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Abstract— Particle filters are a frequently used filtering tech-
nique in the robotics community. They have been successfully
applied to problems such as localization, mapping, or tracking.
The particle filter framework allows the designer to freely
choose the proposal distribution which is used to obtain the
next generation of particles in estimating dynamical processes.
This choice greatly influences the performance of the filter.
Many approaches have achieved good performance through
informed proposals which explicitly take into account the
current observation. A popular approach is to approximate
the desired proposal distribution by a Gaussian. This paper
presents a statistical analysis of the quality of such Gaussian
approximations. We also propose a way to obtain the optimal
proposal in a non-parametric way and then identify the error
introduced by the Gaussian approximation. Furthermore, we
present an alternative sampling strategy that better deals with
situations in which the target distribution is multi-modal.
Experimental results indicate that our alternative sampling
strategy leads to accurate maps more frequently that the
Gaussian approach while requiring only minimal additional
computational overhead.

I. INTRODUCTION

Particle filters are a frequently used technique in robotics

for dynamical system estimation. They have been used to

localize robots [4], to build both feature-maps [12], [13]

and grid-maps [7], [8], [9], and to track objects based on

vision data [10]. A particle filter approximates the posterior

by a set of random samples and updates it in a recursive

way. The particle filter framework specifies how to update

the sample set but leaves open how to choose the so-called

proposal distribution. The proposal is used to draw the next

generation of samples at the subsequent time step in the

dynamical process. For example, in the context of localizing

a robot, the odometry motion model is a good choice for

the proposal in that it can be easily sampled and then easily

transformed into the target distribution by such techniques as

weighted importance sampling. In practice, the design of the

proposal has a major influence on the performance and ro-

bustness of the filtering process. On the one hand, the closer

the proposal is to the target distribution, the better is the

estimation performance of the filter. On the other hand, the

computational complexity of the calculation of the proposal

distribution should be small in order to run the filter online.

For this reason, the majority of particle filter applications

restrict the proposal distribution to a Gaussian since one can

efficiently draw samples from such a distribution.

Murphy, Doucet, and colleagues [6], [14] introduced fac-

tored particle filters, known as “Rao-Blackwellization”, as an
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effective means to solve the simultaneous localization and

mapping (SLAM) problem. By applying this factorization,

several efficient mapping algorithms have been presented [7],

[8], [9], [12] and we can note that all of these algorithms have

used Gaussians to obtain the next generation of particles.

In this paper, we analyze how well such Gaussian proposal

distributions approximate the optimal proposal in the context

of mapping. We apply well-founded statistical measures to

carry out the comparisons. To the best of our knowledge,

this question has not been addressed in the context of

particle filter applications in robotics so far. It turns out that

Gaussians are often an appropriate choice but there exist

situations in which multi-modal distributions are needed to

appropriately sample the next generation of particles. Based

on this insight, we present an alternative sampling technique

that has the same complexity as the Gaussian approximation

but can appropriately capture distributions with multiple

modes, resulting in more robust mapping systems.

This paper is organized as follows. After a discussion

of related approaches, we briefly introduce in Section III

the ideas of mapping with Rao-Blackwellized filters. In

Section IV, we explain how to actually represent and sample

from the optimal proposal. We then present an efficient

variant that allows us to deal with multi-modal proposals in

an efficient way. In Section VI, we introduce the statistical

tests that are used in the experimental section for evaluation.

II. RELATED WORK

Particle filters have been applied to various kinds of

robotic state estimation problems such as localization [4],

mapping [7], [8], [9], [12], visual tracking [10], or data

association problems [20]. Murphy, Doucet, and colleagues

were the first that presented an approach based on a

Rao-Blackwellized particle filter that learns grid maps [6],

[14]. The first efficient approach for mapping with Rao-

Blackwellized particle filters was the FastSLAM algorithm

by Montemerlo et al. [13]. It uses a set of Kalman filters to

represent the map features conditioned on a sampled robot

pose. A Gaussian process model is used to sample the odom-

etry motion model and generate the proposal distribution on

the next step. The grid-based variant presented by Haehnel

et al. [9] performs scan-matching as a preprocessing step.

In this way, they are able to draw samples from Gaussians

with lower variances compared to proposals computed based

on the odometry only. This reduces the number of required

particles and allows a robot to maintain a map estimate

online. In contrast to that, Eliazar et al. [7] focus on an

efficient grid map representation which allows the particles



to share a map. Subsequently, Montemerlo et al. published

FastSLAM2 [12] that uses an informed proposal based on

the most recent sensor observation to restrict the space for

sampling. Again, to efficiently draw the next generation

of particles, the distribution is assumed to be Gaussian.

Grisetti et al. [8] extended FastSLAM2 to deal with large-

scale occupancy grid maps. This technique combines scan-

matching on a per particle basis with informed Gaussian

proposal distributions.

To the best of our knowledge, there exists no evaluation

of how well the Gaussian proposal distributions approximate

the optimal proposal which in general is non-Gaussian in the

context of mapping. There exist approaches that show that

the uncertainty of certain SLAM techniques monotonically

decreases over time. For example, Newman proved this

property for the relative map filter and also showed that

“in the limit, as the number of observations increases, the

relative map becomes perfectly known” [15]. In the context

of particle filters for SLAM, Montemerlo et al. [12] showed

that FastSLAM2 “converges [...] for a restricted class of

linear Gaussian problems”. It, however, makes no statement

about the validity of Gaussian approximations in real world

settings.

III. LEARNING MAPS

WITH RAO-BLACKWELLIZED PARTICLE FILTERS

A particle filter requires three sequential steps to update its

estimate. Firstly, one draws the next generation of samples

from the so-called proposal distribution π. Secondly, one

assigns a weight to each sample. The weights account for

the fact that the proposal distribution is in general not equal

to the target distribution. The third step is the resampling step

in which the target distribution is obtained from the weighted

proposal by drawing particles according to their weight.

In the context of the SLAM problem, one aims to estimate

the trajectory of the robot as well as a map of the environ-

ment. The key idea of a Rao-Blackwellized particle filter for

SLAM is to separate the estimate of the trajectory x1:t of

the robot from the map m of the environment. This is done

by the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1), (1)

where z1:t is the observation sequence and u1:t−1 the odom-

etry information. In practice, the first term of Eq. (1) is

estimated using a particle filter and the second term turns

into “mapping with known poses”.

One of the main challenges in particle filtering is to

choose an appropriate proposal distribution. The closer the

proposal is to the true target distribution, the more precise

is the estimate represented by the sample set. Typically, one

requires the proposal π to fulfill the assumption

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1:t, u1:t−1)

·π(x1:t−1 | z1:t−1, u1:t−2). (2)

According to Doucet [5], the distribution
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is the optimal proposal for particle i with respect to the

variance of the particle weights that satisfies Eq. (2). This

proposal minimizes the degeneracy of the algorithm (Propo-

sition 4 in [5]). As a result, the computation of the weights
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Unfortunately, the optimal proposal distribution is in gen-

eral not available in closed form or in a suitable form

for efficient sampling. As a result, most efficient mapping

techniques use a Gaussian approximation of the optimal

proposal. This approximation is easy to compute and allows

the robot to sample efficiently. As we will show in this paper,

the Gaussian assumption is not always justified. To provide

examples for this statement, we first compute the optimal

proposal explicitly and then compare it to the Gaussian

approximation. Using the optimal proposal in a mapping

system leads to computationally expensive operations which

are explained in the next section in more detail.

IV. COMPUTING AND SAMPLING

FROM THE OPTIMAL PROPOSAL

This section explains how to compute the optimal proposal

and how to sample from that distribution. In mapping as

well as in many other problems, there is no closed form

solution available but we can arrive at a high-fidelity nu-

merical solution for the likelihood function. In our case,

the numerator of Eq. (3) is the product of the observation

likelihood and the odometry motion model. When using

laser range finders, the dominating factor is the observation

likelihood. To point-wise evaluate the observation likelihood,

we use the so called “beam endpoint model” [19]. In this

model, the individual beams within a scan are considered

to be independent. Furthermore, the likelihood of a beam

is computed based on the distance between the endpoint of

the beam and the closest obstacle from that point. Using

this point-wise evaluation of the observation likelihood, we

can compute a three-dimensional histogram providing the

observation likelihood for the different poses.

The second term in Eq. (3) is the robot motion model.

In this paper, we consider the “banana-shaped” distribu-

tion known from most approaches to Monte-Carlo localiza-

tion [4]. The likelihood for the individual poses is computed



point-wise and is stored in a histogram. This histogram

describes the likelihood function in a non-parametric form.

Histograms, however, are affected by discretization errors.

To smooth this effect, we furthermore apply the Parzen

window/kernel estimator [1] based on the evaluated data

points. Let xj be the evaluated poses, then this estimator

is defined as

p̂(x) =
p(xj)

h

n
∑

j=1

K

(

x − xj

h

)

(8)

where h is called Parzen window. We chose the kernel K(u)
as

K(u) =
1√
2π

exp

(

−u2

2

)

. (9)

This technique allows us to smooth the histogram data and

in this way avoid the discontinuities which are inherent

in the histogram representation itself. Furthermore, we can

make the likelihood of the smoothed histogram arbitrarily

close to the optimal distribution of Eq. (3) by increasing the

resolution of the local grid map and reducing the size of the

histogram bins.

Given this non-parametric estimator, we can perform re-

jection sampling to draw the next generation of particles.

Obviously, this results in a highly inefficient mapping system

with respect to the computation time. However, it allows

us to sample from an arbitrarily close approximation to

the optimal proposal distribution and to compare it to its

Gaussian approximation.

As we will illustrate in the experiments, in most cases

the proposal can be safely approximated by a Gaussian.

This explains why existing methods based on this particular

approximation have been so successful. In certain situations,

however, the distribution is highly non-Gaussian and often

multi-modal so that the Gaussian does not properly approx-

imate the true distribution which in turn can lead to the

divergence of the filter. To overcome this problem, we present

an alternative sampling method in the following section.

This sampling strategy is able to handle multiple modes in

the likelihood functions used as the proposal distribution.

Note that our approach does not require any significant com-

putational overhead compared to existing mapping systems

that apply scan-matching in combination with a Gaussian

proposal [8].

V. EFFICIENT MAPPING

WITH MULTI-MODAL PROPOSAL DISTRIBUTIONS

In this section, we present our alternative sampling strat-

egy that can handle multiple modes in the distributions while

at the same time keeping the efficiency of a Gaussian pro-

posal distribution. Our approach is equivalent to computing

a sum of weighted Gaussians to model the proposal but does

not require the explicit computation of a sum of Gaussians.

Note that an open source implementation of our mapping

system using this technique is available online [18].

Our previous method [8] first applies scan-matching on a

per-particle basis. It then computes a Gaussian proposal for

odometry measurement

mode 2 mode 2mode 1 mode 1

convergence to 2convergence to 1

Fig. 1. The left image illustrates a 1D likelihood function and an odometry
measurement. Conventional informed sampling first performs scan-matching
starting from the odometry measurement. In this situation, the scan-matcher
will find a local peak in the likelihood function (most likely mode 1) and
the future sample will be drawn from a Gaussian centered at this single
mode. The right image illustrates the new approach. It draws the sample
first from the odometry model and applies scan-matching afterwards. When
a drawn sample falls into the area colored black, the scan-matcher will
converge to mode 1, otherwise, it will converge to mode 2. By sampling
first from the odometry, then applying scan-matching, and finally computing
local Gaussian approximations, multiple modes in the likelihood function
are likely to be covered by the overall sample set.

each sample by evaluating poses around the pose reported

by the scan-matcher. This technique yields accurate results

in case of a uni-modal distribution, but encounters problems

in that it focuses only on the dominant mode to which the

scan-matching process converges. The left image in Figure 1

illustrates an example in which the scan-matching process

converges to the dominant peak denoted as “mode 1”. As a

result, the Gaussian proposal samples only from this mode

and at most a few particles cover “mode 2” (and only if the

modes are spatially close). Even if such situations are rarely

encountered in practice, we found in our experiments that

they are one of the major reasons for filter divergence.

One of the key ideas of our approach is to adapt the scan-

matching/sampling procedure to better deal with multiple

modes. It consists of a two step sampling. First, only the

odometry motion model is used to propagate the samples.

This technique is known from standard Monte-Carlo local-

ization approaches (c.f. [4]) and allows the particles to cover

possible movements of the robot. In a second step, gradient

descent scan-matching is applied based on the observation

likelihood and the denominator of Eq. (3). As a result, each

sample converges to the mode in the likelihood function that

is closest to its own starting position. Since the individual

particles start from different locations, they are likely to

cover the different modes in their corresponding likelihood

functions as illustrated in the right image of Figure 1. Our

approach leads to sample sets distributed according to a

Gaussian around the modes in the observation likelihood

functions. As we will demonstrate in the experimental re-

sults, this technique leads to proposal distributions which are

closer to the optimal proposal given in Eq. (3) than the Gaus-

sian approximations; when the distribution has only a single

mode, the solution is equivalent to previous approaches [8].

VI. STATISTICAL TESTS

To analyze how close the Gaussian proposal as well as

our new proposal are to the optimal proposal distribution,

we make use of three statistical measures. First, we apply

the Anderson-Darling test on normality [2]. This test is

reported to be one of the most powerful tests in statistics

for detecting most departures from normality. This test is



superior to the Kolmogorov-Smirnov test and has a similar

performance than the Shapiro-Wilk test [16]. Second, we use

the Kullback-Leibler divergence [11] to measure the distance

between distributions. Third, we make use of a measure

taken from the Cramér-von-Mises test [3], [21] to identify

differences between distribution.

Given a set of n samples {y1 < . . . < yn} in ascending

order of magnitude, the Anderson-Darling (AD) test com-

putes the A statistic as

A=−n−
n

∑

k=1

2k − 1

n

[

lnF (yk)+ln(1−F (yn+1−k))
]

, (10)

where F is the cumulated density function (CDF) of the

distribution that is assumed to have generated the samples.

In our case, F is the CDF of the normal distribution.

To determine if the samples are generated by a Gaussian

or not, one needs to test if

A ·
(

1 +
0.75

n
+

2.25

n2

)

≤ c, (11)

where c is the Anderson-Darling test value for normal

distributions corresponding to a desired level of significance.

For example, for a 95% confidence test of normality, the

corresponding c is 0.752.

This test allows us to check if the optimal proposal is in

fact a Gaussian distribution. An interesting property of the

AD test is that it also provides a confidence level for its

result. To apply this test, we only need to draw a sample

set from the optimal proposal and compute Eq. (10) and

Eq. (11). Performing this test for all proposals generated

during a mapping experiment provides a measure of how

often a sample set is generated from a wrong distribution.

Besides the Anderson-Darling test, we apply the Kullback-

Leibler divergence (KLD) which is a frequently used tech-

nique to measure the distance between two arbitrary distribu-

tions. This allows us to also compare our proposal given in

the previous section to the optimal proposal distribution. A

KLD value of zero indicates that the distributions are equal

and the higher the KLD, the bigger is the difference between

them. The KLD between p and f is defined as

KLD(p, f) =

∫

p(x) · log

(

p(x)

f(x)

)

dx. (12)

The KLD takes into account a quotient between two distri-

butions. This can give a high weight to differences in the

tails of the distributions (see Eq. (12), where f(x) is small).

An alternative measure for comparison is used in the

Cramér-von-Mises test [3], [21]. It measures the disparity

of two distributions by taking into account their cumulative

density functions (CDF). Since it does not use a quotient

as the KLD does, it gives less weight to the tails of

the distribution. It computes the integral over the squared

distances between the CDFs. Let p and f be the distributions

to compare and P and F the corresponding CDFs. Then,

d(p, f) =

∫

[P (x) − F (x)]2 dP (x) (13)

TABLE I

PROPOSAL DISTRIBUTIONS WHICH ARE REGARDED AS GAUSSIANS

ACCORDING TO THE ANDERSON-DARLING TEST (95% CONFIDENCE).

Dataset Gaussian
proposal

Non-Gauss
(unimodal)

Multi-modal
proposal

Intel Research Lab 89.2% 7.2% 3.6%

FHW Museum 84.5% 10.4% 5.1%

Belgioioso 84.0% 10.4% 5.6%

MIT CSAIL 78.1% 15.9% 6.0%

MIT Killian Court 75.1% 19.1% 5.8%

Freiburg Bldg. 79 74.0% 19.4% 6.6%

provides a measure about the similarity of both distributions

which is zero if both are equal.

The three techniques presented here are used in our

experiments to identify the differences between the individ-

ual proposals and to illustrate potential weaknesses of the

Gaussian proposals.

VII. EXPERIMENTS

The experiments presented in this paper are all based on

real world data. We furthermore used freely available datasets

to perform our analysis. The learned maps and the datasets

used here are available online [17].

A. Quality of Gaussian Proposals

In the first experiment, we carried out the Anderson-

Darling (AD) test with a confidence of 95% to determine

if the optimal proposal can be considered as Gaussian. The

results of the test are described in Table I. As can be seen,

depending on the dataset, in the optimal proposal was non-

Gaussian in 10% to 26% of all cases.

By visually inspecting the datasets and resulting maps,

we observed two different scenarios in which non-Gaussian

situations occurred. Firstly, we often observed non-Gaussian

observation likelihood functions in highly cluttered environ-

ments where small changes in the position led to substantial

changes of the likelihood. Multi-modal distributions are

likely to occur and Gaussians are not well suited to serve as

a proposal in these cases. Secondly, non-Gaussian proposals

occurred when the robot was moving in environments with

long corridors, a fact that surprised us. At first sight, this may

appear counterintuitive since corridors are well-structured

environments. However, in positions where the robot cannot

observe the end of the corridor with its sensor, the likelihood

along the main axis of the corridor is almost constant which

is highly non-Gaussian and can lead to a negative result of

the AD test. One example is MIT Killian Court, consisting

mainly of long corridors. Note that even if the AD test fails

in such situations, Gaussians can be still good proposals.

In addition to testing acceptance as a Gaussian distribution,

we analyzed the distance between the optimal proposal and

its Gaussian approximation based on the KLD and the

measure from the Cramér-von-Mises test (which is referred

to as CvM in the remainder of this paper). Figure 2 plots the

frequencies of the individual KLD and CvM values for the

Intel and FHW datasets. As can be seen, the approximation

error was small (values close to zero) in 94% to 97% of
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Fig. 2. Difference between the optimal proposal and the Gaussian
approximation based on the Intel Research Lab (first row) and the FHW
dataset (second row). The images on the left depict the frequencies of the
individual Kullback-Leibler divergence values and the images on the right
show the frequencies of the distance measure based on the Cramér-von-
Mises test (see Eq. (13)). The right-most bin contains also all values larger
or equal 0.4 (KLD) and 0.2 (CvM).

all cases. In all other cases, however, the distributions were

substantially different. This fact is represented by the peak

in the right-most bin of the histograms which contains all

values larger or equal than 0.4 (KLD) and 0.2 (CvM). This

peak corresponds to situations with multi-modal distributions

which can only be badly approximated by a Gaussian. Note

that similar results were obtained for the other datasets (see

first row of Figure 3).

B. Multi-Modal Proposal Distribution

In the next experiment, we evaluated the alternative sam-

pling strategy proposed in this paper. We used the KLD to

compare our new proposal to the optimal proposal distribu-

tion. To actually perform the comparison, we computed all

modes of the distribution explicitly, which is not required in

the mapping system itself as described in Section V. To do

so, we drew a set of samples and performed a gradient ascent

in the likelihood function to find the individual modes. The

modes were then approximated by Gaussians according to

the sampled points.

The results of the comparison are shown in Figure 3

for different datasets. The plots in the first row show the

KLD distance between the optimal proposal and its Gaussian

approximation. The plots in the second row depict the

corresponding comparison of our new proposal to the optimal

one.

As can be seen, we obtained distributions that no longer

approximated a significant fraction of the proposal distribu-

tions with large error (i.e., the right-most bin of the distance

histograms). In contrast to this, the Gaussian approach ap-

proximates the optimal proposal inappropriately in 3% to 6%
of all cases. The comparisons using the CvM value showed

similar results and are omitted due to reasons of space.

Approaches using the Gaussian proposal have shown to

build highly accurate maps of most datasets (compare the

experiments in [8]) but there exist situations in which such

new approach

distribution

selected
wrong mode
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Fig. 4. Resulting map of the MIT CSAIL dataset using a Gaussian proposal
(left) and our new approach (right). The Gaussian approach fails due to
highly non-Gaussian likelihood functions in the cluttered room (illustrated
for a given orientation θ in the top image). Trajectory length: 385m,
recording time: 7 min, average speed: 0.9m/s.

TABLE II

EXECUTION TIME ON A 2.8 GHZ PC WITH A P4 SINGLE CORE CPU.

Dataset N Execution time

optimal [8] new method

MIT Killian Court 80 155 h 112 min 113 min

Freiburg Bldg. 79 30 84 h 62 min 62 min

Intel Research Lab 30 40 h 29 min 29 min

FHW Museum 30 38 h 27 min 27 min

Belgioioso 30 18 h 13 min 13 min

MIT CSAIL 30 10 h 7 min 7 min

techniques are likely to fail. This is especially the case if

the dominant mode in the likelihood function is not the

correct one. Such a situation occurs, for example, in the

CSAIL dataset [17] recorded at MIT. Our expectation is

that modeling multiple modes in the proposal distribution

leads to more robust filters. We carried out 10 experiments

with different random seeds and evaluated the success rate

of the approach using the Gaussian proposal and our new

method. Using the Gaussian approximation for the proposal

distribution, the final map had the correct topology (all

loops closed, etc.) in only 20% of trials whereas our new

approach generated a correct map every time. Figure 4 shows

example maps using the Gaussian proposal (left) and our new

approach (right).

C. Runtime

In principle, it is possible to avoid Gaussian approxi-

mations in the proposal distribution. The main disadvan-

tage when sampling from the optimal proposal is the high

computational overhead. To illustrate this overhead, Table II

shows the execution time for the individual approaches

as well as the number of samples used (N). As can be

seen, sampling from the optimal proposal is not suitable

for practical applications since it took up to one week to

correct a single dataset. In contrast to this, the computational

overhead of our new approach is negligible. It allows a robot

to learn an accurate map online while moving through the

environment.
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Fig. 3. The plots in the first row show the KLD between optimal proposal and its Gaussian approximation for different datasets. The plots in the second
row depict the corresponding KLD between the optimal proposal and the proposal proposed in this paper. The right-most bin contains also all values larger
or equal to 0.4. The right-most bin illustrates the mayor drawback of the Gaussian approximation since it described the situations in which the optimal
proposal is highly non-Gaussian (e.g., multi-modal). Our new approach, however, can better deal with such situations.

VIII. CONCLUSION

In this paper, we analyzed how well Gaussian proposal

distributions approximate the optimal proposal in the context

of the application of Rao-Blackwellized particle filters to

the simultaneous localization and mapping problem. We

demonstrated that in around 5% of all cases, the Gaussian ap-

proximation is not sufficient to model the likelihood function.

As such situations are one of the sources for the divergence

of the filter, we presented an alternative sampling technique

that is able to deal with multi-modal distributions while

maintaining the same efficiency as the Gaussian proposal.

This resulted in a more robust approach to mapping with

Rao-Blackwellized particle filters. In experiments carried out

with real data, we showed the efficiency and robustness of

our approach.
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