placed at the
location 10, 3. The standard GP and our GPM model provide similar mean
estimates. Our approach, however, provides a better predictive uncertainty and
thus a higher likelihood given the test data (see Tab. I).

same time the gas concentration peak close to the gas source

has a sharp boundary. In contrast to this, the standard GP

learned using the same data is unable to provide an appropriate

estimate since the area around the peak is to smoothed too

much.

Tab. I summarizes the negative log likelihoods of the test

data (second part of the dataset) given our mixture model as

well as the standard GP model. We provide two likelihoods

for our model, the one given in Eq. (7) (called ’GPM’ in the

table) and the one computed based on the averaged prediction

specified in Eq. (8) and Eq. (9) (called ’GPM avg’). As can be

seen, our GPM method outperforms the standard GP model in

all our experiments since it provides the best data likelihood.

Note that we repeated the experiment 10 times and the t-test

shows that the results are significant.

By considering the 2d plots in the last two rows of Fig. 6,

two reasons for this fact can be observed easily. First, as

already mentioned before, the standard GP smoothes too much

in the area close to the gas source while this smoothing is

fine for the rest of the scene. Second, the variance around the

source is too small (standard GPs assumes constant noise for

all inputs).

In the corridor experiment, the area of high gas concentra-

tion was mapped appropriately also by the standard GP, but

again the variance was too small close to the area of high gas

concentration. This can be observed by considering Fig. 7.

In contrast to this, our GPM model provides a high variance

in this area – which actually models the observations in a

more precise way. Similar results are obtained in the outdoor

dataset. Mean and variance predictions of the standard GP and

our model are provided in Fig. 9.

In all our experiments, we limited the number of data points

in the reduced input set to n1 = 100 (taken from the first

part of the datasets). The datasets itself contained between

2,500 and 3,500 measurements so our model was able to make

accurate predictions with less than 5% of the data. Matrices

of that size can be easily inverted and as a result the overall

computation time to learn our model including cross validation

using unoptimized Matlab code on a notebook computer takes

around 1 minute for all datasets shown above.

Finally, we compared the mean estimates of our mixture

model to the results obtained with the method of Lilienthal

and Duckett [7] as well as with the standard approach of using

a grid in combination with interpolation. The results of this

comparison is shown in Fig. 8. As can be seen, our method

outperforms both alternative methods.

VI. CONCLUSIONS

In this paper, we considered the problem of modeling gas

distributions from sensor measurements by means of sparse

Gaussian process mixture models. Gaussian processes are an

attractive modeling technique in this context since they do not

only provide a gas concentration estimate for each point in the

space but also the predictive uncertainty. Our approach learns

a GP mixture model and simultaneously decreases the model

complexity by reducing the training set in order to achieve an

efficient representation even for a large number of observa-

tions. This overcomes the major drawback of GPs, their high
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Fig. 8. Mean squared error of the GP mixture model mean and the kernel
extrapolation technique and the grid approximation with interpolation.

computational complexity. The mixture model allows us to

explicitly distinguish the different components of the spatial

gas distribution, namely areas of high gas concentration from

the smoothly varying background signal. This improves the

accuracy of the gas concentration prediction.

Our method has been implemented and tested using gas

sensors mounted on a real robot. With our method, we obtain

gas distribution models that better explain the sensor data

compared to techniques such as the standard GP regression

for gas distribution mapping. Our approach and the one of

Lilienthal and Duckett [7] provide similar mean gas concen-

tration estimates, their approach as well as the majority of

techniques in the field, however, lack the ability of estimating

their predictive uncertainties.

Despite this encouraging results, there is space for further

optimizations. Considering non-stationary kernels [10] might

further improve the estimates or might serve as an alternative

to explictly modeling mixtures. In addition, we are currently

exploring the possibility to model the diffusion in high con-

centration areas by smoothing the gating function over time.
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