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Zusammenfassung

V iele Anwendungen aus dem Bereich der mobilen Robotik setzten eine
geeignete Repräsentation der Umgebung voraus. Aus diesem Grund ist
das Lernen von Umgebungsmodellen eines der grundlegenden Probleme
für Roboter, dem schon seit mehreren Jahrzehnten Aufmerksamkeit ge-

schenkt wird. Das selbständige Erstellen von Umgebungsmodellen ist eine der Grund-
voraussetzungen für vollständig autonom agierende Systeme. Die vorliegende Arbeit
beschäftigt sich mit verschiedenen Problemen, die beim selbstständigen Aufbau von
Karten auftreten.

Das Problem beim Erstellen von Karten besteht unter anderemin der Unsicherheit
der Sensorinformationen. Sensoren wie beispielsweise Lasermesssysteme oder Sonar-
sensoren messen die Distanz zum nächsten Hindernis. Allerdings liefern sie mitunter
nur grobe Schätzwerte und keine exakten Daten. Auch die Bestimmung der Position
des Roboters anhand der Radumdrehungen (Odometrie) ist miterheblichen Fehlern
behaftet, welche sich im Laufe der Zeit sogar akkumulieren.Ohne ein geeignetes Um-
gebungsmodell, in dem sich der Roboter selbst lokalisierenkann, ist es sehr schwierig
eine gute Positionsschätzung über längere Zeit aufrecht zuerhalten. Gleichzeitig benö-
tigt ein Roboter aber eine gute Schätzung seiner Position, um aus seinen Sensordaten
eine brauchbare Karte zu erzeugen.

Auch ist es kein triviales Problem zu entscheiden, wohin sich ein autonomer Robo-
ter bewegen soll, um seine Umgebung effizient zu explorieren. Es stellt sich die Frage,
ob man eine Explorationsstrategie wählt durch die der Roboter seine Umgebung mög-
lichst schnell abfährt, oder lieber ein Verfahren verwendet, das die Unsicherheit des
Roboters über die Umgebung minimiert. Die Komplexität des Problems erhöht sich
nochmals, wenn der Roboter neben seiner Unsicherheit in denSensordaten auch die
Unsicherheit in seiner Position berücksichtigen muss. Dabei stellt sich unmittelbar die
Frage, ob es sinnvoller ist, zuerst die Unsicherheit des Roboters über seine Umgebung
zu minimieren oder aber seine Position genauer zu ermitteln.

Deutlich komplexer wird das Problem, wenn man nicht mehr nurrein statische
Welten annimmt, sondern berücksichtigt, dass sich dynamische Objekte in der Umge-
bung befinden können. Solche beweglichen Objekte können beispielsweise Personen,



Autos oder auch Türen sein. Man muss sich dabei fragen, ob mansolche dynamischen
Objekte aus der Karte entfernen möchte oder einige der Informationen beim Karten-
bau berücksichtigen sollte. So macht es beispielsweise Sinn, wenn ein Roboter, der
sich auf einem großen Parkplatz bewegt, weiß, wo typischerweise Auto parken und
wo nicht. Dieses Wissen kann er dann nutzen, um seine Position robuster zu schätzen.

Zusätzlich stellt sich die Frage, wie man eine Gruppe von Robotern koordiniert, da-
mit diese eine gemeinsame Aufgabe möglichst effizient lösenkönnen. Exploriert man
beispielsweise eine Umgebung mit einem Team von Robotern, kann man erwarten,
dass sie diese Aufgabe schneller ausführen können als ein einzelner Roboter. Auf der
anderen Seite muss berücksichtigt werden, dass sich die einzelnen Roboter auch ge-
genseitig behindern können. So kann beispielsweise schnell ein Stau entstehen, wenn
mehrere Roboter gleichzeitig einen engen Korridor oder eine Tür passieren wollen.

Man kann die zentralen Fragestellungen beim Lernen von Umgebungsmodellen
mit mobilen Robotern wie folgt zusammenfassen:

• Wie geht man mit der Unsicherheit in den Sensorinformationen und wie mit den
Fehlern in der Positionsmessung des Roboters um?

• Wie modelliert man in adäquater Weise die Unsicherheit im Weltmodell des
Roboters und wie geht man mit dieser um?

• Wie generiert man geeignete Aktionen für einen autonom explorierenden Robo-
ter und wie evaluiert man diese?

• Wie koordiniert man eine Gruppe von Robotern, so dass sie ihre Aufgabe mög-
lichst effizient ausführen können und doppelte Arbeit vermeiden?

• Wie geht man mit nichtstatischen Objekten um?

Die vorliegende Arbeit behandelt verschiedene Aspekte desProblems der Erstel-
lung von Umgebungsmodellen. Dabei beschäftigen wir uns explizit mit den fünf oben
aufgezählten Punkte. Ein zentraler Aspekt dieser Arbeit ist die Exploration unbekann-
ter Umgebungen oder als Frage formuliert: „Wie sollte sich ein Roboter durch eine un-
bekannte Umgebung bewegen, um aus den gewonnenen Sensordaten eine konsistente
Karte zu erzeugen?“ Dabei konzentrieren wir uns in dieser Arbeit auf die Redukti-
on der Unsicherheit im Umgebungsmodell des Roboters. Wir verfolgen einen Ansatz,
der mögliche zukünftige Observationen und deren Auswirkungen auf das Modell des
Roboters in die Zielpunktauswahl mit einbezieht. Im erstenTeil der Arbeit wird dabei
die Position des Roboters als gegeben angenommen und nur dieUnsicherheit in den
Observationen und im Umgebungsmodell betrachtet. Des weiteren stellen wir einen
Ansatz vor, der es erlaubt, ein Team von Robotern so zu koordinieren, dass diese ihre
gemeinsame Explorationsaufgabe schneller lösen können.



Die Annahme, dass die Positionsinformation als gegeben vorausgesetzt werden
kann, ist in natürlichen Umgebungen nicht gegeben. Daher stellen wir im zweiten Teil
dieser Arbeit einen Ansatz zur Lösung des Problems des simultanen Lokalisierens und
Kartenlernens vor (engl. simultaneous localization and mapping, SLAM). Das proba-
bilistische und auf Partikelfiltern basierende Verfahren ermöglicht es, eine gemeinsame
Verteilung über die Trajektorie des Roboters und das Umgebungsmodell zu verwalten.
Als Ergebnis erhalten wir ein System, das Karten von verhältnismäßig großen Umge-
bungen in Echtzeit erstellen kann.

Aufbauend auf diesem Verfahren adaptieren wir unsere Explorationstechnik so,
dass diese die Eigenschaften des SLAM Verfahrens berücksichtigt. Wir ermöglichen
es dabei dem Roboter Schleifen in der Umgebung zu erkennen und diese aktiv zu
schließen. Im Endeffekt führt dies zu besser ausgerichteten Karten im Vergleich zu
herkömmlichen Explorationsverfahren.

Das bis dahin gewonnene Wissen wird anschließend in ein System integriert. Die-
ses konzentriert sich gleichzeitig auf Exploration, Kartenbau und Lokalisierung. Bei
der Auswahl der nächsten auszuführenden Aktion betrachtetdas System mögliche
Sequenzen von Observationen, die der Roboter beim Ausführen der Aktion erhalten
könnte. Diese Observationen werden basierend auf der Verteilung über mögliche Um-
gebungsmodelle simuliert und deren Auswirkung auf das Gesamtmodell geschätzt.
Der Roboter ist dann in der Lage, die Aktion zu wählen, die zurgrößten erwarteten
Minimierung der Unsicherheit über die Umgebung sowie über seine Position führt.

Abschließend behandeln wir das Lokalisieren und Kartenbauen in nichtstatischen
Umgebungen. Im Vergleich zu den meisten existierenden Ansätzen liegt unser Fokus
nicht darauf, dynamische Aspekte aus dem Umgebungsmodell zu entfernen. Statt des-
sen erlaubt es unser Verfahren, die möglichen Konfigurationen nichtstatischer Objekte
zu bestimmen. Ein klassisches Beispiel stellen Türen dar. Diese sind typischweise ent-
weder geschlossen oder offen. Ein Roboter, der sich solchesWissen aneignen kann,
ist später in der Lage, sich besser zu lokalisieren als ein Roboter der nur ein statisches
Modell seiner Welt besitzt.

Der Beitrag dieser Arbeit besteht aus einer Menge von Techniken zum selbststän-
digen Erstellen von Umgebungsmodellen. Zusammengefasst liefern unsere Verfahren
Lösungen für die folgenden Probleme:

• Koordination einer Gruppe von mobilen Robotern, so dass diese eine gemeinsa-
me Explorationsaufgabe schneller bewältigen können.

• Erzeugung hochauflösender Karten aus unsicheren Sensor- und Odometrieinfor-
mationen.



• Anpassung einer Explorationsstrategie an ein darunterliegendes Lokalisierungs-
und Kartenbausystem, wodurch die resultierenden Umgebungsmodelle weniger
Fehler enthalten.

• Erzeugung und Beurteilung von Aktionen für einen explorierenden Roboter. Da-
bei wird die beste erwartete Aktion unter dem Gesichtspunktder Minimierung
der Unsicherheit im Weltmodell des Roboters ausgewählt.

• Erstellen von Karten in Umgebungen, die nichtstatische Objekte enthalten. Da-
bei werden typische Zustände der nichtstatische Objekte imRaum modelliert.
Dies wiederrum führt zu einer robusteren Positionsschätzung für mobile Robo-
ter, die in solchen Umgebungen eingesetzt werden.



Abstract

M
odels of the environment are needed for a wide range of robotic applica-
tions, from search and rescue to automated vacuum cleaning.Learning
maps has therefore been a major research focus in the robotics commu-
nity over the last decades. Robots that are able to acquire anaccurate

model of their environment on their own are regarded as fulfilling a major precondition
of truly autonomous agents. In order to solve the map learning problem, a robot has
to address mapping, localization, and path planning at the same time. In general, these
three tasks cannot be decoupled and solved independently and map learning is thus
referred to as the simultaneous planning, localization, and mapping problem. Because
of the coupling between these tasks, this problem is very complex. It can become even
more complex when there are dynamic changes in the environment or several robots
are being used together to solve the problem.

The contributions of this thesis are solutions to various aspects of the autonomous
map learning problem. We first present approaches to exploration that take into ac-
count the uncertainty in the world model of the robot. We thendescribe how to achieve
good collaboration among a team of robots so that they efficiently solve an exploration
task. Our approach distributes the robots over the environment and in this way avoids
redundant work and reduces the risk of interference betweenthe individual team mem-
bers. We furthermore provide a technique to make use of background knowledge about
typical spacial structures when distributing the robots over the environment. As a re-
sult, the overall time needed to complete the exploration mission is reduced.

To deal with the uncertainty in the pose of a robot, we presenta solution to the
simultaneous localization and mapping problem. The difficulty in this context is to
build up a map while at the same time localizing the robot in this map. Our approach
maintains a joint posterior about the trajectory of the robot and the model of the envi-
ronment. It produces highly accurate maps in an efficient androbust way.

In this thesis, we address step-by-step the different problems in the context of map
learning and integrate our techniques into a single system.We provide an integrated
approach that simultaneously deals with mapping, localization, and path planning. It
seeks to minimize the uncertainty in the map and in the trajectory estimate based on the



expected information gain of future actions. It takes into account potential observation
sequences to estimate the uncertainty reduction in the world model when carrying out
a specific action. Additionally, we focus on mapping and localization in non-static
environments. Our approach allows a robot to consider different spatial configurations
of the environment and in this way makes the pose estimate more robust and accurate
in non-static worlds.
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Chapter 1

Introduction

1.1 Learning Models of the Environment

T
he problem of learning maps is one of the fundamental problems in mobile
robotics. These models are needed for a series of applications like trans-
portation, cleaning, rescue, localization, and various service robotic tasks.
Learning maps has therefore been a major research issue in the robotics

community over the last decades.
Approaches to map building are either passive or active. Thepassive ones only

perceive information about the environment to build a map. The active ones addi-
tionally plan the motion of the vehicle in order to guide it through the environment.
Robots that are able to acquire an accurate model of the environment on their own are
regarded as fulfilling a major precondition of truly autonomous mobile vehicles. This
thesis presents different techniques we developed to autonomously acquire sensor data
and to use this information in order to learn accurate modelsof the environment.

In general, learning maps with single-robot systems requires the solution of three
tasks, which aremapping, localization, andpath planning. Mapping is the problem
of integrating the information gathered with the robot’s sensors into a given represen-
tation. It can be described by the question “What does the world look like?” Central
aspects in mapping are the representation of the environment and the interpretation of
sensor data. In contrast to this, localization is the problem of estimating the pose of the
robot relative to a map. In other words, the robot has to answer the question, “Where
am I?” Typically, one distinguishes between pose tracking,where the initial pose of
the vehicle is known, and global localization, in which no a priori knowledge about
the starting position is given. Finally, the path planning or motion control problem in-
volves the question of how to efficiently guide a vehicle to a desired location or along
a trajectory. Expressed as a simple question, this problem can be described as, “How
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active
localization

integrated
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mapping localization

exploration

path planning/
motion control

SLAM

Figure 1.1: Tasks that need to be solved by a robot in order to acquire accurate models
of the environment. The overlapping areas represent combinations of the mapping,
localization, and path planning tasks [Makarenkoet al., 2002].

can I reach a given location?”
Unfortunately, these three tasks cannot be solved independently of each other. Be-

fore a robot can answer the question of what the environment looks like given a set
of observations, it needs to know from which locations theseobservations have been
made. At the same time, it is hard to estimate the current position of a vehicle without
a map. Planning a path to a goal location is also tightly coupled with the knowledge of
what the environment looks like as well as with the information about the current pose
of the robot.

The diagram in Figure 1.1 depicts the mapping, localization, and path planning
tasks as well as the combined problems in the overlapping areas. Simultaneous lo-
calization and mapping(SLAM) is the problem of building a map while at the same
time localizing the robot within that map. One cannot decouple both tasks and solve
them independently. Therefore, SLAM is often referred to asa chicken and egg prob-
lem: A good map is needed for localization while an accurate pose estimate is needed
to build a map.Active localizationseeks to guide the robot to locations within the
map to improve the pose estimate. In contrast to this,explorationapproaches as-
sume accurate pose information and focus on guiding the robot efficiently through
the environment in order to build a map. The center area of thediagram represents
the so-calledintegrated approacheswhich address mapping, localization, and path
planning simultaneously. The integrated approaches are also called solutions to the
simultaneous planning, localization, and mapping(SPLAM) problem. A solution to
the SPLAM problem enables a mobile robot to acquire sensor data by autonomously
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moving through its environment while at the same time building a map. Whenever the
robot is moving, it considers actions to improve its localization, to acquire information
about unknown terrain, and to improve its map model by revisiting areas it is uncertain
about. In the end, the robot is assumed to have learned an accurate model of the whole
environment as well as determined its own pose relative to this model.

Several researchers focus on different aspects of these problems. This is done
using single robot systems as well as teams of robots. The useof multiple robots has
several advantages over single robot systems. Cooperatingrobots have the potential
to accomplish a task faster than a single one. Furthermore, teams of robots can be
expected to be more fault-tolerant than a single robot. However, when robots operate
in teams, there is the risk of possible interference betweenthem. The more robots that
are used in the same environment, the more time each robot mayspend on detours
in order to avoid collisions with other members of the team. In most approaches, the
performance of the team is measured in terms of the overall time needed to learn a map.
This means that the robots need to be distributed over the environment in order to avoid
redundant work and to reduce the risk of interference. A teamof robots makes finding
efficient solutions to problems like exploration more complex, since more agents are
involved and so more decisions need to be made.

It is worth mentioning that all these problems become even more complex in the
case where the environment changes over time. Most mapping techniques assume that
the environment is static and does not change over time. This, however, is an unreal-
istic assumption, since most places where robots are used are populated by humans.
Changes are often caused by people walking through the environment, by open and
closed doors, or even by moved furniture. One possibility todeal with dynamic aspects
is to filter them out and to map the static objects only. More challenging, however, is
the problem of integrating the information about changes into the map and utilizing
such knowledge in other robotic applications. This can enable a mobile robot to more
efficiently execute its tasks. For example, one can expect a robot to more robustly
localize itself in case where it knows about the typical configurations of the non-static
aspects in its surroundings.

In summary, the key problems in the context of map learning are the questions of

• where to guide a robot during autonomous exploration,

• how to deal with noise in the pose estimate and in the observations,

• how to deal with the uncertainty in the robot’s world model and how to interprete
the sensor data,

• how to model changes in the environment over time, and
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• how to efficiently coordinate a team of mobile robots.

The contributions of this thesis are solutions to differentaspects of the map learning
problem which explicitely consider these five aspects. We present approaches to au-
tonomous exploration that take into account the uncertainty in the world model of the
robot. We minimize this uncertainty by reasoning about possible actions to be carried
out and their expected reward. We furthermore describe how to achieve good collab-
oration among a team of robots so that they efficiently solve an exploration task. Our
approach effectively distributes the robots over the environment and in this way avoids
redundant work and reduces the risk of interference betweenvehicles. As a result, the
overall time needed to complete the exploration mission is reduced. To deal with the
uncertainty in the pose of a robot, we present a highly accurate technique to solve the
SLAM problem. Our approach maintains a joint posterior about the trajectory of the
robot and the map model. It produces highly accurate maps in an efficient and robust
way. In this thesis, we address step-by-step the problems inthe context of map learn-
ing and integrate different solutions into a single system.We provide an integrated
approach that simultaneously deals with mapping, localization, and path planning. It
seeks to minimize the uncertainty in the map and trajectory estimate based on the ex-
pected information gain of future actions. It takes into account potential observation
sequences to estimate the uncertainty reduction in the world model when carrying out
a specific action. Additionally, we focus on mapping and localization in non-static en-
vironments. Our approach allows the robot to consider different spatial configurations
of the environment and in this way makes the pose estimate more robust and accurate
in non-static worlds.

This thesis is organized as follows. First, we introduce theparticle filtering tech-
nique and the ideas of grid maps, which are both frequently used throughout this thesis.
The first part of the thesis concentrates on single- and multi-robot exploration given
the poses of the robots are known while they move through the environment.

Chapter 3 addresses the problem of decision-theoretic, autonomous exploration
with a single vehicle. We consider a sensor which is affectedby noise and investigate
a technique to steer a robot through the environment in orderto reduce the uncertainty
in the map model.

In Chapter 4, we explore how to coordinate a team of robots in order to achieve ef-
fective collaboration and to avoid redundant work. The presented approach is extended
in Chapter 5 so that background information about the structure of the environment is
integrated into the coordination procedure. The knowledgeabout different structures
is learned by the mobile robots from sensor data.

In the second part of this thesis, we relax the assumption of known poses and
consider the uncertainty in the pose the a mobile robot. We present in Chapter 6 an
efficient solution to the SLAM problem. It allows us to learn highly accurate grid
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maps while the pose information of the robot is affected by noise. Our technique
maintains the joint posterior about the map and the trajectory of the robot using a
particle filter. Chapter 7 describes a system to detect and toactively close loops during
exploration. With this technique, we are not optimizing thepose estimation procedure
but are planning appropriate trajectories for the mobile robot. The revisiting of known
locations from time to time allows the robot to reduce the uncertainty in its pose. As a
result, the obtained map is better aligned and shows less inconsistencies.

Actively revisiting known areas during SLAM offers not onlythe possibility to
relocalize a vehicle, it also introduces the risk of becoming overly confident especially
in the context of nested loops. To cope with this limitation,we present in Chapter 8
an approach for recovering the particle diversity after closing loops. This allows the
robot to stay an arbitrary period of time within a loop without depleting important state
hypotheses.

In Chapter 9, we present a decision-theoretic approach to exploration with respect
to the uncertainty in the map and the pose estimate of the robot. The presented algo-
rithm integrates different techniques introduced in the preceding chapters of this thesis.
It simultaneously addresses mapping, localization, and planning. As a result, our ap-
proach enables a real mobile robot to autonomously learn a model of the environment
with low uncertainty even if its pose estimates are affectedby noise.

Finally, Chapter 10 addresses the problem of mapping and localization in non-static
environments. By explicitly modeling the different statesthe environment is observed
in, the robot is able to more robustly localize itself in a non-static world.

1.2 Publications

Parts of the thesis have been published in the following journal articles, conference,
symposium, and workshop proceedings:

• C. Stachniss, O. Martínez Mozos, and W. Burgard. Speeding-Up Multi-Robot
Exploration by Considering Semantic Place Information. InProc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), Orlando, FL, USA, 2006. To
appear.

• C. Stachniss, O. Martínez Mozos, A. Rottmann, and W. Burgard. Semantic
labeling of places. InProc. of the Int. Symposium of Robotics Research (ISRR),
San Francisco, CA, USA, 2005.

• D. Meier, C. Stachniss, and W. Burgard. Coordinating multiple robots during
exploration under communication with limited bandwidth. In Proc. of the Euro-
pean Conference on Mobile Robots (ECMR), pages 26–31, Ancona, Italy, 2005.
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• C. Stachniss, D. Hähnel, W. Burgard, and G. Grisetti. On actively closing loops
in grid-based FastSLAM.Advanced Robotics, 19(10):1059–1080, 2005.

• C. Stachniss and W. Burgard. Mobile robot mapping and localization in non-
static environments. InProc. of the National Conference on Artificial Intelli-
gence (AAAI), pages 1324–1329, Pittsburgh, PA, USA, 2005.

• A. Rottmann, O. Martínez Mozos, C. Stachniss, and W. Burgard. Place classifi-
cation of indoor environments with mobile robots using boosting. InProc. of the
National Conference on Artificial Intelligence (AAAI), pages 1306–1311, Pitts-
burgh, PA, USA, 2005.

• C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration
using Rao-Blackwellized particle filters. InProc. of Robotics: Science and Sys-
tems (RSS), pages 65–72, Cambridge, MA, USA, 2005.

• W. Burgard, C. Stachniss, and G. Grisetti. Information gain-based exploration
using Rao-Blackwellized particle filters. InProc. of the Learning Workshop
(Snowbird), Snowbird, UT, USA, 2005.

• C. Stachniss, G. Grisetti, and W. Burgard. Recovering particle diversity in a
Rao-Blackwellized particle filter for SLAM after actively closing loops. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 667–672,
Barcelona, Spain, 2005.

• G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based SLAM with
Rao-Blackwellized particle filters by adaptive proposals and selective resam-
pling. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages
2443–2448, Barcelona, Spain, 2005.

• O. Martínez Mozos, C. Stachniss, and W. Burgard. Supervisedlearning of places
from range data using AdaBoost. InProc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA), pages 1742–1747, Barcelona, Spain, 2005.
Finalist – ICRA best student paper.

• W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated multi-robot
exploration.IEEE Transactions on Robotics, 21(3):376–378, 2005.

• P. Trahanias, W. Burgard, A. Argyros, D. Hähnel, H. Baltzakis, P. Pfaff, and
C. Stachniss. TOURBOT and WebFAIR: Web-operated mobile robots for tele-
presence in populated exhibitions.Robotics & Automation Magazine, 12(2):77–
89, 2005.
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• C. Stachniss, D. Hähnel, and W. Burgard. Exploration with active loop-closing
for FastSLAM. InProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 1505–1510, Sendai, Japan, 2004.
ICASE–IROS 2004 best paper award on application.
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wellized mapping by adaptive sampling and active loop-closure. InProc. of the
Workshop on Self-Organization of AdaptiVE behavior (SOAVE), invited presen-
tation, pages 1–15, Ilmenau, Germany, 2004.

• C. Stachniss, D. Hähnel, and W. Burgard. Grid-based FastSLAM and explo-
ration with active loop closing. InOnline Proc. of the Dagstuhl Seminar on
Robot Navigation (Dagstuhl Seminar 03501), invited presentation, Dagstuhl,
Germany, 2003.

• C. Stachniss and W. Burgard. Mapping and exploration with mobile robots using
coverage maps. InProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pages 476–481, Las Vegas, NV, USA, 2003.

• C. Stachniss and W. Burgard. Using coverage maps to represent the environ-
ment of mobile robots. InProc. of the European Conference on Mobile Robots
(ECMR), pages 59–64, Radziejowice, Poland, 2003.

• C. Stachniss and W. Burgard. Exploring unknown environments with mobile
robots using coverage maps. InProc. of the Int. Conf. on Artificial Intelligence
(IJCAI), pages 1127–1132, Acapulco, Mexico, 2003.

1.3 Collaborations

Parts of this thesis have been done in collaboration with other people. The approach to
multi-robot collaboration was done together with Mark Moors and Frank Schneider.
Basic ideas on coordination have originally been presentedin the master’s thesis of
Mark Moors[Moors, 2000].

The technique to estimate semantic place labels using AdaBoost, that is used in
this thesis to improve the coordination of teams of robots, was originally addressed in
the co-supervised master’s thesis of Óscar Martínez Mozos[Martínez Mozos, 2004].
Finally, the work on Rao-Blackwellized SLAM was done in tight collaboration with
Giorgio Grisetti during his stay in Freiburg.
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1.4 Notation

Throughout this thesis, we make use of the following notation:

variable description
xt pose of the robot at time stept. This pose is a three dimensional

vector containing thex, y-position and the orientationθ of the
vehicle

x1:t sequence of poses of the robot from time step 1 to time stept
zt sensor observation obtained at time stept
ut odometry information describing the movement fromxt to xt+1

a action or motion command
w importance weight

w
[i]
t importance weight of thei-th particle at time stept

m grid map
c grid cell
r resolution of a grid map. Each cell covers an area ofr by r.
G topological map

E[] expectation
N (µ, Σ) Gaussian with meanµ and covarianceΣ

H entropy
I information gain
U utility function
V cost function
η normalizer, typically resulting from Bayes’ rule

Neff effective number of particles



Chapter 2

Basic Techniques

T
his chapter explains two techniques which are frequently used throughout
this thesis. First, we will introduce the concept of particle filters. A particle
filter is a recursive Bayesian technique for estimating the state of a dynamic
system. We then explain the ideas of grid maps and “mapping with known

poses”. Note that elementary laws in the context of probability theory can be found in
the Appendix A.1 of this thesis.

2.1 Introduction to Particle Filters

A particle filter is a nonparametric implementation of the Bayes filter and is frequently
used to estimate the state of a dynamic system. The key idea isto represent a posterior
by a set of hypotheses. Each hypothesis represents one potential state the system might
be in. The state hypotheses are represented by a setS of N weighted random samples

S =
{〈

s[i], w[i]
〉
| i = 1, . . . , N

}
, (2.1)

wheres[i] is the state vector of thei-th sample andw[i] the corresponding importance
weight. The weight is a non-zero value and the sum over all weights is 1. The sample
set represents the distribution

p(x) =

N∑

i=1

wi · δs[i](x), (2.2)

whereδs[i] is the Dirac function in the states[i] of thei-th sample. Such setS of samples
can be used to approximate arbitrary distributions. The samples are drawn from the
distribution they should approximate. To illustrate such an approximation, Figure 2.1
depicts two distributions and their corresponding sample sets. In general, the more
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Figure 2.1: Two functions and their approximations by samples with uniform weights.
The samples are illustrated by the vertical bars below the two functions.

samples that are used, the better the approximation. The ability to model multi-modal
distributions by the set of samples is an advantage comparedto a series of other filters.
The Kalman filter[Kalman, 1960], for example, is restricted to Gaussian distributions.

Whenever we are interested in estimating the state of a dynamic system over time,
we can use the particle filter algorithm. The idea of this technique is to represent the
distribution at each point in time by a set of samples, also called particles. The particle
filter algorithm allows us to recursive estimate the particle setSt based on the estimate
St−1 of the previous time step. Thesampling importance resampling(SIR) particle
filter can be summarized with the following three steps:

1. Sampling: Create the next generationS ′
t of particles based on the previous set

St−1 of samples. This step is also called sampling or drawing fromthe proposal
distribution.

2. Importance Weighting: Compute an importance weight for each sample in the
setS ′

t.

3. Resampling: DrawN samples form the setS ′
t. Thereby, the likelihood to draw

a particle is proportional to its weight. The new setSt is given by the drawn
particles.

In the following, we explain these three steps in more detail. In the first step, we
draw samples in order to obtain the next generation of particles for the next time step.
In general, the true probability distribution to sample particles from is not known or
not in a suitable form for sampling. We show that it is possible to draw samples from
a different distribution than the one we want to approximate. This technique is known
asimportance sampling.
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We are faced with the problem of computing the expectation thatx ∈ A, whereA
is a region. In general, the expectationEp[f(x)] of a functionf is defined as

Ep[f(x)] =

∫

p(x) · f(x) dx. (2.3)

Let B be a function which returns 1 if its argument is true and 0 otherwise. We can
express the expectation thatx ∈ A by

Ep[B(x ∈ A)] =

∫

p(x) · B(x ∈ A) dx (2.4)

=

∫
p(x)

π(x)
· π(x) ·B(x ∈ A) dx, (2.5)

whereπ is a distribution for which we require that

p(x) > 0 ⇒ π(x) > 0. (2.6)

Thus, we can define a weightw(x) as

w(x) =
p(x)

π(x)
. (2.7)

This weightw is used to account for the differences betweenp and theπ. This leads to

Ep[B(x ∈ A)] =

∫

π(x) · w(x) · B(x ∈ A) dx (2.8)

= Eπ[w(x) · B(x ∈ A)]. (2.9)

Let us consider again the sample-based representations andsuppose the sample are
drawn fromπ. By counting all the particles that fall into the regionA, we can compute
the integral ofπ over A by the sum over samples

∫

A

π(x) dx ≈
1

N
·

N∑

i=1

B(s[i] ∈ A). (2.10)

If we consider the weights in this computation, we can compute the integral overp as

∫

A

p(x) dx ≈
N∑

i=1

w[i] · B(s[i] ∈ A). (2.11)
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Figure 2.2: The goal is to approximate the target distribution by samples. The samples
are drawn from the proposal distribution and weighted according to Eq. (2.13). After
weighting, the resulting sample set is an approximation of the target distribution.

It can be shown, that the quality of the approximation improves the more samples that
are used. For an infinite set of samples, the sum over the samples converges to the
integral

lim
N→∞

N∑

i=1

w[i] · B(s[i] ∈ A) =

∫

A

p(x) dx. (2.12)

Let p be the probability distribution which is not in a suitable form for sampling andπ
the one we actually sample from. In the context of importancesampling,p is typically
called thetarget distributionandπ theproposal distribution.

This derivation tells us that we can sample from an arbitrarydistributionπ which
fulfills Eq. (2.6) to approximate the distributionp by assigning an importance weight
to each sample according to Eq. (2.7). This condition is needed to ensure that a state
which might be sampled fromp does not have zero probability underπ. An exam-
ple that depicts a weighted set of samples in case the proposal is different from the
target distribution is shown in Figure 2.2. Note that the importance sampling prin-
ciple requires that we can point-wise evaluate the target distribution. Otherwise, the
computation of the weights would be impossible.

Let p(s1:t | d) be the posterior to estimate, whered stands for all the data or
background information. The importance weighting performed in Step 2 of the particle
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filter implementation (see Page 28) accounts for the fact onedraws from the proposal
π by setting the weight of each particle to

w
[i]
t = η ·

p(s
[i]
1:t | d)

π(s
[i]
1:t | d)

, (2.13)

whereη is the normalizer that ensures that the sum over all weights is 1.
The resampling step within a particle filter removes particles with a low impor-

tance weight and replaces them by particles with a high weight. After resampling, the
weights are set to1/N because by drawing according to the importance weight, one
replaces “likelihoods” by “frequencies”.

Resampling is needed since we use only a finite number of samples to approximate
the target distribution. Without resampling, typically most particles would represent
states with a low likelihood after some time and the filter would loose track of the
“good” hypotheses. On the one hand, this fact makes resampling important, on the
other hand removing samples from the filter can also be problematic. In practice, it
can happen that samples are replaced even if they are close tothe correct state. This
can lead to the so-called particle depletion or particle deprivation problem[Doucet,
1998, Doucetet al., 2001, van der Merweet al., 2000].

To reduce the risk of particle depletion, one can apply low-variance resampling.
This technique does not draw the particles independently ofeach other in the resam-
pling step. Instead of generatingN random numbers to selectN samples, the approach
uses only a single random number to choose the first particle.The others are drawn
depended on the first draw but still with a probability proportional to the individual
weights. As a result, the particle set does not change duringa resampling in case the
weights are uniformly distributed. A detailed explanationon low-variance resampling
as well as on particle filters in general can be found in[Thrunet al., 2005]. The com-
plete particle filter algorithm is listed in Algorithm 2.1.

2.1.1 Mobile Robot Localization using Particle Filters

In the context of mobile robotics, particle filters are oftenused to track the position
of the robot. Since this technique is used in this thesis, we briefly illustrate the most
important facts of Monte-Carlo localization[Dellaertet al., 1998]. In this scenario,
the state vectors is the pose of the vehicle. Mostly, the motion estimate of therobot
resulting from odometry is used to compute the proposal distribution in Step 1. The so-
called motion modelp(xt | xt−1, ut−1) is used to draw the next generation of particles.
In this case, the importance weightw

[i]
t of thei-th sample has to be computed based on

the observation likelihoodp(zt | m, x
[i]
t ) of the most recent sensor observationzt given

a mapm of the environment and the corresponding pose of the particle. This becomes
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Algorithm 2.1 The particle filter algorithm
Input: Sample setSt−1 and the datad.

1: S ′
t = ∅

2: for i=1 to N do
3: draw ŝ ∼ π(st | s

[i]
t−1, d)

4: ŵ = η ·
[

p(ŝ | s[i]
t−1, d)

]

·
[

π(ŝ | s[i]
t−1, d)

]−1

// whereη is a normalizer

5: S ′
t = S ′

t + 〈ŝ, ŵ〉
6: end
7: St = ∅
8: for j=1 to N do
9: draw a samples[i]

t from S ′
t. Thereby,s[i]

t is drawn with probabilityw[i]
t

10: St = St +
〈

s
[i]
t , 1/N

〉

11: end
12: return St

clear by considering the following derivations. We can transform the full posterior
p(x1:t | m, z1:t, u1:t−1) and obtain a recursive formula

p(x1:t | m, z1:t, u1:t−1)
Bayes’ rule

= η · p(zt | m, x1:t, z1:t−1, u1:t−1)

·p(x1:t | m, z1:t−1, u1:t−1) (2.14)
Markov

= η · p(zt | m, xt)

·p(x1:t | m, z1:t−1, u1:t−1) (2.15)
product rule

= η · p(zt | m, xt)

·p(xt | m, x1:t−1, z1:t−1, u1:t−1)

·p(x1:t−1 | m, z1:t−1, u1:t−1) (2.16)
Markov

= η · p(zt | m, xt) · p(xt | xt−1, ut−1)

·p(x1:t−1 | m, z1:t−1, u1:t−2), (2.17)

whereη is the normalizer resulting from Bayes’ rule. Under the Markov assumption,
we can transform the proposal as

π(x1:t | m, z1:t, u1:t) = π(xt | m, xt−1, zt, ut−1)

·π(x1:t−1 | m, z1:t−1, u1:t−2). (2.18)

The computation of the weights needs to be done according to Eq. (2.13). In the sequel,
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we drop the normalizer that ensures that all weights sum up to1. This leads to

wt =
p(x1:t | m, z1:t, u1:t−1)

π(x1:t | m, z1:t, u1:t−1)
(2.19)

=
η · p(zt | m, xt) · p(xt | xt−1, ut−1)

π(x1:t | m, z1:t, u1:t−1)
· p(x1:t−1 | m, z1:t−1, u1:t−2) (2.20)

=
η · p(zt | m, xt) · p(xt | xt−1, ut−1)

π(xt | m, xt−1, zt, ut−1)
·
p(x1:t−1 | m, z1:t−1, u1:t−2)

π(x1:t−1 | m, z1:t−1, u1:t−2)
︸ ︷︷ ︸

wt−1

(2.21)

=
η · p(zt | m, xt) · p(xt | xt−1, ut−1)

π(xt | m, xt−1, zt, ut−1)
· wt−1. (2.22)

If we choose the motion model as the proposal, we obtain for the i-the sample

w
[i]
t =

η · p(zt | m, x
[i]
t ) · p(xt | x

[i]
t−1, ut−1)

p(xt | x
[i]
t−1, ut−1)

· w[i]
t−1 (2.23)

= η · p(zt | m, x
[i]
t ) · w[i]

t−1 (2.24)

∝ p(zt | m, x
[i]
t ) · w[i]

t−1. (2.25)

Since the resampling step resets the weights of the whole setby 1/N , we can ignore
the weight of the previous time step and obtain

w
[i]
t ∝ p(zt | m, x

[i]
t ). (2.26)

This derivation shows that by choosing the motion model to draw the next generation
of particles, we have to use the observation likelihoodp(zt | m, xt) to compute the
individual weights.

To summarize this section, particle filters are a nonparametric implementations
of the recursive Bayes filter. They use a set of weighted samples and can represent
arbitrary distributions. The samples are drawn from a proposal distribution. After de-
termining the importance weights which account for the factthat the target distribution
is different from the proposal distribution, the resampling step replaces particles with
a low weight by particles with a high importance weight.

Throughout this thesis, we apply particle filters to solve the simultaneous localiza-
tion and mapping problem. Furthermore, we apply them in the context of information
gain-based exploration and to localize a mobile robot in dynamically changing envi-
ronments.
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2.2 Grid Maps

There exist different types of models for representing the environment which are fre-
quently used in mobile robotics. The most common ones are feature maps, geometric
maps, and grid maps. A feature map stores a set of features detected in the envi-
ronment. Typical features are lines and corners when proximity sensors are used.
Other possibilities are visual features based on the scale invariant feature transform
(SIFT) [Lowe, 1999] whenever a camera is used to perceive the environment. For
each feature, these maps store the feature information together with a coordinate and
eventually an uncertainty measure. This can be realized by alist of features or by using
more efficient data structures like KD-trees[Friedmanet al., 1977, Bentley, 1980].

Geometric maps represent all obstacles detected by the robot as geometric objects,
like circles or polygons. This kind of representation is comparably compact and needs
only few memory resources.

Throughout this thesis, we use grid maps to model the environment. Grid maps
discretize the environment into so-called grid cells. Eachcell stores information about
the area it covers. Most frequently used are occupancy grid maps that store for each
cell a single value representing the probability that this cell is occupied by an obstacle.
The advantage of grids is that they do not rely on predefined features which need
to be extracted from sensor data. Furthermore, they offer a constant time access to
grid cells and provide the ability to model unknown (unobserved) areas, which is an
important feature in the context of exploration. However, they have the disadvantages
of discretization errors and of requiring a lot of memory resources.

In this section, we first introduce the occupancy mapping algorithm, developed by
Moravec and Elfes[1985]. Afterwards, we briefly describe a variant called reflec-
tion probability maps. Both approaches are also referred toas “mapping with known
poses.”

2.2.1 Occupancy Probability Mapping

Grid maps discretize the environment into equally sized cells. Each cell represents
the area of the environment it covers. It is assumed that eachcell is either free or
occupied by an obstacle. Occupancy grids store for each cellc a probabilityp(c)
of being occupied by an obstacle. In the following, we will derive the map update
algorithm introduced by Moravec and Elfes which computes the occupancy probability
p(m) for the grid mapm.

The algorithm takes into account a sequence of sensor observationsz1:t obtained by
the robot at the positionsx1:t and seeks to maximize the occupancy probability for the
grid map. One assumption in the algorithm of Moravec and Elfes is that the different
cells are independent. Therefore, the probability of a mapm is given by the product
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over the probabilities of the individual cells

p(m) =
∏

c∈m

p(c). (2.27)

In the following, we concentrate on the estimation of the occupancy probability of the
individual cellsc ∈ m. By applying Bayes’ rule usingx1:t andz1:t−1 as background
knowledge, we obtain

p(c | x1:t, z1:t) =
p(zt | c, x1:t, z1:t−1) · p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.28)

We assume thatzt is independent fromx1:t−1 andz1:t−1. This leads to

p(c | x1:t, z1:t) =
p(zt | c, xt) · p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (2.29)

We apply Bayes’ rule for the termp(zt | c, xt) in Eq. (2.29) and obtain

p(zt | c, xt) =
p(c | xt, zt) · p(zt | xt)

p(c | xt)
. (2.30)

We can now combine Eq. (2.30) and Eq. (2.29). Let us furthermore assume thatxt

does not carry any information aboutc if there is no observationzt. This leads to

p(c | x1:t, z1:t) =
p(c | xt, zt) · p(zt | xt) · p(c | x1:t−1, z1:t−1)

p(c) · p(zt | x1:t, z1:t−1)
. (2.31)

If we exploit the fact that each cell is a binary variable, we can derive the following
equation in an analogous way

p(¬c | x1:t, z1:t) =
p(¬c | xt, zt) · p(zt | xt) · p(¬c | x1:t−1, z1:t−1)

p(¬c) · p(zt | x1:t, z1:t−1)
. (2.32)

By dividing Eq. (2.31) by Eq. (2.32), we obtain

p(c | x1:t, z1:t)

p(¬c | x1:t, z1:t)
=

p(c | xt, zt) · p(¬c) · p(c | x1:t−1, z1:t−1)

p(¬c | xt, zt) · p(c) · p(¬c | x1:t−1, z1:t−1)
. (2.33)

Finally, we use the fact thatp(¬c) = 1− p(c) which yields

p(c | x1:t, z1:t)

1− p(c | x1:t, z1:t)
=

p(c | xt, zt)

1− p(c | xt, zt)
·
1− p(c)

p(c)
·

p(c | x1:t−1, z1:t−1)

1− p(c | x1:t−1, z1:t−1)
. (2.34)
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If we define

Odds(x) =
p(x)

1− p(x)
, (2.35)

Eq. (2.34) turns into

Odds(c | x1:t, z1:t) =

Odds(c | xt, zt) ·Odds(c)−1 ·Odds(c | x1:t−1, z1:t−1). (2.36)

This equation has a recursive structure similar to that of a recursive Bayesian update
scheme. The correspondinglog Odds representation of Eq. (2.36) is given by

log Odds(c | x1:t, z1:t) =

log Odds(c | zt, xt)

− log Odds(c)

+ log Odds(c | x1:t−1, z1:t−1). (2.37)

The usage of thelog Odds notation has advantage that it can be computed efficiently. It
is only necessary to compute a sum in order to update a cell based on sensory input. To
recover the occupancy probability from theOdds representation given in Eq. (2.36),
we use the following formula which can easily be derived fromEq. (2.35):

p(x) =
Odds(x)

1 + Odds(x)
(2.38)

This leads to the followingoccupancy update formula

p(c | x1:t, z1:t) =
[

1 +
(1− p(c | xt, zt))

p(c | xt, zt)
·

p(c)

(1− p(c))
·
1− p(c | x1:t−1, z1:t−1)

p(c | x1:t−1, z1:t−1)

]−1

. (2.39)

Eq. (2.39) tells us how to update our beliefp(c | x1:t, z1:t) about the occupancy proba-
bility of a grid cell given sensory input. In practice, one often assumes that the occu-
pancy prior is 0.5 for all cells so thatp(c)

(1−p(c))
can be removed from the equation.

It remains to describe how to compute the occupancy probability p(c | xt, zt) of a
grid cell given asingleobservationzt and the corresponding posext of the robot. This
quantity strongly depends on the sensor of the robot and has to be defined manually
for each type of sensor.
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Figure 2.3: Sensor model for a laser range finder. It depicts the probability that a cell
is occupied depending on the distance of that cell from the laser sensor.

2.2.2 Sensor Model for a Laser Range Finder

In case a laser range finder is used, a quite simplistic model can be applied. Each cell
c that is covered by then-th beamzt,n of the observationzt and whose distance to the
sensor is shorter than the measured one, is supposed to be unoccupied. The cell in
which the beam ends is supposed to be occupied. The functiondist(xt, c) refers to the
distance between the sensor and the center of the cellc. This can be formulated

p(c | zt,n, xt) =







pprior , zt,n is a maximum range reading
pprior , c is not covered byzt,n

pocc , |zt,n − dist(xt, c)| < r
pfree , zt,n ≥ dist(xt, c),

(2.40)

wherer is the resolution of the grid map. Furthermore, it must hold0 ≤ pfree <
pprior < pocc ≤ 1. Figure 2.3 depicts an example for such a sensor model for laser
range finder data.

2.2.3 Sensor Model for a Sonar Sensor

In case a sonar sensor is used, the sensor model is slightly more complicated, since
the sensor is not a beam sensor and the observations are more noisy than the ones of
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Figure 2.4: Probability that a cell on the optical axis of thesensor is occupied depend-
ing on the distance of that cell from the sensor.

a laser range finder. In practice, one typically uses a mixture of three functions to
express the model. First, the influence of an observation (which is represented by the
difference betweenpprior andpocc as well as betweenpprior andpfree) decreases with
the measured distance.

Second, the proximity information of a sonar is substantially affected by noise.
Therefore, one typically uses a piecewise linear function to model a smooth transition
from pfree to pocc as illustrated in Figure 2.4.

Finally, the sonar sensor should not be modeled as a beam sensor, since it sends
out a conic signal. The accuracy of an observation decreaseswith the angular distance
between the cell under consideration and the optical axis ofthe observation. This is
expressed by the derivation from the prior and is typically modeled using a Gaussian
with zero mean. Therefore, it is maximal along the optical axis and decreases the
bigger the angular distance form the optical axis is.

Two examples for a resulting model are depicted in Figure 2.5. It shows two three-
dimensional plots of the resulting occupancy probabilities for a measurement of 2 m
(left image) and 2.5 m (right image). In this figure, the optical axis of the sensor cone
was identical with thex-axis and the sensor was placed in the origin of the coordinate
frame. As can be seen, the occupancy probability is high for cells whose distance to
xt is close tozt,n. It decreases for cells with shorter distance thanzt,n as well as with
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Figure 2.5: Occupancy probability introduced by a single ultrasound measurement of
zt,n = 2.0m (left image) andzt,n = 2.5m (right image).

increasing values of the angular distance.
Figure 2.6 depicts the mapping process for a sequence of observations recorded

with an iRobot B21r robot. The first row shows a map was built from a sequence of
previous ultrasound scans. Afterwards the robot perceiveda series of 18 ultrasound
scans each consisting of 24 measurements. The occupancy probabilities for these 18
scans are depicted in the rows from 2 to 7. The occupancy probability grid obtained
by integrating the individual observations into the map is shown in the last row of this
figure. As can be seen, the belief converges to a representation of the corridor structure
in which the scans where recorded.

2.2.4 Reflection Probability Mapping

Beside occupancy probability grids, there exist alternative realization of grid maps. A
frequently used model is the so-called reflection probability map or counting model. In
contrast to occupancy grid maps, they store for each cell a reflection probability value.
This value provides the probability that a measurement covering the cell is reflected.
Note that the occupancy model and the counting model are similar but not identical.

In this model, we are interested in computing the most likelyreflection probability
mapm∗ given the observations and poses of the robot.

m∗ = argmax
m

p(m | x1:t, z1:t) (2.41)

By series of mathematical transformations (see[Burgard, 2005] for the details), one
can derive that the most likely mapm∗ is the map for which each grid cellc has the
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Figure 2.6: Incremental mapping in a corridor environment.The upper left image
shows the initial map and the lower one contains the resulting map. The maps in
between are the local maps built from the individual ultrasound scans perceived by the
robot.
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value

p(c | x1:t, z1:t) =
#hits(c, x1:t, z1:t)

#hits(c, x1:t, z1:t) + #misses(c, x1:t, z1:t)
, (2.42)

where#misses(c, x1:t, z1:t) is the number of times a beamzt,n taken fromxt passed
through the grid cellc and#hits(c, x1:t, z1:t) is the number of times a beam ended in
that cell. Since the value of each cell can be determined by counting, this technique is
also called counting model.

The differences between occupancy probability and reflection probability maps
is that the occupancy probability typically converges to 0 or 1 for each cell which
is frequently observed. In contrast to that, reflection probability values converge to
valuesbetween0 and 1. Values significantly different from 0 or 1 often occurwhen
mapping objects much smaller than the grid discretization or, for example, for glass
panes which are repeatedly observed with a laser range finder.
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Part I

Single- and Multi-Robot Exploration
with Known Poses
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Chapter 3

Decision-Theoretic Exploration Using
Coverage Maps

3.1 Introduction

T
here exist several applications in which the exploration task is an integral
part of the robotic mission. The complete and efficient coverage of terrain
is one of the elementary problems in planetary exploration[Apostolopoulos
et al., 2001], reconnaissance[Hougenet al., 2000], rescue[Murphy, 2004,

Thrunet al., 2003], mowing[Huanget al., 1986], or cleaning[Jäger and Nebel, 2002,
Endreset al., 1998, Simoncelliet al., 2000].

Throughout this chapter, we focus on the problem of how to efficiently explore an
environment with a single mobile robot. We describe a decision-theoretic approach to
exploration of unknown terrain with noisy sensors. The goalis to come up with an
accurate model of the environment without steering the robot manually. Our approach
seeks to minimize the uncertainty in the map over time. Therefore, the next viewpoint
of the robot is chosen in a way that its action provides the highest expected uncertainty
reduction. In the beginning of this thesis, we assume that the movement of the vehicle
is not affected by noise. Later on, we relax this assumption and present a technique to
deal with the pose uncertainty of a mobile robot.

In addition to the exploration aspect, we consider the problem of how to model the
environment of a mobile robot and how to update the map upon new sensory input. In
particular, we introduce coverage maps as a probabilistic way to represent the belief of
the robot about the state of the environment. In contrast to occupancy grids[Moravec
and Elfes, 1985], in which each cell is considered as either occupied or free,coverage
maps represent for each cell of a given discretization a posterior about the percentage
this cell is covered by an object. As an example consider the situation depicted in
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Figure 3.1: Typical occupancy map obtained in situations inwhich cells are only
partly occupied (left) and a coverage map containing the corresponding coverage val-
ues (right). Black represents high occupancy probability respectively coverage value.

the left images of Figure 3.1 in which a cell is partly coveredby an obstacle. Using
occupancy grid maps the probability that this cell is occupied converges to 1 if the
sensors of the robot repeatedly detect the obstacle (as illustrated in the left image of
this figure). Since the object covers only 20% of the area of this cell, acoverage value
of 0.2 (as shown in the right image of Figure 3.1) would be a better representation of the
given situation. Additionally, we present a sensor model that allows us to appropriately
update a coverage map upon sensory input affected by noise.

This chapter is organized as follows. In the next section, weintroduce the idea of
coverage maps. In Section 3.3, we present a sensor model thatallows us to update
a given coverage map upon sensory input. In Section 3.4, we describe a decision-
theoretic approach to exploration based on coverage maps. After this, the experiments
illustrate the various properties of our approach. We present accurate maps learned
by a real robot and discuss the advantages of our technique over existing approaches.
Finally, we discuss related work in Section 3.7.

3.2 Definition of Coverage Maps

As already mentioned above, occupancy grids rest on the assumption that the envi-
ronment has binary structure, i.e., that each grid cell is either occupied or free. This
assumption, however, is not always justified. For example, if the environment con-
tains a wall that is not parallel to thex- or y-axis of the grid there must be grid cells
which are only partly covered. In occupancy grids, the probability that such cells are
occupied will inevitably converge to 1 (see Figure 3.1). Coverage maps overcome
this limitation by storing for each cell a posterior about its coverage. Coverage values
range from 0 to 1. A coverage of 1 means that the cell is fully occupied and an empty
cell has a coverage of 0. Since the robot usually does not knowthe true coverage of a
grid cell c it maintains a probabilistic beliefp(c) about the coverage ofc. In principle,
there are different ways of representingp(c). They range from parametric distribu-
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Figure 3.2: The coverage posterior for the cell containing the obstacle in Figure 3.1.

tions such as (mixtures of) Gaussians or non-parametric variants such as histograms.
Throughout this work, we assume that each coverage posterior is modeled by a his-
togram over possible coverage values. More precisely, we store a histogram for each
grid cell, where each bin contains the probability that the corresponding grid cell has
the particular coverage.

A coverage map cell is typically initialized using a uniformdistribution in order
to represent the maximum uncertainty about the actual stateof the cell. In contrast
to this, Figure 3.2 shows a typical coverage posterior we frequently obtain for partly
occupied cells. The depicted posterior was generated basedon observations perceived
in a simulated environment like the one shown in Figure 3.1.

So far, we only explained the idea of coverage maps but left open how to actually
determine the posterior based on observations. In the next section, we describe how
we can update coverage maps based on sensory input.

3.3 Updating Coverage Maps Upon Sensory Input

To update a coverage map whenever sensor data arrives, we apply a Bayesian update
scheme. Throughout this chapter, we assume that our sensor provides distance infor-
mation. Thus, we need a formalism to convert the distance information to coverage
values. What we need to determine is the coverage mapm that has the highest like-
lihood under all distance measurementsz1:t = z1, . . . , zt. If we use Bayes’ rule and
then assume that consecutive measurements are independentgiven that we know the



48 CHAPTER 3: DECISION-THEORETIC EXPLORATION USING COVERAGE MAPS

mapm, we obtain

p(m | x1:t, z1:t)
Bayes′rule

=
p(z1:t | m, x1:t) · p(m | x1:t)

p(z1:t | x1:t)
(3.1)

=
p(m | x1:t)

p(z1:t | x1:t)
· p(z1:t | m, x1:t) (3.2)

independence
=

p(m | x1:t)
∏t

t′=1 p(zt′ | xt′)
·

t∏

t′=1

p(zt′ | m, xt′). (3.3)

Next we need to know how to determine the likelihoodp(zt | m, xt) of measuringzt

given the mapm and the posext of the vehicle. Again we apply Bayes’ rule and obtain

p(m | x1:t)
∏t

t′=1 p(zt′ | xt′)
·

t∏

t′=1

p(zt′ | m, xt′)

Bayes′rule
=

p(m | x1:t)
∏t

t′=1 p(zt′ | xt′)
·

t∏

t′=1

p(m | xt′ , zt′) · p(zt′ | xt′)

p(m | xt′)
(3.4)

=
p(m | x1:t)

∏t
t′=1 p(zt′ | xt′)

·

∏t
t′=1 p(zt′ | xt′)

∏t
t′=1 p(m | xt′)

t∏

t′=1

p(m | xt′ , zt′) (3.5)

=
p(m | x1:t)

∏t
t′=1 p(m | xt′)

t∏

t′=1

p(m | xt′ , zt′) (3.6)

m ind. of x
≃

1

p(m)t−1

︸ ︷︷ ︸

η′

·
t∏

t′=1

p(m | xt′ , zt′) (3.7)

= η′ ·
t∏

t′=1

p(m | xt′ , zt′). (3.8)

Eq. (3.7) is obtained from Eq. (3.6) by assuming thatm is independent ofxt given we
have no observations. The variableη′ represents a normalization constants ensuring
that the left-hand side sums up to one over allm. We assume that the individual cells
of a coverage map are independent. This is not true in general, but is frequently used
in the context of grid maps. We would like to refer to a work by Thrun[2003] on how
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to better deal with the dependency between cells. Finally, we obtain

p(m | x1:t, z1:t) = η′ ·
t∏

t′=1

∏

c∈m

p(c | xt′ , zt′) (3.9)

= η′ ·
∏

c∈m

t∏

t′=1

p(c | xt′ , zt′). (3.10)

Thus, to update a map given a measurementzt we simply have to multiply the current
belief about the coverage of each cellc by the belief about the coverage resulting from
zt. The maximum likelihood coverage map is obtained by choosing the mode of the
coverage histogram for each cellc.

It remains to describe how we actually computep(c | xt, zt), i.e. how we determine
the distribution about the potential coverage values of a cell c with distancedist(c, xt)
to the sensor given a measurementzt. In our current system, we use a mixture of a
GaussianN (µ, σ) and a uniform distributionγ to describe the probability distribution
p(c | xt, zt) about the coverage ofc

p(c | xt, zt) = γ(dist(c, xt), zt) +

ξ(zt) · N (µ(dist(c, xt)− zt), σ(dist(c, xt), zt)), (3.11)

whereξ(zt) is an indicator variable about the validity of the observation zt. In casezt

is a maximum range reading,ξ(zt) equals zero otherwise it is one.dist(c, xt) is the
euclidian distance between the center of the cellc and the position of the robot (the
sensor) at timet.

The value of the uniform distributionγ(dist(c, xt), zt) increases withdist(c, xt)
and the measured distancezt. This reflects a typical property of proximity sensors
like sonars, because the accuracy of a measurement decreases with the distance to the
obstacle. The meanµ(x) of the Gaussian is computed in the following way:

µ(x) =







0, x < − r
2

1
2

+ x
r
, |x| ≤ r

2

1, x > r
2

(3.12)

Here r is the resolution of the grid discretization. We distinguish three situations,
depending on whether the measurementzt ends inc or not. Suppose that the measure-
ment does not end inc and the distancedist(c, xt) is shorter thanzt. In this case, we
havedist(c, xt) − zt < − r

2
. In such a situation, the mean of the Gaussian is zero.

In this way, we assume that a cell which is covered by a measurement that does not
end within this cell is most likely empty. The second line of Eq. (3.12) represents the
situation in whichz ends withinc. In this case, the mean is inverse proportional to
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Figure 3.3: This picture shows our sensor modelp(c | xt, zt) for a proximity measure-
ment (here for a sonar reading with a measured distancezt = 1m).

the area the cell is covered byzt. Finally, cells lying a small distance behind a cell,
in which the measurement ends, are most likely completely occupied so that the mean
is 1. This value which is set to 20 cm in our implementation models the thickness of
the walls and objects in the environment.

The value of the standard deviationσ(dist(c, xt), zt) of the Gaussian is also a func-
tion that is monotonously increasing indist(c, xt) andzt except when|dist(c, xt) −
zt| <

r
2
. In this interval,σ(dist(c, xt), zt) has a constant value that exceeds all values

outside of this interval.

To obtain the optimal parameters for the various functions in our sensor model
shown in Eq. (3.11), we apply the maximum likelihood principle. We used data sets
recorded with a B21r robot in our department building using sonar and laser observa-
tions. We then compared the resulting maps build with the sonar sensors to the ground
truth map obtained by applying a highly accurate scan-alignment procedure[Hähnelet
al., 2002] on the laser range information. We can easily compute the exact coverage of
each cell of a given discretization by straightforward geometric operations. We evalu-
ate a particular set of parameters by computing the likelihood of the ground truth map
given the corresponding coverage map and by applying a localsearch techniques to
determine a parameter setting that maximizes the likelihood of the ground truth map.

Figure 3.3 depicts a fraction of the resulting sensor modelp(c | zt, xt) for the
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Figure 3.4: The top image depicts a coverage map learned fromultrasound data using
our sensor model and map update technique. In this experiment, most of the obstacles
fit into the grid discretization and therefore only a few cells show partly occupied
cells. The lower image illustrates the corresponding ground truth map learned from
laser range data.

ultrasound sensors. As the plot illustrates, for a measureddistance of 1 m, cells close
to the robot are with high likelihood unoccupied. Cells close the measured distance
are covered with a high likelihood.

The maximum likelihood coverage map obtained with this model is shown in the
top image of Figure 3.4. The size of the environment depictedin this figure is 17 m
by 2.6 m. The lower image of this figure shows the ground truth map. As can be seen
from the figure, the similarity between the learned map and the ground truth is quite
high.

3.4 Decision-theoretic Exploration with Coverage Maps

One of the key problems during exploration is to choose appropriate viewpoints. In
general, there are different aspects that are relevant. On the one hand, the uncertainty
of the robot about the current state of the map should be as small as possible and on the
other hand, the number of measurements to be incorporated toachieve this uncertainty
reduction as well as the traveled distance should be minimized.

Coverage maps are well-suited to support a decision-theoretic approach to explo-
ration. To determine the uncertainty in the state of a particular cell, we consider the
entropy of the posterior for that cell. Entropy is a general measure for the uncertainty
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of a belief and is defined as

H(p(x)) = −

∫

x

p(x) · log p(x) dx. (3.13)

In case a histogram is used to representp(x), the integral turns into a sum over the
bins of the histogram.H is maximal in case of a uniform distribution. The minimal
value of zero (in the case of a discrete posterior) is obtained if the system is absolutely
certain about the state of the corresponding cell. To minimize the uncertainty in the
current map, all we need to do is to reduce the entropy of the individual histograms in
the coverage map since the cells are assumed to be independent.

The entropy also allows us to define when the exploration taskhas been completed.
We regard the exploration task as completed as soon as the robot reaches a defined
level of certainty about the map. This is a more appropriate choice than regarding an
environment as explored as soon as all (reachable) cells have been covered with the
robots’ sensors. Suppose the environment is of limited size. Then, we define the goal
of the exploration process for a coverage mapm asH(p(c)) < ǫ for all cells c ∈ m
that can be reached by the robot. The value ofǫ describes the desired level of certainty
about the state of all cells. Additionally, the system has todetect a situation in which
the robot is unable to reduce the entropy of a cell belowǫ to ensure the termination
of the exploration task. In our system, this is achieved by monitoring the change of
entropy. If this change is below a threshold value for consecutive measurements, the
cell is regarded as explored.

In this section, we specified the termination criterion for our exploration task based
on the entropy in the map model. In the following, we explain how we actually guide
the robot through the environment.

3.4.1 Choosing the Closest Target Location (CL)

A popular exploration strategy is to drive to the closest location at which the robot can
gather information about a cell that has not been sufficiently explored. This strategy
has been shown to provide short trajectories for single robot exploration tasks[Koenig
and Tovey, 2003]. As mentioned above, our approach uses the entropy to measure the
uncertainty about a grid cell. A cell is regarded as been sufficiently observed if the
entropy of the coverage belief does not exceedǫ or if it does not change any longer.
The first strategy, called CL, does not take into account how much information will be
obtained at a particular viewpoint. It rather seeks to minimize the distance to the next
point by selecting

c∗ = argmin
c∈L(m)

distm(x, c). (3.14)
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HereL(m) is the set of reachable cells which have a grid cell with high entropy in its
visibility range.distm(x, c) is the length of the shortest path between the current pose
x of the robot and the locationc given the current mapm of the environment.

3.4.2 Exploration using the Information Gain (IG)

The second strategy, called IG, is solely governed by the information gain that can
be obtained about the environment at a specific viewpoint. The information gain is
used to take into account the accuracy of the information provided by the sensor. We
compute the expected information gain which is the expectedchange of entropy given
that the robot obtains a measurement at a certain location inthe map.

For a given cellc and measurementz taken fromx, the information gain is defined
as

I(c, x, z) = H(p(c))−H(p(c | x, z)). (3.15)

Herep(c) is the coverage histogram of cellc andp(c | x, z) the same histogram after
integrating the measurementz taken from the posex according to our sensor model.
The information gain of a measurement is then computed as thesum of the informa-
tion gains for all cells covered by that measurement. Since we do not know which
measurement we will receive if the robot measures at a certain positionx, we have to
integrate over all possible measurements to compute the expected information gain for
that viewpoint

E[I(x)] =

∫

z

p(z | m, x) ·
∑

c∈Cov(x,z)

I(c, x, z) dz. (3.16)

HereCov(x, z) is the set of cells covered by measurementz taken from locationx.
In order to estimateCov(x, z), we apply a ray-casting technique based on the current
maximum likelihood map. Considering only the maximum likelihood map to com-
pute the observationp(z | m, x) is an approximation but it allows us to compute this
quantity in an efficient way. In our approach, we take into account a discretized set of
proximity measurements. In this way, the integral turns into a sum

E[I(x)] ≃
∑

z

p(z | m, x) ·
∑

c∈Cov(x,z)

I(c, x, z). (3.17)

Since the complexity of Eq. (3.17) depends exponentially onthe number of dimensions
of the measurement, we consider all dimensions independently. Otherwise the com-
putation would be intractable. For example, for our B21r robot Albert (see Figure 3.5)
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Figure 3.5: The left image depicts the B21r robot Albert usedto carry out the experi-
ments. Albert is equipped with ring of 24 ultrasound sensors. The other images show
photographs taken within the corridor of our office environment.

equipped with 24 ultrasound sensors, we compute the averageinformation gain over
all 24 sensors independently.

To evaluate a potential viewpoint, we generate a set of potential proximity obser-
vations. This set is given by all possible distances the sensor can return up to a given
resolution. In our current implementation, we simulate allproximity observations be-
tween 20 cm and 2.5 m with a resolution of 2 cm. We then determine the likelihood for
each observation and its effect on the entropy of the map. This simulation process is
computationally intensive, but it provides the expected reduction of entropy for each
grid cell in the map. This information is required when seeking for exploration strate-
gies that minimize the uncertainty in the map model. In our approach, we consider
each grid cellc as a potential next viewpoint and select the one which provides the
highest expected entropy reduction

c∗ = argmax
c∈L(m)

E[I(c)]. (3.18)

In extensive experiments, we figured out that an approach that purely relies on the
information gained at particular viewpoints usually minimizes the number of mea-
surements needed to learn a map. However, it has the major disadvantage that it does
not take into account the overall path length of the resulting trajectory.

3.4.3 Using IG in a Local Window (IG_WIN)

To overcome the disadvantage that the strategy IG does not take into account the over-
all path length of the resulting trajectory, we defined the strategy IG_WIN. This tech-
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nique restricts the search for potential viewpoints to a local window. This window
defines an area in the environment the robot has to explore completely before focusing
on a different area. The next viewpoint can be determined by

c∗ = argmax
c∈Lwin(m)

E[I(c)]. (3.19)

Here, Lwin(m) refers to the potential goal locations which are located in the local
window. Once the window has been explored, there is no need for the robot to return
to this area again. As we point out in the experiments, the distance to be traveled can
be significantly reduced using this strategy.

3.4.4 Combination of IG and CL (IG_CL)

The final strategy discussed in this chapter tries to combinethe properties of the strate-
gies CL and IG. The goal is to find the best trade-off between the expected information
gainE[I(c)] of possible viewpointsc ∈ L(m) and the costsdistm(x, c) of reaching
them. This is achieved by combining Eq. (3.14) and Eq. (3.18)

c∗ = argmax
c∈L(m)

[

α ·
E[I(c)]

maxc′∈L(m) E[I(c′)]

−(1−α) ·
distm(x, c)

maxc′∈L(m) distm(x, c′)

]

. (3.20)

The normalization in Eq. (3.20) is performed to account for the fact that it is unclear
how to subtract a distance from an information gain. Therefore, we subtract the relative
cost from the relative information gain. As we show in the experiments of this chapter,
this leads to a well balanced exploration behavior.
Eq. (3.20) combines the advantages of the strategies IG and CL. It reduces the distance
to be traveled by the robot and the number of measurements necessary to achieve the
desired level of certainty. By adapting the weightα the user can easily influence the
behavior of the robot and optimize its performance for a special task. A value close
to zero results in the strategy CL, whereas a value close to 1,in contrast leads to a
strategy that only considers the information gain.

3.5 Exploration Using Occupancy Grid Maps

In general, the decision-theoretic exploration techniquepresented in this chapter is not
restricted to coverage maps. As long as the underlying map representation allows the
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robot to compute the uncertainty of a local area like a grid cell. One can also compute
the entropy of an occupancy grid cellc as

H(p(c)) = −p(c) log p(c)− (1− p(c)) log(1− p(c)). (3.21)

An occupancy grid map can also be seen as a coverage map using coverage histograms
with two bins. Since each cell is represented by a binary variable, the amount of
information stored per cell is small compared to coverage maps. This is due to the
fact that coverage maps allow to model partly occupied cellsand use a full histogram
instead of a binary variable. We therefore chose this representation for our approach
presented in this chapter.

3.6 Experimental Results

Our techniques described above have been implemented and evaluated using a real
robot as well as in simulation runs. In our experiments, the use of coverage maps
with our decision-theoretic viewpoint selection strategyhas shown an advantage over
standard exploration strategies often used in combinationwith occupancy grids. We
figured out that whenever a robot has to actively control its motions in order to acquire
all information necessary to generate an accurate map, the uncertainty-driven approach
is of utmost importance.

The experiments described in this section are designed to illustrate that coverage
maps in combination with our sensor model can be used to learnhigh quality maps
even if noisy sensor are used. We demonstrate that they allowus a decision-theoretic
control of the robot during exploration. We furthermore compare our method to the
scan counting technique for exploration. Scan counting stores for each cell the number
of times it has been observed and in this way decides if a cell has been sufficiently
explored. As we show, the use of scan counting leads to eitherlonger trajectories than
our approach or to less accurate maps.

Please note that the simulation of potential observation sequences is computation-
ally expensive. In our experiments, the robot had to stop after it reached its viewpoint
in order to evaluate future actions. Therefore, we do not consider measures like aver-
age speed of the robots in this chapter.

3.6.1 Mapping with Noisy Sensors

The first experiment is designed to illustrate that we obtainhighly accurate coverage
maps using our sensor model. In this real world experiment, the mobile robot Albert
explored parts of our office environment using our decision-theoretic viewpoint selec-
tion technique. Albert traveled along the corridor and entered three rooms. The middle
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Figure 3.6: This figure depicts a coverage map learned by Albert using its ultrasound
sensors in the environment depicted in Figure 3.5. In the magnified view, partly occu-
pied cells are visible (grayish cells). The size of each gridcell within this map is 10 cm
by 10 cm.

and the right image of Figure 3.5 show pictures of this environment. As can be seen,
there are lots of glass panes which are hard to map with ultrasounds. The resulting
coverage map is shown in Figure 3.6. We would like to emphasize that even smaller
details such as the narrow pillars at the walls are visible inthe resulting map. The left
image of this figure shows a magnified view on partly occupied cells.

Figure 3.7 depicts snapshots of an exploration experiment in the same environ-
ment using the exploration strategy IG_CL. The individual images depicts the map
constructed so far as well as the entropy values of the individual map cells. The darker
the value, the higher the entropy. The red points represent the setL(m), which is
the set of potential target locations the robots considers to approach. As can be seen,
the robot explores the environment until the setL(m) is empty, which means that all
reachable cells and their direct surroundings have a low entropy value.

Another example for a coverage map build from real sonar datais depicted in the
top image of Figure 3.8. The sonar data (see lower image of thesame figure) has been
recorded while the robot was controlled manually using a joystick. Since the robot
was not performing an exploration task it did not enter any ofthe rooms close to the
corridor.

3.6.2 Comparing the Viewpoint Selection Strategies

Robots performing 2D exploration tasks with sonars or laserrange scanners typically
integrate every sensor measurement because the amount of data is reasonably small
and easy to integrate. In this section, we also consider the situation that analyzing a
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robotrobotrobot

robot

robot

robot

Figure 3.7: The images show snapshots during an explorationexperiment. The upper
parts of each image shows the current map and the lower one corresponding entropy.
Darker values in the lower image indicate higher entropy. The poses of the robot
is indicated by the blue circle in the upper parts. The red points indicate potential
viewpoints.
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Figure 3.8: The top image depicts a coverage map build from recorded sonar data at
the University of Washington. The lower image shows 2% of allsonar scans used to
build the map above and illustrates the high noise in the measurement data.

measurement produces high costs. This might by the case if, for example, the distance
information needs to be extracted from stereo images. In such a situation, the number
of measurements needed for the exploration task is a value ofinterest.

As mentioned above, one of the major advantages of our decision-theoretic explo-
ration technique is that they allow us to integrate the uncertainty in the map model
into the selection process of the next viewpoint. The experiments in this section are
designed to compare the performance of the different strategies using the traveled dis-
tance and the number of required observations as measure. Tocarry out the experi-
ments, we varied the size of the local window when using IG_WIN and the weightα in
the evaluation function shown in Eq. (3.20). In Figure 3.9, the numbers behind IG_CL
show the value of the weightα and the numbers behind IG_WIN indicate the radius
of a circle which defines the window. The results have been obtained using 20 runs
per strategy. Please note that further experiments carriedout in alternative environ-
ments showed similar results. The maximum allowed entropy during all experiments
described in this section was set to 0.6 (using 11 histogram bins).

The left graph in Figure 3.9 shows the average number of measurements necessary
to complete the exploration task for each strategy. As can beseen from the figure, the
strategy IG needs the minimum number of measurements. The strategy IG_CL with
α = 0.5 needs approximately the same number of measurements as IG. The strategy
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Figure 3.9: The left graph shows the average number of measurements needed by
different strategies. The right one depicts the average path length of the exploration
for each strategy. The value behind IG_WIN shows the size of the local window and
behind IG_CL the value of the parameterα. The errorbars show the 5% significance
interval.

CL requires the maximum number of measurements compared to all other strategies
considered here. The reason is that it only seeks to minimizethe path length without
considering the information gained at particular locations.

In our experiments, we found that a nearest neighbor viewpoint selection strat-
egy like CL outperforms an approach considering the information gain if the robot is
allowed to integrate measurements while it is moving (assuming that the acquisition
and integration of measurements can be done fast). This can be seen in right image
of Figure 3.9 which plots the average path length driven by the robot during the ex-
ploration task for all different strategies. With respect to the path length the strategy
CL shows the best behavior as the resulting trajectories areshorter than those of all
other techniques. In contrast to that, the IG strategy ignores the distance to be driven
and therefore produces an extremely long path which resultsin the worst behavior of
all strategies. The IG_CL strategy withα = 0.4 appears to yield a good trade-off
between the number of measurements and the overall path length. According to our
experiments, it slightly outperforms the IG_WIN strategy.

3.6.3 Advantage over Scan Counting

The next experiment is designed to illustrate that an approach which considers the un-
certainty in the belief of a cell to select viewpoints yieldsmore accurate maps than
techniques relying on scan counting approaches. Scan counting techniques store for
each cell the number of times this cell has been intercepted by a measurement. Several
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Figure 3.10: The top image depicts an occupancy grid map obtained with scan count-
ing (n = 1). The bottom image shows the corresponding coverage map.

technique path length |{c | H(h(c)) > ǫ}|

coverage maps 89.1m 0%
counting (n=1) 26.6m 21%
counting (n=50) 90.6m 1.5%

Table 3.1: This table shows the path length and number of cells with high entropy
for different exploration strategies. The values are obtained by a series of real world
explorations runs performed in our department.

exploration techniques[Burgardet al., 2002, Edlinger and von Puttkamer, 1994, Ya-
mauchiet al., 1999] use scan counting and assume that a place is explored if it has
been scanned once. This can be problematic especially when the underlying sensors
are noisy. Figure 3.10 shows a typical occupancy grid map of the corridor at our labora-
tory obtained from real sonar data and using this approach. Although this map reveals
the structure of the environment, it lacks several details that are contained in the cor-
responding coverage map obtained with our uncertainty-driven exploration technique.
Since the exploration process stops as soon as all reachablelocations were intercepted
by a measurement at least once, typically many cells of the resulting map have a high
uncertainty. Especially, if noisy sensors are used the robot has to scan cells multiple
times. This leads to an extension of scan counting in which one assumes that each cell
has to be coveredn times and not only once. In practice, it is unclear how to choose
the value forn. A candidate value could be the maximum number of measurements
necessary for obtaining a coverage map that fulfills the entropy threshold criterion.
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To analyze the quality of occupancy grid maps obtained for different values ofn,
we performed several experiments. The results forn = 1 andn = 50 are summarized
in Table 3.1 (in practical experiments we found thatn = 50 yields coverage maps
that typically fulfill the entropy criterion for the majority of grid cells using ultrasound
sensors). The right column of this table contains the percentage of cells in m for which
the entropy exceeds the given threshold. As can be seen from the figure, more than
20% of the cells do not fulfill the entropy criterion ifn = 1. In the case ofn = 50, still
1.5% of the cells are above this threshold. In contrast to this, our approach considers
the uncertainty in the coverage of the individual cells so that the resulting maps are
more accurate. As this experiment demonstrates, even extended scan counting does
not guarantee that in the end every cell is explored sufficiently. Typically, some cells
will be measured too often, others not often enough.

To analyze the relationship between the overall distance traveled and the percent-
age of sufficiently explored cells, we performed a series of 50 simulation experiments.
In these experiments, we forced the robot to reach a scan count of n wheren varied
between 1 and 130. We counted the number of cells that were sufficiently explored
given the entropy criterion for coverage maps and plotted itagainst the length of the
overall path. The resulting graph is shown in Figure 3.11. The cross on the right side
indicates the path length obtained when using our exploration strategy IG_CL for cov-
erage maps. If one requires that 85% or more of the cellsc of the map should satisfy
H(h(c)) < ǫ (hereǫ = 0.6), a decision-theoretic exploration strategy yields shorter
trajectories than extended scan counting.

3.7 Related Work

Exploration is the task of guiding a vehicle during mapping such that it covers the envi-
ronment with its sensors. In addition to the mapping task, efficient exploration strate-
gies are also relevant for surface inspection, mine sweeping, or surveillance[Choset,
2001a, Massioset al., 2001]. In the past, several strategies for exploration have been
developed. A popular technique is to extract frontiers between known and unknown
areas[Burgardet al., 2002, Koeniget al., 2001b, Yamauchi, 1998, Yamauchiet al.,
1999] and to visit the nearest unexplored place. Koenig and Tovey[2003] have shown
that such a strategy which guides the vehicle to the closest unexplored point keeps the
traveled distance reasonably small compared to the shortest trajectory which covers
the whole environment. Most approaches applying such a technique solely distinguish
between scanned and unscanned areas and do not take into account the actual infor-
mation gathered at each viewpoint. To overcome this limitation, González-Baños and
Latombe[2001] determine the amount of unseen area that might be visible to the robot
from possible viewpoints. To incorporate the uncertainty of the robot about the state
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Figure 3.11: This image shows the resulting path length for scan counting obtained
using a simulator. The cross shows the average path length when using coverage maps.

of the environment, Mooreheadet al. [2001] as well as Bourgoultet al. [2002] use oc-
cupancy grids and compute the entropy of each cell in the gridto determine the utility
of scanning from a certain location. Whaite and Ferrie[1997] have presented an ap-
proach that also uses the entropy to measure the uncertaintyin the geometric structure
of objects that are scanned with a laser range sensor. In contrast to our work, they use
a parametric representation of the objects to be scanned.

Grabowskiet al.[2003] present an exploration technique based on occupancy grids
which is optimized for sonar sensors. In their approach, therobot is forced to observe
obstacles from different angles. In this way, they obtain sharper boundaries between
obstacles and free space area. To select the next viewpoint,they choose the closest
one.

Edlinger and von Puttkamer[1994] developed a hierarchical exploration strategy
for office environments. Their approach first explores roomsand then traverses through
doorways to explore other parts of the environment. Tailor and Kriegman[1993] de-
scribe a system for visiting all landmarks in the environment of the robot. Their robot
maintains a list of unvisited landmarks that need to be approached and mapped by the
robot. Dudeket al. [1991] propose a strategy for exploring an unknown graph-like
environment. Their algorithm does not consider distance metrics and is designed for
robots with very limited perceptual capabilities.

Additionally, several researchers focus on the problem of simultaneous localization
and mapping during exploration[Bourgoultet al., 2002, Choset, 2001b, Makarenko
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et al., 2002], an aspect that we do not address in this chapter. We assume that the
relative pose information of the robot is accurate enough tointegrate a sequence of
measurements correctly into a grid map.

Our representation of the environment can be seen as an extension of occupancy
grid maps introduced by Moravec and Elfes[1985] (see also Chapter 2). Coverage
maps are able to model partly occupied cells and provide tools to reason about the
uncertainty of the system about the state of grid cells. Compared to occupancy grids,
our approach is a richer representation because it can storemore information about
cells. As a result, it has the disadvantage of high memory requirements since it stores
histograms instead of a single probability values. Furthermore, the update of the cells
upon sensory input is computationally more expansive.

Very recently, our exploration framework including coverage maps have been reim-
plemented by Rochaet al. [2005] and applied to a stereo camera sensor instead of
sonars. In their system, they use the concept of coverage maps to build up a three-
dimensional grid instead of a two-dimensional one. A further difference to the work
presented here is that they compute a gradient field based on the entropy to generate
smoother trajectories for the robot. Their experiments confirmed the results reported
in this thesis: “Experimental results obtained with a real robot and stereo-vision suc-
cessfully validated the proposed framework” [Rochaet al., 2005].

3.8 Conclusion

In this chapter, we introduced coverage maps as a probabilistic representation scheme
for grid-based maps built by mobile robots from sensor data.Coverage maps store in
each cell a posterior about the coverage of that cell. In thisway, they offer the op-
portunity to model partly occupied cells. We also developeda sensor model designed
to update coverage maps upon sensory input. We then presented a decision-theoretic
approach to guide a vehicle during exploration. This technique uses the coverage pos-
terior in the map to reason about the uncertainty of the robotabout each location in the
environment. It simulates potential observations to be obtained at the different target
locations and takes into account their effect on the map model. The goal is to choose
the viewpoint that minimized the overall uncertainty in themap model.

Our technique has been implemented and evaluated in extensive simulation runs
and in real world experiments. The experiments illustrate that by using coverage
maps it is possible to build accurate maps even with noisy sensors. Additionally, they
demonstrate that our decision-theoretic exploration approach can be used to control a
robot in order to obtain maps not exceeding a given level of uncertainty, which is useful
especially if the robot uses noisy sensors such as ultrasounds. Experiments analyzing
different exploration strategies indicate that a technique combining the maximum un-
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certainty reduction and the distance to be traveled yields the best trade-off between the
number of necessary measurements and the length of the resulting paths.



66 CHAPTER 3: DECISION-THEORETIC EXPLORATION USING COVERAGE MAPS



Chapter 4

Coordinated Multi-Robot Exploration

4.1 Introduction

I
n the previous chapter, we introduced a framework for mobilerobot exploration.
The goal of our approach was to select appropriate viewpoints for asingle robot
in order to build a map with low uncertainty. In contrast to that, we consider
in this chapter the problem of exploring unknown environments with ateam of

cooperating robots. The use of multiple robots is often suggested to have advantages
over single robot systems[Caoet al., 1997, Dudeket al., 1996]. First, cooperating
robots have the potential to accomplish a task faster than a single robot[Guzzoniet
al., 1997]. By using several robots, redundancy can be explicitely introduced so that
such a team can be expected to be more fault-tolerant than a single robot. Another
advantage of robot teams arises from merging overlapping sensor information, which
can help to compensate for sensor uncertainty. As a result, the map can be expected
to be more accurate. Multiple robots have also been shown to localize themselves
more efficiently, especially when they have different sensor capabilities[Fox et al.,
1999a, Rekleitiset al., 2001].

However, when robots operate in teams there is the risk of interference between
them[Schneider-Fontan and Matarić, 1998, Goldberg and Matarić, 1997]. For exam-
ple, if the robots have the same type of active sensors such asultrasound sensors, the
overall performance can be reduced due to cross-talk. The more robots that are used,
the more time each robot may spend on detours in order to avoidcollisions with other
members of the team. Efficient exploration techniques that seek to minimize the over-
all time to complete the task should consider techniques to distribute the robots over
the environment and to reduce the number of redundantly explored areas.

Most approaches to multi-robot exploration proceed in the following way. First, a
set of potential target locations or target areas is determined. Secondly, target locations
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are assigned to the individual members of the team. The robots then approach those
target locations and include their observations obtained along the paths into a map.
This process is repeated, until the environment has completely been explored. A stop-
ping criterion can be a threshold on the entropy as applied inthe previous chapter or a
scan counting technique (see Section 3.6.3) which requiresthat each cell is covered at
least once by the sensor of one robot.

In this chapter, we present an algorithm for coordinating a group of robots that
enables them to efficiently explore their environment. The goal is to complete the task
as fast as possible. Our technique assigns a utility to each target location and follows
a decision-theoretic approach to explicitly coordinate the robots. It does so by max-
imizing the overall utility and by minimizing the potentialfor overlap in information
gain amongst the various robots. The algorithm simultaneously considers the utility of
observing unexplored areas and the cost for reaching these areas. By trading off the
utilities and the cost and by reducing the utilities according to the number of robots
that are already heading towards this area, coordination isachieved in an elegant way.
The basic idea of discounting the utility of target locations that might be visible by a
different robot has originally been presented in[Moors, 2000] and has been integrated
into two different systems[Burgardet al., 2000, Simmonset al., 2000].

In practice, one also has to deal with problems like limited communication ranges
of the network that limit the ability of the vehicles to exchange data. Naturally, the
task of exploring a terrain with limited communication range is harder than without
this constraint. If the distance between the robots becomestoo large to be bridged by
the wireless network or if a temporal network error occurs, robots may explore an area
another robot has already explored before, which can lead toa suboptimal behavior.
We describe how to use our algorithm with robot teams that provide only a limited
communication range.

Our technique has been implemented on teams of heterogeneous robots and has
been proven to work effectively in real-world scenarios. Additionally, we have car-
ried out a variety of simulation experiments to explore the properties of our approach
and to compare the coordination mechanism to other approaches developed so far. As
the experiments demonstrate, our technique significantly reduces the time required to
completely cover an unknown environment with a team of robots compared to an ap-
proach which lacks our centralized coordination. We also consider other coordination
techniques and provide comparisons to our approach. Furthermore, we describe ex-
periments in which we analyze our algorithm in the context ofteams of mobile robots
with a limited communication range.

The rest of this chapter on multi-robot exploration is organized as follows. In the
next section, we present the decision-theoretic approach to coordinated exploration
with mobile robots. In Section 4.3, we briefly describe the technique used by our
system to acquire and communicate maps of the environment. Section 4.4 presents a
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series of experiments carried out with real robot systems and in simulation and Sec-
tion 4.5 provides comparisons to exiting coordination techniques. Finally, we discuss
related work in Section 4.6.

4.2 Coordinating a Team of Robots during Exploration

The goal of the exploration process is to cover the whole environment in a minimum
period of time. Therefore, it is essential that the robots keep track of which areas of the
environment have already been explored. Furthermore, the robots have to construct a
global map online in order to plan their paths and to coordinate their actions. We first
assume that at every point in time both, the map of the area explored so far and the
positions of the robots in this map, can be communicated between the robots. We
focus on the question of how to coordinate the robots in orderto efficiently cover
the environment. We then consider the situation in which therobots have a limited
communication range.

In this chapter, we focus on the coordination aspect of the exploration problem.
Since we deal with large teams of robots, we are interested inkeeping the memory
requirements small. We therefore use standard occupancy grids instead of coverage
maps to model the environment since they store only a binary random variable for
each cell instead of a histogram. In case we had enough memoryresources available,
coverage maps would have been a better choice. However, the coordination aspect
can be regarded as independent from the underlying representation. We furthermore
assume throughout this chapter that “exploredness” is a binary concept, since we fo-
cus on the coordination aspect. We regard a cell as explored as soon as it has been
intercepted by a sensor beam. This concept is also known as scan counting.

To guide the exploration process, we adopt the notation of frontiers which has
originally been introduced by Yamauchi[1998]. As a frontier cell we denote each
already explored cell that is an immediate neighbor of an unknown, unexplored cell.
If we direct a robot to such a cell, we can expect that it gains information about the
unexplored area when it arrives at its target location. The fact that a map generally
contains several unexplored areas raises the problem of howto assign exploration tasks
represented by frontier cells to the individual robots. If multiple robots are involved,
we want to avoid that several of them move to the same location. To deal with these
problems and to determine appropriate target locations forthe individual robots, our
system uses a decision-theoretic approach. We simultaneously consider the cost of
reaching a frontier cell and the utility of that cell. For each robot, the cost of a cell is
proportional to the distance between the robot and that cell. The utility of a frontier
cell instead depends on the number of robots that are moving to that cell or to a place
close to that cell.
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In the following sections, we describe how we compute the cost of reaching a
frontier cell for the individual robots, how we determine the utility of a frontier cell,
and how we choose appropriate assignments of frontier cellsto robots.

4.2.1 Cost of Reaching a Target Location

To determine the cost of reaching a frontier cell, we computethe optimal path from the
current position of the robot to all frontier cells based on adeterministic variant of the
value iteration, a popular dynamic programming algorithm[Bellman, 1957, Howard,
1960]. In the following,cx,y corresponds to thex-th cell in the direction of thex-axis
and they-th cell in direction of they-axis of the two-dimensional occupancy grid map.
In our approach, the cost for traversing a grid cellcx,y is proportional to its occupancy
valuep(cx,y). The minimum cost path is computed using the following two steps:

1. Initialization. The grid cell that contains the robot location is initialized with 0,
all others with∞:

Vx,y ←−

{
0, if (x, y) is the position of the robot
∞, otherwise

2. Update loop.For all grid cellscx,y do:

Vx,y ←− min
{

Vx+∆x,y+∆y +
√

∆x2 + ∆y2 · p(cx+∆x,y+∆y) |

∆x, ∆y ∈ {−1, 0, 1} ∧ p(cx+∆x,y+∆y) ∈ [0, occmax ]
}

,

whereoccmax is the maximum occupancy probability value of a grid cell therobot is
allowed to traverse. This technique updates the value of allgrid cells by the value of
their best neighbors, plus the cost of moving to this neighbor. Here, cost is equivalent
to the probabilityp(cx,y) that a grid cellcx,y is occupied times the distance to the
cell. The update rule is repeated until convergence. Then each valueVx,y corresponds
to thecumulative costof moving from the current position of the robot tocx,y. The
convergence of the algorithm is guaranteed as long as the cost for traversing a cell is not
negative and the environment is bounded. Both criteria are fulfilled in our approach.
The resulting cost functionV can also be used to efficiently derive the minimum cost
path from the current location of the robot to arbitrary goalpositionscx,y. This is done
by steepest descent inV , starting atcx,y.

The computation ofV is done independently for each robot. This allows us to
coordinate also heterogenous teams of robots. For example,a robot traveling faster
than its team mates can be modeled by assigning lower travel cost to this vehicle.
As a result, this robot will be send to more distant target locations compared to its
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Figure 4.1: Typical cost functions obtained for two different robot positions. The black
rectangle indicates the target points in the unknown area with minimum cost.

team mates. Additionally, it is possible to model robots of different size. This can be
achieved by expanding the size of the obstacles in the maps ofthe robots individually.

Figure 4.1 shows the resulting cost functions for two different robot positions. The
black rectangle indicates the target point in the unknown area with minimum travel
cost. Note that the same target point is chosen in both situations. Accordingly, if the
robots are not coordinated during exploration, they would move to the same position
which obviously is not optimal.

Our algorithm differs from standard value iteration in thatit regards all actions of
the robots as deterministic, which seriously speeds up the computation. To incorporate
the uncertainty in the motion of the robots into the process and to benefit from the
efficiency of the deterministic variant, we smooth the inputmaps by a convolution
with a Gaussian kernel. This has a similar effect as generally observed when using the
non-deterministic approach: It introduces a penalty for staying close to obstacles so
that the robots generally prefer to move in open spaces.

4.2.2 Computing Utilities of Frontier Cells

Estimating the utility of frontier cells is more difficult. In fact, the actual information
that can be gathered by moving to a particular location is hard to predict, since it
strongly depends on the structure of the corresponding area. However, if there already
is a robot that moves to a particular frontier cell, the utility of that cell can be expected
to be lower for other robots. But not only the designated target location has a reduced
utility. Since the sensors of a robot typically cover a certain region around a particular
frontier cell as soon as the robot arrives there, even the expected utility of frontier cells
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in the vicinity of the robot’s target point is reduced.
In this section, we present a technique that estimates the expected utility of a fron-

tier cell based on the distance and visibility to cells that are assigned to other robots.
Suppose that in the beginning each frontier cellf has the utilityUf which is equal
for all frontier cells if no additional information about the usefulness of certain posi-
tions in the environment is available. Whenever a target point f is selected for a robot,
we reduce the utility of all frontier cellsf ′ close tof . This is done according to the
probabilitypvis(f, f ′) that the robot’s sensors will coverf ′ given the robot moves tof .

One can estimatepvis(f, f ′) by learning a posterior about the estimated distances to
be measured. The longer the average proximity measurementsare in an environment,
the more likely the targetf ′ can be observed fromf . While the robot moves through
the environment, this posterior can be updated and in this way adapt to the spacial
structure.

Accordingly, we compute the utilityU(fn | f1, . . . , fn−1) of a frontier cellfn given
that the cellsf1, . . . , fn−1 have already been assigned to the robots1, . . . , n− 1 as

U(fn | f1, . . . , fn−1) = Ufn
−

n−1∑

i=1

pvis(fn, fi). (4.1)

The more robots move to a location from wherefn is likely to be visible, the lower
is the utility of fn. Note that we also take into account whether there is an obstacle
between two frontier cellsf andf ′. This is achieved by a ray-casting operation on the
grid map. If there is an obstacle betweenf andf ′, we setpvis(f, f ′) to zero.

The obtained function forpvis typically has the shape of a decreasing, more or
less linear function. The gradient of that function was quite similar for different envi-
ronments. We observed only small differences in the resulting exploration time when
applying the learned posteriorpvis in a different environment. We therefore use a linear
function to representpvis and use the same parameters for all environments according
to

pvis(f, f ′) =

{

1.0− ||f−f ′||
max_range

, if ||f − f ′|| < max_range

0, otherwise,
(4.2)

wheremax_range is the maximum range of the used proximity sensor.

4.2.3 Target Point Selection

To compute appropriate target points for the individual robots, we need to consider for
each robot the cost of moving to a location and the utility of that location. In particular,
for each roboti we trade off the costV i

f to move to the locationf and the utilityUf

of f .
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To determine the assignment of target points to robots, we use an iterative ap-
proach. In each round, we compute that tuple(i, f) wherei is the number of a robot
andf is a frontier cell which has the best overall evaluationUf − β · V i

f (whereβ is
a constant as explained below). We then recompute the utilities of all frontier cells
given the new and all previous assignments according to Eq. (4.1). Finally, we repeat
this process for the remaining robots. This results in Algorithm 4.1. The complexity
of this algorithm isO(n2 · F ) wheren is the number of robots andF is the number of
frontier cells.

Algorithm 4.1 Goal assignment for coordinated multi-robot exploration.
1: Determine the set of frontier cells.
2: Compute for each roboti the costV i

f for reaching each frontier cellf .
3: Set the utilityUf of all frontier cells to 1.
4: while there is one robot left without a target pointdo
5: Determine a roboti and a frontier cellf which satisfy:

(i, f) = argmax(i′,f ′)

(
Uf ′ − β · V i′

f ′

)
.

6: Reduce the utility of each target pointf ′ in the visibility area according to
Uf ′ ← Uf ′ − pvis(f, f ′).

7: end while

The quantityβ ≥ 0 determines the relative importance of utility versus cost.Ex-
periments showed that the exploration time stays nearly constant ifβ ∈ [0.1, 50]. For
bigger values ofβ the exploration time increases because the impact of the coordi-
nation is decreased too much. Ifβ is close to 0, the robots ignore the distance to be
traveled which also leads to an increased exploration time.As a result of our experi-
ments,β is set to 1 in our current implementation.

Figure 4.2 illustrates the effect of our coordination technique. Whereas uncoordi-
nated robots would choose the same target position (see Figure 4.1), the coordinated
robots select different frontier cells as the next exploration targets. When coordinating
a team of robots, one question is when to recompute the targetlocations. In the case
of unlimited communication, we compute new assignments whenever one robot has
reached its designated target location or whenever the distance traveled by the robots
or the time elapsed after computing the latest assignment exceeds a given threshold.

4.2.4 Coordination with Limited Communication Range

In practice, one cannot assume that the robots are able to exchange information at ev-
ery point in time. For example, the limited range of nowadayswireless networks can
prevent robots from being able to communicate with other robots at a certain point in
time. If the distances between the robots become too large sothat not all robots can
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Figure 4.2: Target positions obtained using the coordination approach. In this case, the
target point for the second robot is to the left in the corridor.

communicate with each other, a centralized approach as described above can no longer
be applied. However, our algorithm can easily be adapted to cope with a limited com-
munication range. The key idea is to apply our centralized approach to each sub-team
of robots which are able to communicate with each other. Obviously, this can, at least
in the worst case, lead to a situation in which all robots individually explore the whole
environment. In practical experiments, however, we found that this approach still re-
sults in a quite efficient exploration process, since the robots can quickly exchange
the necessary information and coordinate with each other again as soon a connection
between them has been reestablished.

In our experiments, we furthermore found that the risk of redundant work is in-
creased if the robots forget about the assignments of other robots as soon as the com-
munication breaks down. Instead, if each robot stores the latest target locations as-
signed to all other robots the overall performance is increased in situations in which
the communication range has been exceeded, since the robotsavoid going to places
already explored by other robots. This approach turned out to be useful especially in
the context of small robot teams.

4.3 Collaborative Mapping with Teams of Mobile Ro-
bots

As mentioned before, the robots must be able to build maps online, while they are in
motion. The online characteristic is especially importantin the context of the explo-
ration task since mapping is constantly interleaved with decision making as to where
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to move next.
Additionally, to map an environment a real robot has to cope with noise. Our sys-

tem applies the statistical framework presented in detail in [Thrun, 2001b] to compute
consistent maps while the robots are exploring the environment. Each robot starts with
a blank grid map in which each cell is marked as unseen. Duringexploration, each
robot simultaneously performs two tasks: It determines a maximum likelihood esti-
mate for its own position and a maximum likelihood estimate for the map. To recover
from possible localization errors, each robot maintains a posterior density characteriz-
ing its “true” location. The current version of the multi-robot mapping system relies
on the following two assumptions:

1. The robots must begin their operation in nearby locations, so that their range
scans show substantial overlap.

2. The software must be told the approximate relative initial pose of the robots.
Errors up to 50 cm and 20 degree in orientation are admissible.

To achieve the coordination, the team must be able to communicate the maps of
the individual robots during exploration. In our current system, we assume that the
robots set up an ad-hoc network which forms clusters. The messages sent by a robot
are forwarded to all team-mates within the corresponding cluster.

Whenever two clusters are merged, care has to be taken to avoid that robots do not
become overly confident in the state of the environment. Suppose that each cluster
maintains an occupancy grid map built from all observationsmade by the robots of
that team and that two robots which currently share a mapm leave their communica-
tion range. As long as they explore the environment individually, each robot needs to
maintain its own map and update it. As a result, they obtain two different mapsm1 and
m2. Now suppose the robots can communicate again and exchange their maps. If they
use the recursive update rule for occupancy grids to combinem1 andm2 the informa-
tion originally contained inm is integrated twice in the resulting map. Integrating the
same information several times leads to overly confident mapof the environment.

There are several ways to avoid the multiple use of sensor information. One so-
lution is to prevent the robots from exchanging informationmore than once[Fox et
al., 2000], which reduces the benefit of a multi-robot system. An alternative solution
is that each robot maintains an individual map for each otherrobot. These maps can
be combined to a joint map and at the same time be updated separately. In our cur-
rent system, we apply a different approach that we found to beless memory intensive
and requiring less communication bandwidth. In this approach, each robot stores for
each other robot a log of sensor measurements perceived by this robot and integrates
this information into its own map. A robot only transfers those measurements that
have not been transmitted to the corresponding robot so far.Additionally, the robots
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start locations

Figure 4.3: Coordinated exploration by a team of three robots with unlimited com-
munication abilities in a real world experiment. This experiment has been carried out
by Mark Moors at the Forschungsgesellschaft für AngewandteNaturwissenschaften
(FGAN), Wachtberg, Germany.

maintain a small data structure containing the time stamp ofthe most recent sensor
measurement of a robot that was transmitted to all other robots. This allows the robots
to discard those measurements which have been received by all other robots already.
In this scenario, one of the robots of each sub-team is randomly selected as the leader.
This leader performs all the necessary computations to solve the assignment of target
locations to robots.

4.4 Experimental Results

The approach described has been implemented on real robots and in different environ-
ments. Additionally, we performed extensive simulation experiments.

4.4.1 Exploration with a Team of Mobile Robots

The first experiment is designed to demonstrate the capability of our approach to effi-
ciently cover an unknown environment with a team of mobile robots. To evaluate our
approach, we installed three robots (two Pioneer 1 and one iRobot B21) in an empty



4.4 EXPERIMENTAL RESULTS 77

2

1
21

2

1
1

2

(a) (b) (c) (d)

Figure 4.4: Uncoordinated exploration with two robots, namely an ActivMedia Pio-
neer robot and an iRobot B21. In the images (a) and (b) both robots drive along the
corridor, but robot 1 is slower than robot 2. In image (c), robot 1 reached the end of
the corridor, but robot 2 already has explored the right room. Therefore, robot 1 turns
around and follows the corridor. In image (d) robot 2 has entered the left room from
the right hand side and explored it. This experiment has beencarried out by Mark
Moors.
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Figure 4.5: Coordinated exploration using two heterogenous robots. In image (b), both
robots focus on different frontiers due to the coordinationstrategy. Therefore, robot 1
explores the left room and robot 2 the right one. This leads toa better performance
compared to the uncoordinated behavior. This experiment has been carried out by
Mark Moors.

laboratory environment. Figure 4.3 shows the map of this environment. The size of
the environment is 18 m by 14 m. Also shown are the paths of the robots which started
in the upper left room. As can be seen from the figure, the robots were effectively dis-
tributed over the environment by our algorithm. In this experiment, the robots could
communicate all the time.
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Figure 4.6: Simulated exploration with three robots.

4.4.2 Comparison between Uncoordinated and Coordinated Ex-
ploration

The goal of the second experiment described here is to illustrate the advantage of our
coordination technique over an approach in which the robotsshare a map but in which
there is no arbitration about target locations so that each robot approaches the closest
frontier cell [Yamauchi, 1998]. This technique is calledimplicit coordination. For
this experiment, we used two different robots: An iRobot B21robot equipped with
two laser range scanners covering a 360 degree field of view (robot 1) and a Pioneer 1
robot equipped with a single laser scanner covering a 180 degree field of view (robot
2). The size of the environment to be explored in this experiment was 14 m by 8 m and
the range of the laser sensors was limited to 5 m.

Figure 4.4 shows the behavior of the two robots when they explore their envi-
ronment without coordination, i.e., when each robot moves to the closest unexplored
location. The white arrows indicate the positions and directions of the two robots.
Both robots decide first to explore the corridor. After reaching the end of the corridor
robot 2 enters the upper right room. At that point, robot 1 assigns the highest util-
ity to the upper left room and therefore turns back. Before robot 1 reaches the upper
left room, robot 2 has already entered it and has completed the exploration mission.
As a result, robot 2 explores the whole environment almost onits own while robot 1
does not contribute much. The overall time needed to complete the exploration was 49
seconds in this case.

However, if both robots are coordinated, they perform much better as illustrated
in Figure 4.5. Like in the previous example, robot 2 moves to the end of the corridor.
Since the utilities of the frontier cells in the corridor arereduced, robot 1 directly enters
the upper left room. As soon as both robots have entered the rooms, the exploration
mission is completed. This run lasted 35 seconds.
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Figure 4.7: The left image illustrates an assignment of frontiers to robots computed
by Algorithm 4.1. Here, yellow corresponds to known areas and white to unknown.
The assignment is suboptimal, when considering the overalltime to complete the ex-
ploration task. The situation shown in the right image provides a better assignment
because it leads to a shorter exploration time. In both depicted situation, the sum of
the travel cost of both robots are equal but the right one is more balanced.

4.4.3 Simulation Experiments

The previous experiments demonstrate that our approach caneffectively guide robots
to collaboratively explore an unknown environment. To get amore quantitative assess-
ment, we performed a series of simulation experiments in different environments.

To carry out these experiments, we developed a simulation system, that allows us
to consider the effects of various parameters on the exploration performance. The sim-
ulator can handle an arbitrary number of robots and can models interferences between
the robots. Whenever robots are close to each other, the system performs the planned
movement with a probability of 0.7. Thus, robots that stay close to each other move
slower than robots that are isolated. This approach is designed to model time delays
introduced by necessary collision avoidance maneuvers.

Screenshots of this simulation system during a run in which three robots explore
the environment are shown in Figure 4.6. The simulator also allows the specification of
different properties of the robot systems and sensors. To carry out these experiments,
we used sensors with a 360 degree field of view as is the case, for example, for robots
equipped with two laser range sensors or with a ring of ultrasound sensors. Note that
our approach does not require a 360 degree field of view. We successfully applied our
approach even to robots with a limited field of view, equippedonly with a single laser
scanner.

Throughout the experiments presented in this section, we compare three differ-
ent strategies. The first approach is theimplicit coordinationtechnique used by Ya-
mauchi [1998] as well as Singh and Fujimura[1993], in which each robot always
approaches the closest unexplored area of a joint map. In thesequel, this approach
is denoted asuncoordinated explorationsince it lacks a component that arbitrates be-
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tween the robots whenever they choose the same frontier cells. The second approach
is our coordination approach specified by Algorithm 4.1. Additionally, we evaluated
an alternative approach that seeks to optimize the assignments computed in lines 4–7
of our algorithm. Figure 4.7 illustrates a situation in which the assignment computed
by our approach is suboptimal. Here, two robots are exploring a corridor with two
rooms. The already explored area is depicted in yellow. Suppose both target pointsa
andb have the same utility. In the first round of the iteration, ouralgorithm assigns
robot 2 to targeta since this assignment has the least cost of all other possible assign-
ments. Accordingly, in the second round, robot 1 is assignedto targetb. The resulting
assignment is depicted in the left image of Figure 4.7. If we assume that both robots
require the same period of time to explore a room, this assignment is suboptimal. A
better assignment is shown in the right image of Figure 4.7. By directing robot 1 to
the left room and robot 2 to the right room, the whole team can finish the task faster,
because the overall time required to reach and than explore the rooms is reduced. The
sum of the travel cost, however, is the same for both assignments.

One approach to solve this problem is to consider all possible combinations of tar-
get points and robots. As before, we want to minimize the trade-off between the utility
of frontier cells and the distance to be traveled. However, just adding the distances to
be traveled by the two robots does not make a difference in situations like that depicted
in Figure 4.7. Since the robots execute their actions in parallel the time to complete
the whole task depends on the longest trajectory. To minimize the completion time (by
choosing more balanced trajectories for the individual robots), we therefore modify
the evaluation function so that it considers squared distances to choose target locations
f1, . . . , fn:

argmax
(f1,...,fn)

n∑

i=1

[
U(fi | f1, . . . , fi−1, fi+1, . . . , fn)− β · (V i

fi
)2

]
.

Algorithm 4.2 Goal assignment over all permutations.
1: Determine the set of frontier cells.
2: Compute for each roboti the costV i

f for reaching each frontier cell.
3: Determine a set of target locationsf1, . . . , fn for the robots

i = 1, . . . , n that maximizes the following evaluation function:
∑n

i=1 U(fi | f1, . . . , fi−1, fi+1, . . . , fn)− β · (V i
fi
)2.

The resulting algorithm that determines in every round the optimal assignment
of robots to target locations according to this evaluation function is given in Algo-
rithm 4.2. Compared to the selection scheme of our previous algorithm, the major
problem of this approach lies in the fact that one has to figureout F !

(F−n)!
possible
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Figure 4.8: Maps used for the simulation experiments: unstructured (left), office (mid-
dle), and corridor environment (right).

assignments whereF is the number of target locations,n is the number of robots,
andn ≤ F 1. This number can be handled for small teams of robots but it becomes
intractable for larger teams, because the number of possible assignments grows expo-
nentially in the number of robots. In practice, one therefore needs appropriate search
techniques to find good assignments in a reasonable period oftime. In the experi-
ments described here, we applied a randomized search technique combined with hill-
climbing to search for optimal assignments of frontiers to robots. The approach starts
with the assignment provided by Algorithm 4.1 and tries to optimize the assignment
by exchanging target locations between the robots. It also uses several restarts based
on the solution provided by Algorithm 4.1 in order to reduce the risk of getting stuck
in a local maxima. This technique is in the following calledrandomizedstrategy.

To compare the different exploration strategies, we chose three different environ-
ments which are depicted in Figure 4.8. For each environmentand each number of
robots, we performed 50 different simulation experiments for each strategy. In each
comparison of the three strategies, the robot team was started at the same randomly
chosen location. We then evaluated the average number of time steps the robots needed
to complete the job. The resulting plots are shown in Figure 4.9. The error bars in-
dicate the 5% confidence level. As can be seen from the figure, the team using our
algorithm significantly outperforms the uncoordinated system with respect to the ex-
ploration time. This is mainly due to the fact that Algorithm4.1 provides a better
distribution of the robots over the environment.

The randomized optimization strategy usually yields slightly better results than our
coordination technique although the improvement is not significant. Thus, the usage of
the complex search technique that seeks to determine the optimal assignment from all

F !
(F−n)!

permutations appears to yield only slight improvements compared to our orig-
inal algorithm which has complexityO(n2 · F ). Given the computational overhead
introduced by the randomized search in the space of all permutations (see Figure 4.10)

1In casen > F , we allow each frontier to be assigned⌈ n
F
⌉ times to a robot.
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Figure 4.9: Performance of the different coordination strategies for the environments
shown in Figure 4.8: unstructured environment (top), officeenvironment (middle), and
corridor environment (bottom).
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Figure 4.10: Time required on a Pentium-4, 2.8 GHz machine tocompute the assign-
ment of target locations to robots for three different strategies.

especially for large teams of robots, Algorithm 4.1 appearsto be preferable over Al-
gorithm 4.2.

4.4.4 Exploration with Limited Communication

The next experiments are designed to analyze the performance of our coordination
strategy in case the robots have only a limited communication range. As explained
above, if the communication range is limited the robots cannot globally coordinate
their actions anymore. As a result, different robots may explore the same regions
which reduces the overall efficiency.

The next real world experiment was carried out with three robots. Throughout this
experiment, we limited the communication range to 5 m. Figure 4.11 depicts the ex-
ploration process. Each row shows the maps of the individualrobots at different points
in time. The initial situation is depicted in the first row. The communication ranges of
the robots are highlighted by colored disks around each robot. As can be seen from the
second row, the robots quickly split up in this experiment and had to plan their trajec-
tories individually. In row three, the robotsR1 andR3 are able to communicate again
and therefore can exchange their maps and coordinate their behavior again. RobotR2,
however, still acts independently of the other two robots. In row five,R1 andR3 again
leave their communication range, whereasR2 andR3 are able to merge their maps
and approach the last unexplored area in the top left corner.In the last row, the robots
R2 andR3 have covered the whole environment and in this way have completed the
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exploration task.
To analyze the influence of the communication range, we performed a series of

simulation experiments. We carried out 50 simulation runs for each configuration us-
ing a different number of robots and different communication ranges. In each run,
we chose a random starting point for the robot team. We regardthe exploration task
as completed as soon as the known area in the map of one robot covers the whole
environment. The results are depicted in Figure 4.12. Thex-axis shows the commu-
nication range of the robots in relation to the maximum distance in the map and the
y-axis depicts the average exploration time. If the communication range is close to
zero the coordinated and uncoordinated strategies behave similar because all robots
act independently most of the time. As the communication range increases, the ben-
efit of the coordinated approach improves. An interesting result of this experiment is
that a communication range of 30% of the diameter of the environment appears to be
sufficient to yield the same performance as with unlimited communication.

4.5 Comparisons to Other Coordination Techniques

In this section, we compare our approach to other existing techniques to assign targets
to a team of robots. First, we compare our approach to the Hungarian method[Kuhn,
1955]. We then discuss a priorization technique to distribute therobots over the en-
vironment. Finally, we discuss exploration techniques that apply a solution to the
traveling salesman problem (TSP) to coordinate the team of robots.

4.5.1 Target Assignment using the Hungarian Method

In 1955, Kuhn[1955] presented a general method to assign a set of jobs to a set of
machines given a fixed cost matrix. This method is often referred to as the Hungarian
method. Consider a givenn× n cost matrix which represents the cost of all individual
assignments of targets to robots. The Hungarian method, which is able to find the
solution with the minimal cost given that matrix, can be summarized by the following
three steps:

1. Compute a reduced cost matrix by subtracting from each element the minimal
element in its row. Afterwards, do the same with the minimal element in each
column.

2. Find theminimal numberof horizontal and vertical lines required to cover all
zeros in the matrix. In case exactlyn lines are required, the optimal assignment
is given by the zeros covered by then lines. Otherwise, continue with Step 3.
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Figure 4.11: Coordinated exploration by a team of three robots with limited commu-
nication abilities. Each column shows the evolution of the map of one robot over
time. This experiment has been carried out by Mark Moors and Frank Schneider
at the Forschungsgesellschaft für Angewandte Naturwissenschaften (FGAN), Wacht-
berg, Germany.
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Figure 4.12: Performance of the coordinated strategy with limited communication
range for the different environments (unstructured (top),office (middle), and corri-
dor environment (bottom)). Thex-axis shows the communication range in relation to
the size of the environment, they-axis the average exploration time. As can be seen,
the results of these experiments look very similar in all tested environments.
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3. Find the smallest nonzero element in the reduced cost matrix that is not covered
by a horizontal or vertical line. Subtract this value from each uncovered element
in the matrix. Furthermore, add this value to each element inthe reduced cost
matrix that is covered by a horizontal and a vertical line. Continue with Step 2.

The computationally difficult part lies in finding the minimum number of lines
covering the zero elements (Step 2). Details can be found in[Kuhn, 1955, Kuhn,
1956]. The overall algorithm has a complexity ofO(n3). This method can be applied to
assign a set of frontiers or target locations to the individual robots. In such a scenario,
the cost matrix is defined by the result of a deterministic value iteration carried out for
each robot (see Section 4.2.1).

Since the implementation of the Hungarian method describedabove requires that
the number of jobs and the number of machines is equal, we needto slightly adapt the
cost matrix computed in that way. We can distinguish two situations:

1. In casen < F , wheren is the number of robots andF the number of frontier
cells, we addF−n dummy robots which introduce zero cost for any assignment.
The frontier cells to which these dummy robots are assigned to represent target
locations that are not selected by a real robot.

2. In casen > F , some robots need to be assigned to the same target location.To
achieve a balanced distribution of robots over the environment, we copy each
frontier ⌈ n

F
⌉ times so that not more than⌈ n

F
⌉ robots are assigned to a single

target location. In casen < F · ⌈ n
F
⌉, we then addF · ⌈ n

F
⌉ − n dummy robots.

In this way, we obtain a square cost matrix even ifn 6= F . In the worst case, the matrix
has a dimension of2 ·max{n, F}. Thus, the overall cost of coordinating a team ofn
robots givenF possible target locations isO(max{n, F}3).

The advantage of that method compared to our approach described in Algorithm 4.1
is that the Hungarian method computes the optimal assignment under the given cost
matrix. In contrast to that, our algorithm applies a greedy technique to assigned robots
to frontiers. On the other hand, the Hungarian method is not able to adapt the cost
matrix during the assignment process. Such an adaption is performed by our algo-
rithm in order to account for the fact, that assigning a frontier cell f to a robot affects
the unassigned frontier cells close tof . This fact cannot be modeled when using the
Hungarian method, since it requires a constant cost matrix.

We applied the Hungarian method in the same scenarios than our coordination
technique presented in Algorithm 4.1 to evaluate its performance. We figured out, that
the Hungarian method yields similar results as our coordination technique for large
teams of robots. Plots showing the performance of both approaches are depicted in
Figure 4.13. As can be seen from this figure, if the team of robots is small, our coor-
dination approach performs better. This is due to the fact, that our technique considers
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Figure 4.13: Coordination performance of the Hungarian method evaluated in the un-
structured (top), office (middle), and corridor environment (bottom).
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the visibility between frontiers when computing their utility in the assignment process.
This leads to a better distribution of robots over the environment, which typically re-
sults in shorter exploration times. However, as soon as the size of the team gets bigger,
this effect vanishes and both techniques perform equally well. An additional advan-
tage of our approach is that it is much easier to implement compared to the Hungarian
method.

4.5.2 Using a Priorization Scheme to Coordinate a Team of Robots

The second method we compared our approach to is the usage of apriorization scheme
while selecting target locations. First, this approach assigns priorities to the individual
robots. After a target location is assigned to a robot, this information is transmitted
to all other robots. Each robot plans its action by taking into account the decisions
made by robots with higher priority. Such a technique with a fixed priorization scheme
typically performs worse than our coordination technique especially in the context
of large robot teams. The reason for that is, that our approach can be regarded as a
priorized approach where in each planning step the priorization scheme is adapted so
that it promises the highest utility.

However, we compared this approach to our coordination scheme, since a fixed pri-
orization scheme can be directly applied in multi-robot systems using a decentralized
architecture. In contrast to this, our coordination algorithm requires a central coordi-
nator (or a coordinating robot within each sub-team) that computes the assignment.
Furthermore, such a decentralized priorization scheme needs less network bandwidth
compared to the centralized approach. Therefore, it makes sense to apply such a tech-
nique, if only a slow network connection is available. This problem has been addressed
in detail in a joined work with Daniel Meier (see[Meier et al., 2005]). In this ap-
proach, a polygonal approximation of the environment is computed. The polygons are
incrementally refined depending on the available network bandwidth. The operations
to carry out the refinement are computed using the minimum edit cost between the
polygons. In this way one is able to substantially reduce thenetwork traffic.

As can be seen in the plot in Figure 4.14, the quality of the priorized scheme is
satisfactory for small teams of robots. However, as soon as the group gets larger, the
performance of the algorithm decreases. In some situationsusing around 20 robots,
this approach was even worse than the uncoordinated behavior. The reason for that
is that the robots with a low priority do not gather any usefulinformation and are
often redirected before they really reach their desired goal location. At the same time,
they cause interferences between robots. We believe that this method can be further
optimized by, for example, reassigning priorities[Bennewitz, 2004] or auction-based
approaches that allow the robots to trade with their target locations[Zlot et al., 2002].
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Figure 4.14: Coordination performance of the priorized coordination method evaluated
in the unstructured (top), office (middle), and corridor environment (bottom).
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4.5.3 Coordination of a Team of Robots by Solving a TSP

An alternative solution to the multi-robot coordination problem is to solve a multi-
agent traveling salesman problem (multi-agent TSP). In this approach, all available
target locations are assigned to the robots and each robot builds a path by visiting
multiple target locations instead of approaching a single one.

It should be noted that the computation of the optimal solution is in most cases
impossible due to the online-characteristics of the exploration problem. Approxima-
tive solutions, however, open additional problems like thequestion how to balance the
number of tasks assigned to the individual robots. Zlotet al.[2002] who used an online
auction-based approach similar to a TSP write“since new frontiers generally originate
from old ones, the robot that discovers a new frontier will often be the best suited to go
on it (the closest).”This observation indicates that often it is sufficient to consider only
a single target location. A typical situation, in which a suboptimal solution is obtained
when the workload is not balanced between the robots, is depicted in Figure 4.15. In
this example, all the work is done by one robot and the other remains idle. This effect
can get even stronger if the size of the team grows.

Applying TSP solutions in the context of exploration makes sense if, for example,
the structure of the environment is (partly) known but the world needs to be covered by
the sensors of the robots. This can be the case in the context of de-mining or cleaning
tasks. There exits evaluations of different approximativesolutions in the literature
(compare[Lagoudakiset al., 2005]), but they typically assume that the environment is
at least partly known.

4.6 Related Work

The various aspects of the problem of exploring unknown environments with mobile
robots have been studied intensively in the past. Many approaches have been proposed
for exploring unknown environments with single robots[Choset, 2001b, Dudeket al.,
1991, Edlinger and von Puttkamer, 1994, González-Bañoset al., 2000, Kuipers and
Byun, 1991, Mooreheadet al., 2001, Stentz, 1994, Tailor and Kriegman, 1993, Zelin-
sky et al., 1993]. Most of these approaches guide the robot to the closest unexplored
area, just as our approach does when applied to a single robotsystem. These tech-
niques mainly differ in the way the environment is represented. Popular representa-
tions are topological[Choset, 2001b, Kuipers and Byun, 1991], metric[Edlinger and
von Puttkamer, 1994], or grid-based[Yamauchi, 1998, Yamauchiet al., 1999, Zelin-
skyet al., 1993]. Furthermore, there exists theoretical works providing a mathematical
analysis of the complexity of exploration strategies including comparisons for single
robots[Albers and Henzinger, 2000, Alberset al., 2002, Denget al., 1991, Deng and
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Figure 4.15: An environment in which an online multi-agent TSP-solution can be
problematic. (a) Two robots start in a Y-shaped corridor. The only frontier is assigned
to robot B since it is the closest to this frontier. (b) The newfrontier originates from the
old one and so robot B is the best suited to go on it. (c) Robot B reaches the junction
and the shortest path in this TSP is to guide robot B to frontier 1 and than to frontier 2.
(d) Robot B enters the upper corridor, robot A has still no task assigned. (e) Robot B
explores the upper corridor and turns back. Since the upper corridor is shorter than the
horizontal one, robot B still has the frontier labeled as 1 inits route. (f) Robot B enters
the lower corridor until the whole environment is explored (g). This solution is clearly
suboptimal, since robot A was not used at all.
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Papadimitriou, 1998, Koeniget al., 2001b, Koenig and Tovey, 2003, Zhenget al.,
2005, Lumelskyet al., 1990, Raoet al., 1993]. Additionally, Lee and Recce[1997]
provide an experimental analysis of the performance of different exploration strategies
for one mobile robot.

Also the problem of exploring terrains with teams of mobile robots has received
considerable attention in the past. For example, Rekleitiset al. [1997, 1998, 2001]
focus on the problem of reducing the odometry error during exploration. They sep-
arate the environment into stripes that are explored successively by the robot team.
Whenever one robot moves, the other robots are kept stationary and observe the mov-
ing robot, a strategy similar to the one presented by Kurazume and Shigemi[1994].
Whereas this approach can significantly reduce the odometryerror during the explo-
ration process, it is not designed to distribute the robots over the environment like our
approach does. The robots are rather forced to stay close to each other in order to
remain in the visibility range. Thus, using these strategies for multi-robot exploration
one cannot expect that the exploration time is significantlyreduced compared to single
robot systems.

Yamauchi[1998] presented a technique to learn maps with a team of mobile robots.
He introduced the idea of frontiers between known and unknown areas in a grid map.
The frontier technique is also used throughout this thesis,since it is well-suited to find
potential target locations for singe as well as for multi-robot systems. In the approach
of Yamauchi, the robots exchange information via a joint mapthat is continuously up-
dated whenever new sensor input arrives. They also use map matching techniques[Ya-
mauchiet al., 1999] to improve the consistency of the resulting map. To acquire new
information about the environment all robots move to the closest frontier cell. The
authors do not apply any strategies to distribute the robotsover the environment or to
avoid that two or more robots exploring the same areas. This type of implicit coordi-
nation via a joint map is used as a reference technique for comparisons throughout this
chapter. We called it the “uncoordinated technique” in thischapter. As shown in the
experimental section, our coordination technique provides a more efficient coverage
of terrain for multi-robot systems.

Cohen[1996] considers the problem of collaborative of anavigator that has to
reach an initially unknown target mapping and navigation ofteams of mobile robots.
The team consists location and a set ofcartographersthat randomly move through
the environment to find the target location. When a robot discovers the goal point,
the location is communicated among the cartographers to thenavigation robot which
then starts to move to that location. In extensive experiments, the author analyzes
the performance of this approach and compares it to the optimal solution for different
environments and different sizes of robot teams. In our approach, the robots do not
have that different capabilities or different tasks to complete. Our systems allows
the robots to travel with different speeds or to have a different size. Compared to
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Cohen[1996], we do not consider robots supposed to solve only one a specific task
within the exploration mission.

Koenig and colleagues[Koeniget al., 2001a, Koenig and Tovey, 2003, Zhenget
al., 2005] presented several evaluations of different terrain coverage techniques for
single and multi-robot systems. Koenig and Tovey[2003] for example demonstrated
that for single robot systems, the greedy approach that guides the robot always to the
closest frontier behaves reasonable well compared to the optimal solution. Recently,
Zhenget al. [2005] showed that under certain assumptions like fixed sensor range and
grid cell ratios as well as unlimited communication, their greedy coverage algorithm
needs in the worst case only eight time longer than the optimal solution.

Koenig et al. [2001a] analyze different terrain coverage methods for ants which
are simple robots with limited sensing and computational capabilities. They consider
environments that are discretized into equally spaced cells. Instead of storing a map
of the environment in their memory like done in our exploration approach, the ants
leave markers in the cells they visit. The authors consider two different strategies for
updating the markers. The first strategy is “Learning Real-Time A∗” (LRTA ∗), which
greedily and independently guides the robots to the closestunexplored areas and thus
results in a similar behavior of the robots as in the approachof Yamauchi[1998]. The
second approach is “Node Counting” in which the ants simply count the number of
times a cell has been visited. The authors show that LearningReal-Time A∗ (LRTA∗)
is guaranteed to be polynomial in the number of cells, whereas “Node Counting” can
be exponential.

Billard et al. [2000] introduce a probabilistic model to simulate a team of mobile
robots that explores and maps locations of objects in a circular environment. In several
experiments, they demonstrate the correspondence of theirmodel with the behavior of
a team of real robots.

In [Balch and Arkin, 1994], the authors analyze the effects of different kinds of
communication on the performance of teams of mobile robots that perform tasks like
searching for objects or covering a terrain. The “graze task” carried out by the team of
robots corresponds to an exploration behavior. One of the results is that the commu-
nication of goal locations does not help if the robots can detect the “graze swathes” of
other robots.

The technique presented by Kurabayashiet al. [1996] is an off-line approach,
which, given a map of the environment, computes a cooperative terrain sweeping tech-
nique for a team of mobile robots. In contrast to most other approaches, this method
is not designed to acquire a map. Rather the goal is to minimize the time required to
cover a known environment which can lead to a more efficient behavior in the context
of cleaning or mowing tasks.

One approach towards cooperation between robots has been presented by Singh
and Fujimura[1993]. This approach especially addresses the problem of heteroge-
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neous robot systems. During exploration each robot identifies “tunnels” to the so far
unexplored area. If a robot is too big to pass through a tunnelit informs other robots
about this task. Whenever a robot receives a message about a new task, it either ac-
cepts it or delegates it to smaller robots. In the case of homogeneous teams, the robots
follow a strategy similar to the system of Yamauchi[1998].

Howardet al.[2002] presented an incremental deployment approach that is similar
to the technique described here. Their approach explicitlydeals with obstructions.
They consider situations in which the path of one robot is blocked by another but
they do not consider the problem of limited communication. Zlot et al. [2002] have
recently proposed an architecture for mobile robot teams inwhich the exploration is
guided by a market economy. In contrast to our algorithm, they consider sequences of
potential target locations for each robot like in a TSP. Theythen trade the tasks using
single-item first-price sealed-bid auctions. As illustrated in this chapter, the usage
of a TSP-approach can be disadvantageous in unknown environments. Whenever a
robot discovers a new frontier during exploration, this robot will often be the best
suited to go on it (see[Zlot et al., 2002]). As illustrated in Section 4.5.3, we found
that this can lead to an unbalanced assignment of tasks to robots so that the overall
exploration time is increased. Koet al. [2003] present a variant of our approach that
uses the Hungarian method[Kuhn, 1955] to compute the assignments of frontier cells
to robots. The main focus of this work is to cooperatively explore an environment with
a team of robots in case the starting locations of the individual robots are not known
in advance. Practical experiments presented in this chapter showed that the Hungarian
method yields a similar performance as our coordination algorithm. Only in the case
of small robot teams our approach appeared to be slightly superior since it provides a
better distribution of the robots over the environment.

Furthermore, there are approaches that address the problemof coordinating two
robots. The work presented by Bender and Slonim[1994] theoretically analyzes the
complexity of exploring strongly connected directed graphs with two robots. Roy
and Dudek[2001] focus on the problem of exploring unknown environments with
two robots and present an approach allowing the robots with alimited communication
range to schedule rendezvous. The algorithms are analyzed analytically as well as
empirically using real robots.

There exist also coordination techniques optimized for a specific domain. For ex-
ample, Weigelet al. [2002] presented an approach to coordinate a team of soccer
playing robots. This technique does not directly address the problem of exploring un-
known environments but of assigning roles to the individualagents. These roles are
soccer specific ones like, for example, “defense player”. Inthis way, the team is able
to adapt itself to the current situation of the soccer field.

Several researchers have focused on architectures for multi-robot cooperation. For
example, Grabowskiet al. [2000] consider teams of miniature robots that overcome
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the limitations imposed by their small scale by exchanging mapping and sensor infor-
mation. In this architecture, a team leader integrates the information gathered by the
other robots. Furthermore, it directs the other robots to move around obstacles or to
direct them to unknown areas. Jung and Zelinksy[1999] present a distributed action
selection scheme for behavior-based agents which has successfully been applied to a
cleaning task. Stroupeet al. [2004] recently presented the MVERT-approach. Their
system uses a greedy approach that selects robot-target pairs based on proximity. The
goal of the action selection is to maximize cooperative progress toward mission goals.
In contrast to our algorithm, the MVERT system does not discount areas close to the
selected goal locations. Matarić and Sukhatme[2001] consider different strategies for
task allocation in robot teams and analyze the performance of the team in extensive
experiments. Parker[2003] described a project in which a large team of heteroge-
neous robots is used to perform reconnaissance and surveillance tasks. This work
differs from our approach in that it investigates how to jointly accomplish a task with
heterogeneous robots that cannot solve it individually.

4.7 Conclusion

In this chapter, we presented a technique for coordinating ateam of robots while they
are exploring their environment. The key idea of our technique is to simultaneously
take into account the cost of reaching a so far unexplored location and its utility. The
utility of a target location depends on the probability thatthis location is visible from
target locations assigned to other robots. Our algorithm always assigns that target
location to a robot which has the best trade-off between utility and costs. We also
presented an extension of our technique to multi-robot systems that have a limited
communication range. In this case, the robots form sub-teams so that they are able to
communicate locally. The assignment problem is then solvedwithin each sub-team.

Our technique has been implemented and tested on real robotsand in extensive
simulation runs. The experiments demonstrate that our algorithm is able to effectively
coordinate a team of robots during exploration. They further reveal that our coordi-
nation technique significantly reduces the exploration time compared to exploration
approaches that do not explicitly coordinate the robots. Further experiments demon-
strate that our technique works well even if the robots can only partially exchange
data. Additionally, we compared our approach to three alternative coordination tech-
niques, namely the implicit coordination approach based ona joint map, the Hungarian
method, and a coordination approach using a fixed priority scheme.



Chapter 5

Multi-Robot Exploration Using
Semantic Place Labels

5.1 Introduction

I
n the previous chapter, we introduced a technique to efficiently coordinate a team
of exploring robots. So far, we made no assumption about the environment itself.
In this chapter, we extend our coordination approach presented in Chapter 4 so
that it takes into account additional information about theenvironment.

Indoor environments constructed by humans often contain certain structures like
corridors with adjacent rooms or offices. However, it is mainly unexplored how robots
can utilize such background information to more efficientlysolve an exploration task.
One of our observations is that the more potential target locations are known when
assigning targets to robots, the faster the team can explorethe environment. This is
due to the fact that especially large teams of robots can be better distributed over the
environment when more target locations are available. In this way, the amount of
redundant work and the risk of interference is reduced. It therefore makes sense to
focus on areas first which are likely to provide a large numberof new target locations
in order to obtain a better assignment of targets to robots.

The contribution of this chapter is a technique to estimate and utilize semantic in-
formation during collaborative multi-robot exploration.In our approach, the robots
get a higher reward for exploring corridors, since they typically provide more branch-
ings to unexplored areas like adjacent rooms compared to rooms itself. This allows
us to make better assignments of target locations to robots.As a result, the overall
completion time of an exploration task can be significantly reduced.

This chapter is organized as follows. First, we introduce our technique to estimate
semantic labels of places. In Section 5.3, we then present a hidden Markov model-
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based extension to the labeling approach which improves theclassification in the con-
text of exploration. We then propose our coordination technique and describe how to
utilize the place information in Section 5.4. Section 5.5 presents experimental results
on exploration using semantic place labels. Finally, Section 5.6 discusses related work.

5.2 Semantic Place Labeling

This section explains how semantic place labels can be obtained with mobile robots
based on laser range observations. We apply a technique for place classification which
was presented in a joint work with Martínez Mozos[Martínez Mozoset al., 2005].
The techniques allows a mobile robot to robustly classify places into different semantic
categories. In this chapter, we focus on learning a classifier, that is able to distinguish
corridors from other kinds of indoor structure. To obtain such a classifier, we apply the
AdaBoost algorithm introduced by Freund and Schapire[1997].

The key idea of AdaBoost is to form a strong binary classifier given a set of weak
classifiers. The weak classifiershj only need to be better than random guessing. Sim-
ilar to the work of Viola and Jones[2001], we construct our weak classifier based on
simple, single-value featuresfj ∈ R

hj(x) =

{
1 if pj · fj(x) < pj · θj

0 otherwise.
(5.1)

This weak classifier returns 1 if the training examplex is supposed to be a positive
example and 0 otherwise.θj is a threshold value andpj is either−1 or +1 and thus
represents the direction of the inequality. The AdaBoost algorithm determines during
the training process for each weak classifierhj the optimal parameter tuple(θj , pj),
such that the number of misclassified training examples is minimized. To achieve this,
it considers all possible combinations ofpj andθj , whose number is limited since only
an finite numberN of training examples is given. A training example is defined by the
tuple(xn, yn) wherexn is the example andyn ∈ {0, 1} the classxn belongs to. Using
the training examples,(θj , pj) is determined by

(θj , pj) = argmin
(θi,pi)

N∑

n=1

|hi(xn)− yn| . (5.2)

Figure 5.1 illustrates the process to compute the optimal value of θj . First, one com-
putes for each training example(xn, yn) the feature valuefj(xn) and adds it to a list
which is sorted according to that value; Second, one iterates through this list and com-
putes the error of the weak classifier using aθj value between the feature value of the
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Figure 5.1: This figure illustrates how the optimal value ofθj is found. In the left
image, thex-value of each data point represents the feature value of a training example
and they-value its true class. By iterating through this list of datapoints, one can
determine the optimal valueθj for the given training examples. The right image depicts
the weak classifierhj .

current and the next element. Theθj value which provides the highest classification
rate is the optimal value forθj given the training set.

We compute two sets of simple features for each observation.The first set is cal-
culated using the raw beamszt,i, i = 1, . . . , M in the full range scanzt. The second
set of features is calculated from a polygonal approximation P(zt) of the area covered
by zt. The vertices of the closed polygonP(zt) correspond to the coordinates of the
end-points of each beam relative to the robot.

P(zt) = {(zt,k · cos αk, zt,k · sin αk) | k = 1, . . . , M} , (5.3)

whereαk is the angle of thek-th beamzt, k of the observationzt.
Examples for features extracted from laser range data are depicted in Figure 5.2.

Such features are, for example, the average distance between consecutive beams, the
area covered by a range scan, or the perimeter of that area. All our features are rota-
tional invariant to make the classification of a position dependent only on the(x, y)-
position of the robot and not on its orientation. Most of the features are standard
geometrical features used in shape analysis[Gonzalez and Wintz, 1987, Russ, 1992].
Table 5.1 and 5.2 provide a full list of features used by our system to learn classifier
for place recognition.

The input to the AdaBoost algorithm is a set of labeled, positive and negative train-
ing examples{xn, yn}. In our case, this is a set of laser range observations recorded in
a corridor and a second set taken outside corridors. In a series ofT rounds, the algo-
rithm repeatedly selects the weak classifierhj with the lowest error under the training
data. To do so, AdaBoost uses a weighted error function. The importance weightwn

for each example is updated in each round. The algorithm modifies the set of im-
portance weights by increasing the weights of the most difficult training examples in
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Figure 5.2: Examples for features generated from laser data, namely the average dis-
tance between two consecutive beams, the perimeter of the area covered by a scan, and
the length of the major axis of the ellipse that approximatesthe polygon described by
the scan.

Table 5.1: Simple features based on the individual beams of alaser range observationz

1. The average difference between the length of consecutivebeams.

2. The standard deviation of the difference between the length of consecutive
beams.

3. Same as 1), but considering different max-range values.

4. The average beam length.

5. The standard deviation of the length of the beams.

6. Number of gaps in the scan. Two consecutive beams build a gap if their differ-
ence is greater than a given threshold. Different features are used for different
threshold values.

7. Number of beams lying on lines that are extracted from the range scan[Sack and
Burgard, 2004].

8. Euclidean distance between the two points correspondingto the two smallest
local minima.

9. The angular distance between the beams corresponding to the local minima in
feature 8).
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Table 5.2: Features computed based on the polygonP(z)

1. Area ofP(z).

2. Perimeter ofP(z).

3. Area ofP(z) divided by Perimeter ofP(z).

4. Mean distance between the centroid to the shape boundary.

5. Standard deviation of the distances between the centroidto the shape boundary.

6. 200 similarity invariant descriptors based on the Fourier transformation.

7. Major axis of the ellipse that approximatesP(z) using the first two Fourier co-
efficients.

8. Minor axis of the ellipse that approximateP(z) using the first two Fourier coef-
ficients.

9. The ratio of the major and minor.

10. Seven invariants calculated from the central moments ofP(z).

11. Normalized feature of compactness ofP(z).

12. Normalized feature of eccentricity ofP(z).

13. Form factor ofP(z).
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each round. The optimal parameters(θj , pj) for each weak classifierhj are also com-
puted using the weighed examples. As a result, a single feature can generate several
weak classifiers with different parameters in the individual rounds of the AdaBoost
algorithm.

The final strong classifierH is a weighted majority vote of the bestT weak classi-
fiers

H(x) =

{

1 if
∑T

t=1 ht(x) · αt ≥
1
2

∑T
t=1 αt

0 otherwise,
(5.4)

where the value ofαt is computed according to the weighted error rates of the individ-
ual weak classifiers. The full algorithm is given in Algorithm 5.1. In our system, the
resulting strong classifier takes as input a single 360 degree laser range scan recorded
by a robot and is able to determine whether the position from which the scan was taken
belongs to the classcorridor or not.

5.3 Estimating the Label of a Goal Location

The idea described in the previous section is well-suited todetermine the type of place
the robot is currently in given a 360 degree laser range scan.Even if the place to
classify is not the current pose of the robot, one can simulated a laser range observation
in the map of the environment and apply the classifier to the simulated scan. This works
well for poses whose surroundings are completely known.

In the context of exploration, however, we are interested inclassifying potential
targets of the robot. Typically, target locations are located at the frontiers between
known and unknown areas. This means that large neighboring areas have not been
observed so far which makes it impossible to generate an appropriate observation taken
from that location. As we will demonstrate in the experiments, classifying a place
at a frontier with the approach presented in the previous section leads to high false
classification rates of around 20%. In the following, we therefore introduce a HMM-
based technique that takes into account spacial dependencies between nearby locations
in order to obtain a lower error rate for places located at frontiers.

In our approach, we generate a potential target location foreach group of frontier
cells lying on the same frontier. This process is repeated for each frontier. As an
example, the left image of Figure 5.3 depicts a potential target location extracted for
the right-most frontier (the targets for the other two frontiers are not shown in that
image).

Due to the structure of environments made by humans, the semantic class does
not change randomly between nearby poses. Therefore, it makes sense to consider
smoothing or filtering between places located close together. To do so, we generate
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Algorithm 5.1 The AdaBoost algorithm
Input: Input: set of examples(x1, y1), . . . , (xN , yN).

1: k = number of negatives examples
2: l = number of positive examples.
3: for n = 1, . . . , N do
4: if yn = 1 then
5: w1,n = 1

l

6: else
7: w1,n = 1

k

8: end if
9: end for

10: for t = 1, . . . , T do
11: Normalize the weightswt,n so that

∑N
n=1 wt,n = 1.

12: for all featuresfj do
13: Train a weak classifierh′

j for the featurefj.
14: Compute the errorǫ′j of a classifierh′

jaccording to

ǫ′j =
N∑

n=1

wt,n ·
∣
∣h′

j(xn)− yn

∣
∣ .

15: end for
16: Determine the weak classifier with the lowest error:

(ht, ǫt) = argmin
(h′

j ,ǫ′j)

ǫ′j

17: βt = ǫt

1−ǫt

18: for n = 1, . . . , N do
19: wt+1,n = wt,n · β

1−|ht(xn)−yn|
t

20: end for
21: αt = log 1

βt

22: end for
23: The final strong classifier is given by

H(x) =

{

1 if
∑T

t=1 ht(x) · αt ≥
1
2

∑T
t=1 αt

0 otherwise,

24: return H



104 CHAPTER 5: MULTI -ROBOT EXPLORATION USING SEMANTIC PLACE LABELS

a short virtual trajectory to the desired goal location. We then simulate a laser range
observation within the partially known map along the virtual trajectory. Whenever the
ray-casting operation used to simulate a beam reaches an unknown cell in the grid map,
the virtual sensor reports a maximum-range reading. We thenapply a hidden Markov
model (HMM) and maintain a posteriorBel(Lx) about the typeLx of the placex the
virtual sensor is currently at

Bel(Lx) = η · p(ox | Lx) ·
∑

Lx′

p(Lx | Lx′) · Bel(Lx′). (5.5)

In this equation,ox is the result of the classifier learned with AdaBoost for the placex
andη is a normalizing constant ensuring that the left-hand side sums up to one over all
semantic labels.

To implement this HMM, three components need to be known. First, we need to
specify the observation modelp(ox | Lx) which is the likelihood that the classification
output isox given the actual class isLx. The observation model is learned based on
5.000 observations, recorded at randomly chosen locationsin different environments
combined with the corresponding manually created ground truth labeling.

Second, we need to specify the transition modelp(Lx | Lx′) which defines the
probability that the virtual sensor moves from classLx′ to classLx. To determine
this motion model, we evaluated typical trajectories obtained during exploration. We
can directly computep(Lx | Lx′) by counting the transitions between places on that
trajectories. The correct labels were manually set.

Furthermore, we need to specify how the beliefBel(Lstart) is initialized. In our
current system, we choose a uniform distribution, which means that all classes (here
corridor andnon-corridor) have the same likelihood.

Finally, we have to describe how the virtual trajectory is generated. The endpoint
of the trajectory is the frontier cell to be classified. Sincelocations which have less
unknown grid cells in their surroundings can typically be classified with a higher suc-
cess rate, the other positions on that trajectory should be as far away from the unknown
locations as possible. Therefore, we apply the euclidian distance transformation[Mei-
jsteret al., 2000] with respect to unknown and occupied cells in the local area of the
frontier. We then select the pose in the free space within that local area with the highest
distance to unknown areas. An A* planner is used to generate the virtual trajectory to
the target location. An illustrating example is depicted inFigure 5.3.
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Figure 5.3: This figure illustrates the generation of the virtual trajectory used for the
HMM filtering. The left image depicts the current location ofthe robot, the frontiers
(dashed lines), and a potential target location to be evaluated. To do so, the robot
generates a virtual trajectory as shown in the right image and simulates observations
at several positions located on the trajectory. These sequence of observations is used
as the input of the HMM in order to obtain a more robust classification result.

5.4 Using Semantic Place Information for Efficient
Multi-Robot Exploration

In this section, we describe how to integrate the semantic information into the coordi-
nation technique presented in the previous chapter. As a result of that integration, the
robots prefer to explore corridors first. In this way, they can identify more target loca-
tions in the beginning of the exploration run. As mentioned before, our observations is
that the more unexplored target locations are known when assigning targets to robots,
the faster the team can explore the environment. This is due to the fact that especially
large teams of robots can be better distributed over the environment when more target
locations are available.

The knowledge about the semantic labels is integrated into the utility function used
to select the next target locations for the individual robots. The places which are sup-
posed to provide several branchings to adjacent places are initialized with a high utility.
In our current implementation, all corridor locations get aγ times higher initial utility
(Uinit ) compared to all other potential target locations. In this way, the robots prefer
targets in corridors and eventually make slight detours in order to explore them first.
To determine the actual value ofγ, we performed exploration runs in different environ-
ments with varyingγ. We figured out that we obtained the best results using aγ-value
of around 5. Algorithm 5.2 depicts the resulting coordination technique used in our
current system (using the same notation as in Chapter 4).

Our approach distributes the robots in a highly efficient manner over the envi-
ronment and reduces the amount of redundant work by taking into account visibility
constraints between targets and their semantic labels. Thelabels are used to focus the
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Algorithm 5.2 Target assignment algorithm using semantic place labels.
1: Determine the set of frontier cells.
2: Compute for each roboti the costV i

f for reaching each frontier cellf .
3: Estimate for each frontier cellf the semantic labelingLf (according to Sec-

tion 5.3).
4: Set the utilityUf of all frontier cellsf to Uinit(Lf , n) according to their semantic

labelingLf and the sizen of the team (see text below).
5: while there is one robot left without a target pointdo
6: Determine a roboti and a frontier cellf which satisfy:

(i, f) = argmax(i′,f ′)

(
Uf ′ − V i′

f ′

)
.

7: Reduce the utility of each target pointf ′ in the visibility area according to
Uf ′ ← Uf ′ − Pvis(f, f ′).

8: end while

exploration on unexplored corridors, because they typically provide more branchings
to adjacent rooms than other places. The high number of branchings from the places
explored first results in a higher average number of available target locations during
exploration. This leads to a more balanced distribution of robots over the environment
when doing the assignment. As we will demonstrate in the experiments, the integra-
tion of such semantic labels helps to reduce the overall exploration time of multi-robot
exploration approaches for large robot teams.

Please note that for very small teams of robots, we do not achieve a reduction of
the exploration time using our technique. This fact can be explained by considering the
single-robot exploration scenario. In this case, it makes no sense to focus on exploring
the corridors first, since the robot has to cover the overall environment with its sensors.
Moving through the corridors first will in general lead to an increased trajectory length
and in this way will increase the overall exploration time. We observed this effect for
robots teams smaller than five robots.

To prevent a loss of performance compared to approaches which do not consider
semantic place information for small robot teams, we trigger the influence of the se-
mantic place information depending on the size of the team. We linearly decrease the
influenceγ for teams smaller than 10 robots. The linear interpolation of the influence
of the semantic labels is encoded in the utility functionUinit(Lf , n) in Algorithm 5.2,
wheren denotes the number of robots.
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Figure 5.4: Maps of the Fort Sam Huston hospital and the IntelResearch Lab.

5.5 Experiments

This section is designed to evaluate the improvements of ourmulti-robot coordination
technique which makes use of semantic place information. Due to the high number
of robots in the team, we evaluated our collaboration technique only in simulation
experiments.

5.5.1 Performance Improvement using Semantic Place Informa-
tion

The first experiment has been carried out in the map of the FortSam Huston hospital
which is depicted in the left image of Figure 5.4. This environment contains a long
horizontal corridor, vertical corridors, and several rooms adjacent to the corridors.

We varied the size of the robot team from 5 to 50 robots and applied the coor-
dination technique with and without taking into account semantic information about
places. Figure 5.5 depicts the result of the exploration experiment by plotting the ex-
ploration time versus the number of robots. The error bars inthat plot indicate the 5%
confidence level. As can be seen, our technique significantlyoutperforms the collabo-
ration scheme that does not consider the place information.This significant reduction
of exploration time is due to the fact that the robots focus onexploring the corridors
first. As a result, a big number of frontiers emerges due to typically numerous adjacent
rooms. Especially in the context of large teams, this results in a better distribution of
robots over the environments and thus speeds up the overall exploration process. This
effect can be observed in Figure 5.6. The graphs plot the number of available target
locations over time during an exploration task carried out using the Fort Sam Hous-
ton map. During the assignment process, most of the time the number of available
target locations is higher compared to our previous approach. This leads to a better
assignment of target locations to robots and as a result the amount of redundant work
is reduced.
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Figure 5.5: Coordination results obtained in the Fort Sam Huston hospital map em-
ploying the coordination strategy with and without the use of semantic place labels.
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Figure 5.7: Results obtained in the Intel Research Lab.

Furthermore, we observed a reduction of interferences between robots when they
plan their paths through the environment. The interferences lead to a lower speed
of the robots, since they often block their paths. Therefore, reducing the number of
interferences allows the robots to accomplish their task faster. In our experiments, we
observed a reduction of robot-robot interferences of up to 20%.

We performed similar experiments in different environments, like for example in
the Intel Research Lab depicted in the right image of Figure 5.4. The result is compara-
ble to the previous experiment and again the knowledge aboutthe semantic categories
of places allows the robots to complete the exploration taskmore efficiently. The ac-
tual evolution of the exploration time in this experiment isdepicted in Figure 5.7. The
same holds for experiments carried out using the floor plan ofthe DLR building shown
in Figure 5.8.

5.5.2 Influence of Noise in the Semantic Place Information

In the experiments presented above, we assumed that the robots are able to correctly
classify the different target location into the semantic categories. This assumption,
however, is typically not justified. In this experiment, we evaluate the performance of
our approach for different classification error rates. We evaluated the exploration time
for a classifier which randomly misclassified 5%, 10%, and 15%of the places. Fig-
ure 5.9 depicts a plot comparing the different error rates. As can be seen, even at a high
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Figure 5.8: Floor plan of the German Aerospace Center (DLR) and the corresponding
results of our exploration system.
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Figure 5.9: Exploration results with wrongly labeled places.

error of 10%, our approach significantly outperforms the coordination technique that
ignores the semantic information. When the error of the classification exceeds 15%,
the exploration time is still reduced, although this resultis not significant anymore.
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5.5.3 Applying a Trained Classifier in New Environments

This experiment is designed to illustrate that it is possible to train a classifier in an
environment and transfer it to a totally different one. Of course, the performance of
the classifier decreases, however, we obtained promising result. Figure 5.10 shows
two labeled maps. The one in the first row was labeled manuallyand used to learn
the classifier using AdaBoost. For the environment depictedin the lower image, we
simulated an observation for each grid cell and than used thetrained classifier to label
the positions. As can be seen, the spacial structures are quite different but the classifi-
cation is good expect of a small areas which are wrongly classified. Large parts of the
misclassified areas in this experiment are located at the ends of the corridors. This is
mainly due to the fact that large parts of the area covered by scans recorded at these
locations actually cover a corridor.

We then used this classification result to perform an exploration task. The results of
this experiment are depicted in Figure 5.11. The figure plotsthe time needed to explore
the environment using our approach with the true labels, with the labels estimated by
our classifier, and without using place information at all. As can be seen, there is only
a small time overhead when using the estimated labels compared to the true ones. This
indicates that even transferring such a classifier to unknown environments provides a
speed-up in the context of multi-robot exploration.

5.5.4 Improvements of the HMM Filtering and Error Analysis of
the Classifier

In this experiment, we want to analyze the actual error of ourplace classification sys-
tem and illustrate the improvements of the HMM filtering. To do so, we labeled an
environment, trained a corridor classifier using AdaBoost,and used a test set to evalu-
ate the success rate. Whenever a single full 360 degree laserrange scan was available,
we obtained highly accurate classification results in different office environments. In
this case, the error-rate was typically between 2% and 4%.

Figure 5.12 depicts the result of our classifier depending onthe number of invalid
readings caused by unknown grid cells close to frontiers. Thex-axis shows the size of
a continuous block of maximum range measurements (here withan angular resolution
of the laser of 1 degree). As can be seen, if only half of the observations are available,
the classification error rate is between 18% and 19%.

First, we determined the success rate of directly classifying frontier cells without
using HMM filtering. In this case, the average classificationrate was in average 81.2%.
By considering the exploration speed-up depending on the classification rate depicted
in Figure 5.9, such a high error rate is not sufficient to obtain an significant speed-up.
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Figure 5.10: The training examples for the classifier were trained in the map shown in
the top image. In contrast to this, the lower image shows the resulting classification
output. The classification for each place was performed based on a laser range scan
simulated at the corresponding location in the map. As can beseen, even if the struc-
ture of the environment is significantly different, the classification output is reasonable.
Red corresponds to corridor locations, blue to rooms.
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Figure 5.11: Results obtained in the Intel Research Lab using the ground truth and the
estimated semantic labels.
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114 CHAPTER 5: MULTI -ROBOT EXPLORATION USING SEMANTIC PLACE LABELS

Second, we applied our HMM-based filtering approach that generates virtual tra-
jectories towards frontiers and in this way incorporates the spatial dependencies be-
tween the nearby locations. As a result, we obtained an average success rate of 92.8%.
This is a good result considering that we obtained an averagesuccess rate in this sce-
nario of 96.2% if all observations are perfectly known (see Figure 5.12). This fact
illustrates that the HMM is an useful tool to improve the place labeling especially if
not the full 360 degree range scan is available. It allows us to estimate the semantic
labels with a comparably low error rate. In this way, our technique can be used to sig-
nificantly speed up multi-robot exploration by consideringsemantic information about
places in the environment.

In sum, our experiments demonstrate that semantic place information can signifi-
cantly reduce the exploration time even under classification errors.

5.6 Related Work

In order to improve the navigation capabilities of a team of robots, we use semantic
place information learned from sensor data. Several authors addressed the problem
of classifying typical structures of indoor environments.For example, Koenig and
Simmons[1998] use a pre-programmed routine to detect doorways from range data.
In [Buschka and Saffiotti, 2002], a virtual sensor is described which automatically
segments the space into room and corridor regions, and computes a set of characteristic
parameters for each region. The algorithm is incremental inthe sense that it only
maintains a local topological map of the space recently explored by the robot and
generates information about each detected room whilst rooms are visited. Althaus and
Christensen[2003] use the Hough transform from sonar readings to detect two parallel
lines which are considered to be part of a corridor. The detection of doorways is carried
out using the gaps between these lines. With the detection ofcorridors and doorways,
they construct a topological map for navigation and obstacle avoidance.

Some authors also apply learning techniques to localize therobot or to identify dis-
tinctive states in the environment. For example, Ooreet al. [1997] train a neural net-
work to estimate the location of a mobile robot in its environment using the odometry
information and ultrasound data. Kuipers and Beeson[2002] apply different learning
algorithms to learn topological maps of the environment. Additionally, Anguelov and
colleagues [Anguelovet al., 2002, 2004] apply the EM algorithm to cluster different
types of objects from sequences of range data. In a recent work, Torralbaet al. [2003]
use hidden Markov models for learning places from image data.

In our work, we apply a technique based on the place classification approach pro-
posed in a joint work[Martínez Mozoset al., 2005]. The idea is to use simple features
extracted from laser range scans in order to train a set of classifiers using AdaBoost.
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In this way, it is possible to label a place given a single laser range observation. Fur-
thermore, our filtering technique bears resemblance with the approach presented in a
joint work with Rottmannet al. [2005], in which a hidden Markov model is applied to
improve the classification result. In contrast to the work described here, we combine
in [Rottmannet al., 2005] laser data and visual information to obtain more features
and in this way are able to distinguish between more classes.

Different authors apply the AdaBoost algorithm to learn classifiers. Treptowet
al. [2003] use the AdaBoost algorithm to track a ball without color information in
the context of RoboCup. Viola and Jones[2001] presented a robust face detector using
AdaBoost and single-value features. Their approach considers integral images in order
to compute such features.

Our classifier used to label places can be seen as background knowledge about the
environment. Foxet al. [2003] presented a technique which aims to learn background
knowledge in typical indoor environments and later on use them for map building.
Their approach learns a Dirichlet prior over structural models from previously explored
environments. The presented technique is applied to decidewhether the robot is seeing
a previously built portion of a map, or is exploring new territory. This can be especially
useful if the pose information of the robots are affected by noise or they do not know
their relative locations.

In the context of coordination techniques for multi-robot exploration, we would
like refer the reader to Section 4.6 which discusses common approaches in detail. Due
to the best of our knowledge, there is no work that investigates how semantic informa-
tion about places in the environment can be used to optimize the collaboration behavior
of a team of robots. The contribution of this chapter is an approach that estimates and
explicitly uses semantic information in order to more efficiently spread the robots over
the environment. This results in an more balanced target location assignment with less
interferences between robots. As a result, the overall timeneeded to cover the whole
environment with the robots’ sensors can be significantly reduced.

5.7 Conclusion

In this chapter, we proposed a novel technique that takes into account semantic in-
formation about places in the context of coordinated multi-robot exploration. Since
indoor environments are made by humans, they typically consist of structures like cor-
ridors and rooms. The knowledge about the type of place of a potential target location
allows us to better distribute teams of robots over the environment and to reduce redun-
dant work as well as the risk of interference between the robots. As a result, the overall
exploration time can be reduced compared to collaboration approaches that ignore se-
mantic place information. The semantic labels are determined by learning a classifier
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using AdaBoost in combination with an HMM to consider spacial dependencies.
Our approach has been implemented and tested in extensive simulation runs with

up to 50 robots. Experiments presented in this chapter illustrate that a team of robots
can complete their exploration mission in a significantly shorter period of time us-
ing our approach. Furthermore, we believe that utilizing semantic information during
exploration is not restricted to our exploration techniqueand that it can be easily inte-
grated into other coordination approaches.



Part II

Mapping and Exploration
under Pose Uncertainty
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Chapter 6

Efficient Techniques for
Rao-Blackwellized Mapping

6.1 Introduction

S
o far, we focused on guiding robots through the environment in order to per-
ceive it with their sensors. We assumed that the poses of the robots were
known. This assumption, however, does not hold in real worldsituations. In
the second part of this thesis, we therefore take into account the uncertainty

about the pose of a mobile robot.
In this chapter, we focus on how to estimate the trajectory ofa robot as well as

the map of the environment given the perceived sensor data and the odometry infor-
mation. In the literature, the mobile robot mapping problemunder pose uncertainty
is often referred to as thesimultaneous localization and mapping(SLAM) or concur-
rent mapping and localization(CML) problem[Dissanayakeet al., 2000, Doucetet al.,
2000, Eliazar and Parr, 2003, Gutmann and Konolige, 1999, Hähnelet al., 2003a, Mon-
temerloet al., 2003, Montemerloet al., 2002, Murphy, 1999, Thrun, 2001a, Leonard
and Feder, 2000]. SLAM is considered to be a complex problem because to localize
itself a robot needs a consistent map and for acquiring the map the robot requires a
good estimate of its location. This mutual dependency amongthe pose and the map
estimates makes the SLAM problem hard and requires searching for a solution in a
high-dimensional space.

Murphy, Doucet and colleagues[Murphy, 1999, Doucetet al., 2000] introduced
Rao-Blackwellized particle filters as an effective means tosolve the simultaneous lo-
calization and mapping problem. The key idea of this approach is to first use a particle
filter to estimate the trajectory of the robot. One then uses this trajectory estimate
to compute a posterior about the map of the environment. The main problem of the



120 CHAPTER 6: EFFICIENT TECHNIQUES FORRAO-BLACKWELLIZED MAPPING

Rao-Blackwellized approaches is their complexity, measured in terms of the number
of particles required to build an accurate map. Reducing this quantity is one of the
major challenges for this family of algorithms. Additionally, the resampling step is
problematic since it can eliminate good state hypotheses. This effect is also known as
the particle depletion problem[Doucet, 1998, van der Merweet al., 2000, Doucetet
al., 2001].

In this work, we present two approaches to substantially increase the performance
of a Rao-Blackwellized particle filter applied to solve the SLAM problem based on
grid maps:

• A proposal distribution that considers the accuracy of the sensor of the robot and
allows us to draw particles in an highly accurate manner.

• An adaptive resampling technique, which maintains a reasonable variety of par-
ticles and in this way enables the algorithm to learn an accurate map and to
reduce the risk of particle depletion.

As explained in Chapter 2, the proposal distribution withina particle filter is used
to draw the next generation of particles. In our approach, the proposal distribution is
computed by evaluating the observation likelihood around aparticle-dependent most
likely pose obtained by a scan registration procedure. In this way, the last reading is
taken into account while generating a new particle. This allows us to estimate the evo-
lution of the system according to a more informed and thus more accurate model than
the one obtained using only a scan-matching procedure with fixed covariance as done
by Hähnelet al. [2003a]. The use of this refined model has two effects. The resulting
map is more accurate because the current observation is taken into account when esti-
mating the movement of the vehicle which yields a more accurate pose estimate. The
reduced error additionally leads to a smaller number of particle required to represent
the posterior. The second technique, the adaptive resampling strategy, allows us to
perform a resampling step only when it is needed and in this way allows us to keep a
reasonable particle diversity. This significantly reducesthe risk of particle depletion.
Our approach has been validated by a large set of experimentsin indoor as well as
in outdoor environments. In all experiments, our approach generated highly accurate
metric maps. Additionally, the number of the required particles is around one order of
magnitude smaller than with previous approaches.

This chapter is organized as follows. After explaining how aRao-Blackwellized
filter can be used to solve the SLAM problem, we describe our improved mapping
technique in Section 6.3. Experiments carried out on real robots as well as in simu-
lation are presented in Section 6.5. Section 6.4 then analyzes the complexity of the
presented approach and finally Section 6.6 discusses related approaches.
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6.2 The Concept of Rao-Blackwellized Mapping

Rao-Blackwellized particle filters for SLAM[Murphy, 1999, Doucetet al., 2000] are
used to estimate the posteriorp(x1:t, m | z1:t, u1:t−1) about the trajectoryx1:t of the
robot and the mapm given its observationsz1:t and its odometry measurementsu1:t−1.
The key idea of Rao-Blackwellized mapping is to separate theestimation of the trajec-
tory from the map estimation process

p(x1:t, m | z1:t, u1:t−1)
product rule

= p(x1:t | z1:t, u1:t−1) · p(m | x1:t, z1:t, u1:t−1) (6.1)

= p(x1:t | z1:t, u1:t−1) · p(m | x1:t, z1:t). (6.2)

where Eq. (6.2) is obtained from Eq. (6.1) by assuming thatm is independent of the
odometry measurementsu1:t−1 given the posesx1:t of the robot and the corresponding
observationsz1:t.

This factorization, which is also called the Rao-Blackwellization, allows us to ef-
ficiently computep(x1:t, m | z1:t, u1:t−1), since the posterior about the mapp(m |
x1:t, z1:t) can be computed analytically, given the knowledge ofx1:t andz1:t. Learning
maps under given pose information is also called “mapping with known poses” (see
Chapter 2).

To estimate the posteriorp(x1:t | z1:t, u1:t−1) about the potential trajectory, Rao-
Blackwellized mapping uses a particle filter similar to Monte Carlo localization (MCL)
[Dellaertet al., 1998]. In contrast to MCL, the Rao-Blackwellized particle filter for
mapping maintains anindividual mapfor each sample. Each map is built given the
observationsz1:t and the trajectoryx1:t represented by the corresponding particle.

One of the most common particle filtering algorithms is thesampling importance
resampling(SIR) filter. A Rao-Blackwellized SIR filter for mapping incrementally
processes the observations and the odometry readings as they are available. This is
achieved by updating a set of samples representing the posterior about the map and the
trajectory of the vehicle. The process can be summarized by the following four steps:

1. Sampling: The next generation of particles is obtained from the current genera-
tion by sampling from a proposal distributionπ.

2. Importance Weighting: An individual importance weightw[i]
t is assigned to

each particle, according to

w
[i]
t =

p(x
[i]
t | x

[i]
1:t−1, z1:t, u1:t−1)

π(x
[i]
t | x

[i]
1:t−1, z1:t, u1:t−1)

· w[i]
t−1. (6.3)

The weightsw[i]
t account for the fact that the proposal distributionπ in general

is not equal to the target distribution.
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Figure 6.1: Example for three particles used within Rao-Blackwellized mapping to
representp(x1:t, m | z1:t, u1:t−1). Each particle estimates the trajectory of the robot and
maintains an individual map which is updated according to the estimated trajectory.

3. Resampling: Particles with a low importance weight are typically replaced by
samples with a high weight. This step is necessary since onlya finite number of
particles is used to approximate a continuous distribution. Furthermore, resam-
pling allows us to apply a particle filter in situations in which the true distribution
differs from the proposal.

4. Map Estimating: The map of each particle is updated using “mapping with
known poses.”

An example for such a filter is illustrated in Figure 6.1. It depicts three particles
with the individually estimated trajectories and the maps updated according to the
estimated trajectory. In the depicted situation, the robotclosed a loop and the different
particles produced different maps. Particle 1 has a comparably accurate pose estimate,
whereas the map of particle 3 shows big alignments errors. Therefore, particle 1 will
get a higher importance weight compared to particle 3. The weight of particle 2 will
be between the weight of particle 1 and 3 because its alignment error is smaller than
the one of particle 3 but bigger than the one of particle 1.

In the literature on particle filtering, several methods forcomputing improved pro-
posal distributions and techniques for reducing the particle depletion problem have
been described[Doucet, 1998, Morales-Menéndezet al., 2002, Pitt and Shephard,
1997]. Our approach applies two concepts that have previously been identified as key
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pre-requisites for efficient particle filter implementations by Doucet[1998]: the com-
putation of improved proposal distributions and an adaptive resampling technique. Our
idea of computing an improved proposal is similar to the technique applied by Mon-
temerloet al. [2003] in FastSLAM-2. The major difference lies in the fact that we
compute the proposal based on dense grid maps and not based onlandmarks. To the
best of our knowledge, adaptive resampling has never been investigated in the context
of mapping with Rao-Blackwellized particle filters.

6.3 Improved Proposals and Selective Resampling

The generic algorithm specifies a framework for Rao-Blackwellized mapping but it
leaves open how the proposal distribution is computed and when the resampling should
be carried out. Throughout the remainder of this chapter, wedescribe a technique that
computes an accurate proposal distribution and that adaptively determines when to
resample.

As described in Section 6.2, one needs to draw samples from a proposal distribu-
tion π in the prediction step. In general, the proposal can be an arbitrary function (see
Section 2.1 for further details). However, the more similarthe proposal is to the target
distribution, the better is the approximation of the next generation of samples. There-
fore,π should approximate the true distribution as good as possible. Unfortunately, in
the context of SLAM, a closed form of this posterior is not available. The samples are
usually drawn from the transition modelp(xt | xt−1, ut−1) of the robot. Following the
importance sampling principle, the weightsw

[i]
t can be computed as in the localization

scenario (see Chapter 2)

w
[i]
t ∝ p(zt | m

[i]
t−1, x

[i]
t ) · w[i]

t−1. (6.4)

The motion model, however, is not the best choice for the proposal distribution. This
fact has already been identified by Doucetet al. [2001]. According to this work, the
following equation is the optimal choice of the proposal distribution with respect to
the variance of the particle weights and under the Markov assumption

p(xt | m
[i]
t−1, x

[i]
t−1, zt, ut−1) =

p(zt | m
[i]
t−1, xt) · p(xt | x

[i]
t−1, ut−1)

∫
p(zt | m

[i]
t−1, x

′) · p(x′ | x[i]
t−1, ut−1) dx′

. (6.5)

We will now describe an efficient way for computing a per-particle proposal distribu-
tion, which uses the information of the most recent laser observationzt.
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Figure 6.2: The motion model for odometry as well as for laserdata. Within the
regionL[i] the product of both functions is dominated by the observation likelihood.
Accordingly, the model of the odometry error can safely be approximated by a constant
value.

6.3.1 Using Laser Range Data to Compute an Improved Proposal
Distribution

In most particle filter applications[Dellaert et al., 1998, Montemerloet al., 2002],
the odometry motion modelp(xt | xt−1, ut−1) has been chosen as the proposal dis-
tribution. When modeling a mobile robot equipped with a laser range finder, this
choice is suboptimal in most cases, since the accuracy of thelaser range finder leads
to extremely peaked likelihood functions. In such a situation, the likelihood function
p(zt | m

[i]
t−1, xt) dominates the productp(zt | m

[i]
t−1, xt) · p(xt | x

[i]
t−1, ut−1) within the

meaningful regionL[i] of this distribution as illustrated in Figure 6.2.

In our current system, we therefore approximatep(xt | x
[i]
t−1, ut−1) by a constantk

within the regionL[i] given by

L[i] =
{

x | p(zt | m
[i]
t−1, x) > ǫ

}

. (6.6)

Under this approximation, Eq. (6.5) turns into

p(xt | m
[i]
t−1, x

[i]
t−1, zt, ut−1) ≃

p(zt | m
[i]
t−1, xt)

∫

x′∈L[i] p(zt | m
[i]
t−1, x

′) dx′
. (6.7)
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We furthermore have to specify the computation of the particle weights. For the im-
portance weightw[i]

t of i-th particle, we obtain

w
[i]
t =

p(x
[i]
1:t | z1:t, u1:t−1)

π(x
[i]
1:t | z1:t, u1:t−1)

(6.8)

∝
p(zt | m

[i]
t−1, x

[i]
t ) · p(x

[i]
t | x

[i]
t−1, ut−1)

π(x
[i]
t | m

[i]
t−1, x

[i]
t−1, zt, ut−1)

·
p(x

[i]
1:t−1 | z1:t−1, u1:t−2)

π(x
[i]
1:t−1 | z1:t−1, u1:t−2)

︸ ︷︷ ︸

w
[i]
t−1

(6.9)

= w
[i]
t−1 ·

p(zt | m
[i]
t−1, x

[i]
t ) · p(x

[i]
t | x

[i]
t−1, ut−1)

π(x
[i]
t | m

[i]
t−1, x

[i]
t−1, zt, ut−1)

(6.10)

Eq. (6.7)
≃ w

[i]
t−1 ·

p(zt | m
[i]
t−1, x

[i]
t ) · p(x

[i]
t | x

[i]
t−1, ut−1)

p(zt|m
[i]
t−1,x

[i]
t )

R

x′∈L[i] p(zt|m
[i]
t−1,x′) dx′

(6.11)

odometry const.
= w

[i]
t−1 ·

p(zt | m
[i]
t−1, x

[i]
t ) · k

p(zt|m
[i]
t−1,x

[i]
t )

R

x′∈L[i] p(zt|m
[i]
t−1,x′) dx′

(6.12)

= w
[i]
t−1 · k ·

∫

x′∈L[i]

p(zt | m
[i]
t−1, x

′) dx′. (6.13)

Additionally, we locally approximate our proposal given inEq. (6.7) around the maxi-
mum of the likelihood function by a Gaussian. This leads to the approximated proposal

p(xt | m
[i]
t−1, x

[i]
t−1, zt, ut−1) ≃ pN (zt | m

[i]
t−1, xt). (6.14)

wherepN refers to the Gaussian approximation ofp. With this approximation, we
obtain a closed form which is suitable for efficient sampling. For each particlei, the
parametersµ[i]

t andΣ
[i]
t can be determined by evaluating the likelihood function for

a set of points{xj} sampled around the corresponding local maximum found by the
scan-matching process:

µ
[i]
t =

1

η

K∑

j=1

xj · p(zt | m
[i]
t−1, xj) (6.15)

Σ
[i]
t =

1

η

K∑

j=1

p(zt | m
[i]
t−1, xj) · p(xj − µ

[i]
t )(xj − µ

[i]
t )T (6.16)
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where

η =
K∑

j=1

p(zt | m
[i]
t−1, xj) (6.17)

is a normalizer.
Observe that the computation ofµ

[i]
t andΣ

[i]
t as well as the scan-matching process

are carried out for each particle individually. In our current system, we apply a scan-
matching routine similar to that of Hähnelet al. [2002]. The sampled points{xj}
are chosen to cover an area dependent on the uncertainty of most recent odometry
information

xj ∈ {xt | p(xt | xt−1, ut−1) > ǫ} . (6.18)

By assuming that the Gaussian approximation of the observation likelihood is close to
its real value (which is actually often the case) and by considering sampled points in
L[i], the weights can be expressed by

w
[i]
t ∝ w

[i]
t−1 ·

∫

x′∈L[i]

p(zt | m
[i]
t−1, x

′) dx′ (6.19)

use pointsxj∈L[i]

≃ w
[i]
t−1 ·

K∑

j=1

p(zt | m
[i]
t−1, xj) (6.20)

Eq. (6.17)
= w

[i]
t−1 · η, (6.21)

whereη in Eq. (6.21) corresponds to the normalizer as given in Eq. (6.17).
The computations presented in this section allow us to determine the parameters

of a Gaussian proposal distribution for each particle individually. The proposal takes
into account the most recent laser observation and at the same time allows us efficient
sampling. The resulting densities have a lower uncertaintythan in the situation in
which the odometry motion model is utilized. To illustrate this fact, Figure 6.3 depicts
typical particle distribution obtained with our approach.In case of a straight featureless
corridor, the samples are typically spread along the main direction of the corridor as
depicted in Figure 6.3 (a). Figure 6.3 (b) illustrates the robot reaching the end of such a
corridor. As can be seen, the uncertainty in the direction ofthe corridor decreases and
all samples are centered around a single point. Figure 6.3 (c) shows how the particle
spread out when they are draw from the odometry motion model.

During filtering, it can happen that the scan-matching process fails because of poor
observations or a small overlapping area among the current scan and the previously
computed map. In the case the scan-matcher reports an error,the raw motion model
of the robot is used as a proposal. Such a situation in which the laser observation
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(a) (b) (c)

Figure 6.3: Particle distributions typically observed during mapping. In an open corri-
dor, the particles distributes along the corridor (a). In a dead end corridor, the uncer-
tainty is small in all dimensions (b). In a featureless open space the proposal distribu-
tion is the raw odometry motion model (c). The trajectory of the robot is depicted by
the red line.

does not provide any information is depicted in Figure 6.3 (c). However, we observed
that these kind of situations occur rarely in real datasets (see also Section 6.5.4 in the
experiments of this chapter).

6.3.2 Selective Resampling

A further aspect that has a major influence on the performanceof a particle filter is the
resampling step. During resampling, the particles with a low importance weightw[i]

t

are typically replaced by samples with a high weight. On the one hand, resampling is
necessary since only a finite number of particles are used. Onthe other hand, the re-
sampling step can delete good samples from the sample set, causing particle depletion.
In the context of map building, this is critical especially in the context of nested loops.
During mapping an inner loop, hypotheses that are not necessarily the ones with the
highest weight are often needed later on to correctly close an outer loop. Accordingly,
it is important to find a criterion when to perform a resampling step.

Liu [1996] introduced the so-calledeffective number of particlesor effective sam-
ple sizeto estimate how well the current particle set represents thetrue posterior. This
quantity is defined as

Neff =
1

∑N
i=1

(

w
[i]
t

)2 . (6.22)

The intuition behindNeff is as follows. If the samples were drawn from the true pos-
terior, the importance weights of the samples would be equalto each other, due to the
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importance sampling principle. The worse the approximation, the higher the variance
of the importance weights.Neff can be regarded as a measure for the dispersion of
the importance weights. Thus, it is a useful measure to evaluate how well the particle
set approximates the true posterior.Neff takes values between 1 and the numberN
of particles. Whenever the weights are equally distributed, its value isN . In case all
the probability mass is concentrated in a single sample only, its value is 1.Neff can
be used to determine whether or not a resampling should be carried out. Whenever its
value is high, resampling is typically not required since the approximation of the target
distribution is good. We resample each timeNeff drops below a certain threshold. In
our current implementation, this threshold was set toN/2. In extensive experiments,
we found that this approach substantially reduces the risk of replacing good particles,
because the number of resampling operations is reduced and resampling operations are
only performed when needed.

6.4 Complexity

This section discusses the complexity of the presented approach to Rao-Blackwellized
mapping using grid maps. Since our approach uses a particle filter to represent the
joint posterior about the map and the trajectory, the numberN of samples is the cen-
tral quantity. To compute the proposal distribution for a single particle, our approach
samples around the most likely position reported by the scanmatcher. This sampling
step is performed a constant number ofK times for each sample and there is no de-
pendency between the particles when computing the proposal.

The most recent observation which is used to computeµ[i] andΣ[i] (see Eq. (6.15)
and (6.16)) covers only an local area in the environment. Additionally, the area of the
sampled points is bounded by the odometry error. Since the computation needs to be
done for each sample, the complexity of this computations depends only on the number
N of particles. The same holds for the update of the individualmaps associated to each
particles.

The computation of the particle weights is done by computingthe likelihood of the
observationzt according to Eq. (6.8). Again this leads only to a complexitylinear in
the number of particles.

During a resampling action, the information associated to aparticle needs to be
copied. In the worst case,N − 1 samples are replaced by a single particle. In our
current system, each particle stores and maintains its own grid map. To duplicate a
particle, we therefore have to copy the whole map. As a result, a resampling action
introduces a complexity ofO(N ·M), whereM is the size of a grid map. However, the
size of the environment in which the robot moves is typicallylimited. Furthermore,
using our adaptive resampling technique, only a few resamplings are required during
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Table 6.1: Complexity of the different operations for integrating one observation.

Operation Complexity
Computation of the proposal distributionO(N)
Update of the grid map O(N)
Computation of the weights O(N)
Test if resampling is required O(N)
Resampling O(N ·M)

Figure 6.4: Different types of robot used to acquire real robot data used for mapping
(ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and an iRobot B21r).

mapping. To decide whether or not a resampling is needed, theeffective number of
particles (see Eq. (6.22)) needs to be taken into account. The computation of this
quantity introduces a linear complexity inN .

Table 6.1 depicts the complexity of the individual operations. As a result, if no
resampling operation is required, the overall complexity for integrating a single obser-
vation depends only linearly on the number of particles. If aresampling is required,
the additional factorM which represents the size of the map is introduced and leads to
a complexity ofO(N ·M).

6.5 Experiments

The approach described above has been implemented and tested using real robots
and datasets gathered with real robots. Our implementationruns online on several
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platforms like ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, and iRobot B21r robots
equipped with a SICK LMS and PLS laser range finders (see Figure 6.4). The exper-
iments carried out in a variety of environments have shown the effectiveness of our
approach in indoor and outdoor environments. The quality ofthe resulting maps is
extremely good, allowing in some cases to generate a map witha resolution of 1 cm,
without observing considerable inconsistencies. Even in big real world datasets cover-
ing an area of approximately 250 m by 250 m, our approach neverrequired more than
80 particles to build accurate maps. Except of the MIT dataset (see below), 30 particles
where sufficient to build high quality maps of different environments. In this section,
we discuss the behavior of the filter in different real world environments. Furthermore,
we give a quantitative analysis of the performance of the presented approach.

Note that all the maps presented in this chapter are available as high resolution
images on the Internet[Stachniss and Grisetti, 2004]. We also provide a set of ani-
mations showing the evolution of the different trajectory hypotheses during mapping.
Furthermore, an efficient open-source implementation of our mapping system as well
as all corrected datasets presented here are available.

6.5.1 Mapping Results

The datasets discussed here have been recorded at the Intel Research Lab in Seattle, at
the Killian Court at MIT, and on the campus at the University of Freiburg. The maps
of these environments are depicted in Figures 6.5, 6.6, and 6.7.

Intel Research Lab The Intel Research Lab is depicted in the left image of Fig-
ure 6.5 and has a size of 28 m by 28 m. The dataset has been recorded with a Pioneer 2
robot equipped with a SICK sensor. To successfully correct this dataset, our algorithm
needed only 15 particles. As can be seen in the right image of Figure 6.5, the quality
of the final map is so high that the map can be magnified up to a resolution of 1 cm
without showing any significant errors or inconsistencies.

Freiburg Campus The second dataset has been recorded outdoors at the Freiburg
campus. Our system needs 30 particles to produce a good quality map such as the one
shown in Figure 6.6. Note that this environment partly violates the assumptions that the
environment is planar. Additionally, there were objects like bushes and grass which are
hard to be mapped with a laser range finder. Furthermore, there were moving objects
like cars and people. Despite the resulting spurious measurements, our algorithm was
able to generate an accurate map. Note that no GPS, compass, or IMU information is
used in all our experiments.
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Figure 6.5: The Intel Research Lab: The robot starts in the upper part of the circular
corridor, and runs several times around the loop, before entering the rooms. The left
image depicts the resulting map generated with 15 particles. The right image shows a
magnified view with a grid resolution of 1 cm to illustrate theaccuracy of the map in
the loop closure point.

MIT Killian Court The third experiment was performed with a dataset acquired at
the MIT Killian court and the resulting map is depicted in Figure 6.7. This dataset is
extremely challenging since it contains several nested loops, which can cause a Rao-
Blackwellized particle filter to fail due to particle depletion. Furthermore, there where
people walking in front of the robot while it was moving through a nearly featureless
corridor.

Using this dataset, our selective resampling procedure turned out to be extremely
important. A consistent and topologically correct map can be generated with 60 parti-
cles. However, the resulting maps sometimes show artificialdouble walls. By employ-
ing 80 particles it is possible to achieve high quality maps.To give an impression about
the size of this dataset, Figure 6.8 provides a satellite view showing the MIT campus
around the Killian Court as well as the learned map on top of the satellite image.

6.5.2 Quantitative Results

In order to measure the improvement in terms of the number of particles, we compared
the performance of our system using the informed proposal distribution to the approach
done by Hähnelet al. [2003a]. Table 6.2 summarizes the number of particles needed
by both RBPFs for providing a topologically correct map in atleast 60% of all runs of
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Figure 6.6: The Freiburg campus: The robot first runs around the external perimeter in
order to close the outer loop. Afterwards, the internal parts of the campus are visited.
The overall trajectory has a length of 1.75 km and covers an area of approximately
250 m by 250 m. The depicted map was generated using 30 particles.
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Figure 6.7: The MIT Killian Court: The robot starts from the point labeleda and then
traverses the first loop labeledb. It then moves through the loops labeledc, d and
moves back to the place labeleda and the loop labeledb. It the visits the two big loops
labeledf andg. The environment has a size of 250 m by 215 m and the robot traveled
1.9 km. The depicted map has been generated with 80 particles. The rectangles show
magnifications of several parts of the map.



134 CHAPTER 6: EFFICIENT TECHNIQUES FORRAO-BLACKWELLIZED MAPPING

MA, USA

Figure 6.8: The MIT Killian Court from a satellite perspective. The corridors plotted
on top of the satellite view are the result of our mapping algorithm. Satellite image
source: Massachusetts Geographic Information System (MassGIS).
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Table 6.2: The number of particles needed by our algorithm compared to the approach
of Hähnelet al.

Proposal Distribution Intel MIT Freiburg
our approach 8 60 20

approach of[Hähnelet al., 2003a] 40 400 400
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Figure 6.9: Success rate of our algorithm in different environments depending on the
number of particles. The binary decision if a run was successful or not was done by
manual inspection of the resulting map. Each success rate inthe plot was determined
using 20 runs. For the experiment MIT-2, we disabled the adaptive resampling while
correction the MIT dataset.

our algorithm (initialized with different random seeds).

It turns out that in all of the cases, the number of particles required by our approach
was approximately one order of magnitude smaller than the one required by the other
approach. Moreover, the resulting maps are better due to ourimproved sampling pro-
cess that takes into account the most recent sensor reading.

Figure 6.9 summarizes results about the success ratio of ouralgorithm in the en-
vironments considered here. The plots show the percentage of correctly generated
maps, depending on the number of particles used. The binary decision if a run was
successful or not was done by manual inspection of the resulting map. As a measure
of success, we used the topological correctness. Map classified as incorrect typically
showed double walls or corridors and/or wrongly aligned corridors.
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6.5.3 Effects of Improved Proposals and Adaptive Resampling

The increased performance of our approach is due to the interplay of two factors,
namely the improved proposal distribution, which allows togenerate samples with
an high likelihood, and the adaptive resampling controlledby monitoringNeff . For
proposals that do not consider the whole input history, it has been proven thatNeff

can only decrease (stochastically) over time[Doucet, 1998]. Only after a resampling
operation doesNeff recover its maximum value. It is important to notice that the
behavior ofNeff depends on the proposal: the worse the proposal, the fasterNeff

drops.

In our experiments, we found that the evolution ofNeff using our proposal dis-
tribution shows three different behaviors depending on theinformation obtained from
the robot’s sensor. Whenever the robot moves through unknown terrain,Neff typically
drops slowly. This is because the proposal distribution becomes less peaked and the
likelihoods of observations differ only slightly. The second behavior can be observed
when the robot moves through a known area. In this case, each particle keeps local-
ized within its own map due to the improved proposal distribution and the weights are
more or less equal. This results in a constant evolution ofNeff . Finally, when closing
a loop, some particles are correctly aligned with their map while others are not. The
correct particles have a high weight, while the wrong ones have a low weight. Thus
the variance of the importance weights increases andNeff drops substantially. This
behavior is illustrated in Figure 6.10.

Accordingly, our resampling criterion based onNeff typically forces a resampling
action when the robot is closing a loop. In most cases, the resampling is avoided which
results in keeping the necessary variety of different hypotheses in the particle set. To
analyze this, we performed an experiment in which we compared the success rate of
our algorithm to that of a particle filter which resamples at every step. The experiment
was carried out based on the MIT Killian Court dataset. As Figure 6.9 illustrates, our
approach more often converged to the correct solution (MIT curve) for the MIT dataset
compared to the particle filter with the same number of particles and a fixed resampling
strategy (MIT-2 curve).

To give a more detailed impression about the accuracy of our new mapping tech-
nique, Figure 6.11 and 6.12 depict a collection of maps learned from commonly used
and freely available real robot datasets[Howard and Roy, 2003]. The datasets used to
build the maps shown in Figure 6.11 have been recorded at the MIT Computer Science
and AI Lab, at the University of Washington, at Belgioioso, and at the University of
Freiburg. Figure 6.12 depicts maps from the Bruceton mine, the University of Texas,
and the Acapulco Convention Center. Each map was built using30 particles to repre-
sent the posterior about the map of the environment and the trajectory of the vehicle.



6.5 EXPERIMENTS 137

A B C D

100

75

25

50

N
ef

f/N
 [%

]

time

Figure 6.10: The graph plots the evolution of theNeff function over time during an
experiment in the environment shown in the right image. At time B the robot closes
the small loop. At time C and D resampling actions are carriedafter the robots closes
the big loop.

6.5.4 Situations in Which the Scan-Matcher Fails

As reported above, it can happen that the scan-matcher is unable to find a good pose
estimate based on the laser range data. In this case, we sample from the raw odometry
model to create the next generation of particles. In most tested indoor dataset, however,
such a situation never occurred at all. Only in the MIT dataset, this effect was observed
once due to a person walking directly in front of the robot while the robot was moving
though a corridor that mainly consists of glass panes. A picture of that glass corridor
can be found in Figure 6.8.

In outdoor datasets, such a situation can occur if the robot moves through large
open spaces and therefore the laser range finder mainly reports maximum range read-
ings. During mapping the Freiburg campus, the scan-matcheralso reported such an
error at one point. In this particular situation, the robot entered the parking area (in
the upper part of the map, compare Figure 6.6). On that day, all cars were removed
from the parking area due to construction work. As a result, no cars or other objects
caused reflections of the laser beams and most parts of the scan consisted of maximum
range readings. In such a situation, the odometry information provides the best pose
estimate and this information is used by our mapping system to predict the motion of
the vehicle.
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Figure 6.11: Maps of the MIT Computer Science and AI Lab (showing also the trajec-
tory of the robot), of the 4th floor of the Sieg Hall at the University of Washington, of
the Belgioioso building, and of building 101 at the University of Freiburg.
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Figure 6.12: Maps of the Bruceton mine, of the ACES building at University of Texas,
and of the Acapulco Convention Center.
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Table 6.3: Average execution time using a standard PC.

Operation Average Execution Time
Computation of the proposal distribution,
the weights, and the map update

1910 ms

Test if resampling is required 41 ms
Resampling 244 ms

6.5.5 Computational Cost

In this last experiment, we analyze the memory and computational resources needed by
our mapping system. We used a standard PC with a 2.8 GHz processor. We recorded
the average memory usage and execution time using the default parameters that allows
our algorithm to learn correct maps for all real world datasets provided to us. In this
setting, 30 particles are used to represent the posterior about the map and the trajectory.
A new observation which consists of a full laser range scan isintegrated whenever the
robot moved more than 0.5 m or rotated more than 25 degree. TheIntel Research Lab
dataset (see Figure 6.5) contains odometry and laser range readings which have been
recorded over 45 min. Our implementation required around 200 MB of memory to
store all the data using a map with a size of approx. 40 m by 40 m and a grid resolution
of 5 cm. The overall time to correct the log file using our software was less than 30 min.
This means that the time to record a log file is around 1.5 timeslonger than the time
to correct the log file. Table 6.3 depicts the average execution time for the individual
operations.

6.6 Related Work

Mapping techniques for mobile robots can be roughly classified according to the map
representation and the underlying estimation technique. One popular map representa-
tion are occupancy grid maps. Whereas such grid-based approaches typically require
a lot of memory resources, they do not require a predefined feature extractor and pro-
vide detailed representations. Feature-based representations are attractive because of
their compactness. However, they rely on feature extractors, which assumes that some
structures in the environments are known in advance.

The estimation algorithms can be roughly classified according to their underlying
basic principle. The most popular approaches are extended Kalman filters (EKFs),
maximum likelihood techniques, sparse extended information filters (SEIFs), least
square error minimization approaches, smoothing techniques, and Rao-Blackwellized
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particle filters (RBPFs). The effectiveness of the EKF approaches comes from the
fact that they estimate a fully correlated posterior about landmark maps and robot
poses[Smithet al., 1990, Leonard and Durrant-Whyte, 1991]. Their weakness lies in
the strong assumptions that have to be made on both, the robotmotion model and the
sensor noise. Moreover, the landmarks are assumed to be uniquely identifiable. There
exist techniques[Neira and Tardós, 2001] to deal with unknown data association in
the SLAM context, however, if certain assumptions are violated, the filter is likely to
diverge[Frese and Hirzinger, 2001]. Similar observations have been reported by Julier
et al. [1995] as well as by Uhlmann[1995].

A popular least square error minimization algorithm computes the map given the
history of sensor readings by constructing a network of relations that represents the
spatial constraints among the poses of the robot[Lu and Milios, 1997]. Gutmann and
Konolige [1999] proposed an effective way for constructing such a network and for
detecting loop closures while running an incremental estimation algorithm. When a
loop closure is detected, a global optimization on the relation network is performed.
Similar approaches use relaxation[Duckettet al., 2002, Freseet al., 2005] in order to
find configurations that reduce the overall least square error in the network of relations
between poses.

Hähnelet al. [2003b], proposed an approach which is able to track several trajec-
tory and map hypotheses using an association tree. It expands always the best node in
that tree. As a result, it switches to a different hypothesesas soon as the current one
seems to lead to an inconsistent map. However, the necessaryexpansions of this tree
can prevent the approach from being feasible for real-time operation. Furthermore, it
is somewhat unclear, how the different hypotheses can be created autonomously.

Thrun et al. [2004] proposed a method to correct the poses of robots based on
the inverse of the covariance matrix. The advantage of sparse extended information
filters (SEIFs) is that they make use of the approximative sparsity of the information
matrix and in this way can perform predictions and updates inconstant time. Eustice
et al. [2005] as well as Walteret al. [2005] presented a techniques to more accurately
compute the error-bounds within the SEIF framework and in this way reduces the
risk of becoming overly confident. Paskin[2003] presented a solution to the SLAM
problem using thin junction trees. In this way, he is able to reduce the complexity
compared to the EKF approaches since thin junction trees provide a linear time filtering
operation.

Recently, Dellaert proposed a smoothing method called square root smoothing and
mapping[Dellaert, 2005]. It has several advantages compared to EKF since it better
covers the non-linearities and is faster to compute. In contrast to SEIFs, it furthermore
provides an exactly sparse factorization of the information matrix.

Bosseet al. [2003] describe a generic framework for SLAM in large-scale envi-
ronments. They use a graph structure of local maps with relative coordinate frames
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and always represent the uncertainty with respect to a localframe. In this way, they
are able to reduce the complexity of the overall problem and reduce the influence of
linearization errors.

Modayil et al. [2004] presented a technique which combines metrical SLAM with
topological SLAM. The topology is utilized to solve the loop-closing problem and
metric information is used to build up local structures. Similar ideas have been realized
by Lisienet al. [2003], which introduce a hierarchical map in the context of SLAM.

In a work by Murphy[1999], Rao-Blackwellized particle filters (RBPF) have been
introduced as an effective means to solve the SLAM problem. Each particle in a RBPF
represents a possible robot trajectory and a map. The framework has been subsequently
extended for approaching the SLAM problem with landmark maps[Montemerloet al.,
2002, Montemerlo and Thrun, 2003]. To learn accurate grid maps, RBPFs have been
used by Eliazar and Parr[2003] and Hähnelet al. [2003a]. Whereas the first work
describes an efficient map representation, the second one presents an improved motion
model that reduces the number of required particles.

It should be noted that improvements on particle filters resulting from an informed
proposal distributions and an intelligent resampling technique are known techniques
within the particle filter community. We would like to especially refer to the work
of Doucet[1998] who already addressed these issues in his work. However, due
to the best of our knowledge, the adaptive resampling has never been used in the
context of map learning. The computation of our proposal distribution is similar to
the FastSLAM-2 algorithm presented by Montemerloet al. [2003]. In contrast to
FastSLAM-2, our approach does not rely on predefined landmarks and uses raw laser
range finder data to acquire accurate grid maps. Particle filters using proposal distri-
butions that take into account the most recent observation are also called look-ahead
particle filters. Morales-Menéndezet al. [2002] proposed such a method to more re-
liably estimate the state of a dynamic system outside robotics where accurate sensors
are available.

The work described in this chapter can be seen as an extensionof the algorithm
proposed by Hähnelet al. [2003a]. Instead of using a fixed proposal distribution, our
algorithm computes an improved proposal distribution on a per-particle basis on the
fly. This allows to directly use most of the information obtained from the sensor while
evolving the particles. As a result, we require around one order of magnitude fewer
samples compared to the approach of Hähnelet al.

The advantage of our approach is twofold. First, our algorithm draws the particles
in a more effective way. Second, the highly accurate proposal distribution allows us to
utilize the number of effective particles as a robust indicator to decide whether or not
a resampling has to be carried out. This further reduces the risk of particle depletion.

One aspect which has not been addressed so far in this chapteris the question on
how to deal with dynamically changing environments. Highlydynamic objects like
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walking persons or moving cars can be filtered[Hähnelet al., 2003c] so that accurate
maps without spurious objects can be obtained. The problem of dealing with low-
dynamic or temporarily dynamic objects will be addressed inChapter 10 of this thesis.

6.7 Conclusion

In this chapter, we presented an approach to learning highlyaccurate grid maps with
Rao-Blackwellized particle filters. Based on the likelihood model of a scan-matching
process for the most recent laser range observation, our approach computes an in-
formed proposal distribution. This allows us to draw particles in an more accurate
manner which seriously reduces the number of required samples. Additionally, we
apply a selective resampling strategy based on the effective number of particles. This
approach reduces the number of unnecessary resampling actions in the particle filter
and thus substantially reduces the risk of particle depletion.

The approach has been implemented and evaluated on data acquired with differ-
ent mobile robots equipped with laser range scanners. We furthermore successfully
corrected a large number of available robotic datasets and published an open-source
implementation of our mapping software. Tests performed with our algorithm in dif-
ferent large-scale environments have demonstrated its robustness and the ability of
generating high quality maps. In these experiments, the number of particles needed
by our approach often was by one order of magnitude smaller compared to previous
approaches.
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Chapter 7

Actively Closing Loops During
Exploration

7.1 Introduction

W
e presented so far approaches to autonomous exploration in Chapter 3-
5 and a solution to the SLAM problem in Chapter 6. In general, the
task of acquiring models of unknown environments requires to simul-
taneously address three tasks, which are mapping, localization, and

path planning. In the this chapter as well as in the two following ones, we focus on
integrated approaches which aim to solve these three tasks simultaneously in order to
build accurate models of the environment.

A naïve approach to realize an integrated technique could beto combine a SLAM
algorithm, which covers mapping and localization, with an exploration procedure.
Since classical exploration strategies often try to cover unknown terrain as fast as pos-
sible, they avoid repeated visits to known areas. This strategy, however, is suboptimal
in the context of the SLAM problem because the robot typically needs to revisit places
in order to localize itself. A good pose estimate is necessary to make the correct data
association, i.e., to determine if the current measurements fit into the map built so far.
If the robot uses an exploration strategy that avoids multiple visits to the same place,
the probability of making the correct association is reduced. This indicates that com-
binations of exploration strategies and SLAM algorithms should consider whether it is
worth reentering already covered spaces or to explore new terrain. It can be expected
that a system, which takes this decision into account, can improve the quality of the
resulting map.

Figure 7.1 gives an example that illustrates that an integrated approach perform-
ing active place revisiting provides better results than approaches that do not consider
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Figure 7.1: This figure shows two maps obtained from real world data acquired at Sieg
Hall, University of Washington. The left image depicts an experiment in which the
robot traversed the loop only once before it entered the longcorridor. As can be seen,
the robot was unable to correctly close the loop, which led toan error of 7 degrees in
the orientation of the horizontal corridor. In the case in which the robot revisited the
loop, the orientation error was reduced to 1 degree (see right image).

reentering known terrain during the exploration phase. In the situation shown in the
left image, the robot traversed the loop just once. The robotwas not able to correctly
determine the angle between the loop and the straight corridor because it did not col-
lect enough data to accurately localize itself. The second map shown in the right image
has been obtained after the robot traveled twice around the loop to relocalize before
entering the corridor. As can be seen from the figure, this reduces the orientation error
from approximately 7 degrees (left image) to 1 degree (rightimage). This example
illustrates that the capability to detect and actively close loops during exploration al-
lows the robot to reduce its pose uncertainty during exploration and thus to learn more
accurate maps.

The contribution of this chapter is an integrated algorithmfor generating trajec-
tories to actively close loops during SLAM and exploration.Our algorithm uses a
Rao-Blackwellized mapping technique to estimate the map and the trajectory of the
robot. It explicitely takes into account the uncertainty about the pose of the robot dur-
ing the exploration task. Additionally, it applies a technique to reduce the risk that
the robot becomes overly confident in its pose when actively closing loops, which is a
typical problem of particle filters in this context. As a result, we obtain more accurate
maps compared to combinations of SLAM with standard exploration.

This chapter is organized as follows. In Section 7.2, we present our integrated
exploration technique. We describe how to detect loops and how to actively close them.
Section 7.3 presents experiments carried out on real robotsas well as in simulation.
Finally, we discuss related work in Section 7.4.
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Figure 7.2: Evolution of a particle set and the map of the mostlikely particle (here
labeled ass∗) at three different time steps. In the two left images, the vehicle trav-
eled through unknown terrain, so that the uncertainty increased. In the right image,
the robot reentered known terrain so that samples representing unlikely trajectories
vanished.

7.2 Active Loop-Closing

Whenever a robot using a Rao-Blackwellized mapper exploresnew terrain, all samples
have more or less the same importance weight since the most recent measurement is
typically consistent with the part of the map constructed from the immediately preced-
ing observations. Typically, the uncertainty about the pose of the robot increases. As
soon as it reenters known terrain, however, the maps of some particles are consistent
with the current measurement and some are not. Accordingly,the weights of the sam-
ples differ largely. Due to the resampling step, unlikely particles usually get eliminated
and thus the uncertainty about the pose of the robot decreases. One typical example
is shown in Figure 7.2. In the two left images, the robot explores new terrain and the
uncertainty of the sample set increases. In the right image,the robot travels through
known terrain and unlikely particles have vanished.

Note that this effect is much smaller if the robot just moves backward a few meters
to revisit previously scanned areas. This is because the mapassociated with a particle is
generally locally consistent. Inconsistencies mostly arise when the robot reenters areas
explored some time ago. Therefore, visiting places seen further back in the history has
a stronger effect on the differences between the importanceweights and typically also
on the reduction of uncertainty compared to places recentlyobserved.

7.2.1 Detecting Opportunities to Close Loops

The key idea of our approach is to identify opportunities forclosing loops during ter-
rain acquisition in order to relocalize the vehicle. Here, closing a loop means actively
reentering the known terrain and following a previously traversed path. To determine
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Figure 7.3: The red dots and lines in these three image represent the nodes and edges
of G[s]. In the left image,I(s) contained two nodes (indicated by the arrows) and in
the middle image the robot closed the loop until the pose uncertainty is reduced. After
this, it continued with the acquisition of unknown terrain (right image).

whether there exists a possibility to close a loop, we consider two different represen-
tations of the environment. In our current system, we associate to each particles an
occupancy grid mapm[s] and a topological mapG[s]. Both maps are updated while
the robot is performing the exploration task. In the topological mapG[s], the vertices
represent positions visited by the robot. The edges represent the estimated trajectory
of the corresponding particle. To construct the topological map, we initialize it with
one node corresponding to the starting location of the robot. Let x

[s]
t be the pose of

particles at the current time stept. We add a new node at the positionx
[s]
t to G[s] if

the distance betweenx[s]
t and all other nodes inG[s] exceeds a thresholdd (here set to

2.5m) or if none of the other nodes inG[s] is visible fromx
[s]
t

∀n ∈ nodes(G[s]) :
[

distm[s](x
[s]
t , n) > d ∨

not_visiblem[s](x
[s]
t , n)

]

. (7.1)

Whenever a new node is created, we also add an edge from this node to the most
recently visited node. To determine whether or not a node is visible from another
node, we perform a ray-casting operation in the occupancy grid m[s].

Figure 7.3 depicts such a graph for one particular particle during different phases
of an exploration task. In each image, the topological mapG[s] is printed on top of
metric mapm[s]. To motivate the idea of our approach, we would like to refer the
reader to the left image of this figure. Here, the robot almostclosed a loop. This can
be observed by the fact that the length of the shortest path between the current pose
of the robot and previously visited locations(here marked with I(s)) is large in the
topological mapG[s], whereas it issmall in the grid mapm[s].
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The shortest path in from the current pose of the robot to those locations models a
shortcut in the environment which has not been traversed to far. Following such a path
exactly characterized a loop closure.

Thus, to determine whether or not a loop can be closed, we compute for each
samples the setI(s) of positions of interest. This set contains all nodes that are close
to the current posex[s]

t of particles based on the grid mapm[s], but are far away given
the topological mapG[s]

I(s) = {x[s]
t′ ∈ nodes(G[s]) | distm[s](x

[s]
t′ , x

[s]
t ) < d1 ∧

distG[s](x
[s]
t′ , x

[s]
t ) > d2}. (7.2)

Here,distM(x1, x2) is the length of the shortest path fromx1 to x2 given the repre-
sentationM. The distance between two nodes inG[s] is given by the length of the
shortest path between both nodes. The length of a path is computed by the sum over
the lengths of the traversed edges. Depending on the number of nodes inI(s), this
distance information can be efficiently computed using either theA∗ algorithm[Nils-
son, 1969, Russel and Norvig, 1994] or Dijkstra’s algorithm[Ottmann and Widmayer,
1996]. The termsd1 andd2 are constants that must satisfy the constraintd1 < d2. In
our current implementation, the values of these constants ared1 = 6m andd2 = 20m.

In caseI(s) 6= ∅, there exist at least one shortcut from the current posex
[s]
t of the

particles to the positions inI(s). These shortcuts represent edges that would close a
loop in the topological mapG[s]. The left image of Figure 7.3 illustrates a situation in
which a robot encounters the opportunity to close a loop sinceI(s) contains two nodes
which is indicated by two arrows. The key idea of our approachis to use such shortcuts
whenever the uncertainty of the robot in its pose becomes large. The robot then revisits
portions of the previously explored area and in this way reduces the uncertainty in its
position.

To determine the most likely movement allowing the robot to follow a previous
path, one in principle has to integrate over all particles and consider all potential out-
comes of that particular action. Since this would be too timeconsuming for online-
processing, we consider only the particles∗ with the highest accumulated logarithmic
observation likelihood

s∗ = argmax
s

t∑

t′=1

log p(zt′ | m
[s], x

[s]
t′ ). (7.3)

If I(s∗) 6= ∅, we select the nodexte from I(s∗) which is closest tox[s∗]
t

xte = argmin
x∈I(s∗)

distm[s∗](x
[s∗]
t , x). (7.4)

In the sequel,xte is denoted as theentry pointat which the robot has the possibility to
close a loop.te corresponds to the last time the robot was at the nodexte .
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7.2.2 Representing Actions under Pose Uncertainty

One open question is how to express an action if the robot actsunder pose uncertainty.
A list of positions expressed in a global coordinate frame isusually not a good solu-
tion since this action is only valid for a single particle. Whenever the particles∗ which
is used to compute the plan changes, the robot would need to recompute its action.
An alternative solutions is to express the action as a sequence of relative motion com-
mands. This works fine as long as the robot moves through unknown terrain or the
pose uncertainty is not too big.

We use a slightly different method that provides more stableplans. Instead of using
a sequence of relative motions commands with respect to the current pose of the robot,
we use the nodes in our topological maps as reference frames.An example for such
an actions (expressed in human language) could be “move to the position 1 m north
of the node 5, turn 90 degree right and move to node 7.” As mentioned before, in our
approach the actions are planned based on the particles∗. In case a different particle
becomes the particles∗, it is likely that we do not need to replan our action since it is
expressed relative to the nodes of the topological map. Often such a plan is still valid
afters∗ changed. Valid means in this context that the planned path does not lead to a
collision. In case a collision with a wall is detected, the action is recomputed or the
loop-closing procedure is aborted.

7.2.3 Stopping the Loop-Closing Process

To determine whether or not the robot should activate the loop-closing behavior, our
system constantly monitors the uncertaintyH about the robot’s pose at the each point
in time. The necessary condition for starting the loop-closing process is the existence
of an entry pointxte and thatH(t) exceeds a given threshold. Once the loop-closing
process has been activated, the robot approachesxte and then follows the path taken
after previously arriving atxte . During this process, the uncertainty in the pose of the
vehicle typically decreases because the robot is able to localize itself in the map built
so far and unlikely particles vanish.

We have to define a criterion for deciding when the robot actually has to stop
following a loop. A first attempt could be to introduce a threshold and to simply stop
the trajectory following behavior as soon as the uncertainty becomes smaller than a
given threshold. This criterion, however, can be problematic especially in the case
of nested loops. Suppose the robot encounters the opportunity to close a loop that is
nested within an outer and so far unclosed loop. If it eliminates all of its uncertainty
by repeatedly traversing the inner loop, particles necessary to close the outer loop may
vanish. As a result, the filter diverges and the robot fails tobuild a correct map (see
Figure 7.4).
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(a) (b)

(c) (d)

Figure 7.4: An example for particle depletion. A robot explores an environment and
travels through the inner loop (a) several times. Due to the repeated visits the diversity
of hypotheses about the trajectory outside the inner loop decreases (b) too much and
the robot is unable to close the outer loop correctly (c) and (d).
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To remedy this so-called particle depletion problem, we introduce a constraint on
the uncertainty of the robot. LetH(te) denote the uncertainty of the posterior when
the robot visited the entry point last time. Then the new constraint allows the robot to
retraverse the loop only as long as its current uncertaintyH(t) exceedsH(te). If the
constraint is violated the robot resumes its terrain acquisition process. This constraint
is designed to reduce the risk of depleting relevant particles during the loop-closing
process. The idea behind this constraint is that by observing the area within the loop,
the robot does not obtain any information about the world outside the loop. From a
theoretical point of view, the robot cannot reduce the uncertainty H(t) in its current
posterior below its uncertaintyH(te) when entering the loop sinceH(te) is the uncer-
tainty stemming from the world outside the loop.

To better illustrate the importance of this constraint, consider the following exam-
ple: A robot moves from placeA to placeB and then repeatedly observesB. While
it is mappingB, it does not get any further information aboutA. Since each particle
represents a whole trajectory (and the corresponding map) of the robot, hypotheses rep-
resenting ambiguities aboutA will also vanish when reducing potential uncertainties
aboutB. Our constraint reduces the risk of depleting particles representing ambigu-
ities aboutA by aborting the loop-closing behavior atB as soon as the uncertainty
drops below the uncertainty stemming fromA.

Finally, we have to describe how we actually measure the uncertainty in the posi-
tion estimate. The typical way of measuring the uncertaintyof a posterior is to use the
entropy. To compute the entropy of a posterior represented by particles, one typically
uses a multi-dimensional grid representing the possible (discretized) states. Each cell
c in this (virtual) grid stores a probability which is given bythe sum of the normalized
weights of the samples corresponding to that cell. The entropy is then computed by

H(t) = −
∑

c

p(c) · log p(c) (7.5)

= −
∑

c
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wherei : x[i] ∈ c refers to the indices of all particles which current posesx[i] lie within
the area which is covered by the grid cellc.

In the case of multi-modal distributions, however, the entropy does not consider the
distance between the different modes. This distance, however, is an important property
when evaluating the pose uncertainty of a mobile vehicle. Asa result, a set ofk dif-
ferent pose hypotheses which are located close to each otherbut do not belong to the
same cellc leads to the same entropy value than the situation in whichk hypotheses are
randomly distributed over the environment. The resulting maps, however, would look
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similar in the first case, but quite different in the second case. In our experiments, we
figured out that we obtain better results if we use the volume expanded by the samples
instead of the entropy. We therefore calculate the pose uncertainty by determining the
volume of the oriented bounding box around the particle cloud. A good approxima-
tion of the minimal oriented bounding box can be obtained efficiently by a principal
component analysis.

Note that the loop-closing process is also aborted in case a robot travels for a long
period of time through the same loop in order to avoid a – theoretically possible –
endless loop-closing behavior. In all our experiments, however, this problem has never
been encountered.

7.2.4 Reducing the Exploration Time

The experiments presented later on in this chapter demonstrate that our uncertainty
based stopping criterion is an effective way to reduce the risk of particle depletion.
However, it can happen that the perceived sensor data after closing a loop does not
provide a lot of new information for the robot. Moving through such terrain leads
to an increased exploration time since the robot does redundant work which does not
provide relevant information. It would be more efficient to abort the loop-closing
procedure in situations in which the new sensor data does nothelp to identify unlikely
hypotheses.

To estimate how well the current set ofN particle represents the true posterior,
Liu [1996] introduced the effective number of particlesNeff (see Eq. (6.22)). In the
previous chapter, we described how to useNeff to resample in an intelligent way but it
is also useful in the context of active loop-closing. We monitor the change ofNeff over
time, which allows us to analyze how the new acquired information affects the filter. If
Neff stays constant, the new information does not help to identify unlikely hypotheses
represented by the individual particles. In that case, the variance in the importance
weights of the particles does not change over time. If, in contrast, the value ofNeff

decreases over time, the new information is used to determine that some particles are
less likely than others. This is exactly the information we need in order to decide
whether or not the loop-closing should be aborted. As long asnew information helps
to identify unlikely particles, we follow the loop. As soon as the observations do not
provide any new knowledge about the environment for a periodof k time steps, we
continue to explore new terrain in order to keep the exploration time small.

Note that this criterion is optional and not essential for a successful loop-closing
strategy. It can directly be used if the underlying mapping approach applies an adap-
tive resampling technique. If no adaptive resampling is used, one needs to monitor the
relative change inNeff after integrating each measurement, because after each resam-
pling step the weights of all particles are set to1

N
. In the experimental section of this
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start

Figure 7.5: Active loop-closing of multiple nested loops.

chapter, we illustrate thatNeff is a useful criterion in the context of active loop-closing
and how it behaves during exploration.

As long as the robot is localized well enough or no loop can be closed, we use
a frontier-based exploration strategy to choose a target location for the robot. As
described before, a frontier is any known and unoccupied cell that is an immediate
neighbor of an unknown, unexplored cell[Yamauchi, 1998]. By extracting frontiers
from a given grid map, one can easily determine potential target locations which guide
the robot to so far unknown terrain. As in Chapter 4, the cost of the target locations
is given by the cost function presented in Section 4.2.1. In our current system, we
determine frontiers based on the map of the particles∗.

A precise formulation of the loop-closing strategy is givenby Algorithm 7.1. In
our current implementation, this algorithm runs as a background process that is able
interrupt the frontier-based exploration procedure.

Algorithm 7.1 The loop-closing algorithm
1: ComputeI(s∗)
2: if I(s∗) 6= ∅ then begin
3: H = H(te)

4: path = x
[s∗]
t + shortest_pathG[s∗](xte , x

[s∗]
t )

5: while H(t) > H ∧ var(Neff (n− k), . . . , Neff (n)) > ǫ do
6: robot_follow(path)
7: end

7.2.5 Handling Multiple Nested Loops

Note that our loop-closing technique can also handle multiple nested loops. During
the loop-closing process, the robot follows its previouslytaken trajectory to relocalize.
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It does not leave this trajectory until the termination criterion (see line 5 in Algo-
rithm 7.1) is fulfilled. Therefore, it never starts a new loop-closing process before the
current one is completed. A typical example with multiple nested loops is illustrated
in Figure 7.5. In the situation depicted in the left picture,the robot starts with the loop-
closing process for the inner loop. After completing the most inner loop, it moves to
the second inner one and again starts the loop-closing process. Since our algorithm
considers the uncertainty at the entry point, it keeps enough variance in the filter to
also close the outer loop correctly. In general, the qualityof the solution and whether
or not the overall process succeeds depends on the number of particles used. Since
determining this quantity is still an open research problem, the number of particles has
to be defined by the user in our current system.

7.3 Experiments

Our approach has been implemented and evaluated in a series of real world and simu-
lation experiments. For the real world experiments, we usedan iRobot B21r robot and
an ActivMedia Pioneer 2 robot. Both are equipped with a SICK laser range finder. For
the simulation experiments, we used the real-time simulator of the Carnegie Mellon
robot navigation toolkit (CARMEN)[Roy et al., 2003].

The experiments described in this section illustrate that our approach can be used to
actively learn accurate maps of large indoor environments.Furthermore, they demon-
strate that our integrated approach yields better results than an approach which does
not has the ability to actively close loops. Additionally, we analyze how the active
termination of the loop closure influences the result of the mapping process.

7.3.1 Real World Exploration

The first experiment was carried out to illustrate that our current system can effectively
control a mobile robot to actively close loops during exploration. To perform this
experiment, we used a Pioneer 2 robot to explore the main lobby of the Department
for Computer Science at the University of Freiburg. The sizeof this environment is
51 m by 18 m. Figure 7.6 depicts the final result obtained by a completely autonomous
exploration run using our active loop-closing technique. It also depicts the trajectory of
the robot, which has an overall length of 280 m. The robot decided four times to reenter
a previously visited loop in order to reduce the uncertaintyin its pose. Figure 7.6 shows
the resulting map, the corresponding entry points as well asthe positions where the
robot left the loops (“exit points”). As can be seen, the resulting map is quite accurate.
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51m

exit point entry point end

start

Figure 7.6: The left image shows the resulting map of an exploration experiment in the
entrance hall of the Department for Computer Science at the University of Freiburg. It
was carried out using a Pioneer 2 robot equipped with a laser range scanner (see right
image). Also plotted is the path of the robot as well as entry and exit points where the
robot started and stopped the active loop-closing process.

Figure 7.7: This figure depicts an environment with two largeloops. The outer loop
has a length of over 220 m. The left image show the resulting map of a trajectory in
which the robot drove through the loops only once. In the second run, the robot visited
every loop twice and obtained a highly accurate map (see right image).

7.3.2 Active Loop-Closing vs. Frontier-Based Exploration

The second experiment should illustrate the difference to approaches that do not con-
sider loop-closing actions. We used real robot data obtained with a B21r robot in the



7.3 EXPERIMENTS 157

0

0.5

1

1.5

2

2.5

loop-closing frontiers

av
g.

 e
rr

or
 in

 p
os

iti
on

 [m
]

Figure 7.8: This figure compares our loop-closing strategy with a pure frontier-based
exploration technique. The left bar in this graph plots the average error in the pose
of the robot obtained with our loop-closing strategy. The right one shows the average
error when a frontier-based approach was used. As can be seen, our technique sig-
nificantly reduces the distances between the estimated positions and the ground truth
(confidence intervals do not overlap).

Sieg Hall at the University of Washington. As can be seen fromthe motivating ex-
ample in the introduction of this chapter (see Figure 7.1), the robot traversed the loop
twice during map building. To eliminate the influence of unequal measurement noise
and different movements of the robot, we removed the data corresponding to one loop
traversal from the recorded data file and used this data as input to our SLAM algo-
rithm. In this way, we simulated the behavior of a greedy exploration strategy which
forces the robot to directly enter the corridor after returning to the starting location
in the loop. As can be seen from the same figure, an approach that does not actively
reenter the loop fails to correctly estimate the angle between the loop and the corridor
which should be oriented horizontally in that figure. Whereas the angular error was 7
degrees with the standard approach, it was only 1 degree in the case where the robot
traversed the loop twice. The depicted maps corresponded tothe one of the particles∗.

A further experiment that illustrates the advantage of place revisiting is shown in
Figure 7.7. The environment used in this simulation run is 80m by 80 m and contains
two large nested loops with nearly featureless corridors. The left image shows the
result of the frontier-based approach which traversed eachloop only once. Since the
robot is not able to correct the accumulated pose error, the resulting map contains large
inconsistencies and two of the corridors are mapped onto each other. Our approach,
in contrast, first revisits the outer loop before entering the inner one (see right image).
Accordingly, the resulting map is more accurate.
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7.3.3 A Quantitative Analysis

To quantitatively evaluate the advantage of the loop-closing behavior, we performed
a series of simulation experiments in an environment similar to Sieg Hall. We per-
formed 20 experiments, 10 with active loop-closing and 10 without. After completing
the exploration task, we measured the average error in the relative distances between
positions lying on the resulting estimated trajectory and the ground truth provided by
the simulator. The results are depicted in Figure 7.8. As canbe seen, the active loop-
closing behavior significantly reduces the error in the position of the robot.

7.3.4 Importance of the Termination Criterion

In this experiment, we analyze the importance of the constraint that terminates the
active loop-closing behavior as soon as the current uncertainty H(t) of the belief drops
under the uncertaintyH(te) of the posterior when the robot was at the entry point the
last time.

In this simulated experiment, the robot had to explore an environment which con-
tains two nested loops and is depicted in Figure 7.9 (d). In the first case, we simply
used a constant threshold to determine whether or not the loop-closing behavior should
be stopped. In the second case, we applied the additional constraint that the uncertainty
should not become smaller thanH(te).

Figure 7.4 shows the map of the particles∗ obtained with our algorithm using a
constant threshold instead of consideringH(te). In this case, the robot repeatedly
traversed the inner loop (a) until its uncertainty was reduced below a certain threshold.
After three and a half rounds it decided to again explore unknown terrain, but the
diversity of hypotheses had decreased too much (b). Accordingly the robot was unable
to accurately close the outer loop (c) and (d). We repeated this experiment several
times and in none of the cases was the robot able to correctly map the environment.
In contrast, our approach using the additional constraint always generated an accurate
map. One example is shown in Figure 7.9. Here, the robot stopped the loop-closing
after traversing half of the inner loop.

As this experiment illustrates, the termination of the loop-closing is important for
the convergence of the filter and to obtain accurate maps in environments with sev-
eral (nested) loops. Note that similar results in principlecan also be obtained without
this termination constraint if the number of particles is substantially increased. Since
exploration is an online problem and each particle carries its own map it is of utmost
importance to keep the number of particles as small as possible. Therefore, our ap-
proach can also be regarded as a contribution to limit the number of particles during
Rao-Blackwellized simultaneous localization and mapping.
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entry
point

(a) (b)

(c) (d)

Figure 7.9: In image (a), the robot detected an opportunity to close a loop. It traversed
parts of the inner loop as long as its uncertainty exceed the uncertaintyH(te) of the
posterior when the robot at the entry point and started the loop-closing process. The
robot then turned back and left the loop (b) so that enough hypotheses survived to cor-
rectly close the outer loop (c) and (d). In contrast, a systemconsidering only a constant
threshold criterion fails to map the environment correctlyas depicted in Figure 7.4.
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Figure 7.10: The graph plots the evolution of theNeff function over time during an
experiment carried out in the environment shown in the rightimage. The robot started
at position A. The position B corresponds to the closure of the inner loop and C corre-
sponds to closure of the outer loop.

7.3.5 Evolution ofNeff

In this experiment, we show the behavior of the optional termination criterion that
triggers the active loop-closing behavior. Additionally,the constraint that the uncer-
taintyH(t) must be bigger than the uncertainty at the entry pointH(te) of the loop, the
process is stopped whenever the effective number of particlesNeff stays constant for
a certain period of time. This criterion was introduced to avoid that the robot moves
through the loop even if no new information can be obtained from the sensor data. The
robot retraverses the loop only as long as the sensor data is useful to identify unlikely
hypotheses about maps and poses.

One typical evolution ofNeff is depicted in the left image of Figure 7.10. To
achieve a good visualization of the evolution ofNeff , we processed a recorded data file
using 150 particles. Due to the adaptive resampling strategy, only a few resampling
operations were needed. The robot started at position A and in the first part of the
experiment moved through unknown terrain (between the positions A and B). As can
be seen,Neff decreases over time. After the loop has been closed correctly and un-
likely hypotheses had partly been removed by the resamplingaction (position B), the
robot retraversed the inner loop andNeff stayed more or less constant. This indicates
that acquiring further data in this area has only a small effect on the relative likelihood
of the particles and the system could not determine which hypotheses represented un-
likely configurations. In such a situation, it therefore makes more sense to focus on
new terrain acquisition and to not continue the loop-closing process.

Furthermore, we analyzed the length of the trajectory traveled by the robot. Due
to the active loop-closing, our technique generates longertrajectories compared to a
purely frontier-based exploration strategy. We performedseveral experiments in differ-
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Figure 7.11: Snapshots during the exploration of a simulated environment with several
nested loops. The red circles represent nodes of the topological map plotted on top of
the most likely grid map. The yellow circle corresponds to the frontier cell the robot
currently seeks to reach.

ent environments in which the robot had the opportunity to close loops and measured
the average overhead. During our experiments, we observed an overhead varying from
3% to 10%, but it obviously depends on number of loops in the environment.

7.3.6 Multiple Nested Loops

To illustrate, that our approach is able to deal with severalnested loops, we performed
a simulated experiment shown in Figure 7.11. The individualimages in this figure
depict eight snapshots recorded during exploration. Image(a) depicts the robot while
exploring new terrain and image (b) while actively closing the most inner loop. After
that, the robot focused on acquiring so far unknown terrain and moves through the
most outer loop as shown in (c) and (d). Then the robot detectsa possibility to close a
loop (e) and follows its previously taken trajectory (f). After aborting the loop closing
behavior, the robot again explores the loop in the middle (g), again closes the loop
accurately, and finishes the exploration task (h).
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7.3.7 Computational Resources

Note that our loop-closing approach needs only a few additional resources. To detect
loops, we maintain an additional topological map for each particle. These topological
maps are stored as a graph structure and for typical environments only a few kilo-
bytes of extra memory is needed. To determine the distances based on the grid map
in Eq. (7.1) and Eq. (7.2), our approach directly uses the result of a value iteration
(alternatively Dijkstra’s algorithm) based on the map ofs∗, which has already been
computed in order to evaluate the frontier cells. Only the distance computation using
the topological map needs to be done from scratch. However, since the number of
nodes in the topological map is much smaller than the number of grid cells, the com-
putational overhead is comparably small. In our experiments, the time to perform all
computations in order to decide where to move next increasedby around 10 ms on a
standard PC when our loop-closing technique was enabled.

7.4 Related Work

Several previous approaches to SLAM and mobile robot exploration are related to our
work. In the context of exploration, most of the techniques presented so far focus
on generating motion commands that minimize the time neededto cover the whole
terrain[Koenig and Tovey, 2003, Weißet al., 1994, Yamauchi, 1998]. Other methods
like, for example, the one presented in Chapter 3 or the work of Grabowskiet al.[2003]
seek to optimize the viewpoints of the robot to maximize the expected information gain
and to minimize the uncertainty of the robot about grid cells. Most of these techniques,
however, assume that the location of the robot is known during exploration. A detailed
discussion about those approaches is provided in the related work sections of Chapter 3
and 4.

In the area of SLAM, the vast majority of papers focuses on theaspect of state es-
timation as well as belief representation and update[Dissanayakeet al., 2000, Doucet
et al., 2000, Eliazar and Parr, 2003, Gutmann and Konolige, 1999, Hähnelet al.,
2003a, Montemerloet al., 2002, Murphy, 1999, Thrun, 2001a]. A detailed discussion
of related SLAM approaches can be found in Section 6.6. Classical SLAM techniques
are passive and only consume incoming sensor data without explicitely generating
controls.

Recently, some techniques have been proposed which actively control the robot
during SLAM. For example, Makarenkoet al.[2002] as well as Bourgoultet al.[2002]
extract landmarks out of laser range scans and use an extended Kalman filter to solve
the SLAM problem. Furthermore, they introduce a utility function which trades off
the cost of exploring new terrain with the utility of selected positions with respect to
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a potential reduction of uncertainty. The approaches are similar to the work done by
Federet al. [1999] who consider local decisions to improve the pose estimate during
mapping. Simet al. [2004] presented an approach in which the robot follows a para-
metric curve to explore the environment and considers placerevisiting actions if the
pose uncertainty gets too high. These four techniques integrate the uncertainty in the
pose estimate of the robot into the decision process of whereto move next. However,
they rely on the fact that the environment contains landmarks that can be uniquely
determined during mapping.

In contrast to this, the approach presented here makes no assumptions about dis-
tinguishable landmarks in the environment. It uses raw laser range scans to compute
accurate grid maps. It considers the utility of reentering known parts of the environ-
ment and following an encountered loop to reduce the uncertainty of the robot in its
pose. In this way, the resulting maps become more accurate.

There exist techniques to combine topological maps with other kind of spacial
representations. This is typically done to handle large-scale maps or to simplify the
loop-closing problem[Bosseet al., 2003, Kuipers and Byun, 1991, Lisienet al., 2003].
Those approaches can attach detailed local maps to the nodesof the topological map.
Also our approach makes use of topological maps. However, building up such a hi-
erarchy is not intended by our work, since we only use the topological map to detect
loops in the environment.

7.5 Conclusion

In this chapter, we presented a novel approach for active loop-closing during au-
tonomous exploration. We combined the Rao-Blackwellized particle filter for simulta-
neous localization and mapping presented in the previous chapter with a frontier-based
exploration technique extended by the ability to actively close loops. Our algorithm
forces the robot to retraverse previously visited loops andin this way reduces the uncer-
tainty in the pose estimate. The loop detection is realized by maintaining two different
representations of the environments. By comparing a grid map with a topological map,
we are able to detect loops in the environment that have not been closed so far. As a
result, we obtain more accurate maps compared to combinations of SLAM algorithms
with classical exploration techniques. As fewer particlesneed to be maintained to
build accurate maps, our approach can also be regarded as a contribution to reduce the
number of particles needed during Rao-Blackwellized mapping.
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Chapter 8

Recovering Particle Diversity

8.1 Introduction

W
e presented in Chapter 7 a technique that allows an exploringrobot
to detect loops and to carry out place revisiting actions. Weshowed
that the quality of a map constructed by a mobile robot depends on
its trajectory during data acquisition. This is due to the fact that the

vehicle needs to relocalize itself during exploration in order to build an accurate model
of the environment. Our loop-closing technique uses a heuristic stopping criterion in
order to continue with the new terrain acquisition and to reduce the risk that the particle
depletion problem affects the filter. We showed that such an approach works well in
practice, however, the general problem of particle depletion in the context of loop-
closing still exists. To overcome this limitation, we present in this chapter a technique
that is able to approximatively recover lost hypotheses. Itenables a mobile robot to
store the particle diversity of the filter before entering a loop. When leaving the loop,
the robot is then able to recover that diversity and continuethe exploration process.
This technique allows a mobile robot to stay – at least theoretically – arbitrarily long
in a loop without depleting hypotheses needed to close an additional, outer loop.

Figure 8.1 illustrates the problem of vanished particles inthe context of repeated
loop traversals in environments with nested loops. Due to the risk of particle depletion,
the robot should spend only a limited period of time in an inner loop. In situations in
which the robot is forced to move through a loop for a longer period of time, the par-
ticle diversity is likely to get lost. This can, for example,be the case in environments
with extremely long loops. Even if the robots seeks to explore new terrain, it may
need to travel for long distances through the loop before it can reach a frontier (see
Figure 8.2). Such a situation can lead to particle depletiontoo.

The contribution of this chapter is a technique to recover the variety of trajectory
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Figure 8.1: This figure illustrates that a loss of particle diversity introduced by re-
peated loop closing can lead to a wrong solution in the context of mapping with a
Rao-Blackwellized particle filter.
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Figure 8.2: In this experiment, the robot started the exploration process in the lower
right corner of the environment. In the left image, is activates the loop-closing process
and follows its previously taken trajectory. In the right image, the robot aborts the
loop-closing process. However, to reach the next frontier,the robots needs to travel
through known areas for a long time. This can lead to particledepletion.
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hypotheses represented by a Rao-Blackwellized particle filter in the context of nested
loops. Our approach determines an approximation of the posterior given by the parti-
cles at the entry of a loop and propagates its uncertainty through the loop. This way,
hypotheses needed to close an outer loop are maintained. Themajor advantage of
this approach is that the robot can, in principle, stay arbitrarily long in an inner loop
without losing information necessary to close outer loops.

This chapter is organized as follows. Section 8.2 then describes how to recover the
diversity of a particle filter when the robot leaves a loop. Section 8.3 contains experi-
mental results carried out on real robots as well as in simulation. Finally, Section 8.4
discusses related work.

8.2 Recovering Particle Diversity after Loop Closure

To overcome the problems of particle depletion in the context of nested loops, we need
a way to recover hypotheses vanished from a particle filter during the repeated traversal
of an inner loop. Even if our active loop-closing technique in combination with the
stopping criterion based onNeff makes particle depletion unlikely, the vanishing of
important hypotheses and the resulting problem of filter divergence remains. Note that
the risk of particle depletion increases with the size of theenvironment. Also, the
smaller the number of particles, the higher is that risk.

As an example, suppose a robot has accurately mapped an innerloop in an envi-
ronments which contains nested loops. In such a case, its likely that the particle filter
has converged to a highly peaked distribution and only one hypothesis present at the
entry point has survived. Thus, it is not guaranteed that this hypothesis is the one
which perfectly closes the outer loop. In principle, a robottherefore has to maintain
a sufficient variety of particles allowing it to perform the next loop closure. Since the
robot does not know in advance how many loops it will find in theenvironment, this
problem cannot be solved in general with a finite number of particles only.

If one knew the starting point of such an inner loop in advance, one solution would
be to suspend the particle filter and to start for each particle a new filter initialized
with the current state of that particle. After the convergence of all filters one can
then attach their solutions to the corresponding particlesin the suspended filter. Apart
from the fact that a loop cannot be recognized in advance thisapproach is not feasible
for online tasks like exploration since the amount of computational resources needed
grows exponentially in the number of loops.

The technique described in the following is an approximation of this approach. The
key idea is to simulate this process as soon as the robot detects an opportunity to close
a loop using our approach presented in the previous chapter.The robot computes the
trajectory posteriorat the entry point of the loopgiven the particles in its current belief.
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In this approximative particle set, the states and weights are computed according to

x̃
[s]
te ≃ predte(x

[s]
t ) (8.1)

w̃
[s]
te ≃ w

[s]
t . (8.2)

Herepredte(x
[s]
t ) is the state of the ancestor ofx

[s]
t at timete. Note that especially the

weight computation is an approximation. Typically, this value has changed between
time t andte since new observations have been integrated.

Whenever the robot stops the loop closing behavior it uses this posterior to prop-
agate the variety of the particles through the loop. In probabilistic terms, this corre-
sponds to rewriting the termp(x1:t | z1:t, u1:t−1) in Eq. (6.1) as

p(x1:t | z1:t, u1:t−1)
product rule

= p(xte+1:t | x1:te , z1:t, u1:t−1) · p(x1:te | z1:te , u1:te−1) (8.3)

= p(xte+1:t | x1:te , z1:t, ute:t−1) · p(x1:te | z1:te , u1:te−1). (8.4)

The last transformation is valid under the assumption that previous odometry readings
can be neglected given the poses are known.

In our current implementation, the first posterior of the last equation is approxi-
mated by importance sampling fromp(xte+1:t | x1:te , z1:t, ute:t−1). Then, the trajectory
drawn from this posterior is attached to each particle inp(x1:te | z1:te , u1:te−1). This
process propagates the different hypotheses from the entrypoint into the current belief
before leaving the loop. If the robot then has to close a second loop, it is more likely
to maintain appropriate hypotheses to close this loop accurately.

Eq. (8.1) and (8.2) describe approximations of the sample set. Even if no resam-
pling is carried out betweente andt the observation likelihoods have been integrated
into the weight of the particles. However, if a highly accurate proposal like our one
presented in Chapter 6 is used the error is comparably small.

Note that in general a mapping system has to maintain a stack of saved states
especially in environments with several nested loops. Due to the fact that we actively
control the robot and never start a second loop-closing process before completing the
current one, we only have to maintain a single saved state at each point in time.

As we demonstrate in the experiments, this technique is a powerful tool to recover
vanished hypotheses without restarting the mapping algorithm from scratch. It only
needs to attach a local trajectory to each particle which canbe done within a few
seconds (on a 2.8 GHz Pentium IV PC).
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8.3 Experiments

Our approach has been implemented and evaluated on real robot data and in simula-
tion. The experiments described here are designed to illustrate the benefit of our active
loop closing technique with the ability to recover the diversity of the particles after
loop closing.

This experiment is designed to show the effect of our technique to recover the
particle variety when the robot leaves a loop. The environment used to carry out this
experiment is depicted in the right image of Figure 8.3. The robot started in the outer
loop, entered the inner loop, and moved through this loop fora long period of time.
As shown in Figure 8.1, without our recovering technique thefilter can converge to
a wrong solution. The reason is that at the time when the robotleaves the loop only
one hypothesis of the original particle set at the entry point has survived. Accordingly,
the robot lacks an appropriate particle to accurately closethe outer loop. Using our
algorithm, however, the robot can recover the hypotheses atthe entry point and can
propagate them through the loop (see left and middle image ofFigure 8.3). The most
likely map of the posterior after closing the outer loop is shown in the right image.

To provide a more quantitative analysis, we mapped the environment 30 times
without the capability of restoring the filter and 30 times with this option. The standard
technique was able to build a correct map in only 40% of all runs. In all other cases the
algorithm did not produce an accurate map. In contrast to this, our algorithm yielded
a success rate of 93%. We repeated this experiment in different environments and got
similar results. Figure 8.4 shows two (partial) maps of the Killian Court at the MIT.
The left map has been built without the recovering techniqueusing 40 particles and
shows inconsistencies due to vanished hypotheses. The right map has been constructed
using our recovering technique in which the correct hypothesis has been restored. The
average success rate of our approach was 55% whereas the standard approach found
the correct data association in only 5% of all runs. We measured success by the fact
that the map was topologically correct. This means that there exist no double corridors
or large alignment errors. The evaluation if a map was topologically correct, was made
by manual inspection of the resulting map.

Note that the second experiment was carried out based on realrobot data taken
from the MIT Killian Court dataset. Since we were unable to actively control the robot
during the experiment at the Killian Court, we had to set the backup and restore points
manually. The corresponding positions are labeled are depicted in Figure 8.4.

Our experiments show that our recovering technique is a powerful extension to
autonomous exploration with mapping systems based on RBPFsespecially in the con-
text of (multiple) nested loops. Note that in general the success rate of the standard
approach increases with number of particles used. Since each particle carries its own
map, it is of utmost importance to keep this value as small as possible.
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Figure 8.3: This figure shows the same experiment as depictedin Figure 8.1, but using
our recovering technique. In the left image the robots savesthe set of approximated
particles at time stepte and later on recovers the vanished hypotheses (middle image).
This allows the robot to correctly close the outer loop (right image).
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Figure 8.4: This figure shows two maps of the Killian Court at the MIT. The size of the
environment is 150 m by 80 m. The left map was constructed withthe standard RBPF
approach. If, in contrast, the robot is able to recover hypotheses the map becomes
more accurate (right image).
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Additionally, we analyzed in our experiments the approximation error obtained
by retrospectively recovering the particles at the entry point of a loop. Using this
system without adaptive resampling, we observed that in ourexperiments typically
around 75% of the particles in the filter at time stepte had a successor in the current
set and were therefore saved. In principle, this value dropsfor loops of increasing
length. To provide a more quantitative comparison, we computed th Kullback-Leibler
divergence (KL-divergence) between the recovered particle set and the true one. The
KL-divergence between to probability distributionsp andq is defied as

KLD(p, q) =
∑

x

p(x) · log
p(x)

q(x)
. (8.5)

In out experiments the KLD at time stepte was typically between 1.0 and 1.5 compared
to a value around 13 in the situation in which only a single hypothesis survived.

We then activated the adaptive resampling approach that carries out the resampling
step only if the effective sample size was smaller thanN/2, whereN is the number of
samples. As a result, the number of resamplings carried out in the whole experiment
was comparably small. We did not observed more than one resampling step between
the timete andt. The KL-divergence in this second groups of experiments wasaround
one order of magnitude smaller compared to the set of experiments carried out without
adaptive resampling.

The experiments presented in this section illustrate that our recovering technique is
well-suited to propagate the uncertainty of trajectory hypotheses through a loop during
Rao-Blackwellized mapping. Using the technique describedhere, the robot can move
arbitrarily long through a (nested) loop without depletingimportant state hypotheses.

8.4 Related Work

Most of the related work relevant for this chapter, has already been discussed in Sec-
tion 7.4. Most of these papers focus on reducing the uncertainty during landmark-
based SLAM or do not take into account the pose uncertainty inthe context of grid-
based exploration.

In the literature, only a few works address the problem of revoking a previously
made decision in the SLAM context. For example, Hähnelet al. [2003b] maintain
a data association tree in which each branch represents a sequence of associations.
Whenever a branch becomes more likely than the current best one, their approach
switches to the alternative data association sequence. Their work can be regarded as
orthogonal to our technique for recovering the uncertaintyof a particle filter presented
in this chapter. In fact, both approaches can be combined.
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Particle depletion leads to problems similar to the one of anoverly confident fil-
ters in the context of extended Kalman filters or sparse extended information filters
(SEIFs). Especially the SEIF formulation of Thrunet al. [2004] can lead to underesti-
mated landmark covariance matrixes. Recently, Eusticeet al. [2005] as well as Walter
et al.[2005] presented a technique to more accurately compute the error-bounds within
the SEIF framework and in this way reduces the risk of becoming overly confident.

Our approach presented here extends our work described in Chapter 7 and presents
a way to recover particle diversity when applying a Rao-Blackwellized particle filter
to solve the SLAM problem. Our technique allows the robot to stay – at least in theory
– arbitrarily long within a loop without suffering from particle deletion. Therefore,
our algorithm enhances the ability to correctly close loops, especially, in the context
of nested loops.

8.5 Conclusion

In this chapter, we presented an extension of our loop-closing technique introduced in
Chapter 7. Our approach is able to maintain the particle diversity while actively closing
loops for mapping systems based on Rao-Blackwellized particle filters. When closing
a loop, our approach determines an approximation of the particle set at the time the
robot entered the loop. It uses this posterior to propagate the particle diversity through
the loop after the robot successfully closed it. Compared toour previous approach
which used a heuristic stopping criterion to abort the loop-closing, the technique pre-
sented here allows the robot to traverse a nested loop for an arbitrary period of time
without depleting important particles. The approach has been implemented and tested
on real robot data as well as in simulation. As experimental results demonstrate, we
obtain a robust exploration algorithm that produces more accurate maps compared to
standard combinations of SLAM and exploration approaches,especially in the context
of nested loops.
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Chapter 9

Information Gain-based Exploration

9.1 Introduction

T
hroughout this thesis, we investigated different aspects of the map learning
problem. We started in Chapter 3 with an information gain-based approach
to exploration, where we assumed that the poses of the robot were known
during exploration. After dealing with the problem of coordinating a team of

robots, we addressed the SLAM problem to find a way to deal withthe pose uncertainty
of a mobile robot. We then presented in the previous two chapters an exploration
system that takes into account the pose uncertainty and carries out loop-closing actions
in order to relocalize the robot. This has been shown to provide better maps than
exploration approaches focusing on new terrain acquisition only.

This chapter describes a decision-theoretic, uncertainty-driven approach to explo-
ration which combines most of the previously presented techniques. We use a decision-
theoretic framework similar to the one presented in the beginning of this thesis. How-
ever, we now reason about sequences of observations and not only about a single one.
Furthermore, we integrate our SLAM approach in order to dealwith the pose uncer-
tainty of the vehicle. This allows us to simulate observations based on the posterior
about maps. Last but not least, we consider loop-closing andplace revisiting actions
during exploration in order to relocalize the vehicle.

As illustrated in Chapter 7, the quality of the resulting mapdepends on the trajec-
tory of the robot during data acquisition. In practice, the major sources of uncertainty
about the state of the world are the uncertainty in the robot’s pose and the uncertainty
resulting from the limited accuracy of the sensor the robot uses to perceive its envi-
ronment. Therefore, a robot performing an autonomous exploration task should take
the uncertainty in the map as well as in its path into account to select an appropriate
action.



176 CHAPTER 9: INFORMATION GAIN -BASED EXPLORATION

1

3
2?

Figure 9.1: Suppose the robot has a high pose uncertainty andhas to decide where to
go next. Shown are three opportunities in the left image. Action 1 acquires new terrain
and action 2 performs a loop closure without observing unknown areas. Action 3 does
both: After closing the loop, it guides the robot to unknown terrain. Our map and pose
entropy-driven exploration system presented in this chapter is able to predict the uncer-
tainty reduction in the model of the robot. As a result, it chooses action 3 (as depicted
in the right image) since it provides the highest expected uncertainty reduction.

As a motivating example consider Figure 9.1. The left image shows an exploring
robot which has almost closed a loop. Suppose the vehicle hasa high pose uncertainty
and now has to decide where to go next. Three potential actions are plotted on the
map. Action 1 leads the robot to unknown terrain and action 2 performs a loop closure
without observing unknown areas. Action 3 does both: After closing the loop, it guides
the robot to unknown terrain.

Classical exploration approaches, which seek to reduce theamount of unseen area
or which only consider the uncertainty in the posterior about the map would choose
action 1, since this action guides the robot to the closest location from which informa-
tion about unknown terrain can be obtained. In contrast to that, approaches to active
localization consider only the uncertainty in the pose estimate of the robot. There-
fore, they would choose either action 2 or 3 to relocalize thevehicle. Our loop-closing
approach presented in Chapter 7 would select action 2 to reduce the entropy in the pos-
terior about potential trajectories. However, the best action to reduce the uncertainty
in the posterior about the map and the trajectory is action 3.Executing this action
yields new sensor information to make the correct data association and closes the loop
accurately. Additionally, it provides information about so far unknown terrain. As this
example shows, exploration approaches should consider both sources of uncertainty to
efficiently build accurate maps.

The contribution of this chapter is an integrated techniquethat combines simul-
taneous localization, mapping, and path planning. In contrast to our previous work
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described in Chapter 7, in which a heuristic was used to retraverse loops, the approach
presented in this chapter is entirely decision-theoretic.Based on the expected uncer-
tainty reduction in the posterior about the trajectory of the robot as well as about the
map of the environment, we select the action with the highestexpected information
gain. We take into account the sensor information, which is expected to be obtained
along the path when carrying out an action, as well as the costintroduced by this ac-
tion. Real world and simulation experiments show the effectiveness of our technique
for autonomously learning accurate models of the environment.

This chapter is organized as follows. Section 9.2 and 9.3 present our decision-
theoretic exploration technique and explain how to computethe expected change in
entropy. Section 9.4 describes how the set of possible actions is generated. Then,
Section 9.5 contains experimental results carried out on real robots as well as in simu-
lation. Finally, we discuss related work.

9.2 The Uncertainty of a Rao-Blackwellized Mapper

In this approach to information gain-based exploration, weuse the SLAM approach
presented in Chapter 6 to estimate the pose of the vehicle as well as the map. The goal
of our exploration task is to minimize the uncertainty in theposterior of the robot. The
uncertainty can be determined by the entropyH. For the entropy of a posterior about
two random variablesx andy holds

H(p(x, y))

= Ex,y[− log p(x, y)] (9.1)

= Ex,y[− log(p(x) · p(y | x))] (9.2)

= Ex,y[− log p(x)− log p(y | x))] (9.3)

= Ex,y[− log p(x)] + Ex,y[− log p(y | x)] (9.4)

= H(p(x)) +

∫

x,y

−p(x, y) · log p(y | x) dx dy. (9.5)
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The integral in Eq. (9.5) can be transformed as follows:
∫

x,y

−p(x, y) · log p(y | x) dx dy

=

∫

x,y

−p(y | x) · p(x) · log p(y | x) dx dy (9.6)

=

∫

x

p(x) ·

∫

y

−p(y | x) · log p(y | x) dy dx (9.7)

=

∫

x

p(x) ·H(p(y | x)) dx (9.8)

Eq. (9.5) and Eq. (9.8) can be combined to

H(p(x, y)) = H(p(x)) +

∫

x

p(x) ·H(p(y | x)) dx. (9.9)

Based on Eq. (9.9), we can efficiently compute the entropy of aRao-Blackwellized
particle filter for mapping. For better readability, we usedt instead ofz1:t, u1:t−1:

H(p(x1:t, m | dt)) =

H(p(x1:t | dt)) +

∫

x1:t

p(x1:t | dt) ·H(p(m | x1:t, dt)) dx1:t (9.10)

Considering that our posterior is represented by a set of weighted particles, we can
approximate the integral by a finite sum:

H(p(m, x1:t | dt)) ≃

H(p(x1:t | dt)) +

#particles
∑

i=1

w
[i]
t ·H(p(m[i] | x[i]

1:t, dt)) (9.11)

Eq. (9.11) shows that according to the Rao-Blackwellization, the entropy of the whole
system can be divided into two components. The first term represents the entropy
of the posterior about the trajectory of the robot and the second term corresponds to
the uncertainty in the map weighted by the likelihood of the corresponding trajectory.
Thus, to minimize the robot’s overall uncertainty, one needs to reduce the map uncer-
tainty of the individual particles as well as the trajectoryuncertainty. In this section,
we will describe how we determine both terms in our approach.

Throughout this work, we use grid maps to model the environment. Note that
our technique is not restricted to this kind of representation, it only requires a way
to compute the uncertainty for the used map representation.Using occupancy grids,
the computation of the map entropy is straightforward. According to the common
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independence assumption about the cells of such a grid, the entropy of a mapm is
the sum over the entropy values of all cells. Since each grid cell c is represented by a
binary random variable the entropy ofm is computed as

H(m) = −
∑

c∈m

p(c) · log p(c) + (1− p(c)) · log(1− p(c)). (9.12)

Note that the overall entropy calculated for a grid map is notindependent from the
resolution of the grid. One potential solution to this problem is to weight the entropy
of each cell with its covered arear2 (wherer is the resolution of the grid)

H(m) = −r2 ·
∑

c∈m

p(c) · log p(c) + (1− p(c)) · log(1− p(c)). (9.13)

As a result, the entropy value stays more or less constant when changing the grid
resolution. Slight differences in the entropy may be causedby discretization errors
when changing the resolution.

Unfortunately, it is more difficult to compute the uncertainty H(p(x1:t|dt)) of the
posterior about the trajectory of the robot since each posext on the trajectory depends
on the previous locationsx1:t−1. In the context of EKF-based exploration approaches,
the pose uncertainty is often calculated by considering only the last pose of the robot,
which corresponds to the approximation ofH(p(x1:t|dt)) by H(p(xt|dt)). It is also
possible to average over the uncertainty of the different poses along the path as done
by Royet al. [1998]:

H(p(x1:t | dt)) ≈
1

t
·

t∑

t′=1

H(p(xt′ | dt)) (9.14)

Instead, one can approximate the posterior about the trajectory by a high-dimensional
(length of the trajectory times the dimension of the pose vector xt of the robot) Gaus-
sian distribution. The entropy of an dimensional GaussianN (µ, Σ) is computed as

H(N (µ, Σ)) = log((2πe)(n/2) · |Σ|). (9.15)

Since a finite number of particles is used, the RBPF representation often generates a
sparse trajectory posterior for points in time lying further back in the history. Unfortu-
nately, this can lead to a reduced rank ofΣ, so that|Σ| becomes zero and the entropy
H(N (µ, Σ)) approaches minus infinity.

Alternatively, one could consider the individual trajectories represented by the sam-
ples as vectors in a high-dimensional state space and compute the entropy of the pos-
terior based on a grid-based discretization. Since the particles typically are extremely
sparse, this quantity is in most cases equivalent to or slightly smaller than the logarithm



180 CHAPTER 9: INFORMATION GAIN -BASED EXPLORATION

 0  10  20  30  40  50

tr
aj

ec
to

ry
 u

nc
er

ta
in

ty

time step

start

35

39

15

25

45

Figure 9.2: The trajectory entropy of a robot during a real world experiment. The num-
bers in the right image illustrate the time steps when the robot was at the corresponding
locations.

of the number of particles, which is the upper bound for the entropy computed in this
way.

In our current implementation, we use an approach that is similar to the one pro-
posed by Royet al. [1998], who computed the entropy over the trajectory posterior as
the average entropy of the pose posteriors over time (see Eq.(9.14)). Instead of aver-
aging only over the time steps, we additionally consider thedifferent areas the robots
visited. This allows us to give an area traversed only once bythe vehicle the same
influence than an area the robot visited several times. In ourcurrent implementation,
the places are modeled by a coarse resolution grid. An example on how the trajectory
entropy evolves over time using this measure is depicted in the left image of Figure 9.2.

9.3 The Expected Information Gain

To evaluate an action that guides the robot from its current location to a goal location,
we compute the expected information gain, which is the expected change of entropy in
the Rao-Blackwellized particle filter. In the last section,we described how to compute
the entropy of the robot’s world model and in this section we want to estimate the
expected entropy after an action has been carried out.

An actionat generated at time stept is represented by a sequence of relative move-
mentsat = ût:T−1 (see Section 7.2.2). During the execution ofat, it is assumed that
the robot obtains a sequence of observationsẑt+1:T at the positionŝxt+1:T . In the fol-
lowing, all variables labeled with ‘’̂ correspond to points in time during the execution
of an actionat. For better readability, we replacêxt+1:T by x̂ andẑt+1:T by ẑ.
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To compute the information gain of an action, we have to calculate the change of
entropy caused by the integration ofẑ andat into the filter

I(ẑ, at) = H(p(m, x1:t | dt))−H(p(m, x1:t, x̂ | dt, at, ẑ)). (9.16)

Since in general we do not know which measurements the robot will obtain along its
path while executing actionat, we have to integrate over all possible measurement
sequenceŝz to compute the expected information gain

E[I(at)] =

∫

ẑ

p(ẑ | at, dt) · I(ẑ, at) dẑ. (9.17)

In the following, we will explain how to approximatep(ẑ | at, dt) in order to reason
about possible observation sequencesẑ. The posteriorp(ẑ | at, dt) can be transformed
into

p(ẑ | at, dt)

=

∫

m,x1:t

p(ẑ | at, m, x1:t, dt) · p(m, x1:t | dt) dm dx1:t (9.18)

=

∫

m,x1:t

p(ẑ | at, m, x1:t, dt) · p(x1:t | dt) · p(m | x1:t, dt) dm dx1:t. (9.19)

Eq. (9.19) is obtained from Eq. (9.18) by using Eq. (6.1). If we again assume that our
posterior is represented by a set of particles, we can rewrite Eq. (9.19) as follows:

p(ẑ | at, dt) ≈

#particles
∑

i=1

p(ẑ | at, m
[i], x

[i]
1:t, dt) · w

[i]
t · p(m[i] | x[i]

1:t, dt) (9.20)

Based on Eq. (9.20), we can computeẑ for a given actionat. The factorp(m[i] |

x
[i]
1:t, dt) in Eq. (9.20) is assumed to be computed analytically due to the assumptions

made in the Rao-Blackwellization (see Eq. (6.1)), namely that we can compute the map
m[i] analytically given the positionsx[i]

1:t as well as the datadt. We can also estimate
the termp(ẑ | at, dt) of that equation by simulation. This can be achieved by per-
forming ray-casting operations in the mapm[i] of thei-th particle to estimate possible
observationŝz. In other words, the (discretized) posterior about possible observations
obtained along the path when executing the actionat can be computed by ray-casting
operations performed in the map of each particle weighted bythe likelihood of that
particle.

In cases where the ray-casting operation reaches an unknowncell in the map, we
have to treat the beam differently. Touching an unknown cellmeans that we cannot say
anything about the beam except that its length will be at least as long as the distance
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Figure 9.3: The plot shows the likelihood of a laser beam thatcovers an unknown
cell based on recorded sensor data. In this plot, a beam length of 12 m represents a
maximum range reading.

between robot pose and the unknown cell (with a high probability). Since such beams
typically have a serious influence on the map uncertainty, wecomputed statistics about
the average change of map entropy introduced by integratinga beam which reaches
an unknown cell in the map. One example for such a statistics from recorded laser
range data is shown in Figure 9.3. Note that in this situation, the change of entropy is
approximatively proportional to the number of unknown cells covered by that beam.
By computing the average beam length for such sensor observations from the statistics,
one can predict the average change of entropy when approaching a frontier. In this way,
the system also accounts for unknown areas which are visiblefrom a planned path to
any other destination.

This approximation dramatically reduces the number of potential observations that
have to be simulated compared to the number of possible proximity measurements a
laser range finder can generate. Several experiments showedthe effectiveness of this
approach for robots equipped with a laser range finder.

Despite this approximation, computing the expected information gain based on
Eq. (9.17) requires a substantial amount of computational resources. Therefore, we
furthermore approximate the posterior in this equation about possible sensory data,
by not considering all possible map instances of the currentposterior. We apply the
computations only on a subset of potential maps. This subsetis obtained by draw-
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ing particlesvi from the particle set, where each particle is drawn with a probability
proportional to its weight. We then use the map associated tovi to generate the mea-
surementŝz(vi) along the path. This reduces the computational complexity and allows
us to run the exploration system on a real robot. Under this simplifying assumption,
we can rewrite the expected information gain in Eq. (9.17) by

E[I(at)] ≈
1

n
·
∑

i

I(ẑ(vi), at). (9.21)

wheren is the number of drawn samples. An observation sequenceẑ(vi) is generated
by a ray-casting operation in the map ofvi. Note that if more computational resources
are available this approximation can easily be improved by drawing more particles.
This computation can even be parallelized, since there is nointerference between the
integration of measurement sequences into different copies of the RBPF.

Now all necessary equations have been introduced to computethe expected infor-
mation gainE[I(at)] for an actionat. To summarize,E[I(at)] describes the expected
change of entropy in the Rao-Blackwellized particle filter when executingat. To rea-
son about possible observation sequences, the robot will obtain along the path, we
draw a subset of particle according to their likelihood and perform a ray-casting oper-
ation in the corresponding maps. The expected measurementsare then integrated into
the filter and the entropies before and after the integrationare subtracted.

The complexity of the computation ofE[I(at)] depends on two quantities. First,
the filter needs to be copied to save its current state. This introduces a complexity linear
in the size of the filter (which in turn depends on the number ofparticles). The second
quantity is the lengthl(at) of the planned path from the current pose of the robot to
the desired goal location, because the expected observations along the path are taken
into account. The number of particles drawn to generate observations is assumed to be
constant. The cost of integrating an observation is linear in the numberN of particles.
This leads to an overall complexity ofO(l(at) ·N) to evaluate an actionat.

Besides the expected entropy reduction, there is a second quantity the robot should
consider when selecting an action. This is the cost of carrying out an action measured
in terms of traversability and trajectory length for reaching the target location. The
cost of an action is computed based on the (convolved) occupancy grid map of the
most likely particle. Traversing a cell introduces a cost proportional to its occupancy
probability (see Section 4.2.1 for further details).

The expected utilityE[U(at)] of an actionat in our exploration system is defined
as

E[U(at)] = E[I(at)]− α · V (at). (9.22)
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whereV (at) refers to the cost of carrying out the actionat. α is a weighting factor
which trades off the cost with the entropy. This free parameter can be used to trigger
the exploration process by adapting the influence of the traveling cost. In our work,
we determinedα experimentally.

After having computed the expected utility for each action under consideration, we
select the actiona∗

t with the highest expected utility

a∗
t = argmax

at

E[U(at)]. (9.23)

Every time the robot has to make the decision where to go next,it uses Eq. (9.23) to
determine the actiona∗

t with the highest expected utility and executes it. As soon asno
action provides an expected reduction of uncertainty and nofrontiers to unseen areas
are available, the exploration task is completed.

9.4 Computing the Set of Actions

So far, we have explained how to evaluate an action but have left open how potential
actions are generated. One attempt might be to generate a vantage point for each
reachable grid cell in the map. Since we reason about observations received along the
path, we need to consider all possible trajectories to all reachable grid cells in the map.
The number of possible trajectories, however, is huge whichmakes it intractable to
evaluate all of them.

To find appropriate actions to guide a vehicle through the environment, we con-
sider three types of actions, so calledexploration actions, place revisiting actions, and
loop-closing actions. Exploration actions are designed to acquire information about
unknown terrain to reduce the map uncertainty. To generate exploration actions, we
apply the frontier approach introduced by Yamauchi[1998]. For each frontier be-
tween known and unknown areas, we generate an action leadingthe robot from its
current pose along the shortest path to that frontier. Furthermore, actions that guide a
robot to cell which have a high uncertainty belong to the set of exploration actions.

Compared to the actions generated from frontiers, the placerevisiting actions as
well as the loop-closing actions do not focus on new terrain acquisition. They guide
the robot back to an already known location or perform an active loop closure. The goal
of these actions is to improve the localization of the vehicle, which means to reduce
its trajectory uncertainty. In our current implementation, place revisiting actions are
generated based on the trajectory of the robot. Such an action can simply turn the robot
around and move it back along its previously taken path. Additionally, we generate so
called loop-closing actions. To determine whether there exists a possibility to close a
loop, we would like to refer the reader to Chapter 7 in which wedescribe how a mobile
robot can robustly detect opportunities to actively close aloop.
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Given this classification, the actions 1 and 3 depicted in themotivation example
in Figure 9.1 are exploration actions, whereas action 2 is a place revisiting action
performing an active loop closure.

9.5 Experiments

Our approach has been implemented and tested in real world and simulation exper-
iments. The experiments described here are designed to illustrate the benefit of our
exploration technique which takes into account the map as well as the trajectory un-
certainty to evaluate possible actions.

9.5.1 Real World Application

The first experiment was a real world experiment carried out in building 106 at the
University of Freiburg using an ActivMedia Pioneer 2 robot equipped with a SICK
laser range finder. The exploration run was fully autonomous. The robot started in
the lower left room (see Figure 9.4 (a)). The robot moved through the neighboring
room and entered the corridor. After reaching its target location in the horizontal
corridor (Figure 9.4 (b)), the robot decided to move back to in the lower left room to
improve its pose estimate (Figure 9.4 (c)). The robot then explored the neighboring
room and afterwards returned to the corridor (Figure 9.4 (d)). It then approached the
lower horizontal corridor and moved around the loop (Figure9.4 (e)). Finally, the
robot returned to the lower left room and finished the exploration task. As can be
seen from this experiment, as soon as the robot gets too uncertain about its pose, it
performs place revisiting actions or chooses exploration actions which also reduce its
pose uncertainty due to the information gathered along the path.

9.5.2 Decision Process

The next experiment is designed to show how the robot choosesactions to reduce its
pose uncertainty as well as its map uncertainty. Figure 9.5 depicts parts of a simulated
exploration task performed in a map acquired at Sieg Hall, University of Washington.
Each row depicts a decision step of the robot during autonomous exploration. In the
first step shown in the first row, the robot has almost closed the loop. It had to de-
cide whether it is better to move through the loop again or to focus on exploring the
horizontal corridor. In this situation, the robot moved to target point 1 and actively
closed the loop, since this provided the highest expected utility (see right plot in the
first row of Figure 9.6). Target location 1 had the highest expected utility because the
robot expected a chance to relocalize itself by closing the loop and to observe parts of
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(a) (b)

(c) (d)

(e) (f)

Figure 9.4: Six different stages of an autonomous exploration run on the second
floor of building 106 at the University of Freiburg. The map was acquired fully au-
tonomously by our integrated approach.
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the unknown areas close to the planned trajectory. Therefore, this actions provided an
expected reduction of map and trajectory uncertainty. In the second decision, the robot
focused on acquiring new terrain and approached the horizontal corridor, since target
location 6 had the highest expected utility. The same happened in the third decision
step, shown in the last row of this figure. Moving back throughthe known areas of
the loop provided less expected entropy reduction and therefore the robot continued
exploring the horizontal corridor (target location 5).

Figure 9.7 shows the map after reaching target location 5 from the last decision
step. To visualize the change of entropy over time, the rightplot shows the evolu-
tion of the map as well as the pose uncertainty. The labels in the left image show
the time steps in which the robot was at the corresponding location. As can be seen,
the entropy stayed more or less constant in the beginning, since the map uncertainty
decreased while the pose uncertainty increased. After closing the loop at around time
step 45, the pose uncertainty dropped so that the overall uncertainty was also reduced.
Moving through known areas between time step 50 and 80 did notprovide a lot of new
information and did not change the entropy that much. As soonas the robot entered es-
pecially the wide part of the horizontal corridor, the overall uncertainty dropped again
due to the serious reduction of map uncertainty compared to the moderate increase of
pose uncertainty.

9.5.3 Comparison to Previous Approaches

The third experiment addresses the decision problem of the motivating example pre-
sented in the introduction of this chapter. It shows how our approach chooses the
actions which lead to the highest uncertainty reduction in the posterior about poses
and maps compared to previous techniques. As can be seen in Figure 9.8, the robot
has almost closed the loop. Suppose the robot has a high pose uncertainty and con-
siders three potential actions to approach different target locations (see left image of
Figure 9.8). Action 1 is a new terrain acquisition action andaction 2 performs a loop
closure. Action 3 leads the robot to unknown terrain while simultaneously closing the
loop. Since action 3 combines a loop closure with new terrainacquisition, it provides
the highest expected utility (see right image of Figure 9.8). Therefore, our approach
chooses this target point. This is an advantage compared to other approaches which
seek to actively close loops in an heuristic way. Such a technique (like the one we
presented in Chapter 7) would typically choose action 2 to reduce the pose uncertainty
of the vehicle. Classical exploration approaches, which only take into account the
map uncertainty or guide the robot to the closest unknown area [Koenig and Tovey,
2003, Weißet al., 1994, Whaite and Ferrie, 1997, Yamauchi, 1998, Yamauchiet al.,
1999] would select action 1. Even an active localization technique which seeks to re-
duce the pose uncertainty of the vehicle[Kaelblinget al., 1996] would choose either
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Figure 9.8: This figure illustrates the decision process of where to go next. Shown
in the left image are three potential actions in the left image and the corresponding
expected utilities in the middle image. The situation afterthe robot has chosen action 3
is depicted in the right image.

action 2 or 3 (with a 50% chance each).

9.5.4 Corridor Exploration

The last experiment was performed in building 79 at the University of Freiburg and
is depicted in Figure 9.9. The environment has a long corridor and contains no loop.
To make the pose correction more challenging, we restrictedthe range of the sensor
to 3 m. According to the short sensor range used in this experiment, it was hard for
the robot keep track of its own position. As can be seen, this technique leads to an
intuitive behavior. Due to the large uncertainty in the poseof the vehicle, the robot
chooses several times actions which guide it back to a well-known place (which is the
starting location in this experiment) to reduce its pose uncertainty.

9.6 Related Work

In the context of exploration, most of the techniques presented so far focus on gen-
erating motion commands that minimize the time needed to cover the whole ter-
rain [Koenig and Tovey, 2003, Weißet al., 1994, Yamauchi, 1998, Burgardet al.,
2000]. Most of these techniques, however, assume that an accurateposition estimate
is given during exploration. Whaite and Ferrie[1997] present an approach that uses
also the entropy to measure the uncertainty in the geometricstructure of objects that
are scanned with a laser range sensor. In contrast to the workdescribed here, they
use a parametric representation of the objects to be scannedand do not consider the
uncertainty in the pose of the sensor. Similar techniques have been applied to mobile
robots like, for example, our approach presented in Chapter3 or the work of Rocha
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Figure 9.9: The images depict six stages during the autonomous exploration of a long
corridor. The maximum sensor range in this experiment was limited to 3 m. The short
sensor range results in a comparably high pose uncertainty of the robot when moving
through the environment, since the current scan has typically a small overlap with
the previously seen area. Due to the high pose uncertainty, the exploration system
chooses actions which guide the robot on a path close to the starting location in order
to relocalize.
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et al. [2005]. However, none of the approaches mentioned above take the pose un-
certainty into account when selecting the next vantage point. There are exploration
approaches that have been shown to be robust against uncertainties in the pose esti-
mates[Duckettet al., 2002, Koet al., 2003, Kuipers and Byun, 1991] but the selected
actions do depend on the uncertainty of the system. Note thata detailed discussion
about different exploration strategies for single and multi-robot systems has been pre-
sented in Section 4.6.

In the area of SLAM, the vast majority of papers have focused on the aspect
of state estimation as well as belief representation and update [Dissanayakeet al.,
2000, Doucetet al., 2000, Eliazar and Parr, 2003, Grisettiet al., 2005, Gutmann and
Konolige, 1999, Hähnelet al., 2003a, Montemerloet al., 2002, Murphy, 1999, Thrun,
2001a]. These techniques are passive and only process incoming sensor data without
explicitly generating control commands. Again, Section 6.6 presents a detailed discus-
sion of SLAM approaches. In contrast to these techniques, our approach considers the
active control of the robot while learning accurate maps.

Recently, new techniques have been proposed which activelycontrol the robot dur-
ing SLAM. For example, Makarenkoet al. [2002] as well as Bourgoultet al. [2002]
extract landmarks out of laser range scans and use an extended Kalman filter (EKF) to
solve the SLAM problem. They furthermore introduce a utility function which trades
off the cost of exploring new terrain with the expected reduction of uncertainty by mea-
suring at selected positions. A similar technique has been applied by Simet al.[2004],
who consider actions to guide the robot back to a known place in order reduce the pose
uncertainty of the vehicle. These three techniques differ from the approach presented
in this chapter in that they rely on the fact that the environment contains landmarks
that can be uniquely determined during mapping. In contrastto this, our approach
makes no assumptions about distinguishable landmarks and uses raw laser range scans
to compute accurate grid maps. One disadvantage of feature based exploration sys-
tems is that the underlying models of the environment typically do not provide any
means to distinguish between known an unknown areas. Therefore, an additional map
representation needs to be maintained (like, e.g., an occupancy grid in[Bourgoultet
al., 2002, Makarenkoet al., 2002] or a visual map in[Sim et al., 2004]) to efficiently
guide the vehicle. Approaches which do not maintain an additional model to identify
unknown areas typically apply strategies in which the robotfollows the contours of ob-
stacles[Wullschlegeret al., 1999] or performs wall following combined with random
choices at decision points[Folkesson and Christensen, 2003].

Duckettet al.[2002] use relaxation to solve the SLAM problem in their exploration
approach. They condense local grid maps into graph nodes andselect goal points based
on that graph structure, but do not consider the expected change of uncertainty when
choosing possible target locations.

In Chapter 7, we presented an approach to mobile robot exploration that is able
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to deal with pose uncertainty and seeks for opportunities toactive close loops. Those
loop-closing actions are used to relocalize the vehicle in order to reduce the uncertainty
in the pose estimate. As we demonstrated, such an approach leads to better maps in the
context of (nested) loops. The work presented in this chapter extents our loop-closing
technique and is entirely decision-theoretic. It reasons about carrying out different
types of actions, including loop-closing action, and selects the one which provides
the highest expected uncertainty reduction considering also the cost of an action. Our
active loop-closing approach can therefore be regarded as acomponent integrated in
the technique presented in this chapter.

There are planning techniques that can compute optimal plans by maintaining a
belief over possible states of the world and by computing thestrategy that is optimal in
expectation with respect to that belief. One solution to this is the partially observable
Markov decision process, also known as POMDP[Kaelblinget al., 1995]. The major
disadvantage of POMDPs are their extensive computational cost and most solutions
are not applicable to scenarios with more than around one thousand states[Pineauet
al., 2003]. Since we reason about a high-dimensional state estimationproblem, we
have to be content with approximative solutions that rely onstrong assumptions. In
essence, our approach can be regarded as an approximation ofthe POMDP with an
one step look-ahead.

Compared to the approaches discussed above, the novelty of the work reported
here is that our algorithm for acquiring grid maps simultaneously considers the trajec-
tory and map uncertainty when selecting an appropriate action. We furthermore reason
about the information gathered by the sensor when the robot executes an action. Our
approach also considers different types of actions, namelyso-called exploration ac-
tions, which guide the robot to unknown areas and place revisiting actions as well as
loop-closing actions, which allow the robot to reliably close loops and this way reduce
its pose uncertainty.

9.7 Conclusion

In this chapter, we presented an integrated approach which simultaneously addresses
mapping, localization, and path planning. We use a decision-theoretic framework re-
lated to the one presented in Chapter 3 for exploration. To deal with the noise in the
position of the robot, we applied a Rao-Blackwellized particle filter presented in Chap-
ter 6 to build accurate grid maps. Our exploration approach considers different types
of actions, namely exploration actions forcing terrain acquisition as well as place re-
visiting and active loop-closing actions that reduce the robot’s pose uncertainty. These
actions are generated based on the active loop-closing technique presented in Chap-
ter 7. By estimating the expected entropy of the particle filter after carrying out an
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action, we are able to determine the action which promises the highest expected un-
certainty reduction, thereby taking potential measurements gathered along the whole
path into account. The simulation of observations is done based on the posterior about
the map.

We furthermore showed how the uncertainty in a Rao-Blackwellized particle fil-
ter can be separated into two components: The uncertainty inthe trajectory estimate
and the uncertainty in the individual maps weighted with thelikelihood of the corre-
sponding particle. Our approach has been implemented and tested on real robots and
in simulation. As a result, we obtain a robust decision-theoretic exploration algorithm
that produces highly accurate grid maps. In practical experiments, we showed how
the robot is able to select the action that provides the highest expected uncertainty
reduction in its posterior about poses and maps. This is an advantage compared to
exploration approaches that seek to minimize the uncertainty in the map model only
and to active localization techniques which consider only the uncertainty in the pose
estimate.



Chapter 10

Mapping and Localization in
Non-Static Environments

10.1 Introduction

T
hroughout all previous chapters of this thesis, we assumed that the environ-
ment does not change over time. This assumption however is not realistic
especially for environments populated by humans. People typically walk
around, open and close doors, add or remove things, or even move objects

like furniture. In the literature, most of the approaches tomapping with mobile robots
are based on the assumption that the environment is static. As reported by Wang and
Thorpe[2002] as well as by Hähnelet al. [2002], dynamic objects can lead to serious
errors in the resulting map. A popular technique to deal withnon-static environments
is to identify dynamic objects and to filter out the range measurements reflected by
these objects. Such techniques have been demonstrated to bemore robust than tra-
ditional mapping approaches. They allow a robot, for example, to filter out walking
people or passing cars. Their major disadvantage lies in thefact that the resulting maps
only contain the static aspects of the environment.

Avoiding that walking people or moving cars leave spurious objects in the map is
a desirable feature. However, there exist also non-static objects for which is makes
sense to integrate them into the model of the environment. Asan example, consider
open and closed doors which can be classified as low-dynamic or non-static objects
that do not move randomly.

In this chapter, we explore an alternative solution to deal with dynamic environ-
ments by explicitely modeling the low-dynamic or quasi-static states. Our approach
is motivated by the fact, that many dynamic objects appear inonly a limited number
of possible configurations. As an example, consider the doors in an office environ-
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ment, which are often either open or closed. Another scenario is cars in a parking
space. Most of the time, a parking space is either occupied bya car or is empty. In
such a situation, techniques to filter out dynamic objects produce maps which do not
contain doors or parked cars at all. This can be problematic since, for example, in
many corridor environments doors are important features for localization. The explicit
knowledge about the different possible configurations can improve the localization ca-
pabilities of a mobile robot. Therefore, it is important to integrate such information
into the model of the environment. Our framework presented in this chapter allows
that highly dynamic objects can be filtered so that they do notleave spurious objects in
the map. This can be achieved by applying a filtering technique like the one of Hähnel
et al. [2003c] in a slightly modified way.

As a motivating example consider the individual local maps depicted in Figure 10.1.
These maps correspond to typical configurations of the same place and have been
learned by a mobile robot operating in an office environment.They show the same
part of a corridor including two doors and their typical states. The key idea of our
work is to learn such local configurations and to utilize thisinformation to improve the
localization accuracy of the robot.

The contribution of this chapter is a novel approach to mapping in low-dynamic
environments. Our algorithm divides the entire map into several sub-maps and learns
for each of these sub-maps typical configurations for the corresponding part of the
environment. This is achieved by clustering local grid maps. Furthermore, we present
an extended Monte-Carlo localization algorithm, which uses these clusters in order to
simultaneously estimate the current state of the environment and the pose of the robot.
Experiments demonstrate that our map representation leadsto an improved localization
accuracy compared to maps lacking the capability to model different configurations of
the environment.

This chapter is organized as follows. First, we introduce our mapping technique
that models different configurations of non-static objectsin Section 10.2. We then
present our variant of Monte Carlo localization that estimates the pose of the vehicle
as well as the state of the environment at the same time. In Section 10.4, we present
a series of experiments using our technique for mapping and localization in non-static
worlds. Finally, Section 10.5 discussed related approaches.

10.2 Learning Maps of Low-Dynamic Environments

The key idea of our approach is to use the information about changes in the environ-
ment during data acquisition to estimate possible spatial configurations and store them
in the map model. To achieve this, we construct a sub-map for each area in which dy-
namic aspects have been observed. We then learn clusters of sub-maps that represent
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Figure 10.1: Possible states of the same local area. The different configurations corre-
spond to open and closed doors within a corridor.

possible spacial states in the corresponding areas.

10.2.1 Map Segmentation

In general, the problem of learning maps in dynamic environments is a high-dimen-
sional state estimation problem. A naïve approach could be to store an individual map
of the whole environment for each potential state. Obviously, using this approach, one
would have to store a number of maps that is exponential in thenumber of dynamic
objects. In real world situations, the states of the objectsin one room are often in-
dependent of the states of the objects in another room. Therefore, it is reasonable to
marginalize the local configurations of the individual objects.

Our algorithm segments the environment into local areas, called sub-maps. In this
chapter, we use rectangular areas which inclose locally detected dynamic aspects to
segment the environment into sub-maps. For each sub-map, the dynamic aspects are
then modeled independently.

Note that in general the size of these local maps can vary fromthe size of the overall
environment to the size of each grid cell. In the first case, wewould have to deal with
the exponential complexity mentioned above. In the second case, one heavily relies
on the assumption that neighboring cells are independent, which is not justified in the
context of dynamic objects.

In our current system, we first identify positions in which the robot perceives con-
tradictory observations which are typically caused by dynamic elements. Based on a
region growing technique, we determine areas which inclosedynamic aspects. By tak-
ing into account visibility constraints between regions, they are merged until they do
not exceed a maximum sub-map size (currently set to 20m2). This limits the number of
dynamic objects per local map and in this way leads to a tractable complexity. Notice
that each sub-map has an individual size and different sub-maps can also overlap.
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10.2.2 Learning Configurations of the Environment

To enable a robot to learn different states of the environment, we assume that it ob-
serves the same areas at different points in time. We clusterthe local maps built from
the different observations in order to extract possible configurations of the environ-
ment. To achieve this, we first segment the sensor data perceived by the robot into
observation sequences. Whenever the robot leaves a sub-map, the current sequence
ends and accordingly a new observation sequence starts as soon as the robot enters
a new sub-map. Additionally, we start a new sequence whenever the robot moves
through the same area for more than a certain period of time (30s). This results in a set
Φ of observation sequences for each sub-map

Φ = {φ1, . . . , φn}, (10.1)

where each

φi = zstart(i), . . . , zend(i). (10.2)

Herezt describes an observation obtained at timet. For each sequenceφi of observa-
tions, we build an individual occupancy grid for the local area of the sub-map. Such a
grid is then transformed into a vector of probability valuesranging from 0 to 1 and one
additional valueξ to represent an unknown (unobserved) cell. All vectors which cor-
respond to the same local area are clustered using the fuzzy k-means algorithm[Duda
et al., 2001]. During clustering, we treat unknown cells in a slightly different way,
since we do not want to get an extra cluster in case the sensor did not cover the whole
area completely. In our experiment, we obtained the best behavior using the following
distance function for two vectorsa andb during clustering

d(a, b) =
∑

i







(ai − bi) ai 6= ξ ∧ bi 6= ξ
0 ai = ξ ∧ bi = ξ
ǫ otherwise,

(10.3)

whereǫ is a constant close to zero.
When comparing two values representing unknown cells, one in general should

use the average distance computed over all known cells to estimate this quantity. Such
a value, however, would be significantly larger than zero (except if the whole map is
empty space). In our experiments, we experienced that usingthe average distance be-
tween cells leads to additional clusters in case a significant part of a sub-map contains
unknown cells even if the known areas of the maps are nearly identical. Therefore, we
use the distance function given in Eq. (10.3) which sets thisdistance value to zero.

Unfortunately, the number of different states is not known in advance. Therefore,
we iterate over the number of clusters and compute in each iteration a model using the
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fuzzy k-means algorithm. We create a new cluster initialized using the input vector
which has the lowest likelihood under the current model. We evaluate each modelθ
using the Bayesian information criterion (BIC)[Schwarz, 1978]:

BIC = log p(d | θ)−
|θ|

2
· log n (10.4)

10.2.3 Map Clustering

The BIC is a popular technique to score a model during clustering. It trades off the
number|θ| of clusters in the modelθ multiplied by the logarithm of the number of input
vectorsn and the quality of the model with respect to the given datad. The model with
the highest BIC is chosen as the set of possible configurations, in the following also
called patches, for that sub-map. This process is repeated for all sub-maps.

The following example is designed to illustrate the map clustering process. The
input to the clustering was a set of 17 local grid maps. The fuzzy k-means clustering
algorithm started with a single cluster, which is given by the mean computed over all
17 maps. The result is depicted in the first row of Figure 10.2.The algorithm then
increased the number of clusters and recomputed the means ineach step. In the fifth
iteration the newly created cluster is more or less equal to cluster 3. Therefore, the
BIC decreased and the clustering algorithm terminated withthe model depicted in the
forth row of Figure 10.2.

In the introduction of this chapter, we claimed that our approach can also be used
in environments which contain highly dynamic aspects like walking people. This is
be done by applying the filtering technique introduced by Hähnel et al. [2003c] to the
observations sequencesφi, i = 1, . . . , n individually and not to the whole setΦ at
once. As a result, objects currently in motion are eliminated by that technique, but
objects changing their location while the robot moves through different parts of the
environment are correctly integrated into the local maps. The different configurations
are then identified by the clustering algorithm.

Note that our approach is an extension of the classical occupancy grid map. It
relaxes the assumption that the environment is static. In situations without moving
objects, the overall map is equal to a standard occupancy grid map.

The complexity of our mapping approach depends linearly on the numberT of ob-
servations multiplied by the numberL of sub-maps. Furthermore, the region growing
applied to build up local maps introduces in the worst case a complexity ofP 2 log P ,
whereP is the number of grid cells considered dynamic. This leads toan overall com-
plexity of O(T · L + P 2 log P ). Using a standard PC, our implementation requires
around 10%-20% of the time needed to record the log file with a real robot.
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Figure 10.2: Iterations of the map clustering process. Our approach repeatedly adds
new clusters until no improvement is achieved by introducing new clusters (with re-
spect to the BIC). Here, the algorithm ends up with 4 clusters, since cluster 3 and 5 are
redundant.

10.3 Monte-Carlo Localization Using Patch-Maps

In this section, we show how our patch-map representation can be used to estimate
the pose of a mobile robot moving through its environment. Throughout this chapter,
we apply an extension of Monte-Carlo localization (MCL), which has originally been
developed for mobile robot localization in static environments[Dellaertet al., 1998].
MCL uses a set of weighted particles to represent possible poses (x, y, andθ) of the
robot. As explained in Chapter 2, the motion model is typically used to draw the next
generation of samples. The sensor readings are used to compute the weight of each
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particle by estimating the likelihood of the observation given the pose of the particle
and the map.

Besides the pose of the robot, we want to estimate the configuration of the envi-
ronment in our approach. We do not assume a static map in like standard MCL and
therefore need to estimate the mapmt as well as the posext of the robot at timet

p(xt, mt | z1:t, u1:t−1)
Bayes’ rule

=

η · p(zt | xt, mt, z1:t−1, u1:t−1) · p(xt, mt | z1:t−1, u1:t−1). (10.5)

Here η is a normalization constant andut−1 refers to the motion command which
guides the robot fromxt−1 to xt. The main difference to approaches on simultaneous
localization and mapping (see Chapter 6) is that we do not reason about all possible
map configurations like SLAM approaches do. Our patch-map restricts the possible
states according to the clustering of patches and thereforeonly a small number of
configurations are possible.

Under the Markov assumption, the second line of Eq. (10.5) can be transformed to

p(xt, mt | z1:t−1, u1:t−1)

Markov & total prob.
=

∫

xt−1

∫

mt−1

p(xt, mt | xt−1, mt−1, z1:t−1, ut−1)

·p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1 (10.6)
product rule

=

∫

xt−1

∫

mt−1

p(xt | xt−1, mt−1, z1:t−1, ut−1)

·p(mt | xt, xt−1, mt−1, z1:t−1, ut−1)

·p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1 (10.7)

=

∫

xt−1

∫

mt−1

p(xt | xt−1, ut−1) · p(mt | xt, mt−1)

·p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1. (10.8)

Eq. (10.6) is obtained by using the law of total probability and the Markov assumption.
Furthermore,u1:t−2 is assumed to have no influence on the estimate ofxt andmt given
xt−1 is known. In the recursive term of Eq. (10.6),ut−1 is assumed to have no influence
onxt−1, sinceut−1 describes the odometry information betweenxt−1 andxt.

Eq. (10.8) is obtained from Eq. (10.7) by assuming thatmt is independent from
xt−1, z1:t−1, ut−1 given we knowxt andmt−1 as well as by assuming thatxt is inde-
pendent frommt−1, z1:t−1 given we knowxt−1 andut−1. Combining Eq. (10.5) and
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Eq. (10.8) leads to

p(xt, mt | z1:t, u1:t−1)

= η · p(zt | xt, mt, z1:t−1, u1:t−1)

·

∫

xt−1

∫

mt−1

p(xt | xt−1, ut−1) · p(mt | xt, mt−1)

·p(xt−1, mt−1 | z1:t−1, u1:t−2) dxt−1 dmt−1. (10.9)

Eq. (10.9) describes how to extend the standard MCL approachso that it can deal with
different spacial configurations. Besides the motion modelp(xt | xt−1, ut−1) of the
robot, we need to specify a map transition modelp(mt | xt, mt−1), which describes
the change in the environment over time.

In our current implementation, we do not reason about the state of the whole map,
since each sub-map would introduce a new dimension in the state vector of each par-
ticle, which leads to a state estimation problem, that is exponential in the number of
local sub-maps. Furthermore, the observations obtained with a mobile robot provide
information only about the local environment of the robot. Therefore, we only estimate
the state of the current patch each particle is currently in.This leads to one additional
dimension in the state vector of the particles compared to standard MCL.

In principle, the map transition modelp(mt | xt, mt−1) can be learned while the
robot moves through the environment. In our current system,we use a fixed density
for all patches. We assume, that with probabilityα the current state of the environment
does not change between timet − 1 andt. Accordingly, the state changes to another
configuration with probability1 − α. Whenever a particle stays in the same sub-
map betweent − 1 and t, we draw a new local map configuration for that sample
with probability1 − α. If a particle moves to a new sub-map, we draw the new map
state from a uniform distribution over the possible patchesin that sub-map. Note that
this is a valid procedure, since one can draw the next generation of samples from an
arbitrary distribution according to the importance sampling principle (see Chapter 2).
To improve the map transition model during localization, one in principle can update
the values forα for each patch according to the observations of the robot. Adapting
these densities can also be problematic in case of a divergedfilter or a multi-modal
distribution about the pose of the robot. Therefore, we currently do not adapt the
values ofα while the robot acts in the environment.

Note that our representation bears resemblance with approaches using Rao-Black-
wellized particle filters to solve the simultaneous localization and mapping problem, as
it separates the estimate of the pose of the robot from the estimate of the map (compare
Chapter 6). Our approach samples the state of the (local) mapand then computes the
localization of the vehicle based on that knowledge. The main difference compared to
Rao-Blackwellized SLAM is that we aim to estimate the current state of the sub-map
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based on the possible configurations represented in our enhanced map model.

10.4 Experiments

To evaluate our approach, we implemented and thoroughly tested it on an ActivMe-
dia Pioneer 2 robot equipped with a SICK laser range finder. The experiments are
designed to show the effectiveness of our method to identifypossible configurations
of the environment and to utilize this knowledge to more robustly localize a mobile
vehicle.

10.4.1 Application in an Office Environment

The first experiment has been carried out in a typical office environment. The data was
recorded by steering the robot through the environment while the states of the doors
changed. To obtain a more accurate pose estimate than the rawodometry information,
we apply a standard scan-matching technique. Figure 10.3 depicts the resulting patch-
map. For the three sub-maps that contain the doors whose states were changed during
the experiment our algorithm was able to learn all configurations that occurred. The
sub-maps and their corresponding patches are shown in the same figure.

10.4.2 Localizing the Robot and Estimating the State of the Envi-
ronment

The second experiment is designed to illustrate the advantages of our map represen-
tation for mobile robot localization in non-static environments compared to standard
MCL. The data used for this experiment was obtained in the same office environment
as above. We placed an obstacle at three different locationsin the corridor. The result-
ing map including all patches obtained via clustering is depicted in Figure 10.4. Note
that the tiles in the global map illustrate the average over the individual patches. To
evaluate the localization accuracy obtained with our map representation, we compare
the pose estimates to that of a standard MCL using a classicalgrid map as well as
using a grid map obtained by filtering out dynamic objects according to[Hähnelet al.,
2003c].

Figure 10.5 plots the localization error over time for the three different represen-
tations. The error was determined as the weighted average distance from the poses of
the particles to the ground truth. In the beginning of this experiment, the robot traveled
through static areas so that all localization methods performed equally well. Close to
the end, the robot traveled through the dynamic areas, whichresults in high pose errors



204 CHAPTER 10: MAPPING AND LOCALIZATION IN NON-STATIC ENVIRONMENTS

2

3

1

2

1

3

Figure 10.3: The patch-map represents the different configurations learned for the
individual sub-maps in a typical office environment.
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Figure 10.4: The patch-map with the different configurations for the individual patches
used in the localization experiment in Figure 10.5.
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Figure 10.5: The error in the pose estimate over time. As can be seen, using our
approach the quality of the localization is higher comparedto approaches using occu-
pancy grid maps.
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Figure 10.6: The image in the first row illustrates the traveled path with time labels.
The left images in the second row depict the two patches and the graph plots the prob-
ability of both patches according to the sample set. As can beseen, the robot identified
that patch 1 correctly models the configuration of the environment.

for both alternative approaches. In contrast to that, our technique constantly yields a
high localization accuracy and correctly tracks the robot.

To further illustrate how our extended MCL algorithm is ableto estimate the cur-
rent state of the environment, Figure 10.6 plots the posterior probabilities for two
different patches belonging to one sub-map. At time step 17,the robot entered the
corresponding sub-map. After a few time steps, the robot correctly identified, that the
particles, which localize the robot in patch 1, performed better than the samples using
patch 0. Due to the resamplings in MCL, particles with a low importance weight are
more likely to be replaced by particles with a high importance weight. Over a sequence
of integrated measurements and resamplings, this led to an probability close to 1 that
the environment looked like the map represented by patch 1 (which corresponded to
the ground truth in that situation).

10.4.3 Global Localization

Additionally, we carried out three global localization experiments in a simulated en-
vironment. First, we used a standard grid map which containsa closed door. In the
second run, we used a map which did not contain a door at all andfinally we used
our patch-map representation using two patches to represent the state of the door. The
experiments with standard MCL are depicted in Figure 10.7, the corresponding one
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phase 1 (door was closed) phase 2 (door was open)

true pose
and state
of the
environment

robot

door closed

robot

door open

standard
map with
closed door

standard
map with
open door

Figure 10.7: This figure shows a global localization experiment using standard grid
maps. The first row depicts the true pose of the robot and the true state of the door.
The second row shows the same situation during a localization experiment using a map
in which the door is modeled as closed. In the experiment depicted in the third row the
used map was contained no doors at all. In the beginning of this experiment the door
was closed (left column) but was later on opened (right column). As can be seen, both
systems were unable to accurately localize the vehicle.

phase 1 (door was closed) phase 2 (door was open)

Figure 10.8: Particle clouds obtained with our algorithm for the same situations as
depicted in Figure 10.7.

using patch-maps is shown in Figure 10.8. During localization, the robot moved most
of the time in front of the door, which was closed in the beginning and opened in the
second phase of the experiment.

As can be seen in the left column of Figure 10.7 and 10.8, the MCL approach which
uses the occupancy grid that models the closed door as well asour approach lead to a
correct pose estimate. In contrast to that, the occupancy grid which models the open
door causes the filter to diverge. In the second phase of the experiment, the door was
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opened and the robot again moved some meters in front of the door (see right column
of the same figure). At this point in time, the MCL technique using the occupancy
grid, which models the closed door cannot track the correct pose anymore, whereas our
approach is able to correctly estimate the pose of the robot.This simulated experiment
again illustrates that the knowledge about possible configurations of the environment
is important for mobile robot localization. Without this knowledge, the robot is not
able to correctly estimate its pose in non-static environments.

10.5 Related Work

In the past, several authors have studied the problem of learning maps in dynamic
environments. A popular technique is to track dynamic objects and filter out the mea-
surements reflected by those objects[Hähnelet al., 2002, Wang and Thorpe, 2002].
Enhanced sensor models combined with the Expectation Maximization (EM) algo-
rithm have been successfully applied to filter out arbitrarydynamic objects by Hähnel
et al. [2003c]. The authors report that filtering out dynamic objects can improve the
scan registration and lead to more accurate maps.

Anguelovet al. [2002] present an approach which aims to learn models of non-
stationary objects from proximity data. The object shapes are estimated by applying
a hierarchical EM algorithm based on occupancy grids recorded at different points in
time. The main difference to our approach is that we estimatetypical configurations of
the environment and do not focus on learning geometric models for different types of
non-stationary obstacles. They furthermore presented a work in which they estimate
the state of doors in an environment[Anguelovet al., 2004]. They apply the EM
algorithm to distinguish door objects from wall objects as well as different properties
like color, shape, and motion.

The problem of dealing with walking people has also been investigated in the con-
text of mobile robot localization. For example, Foxet al. [1999b] use a probabilistic
technique to identify range measurements which do not correspond to a given model.
In contrast to our work, they use a fixed, static map model and do not reason about
configurations the environment can be in. In a different project, a team of tour-guide
robots has been reported to successfully act in highly populated environments[Sieg-
wart et al., 2003]. Their system uses line features for localization resting on the as-
sumption that such features more likely correspond to wallsthan to moving people.
Montemerlo and Thrun[2002] use a method to track walking people while localizing
the robot to increase the robustness of the pose estimate.

Romeroet al. [2001] describe an approach to global localization that clusters ex-
tracted features based on similarity. In this way, the robotis able to reduce the number
of possible pose hypotheses and can speed up a Markov localization process. The au-
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thors also perform a clustering of sub-maps, but compared toour work, they do not
consider changes in the environment.

In contrast to most of the approaches discussed so far, we do not address the prob-
lem of filtering out or tracking dynamic objects. Our technique is complementary to
and can be combined with those approaches. In this work, we applied the approach
of Hähnelet al. [2003c] to eliminate high dynamic objects in the short observation
sequencesφi instead of in the whole dataset. We are interested in possible states of
the environment like, for example, open and closed doors or moved tables. In this
context, it makes sense to filter out measurements reflected by walking people, but to
integrate those which correspond to obstacles like doors ormoved furniture. Our ap-
proach learns possible states based on a clustering of localmaps. The different state
hypotheses enable a mobile robot to more reliably localize itself and to also estimate
the current configuration of its surroundings.

In a recent work, Biber and Duckett[2005] proposed an elegant approach that
incorporates changes of the environment into the map representation. Compared to
our work, they model temporal changes of local maps whereas we aim to identify
the different configurations of the environment. In their work, they also construct
local map but do not use grid maps like we do. For each local mapthey maintain
five different map instances over different time scales . This is achieved by accepting
changes differently fast. During Monte-Carlo localization, they estimate only the pose
of the robot and not state of the environment. To compute the importance weight for
a particle, they evaluate the observation likelihood in each map and then choose the
mode. This is different to our Rao-Blackwellized approach in which each sample is
evaluated based on its individual map estimate.

Van den Berget al. [2005] presented an approach to motion planning in dynamic
environments using randomized roadmaps. Their approach isable to deal with mul-
tiple configurations of local areas in the environment. Thisallows a mobile robot to
replan its path given a passage is blocked by an obstacle. Their technique focuses on
path planning and leaves open how such dynamic areas can be identified and mapped.

10.6 Conclusion

In this chapter, we presented a novel approach to model quasi-static environments
using a mobile robot. In areas where dynamic aspects are detected, our approach
creates local maps and estimates for each sub-map clusters of possible configurations
of the corresponding space in the environment. This allows us to model, for example,
opened and closed doors or moved furniture.

Furthermore, we described how to extend Monte-Carlo localization to utilize the
information about the different possible states of the environment while localizing a
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vehicle. We use a Rao-Blackwellized particle filter to estimate the current state of the
environment as well as the pose of the robot.

Our approach as been implemented and tested on real robots aswell as in simu-
lation. The experiments demonstrate that our technique yields a higher localization
accuracy compared to Monte-Carlo localization based on standard occupancy grids as
well as grid maps obtained after filtering out measurements reflected by dynamic ob-
jects. As illustrated in this chapter, approaches which do not consider changes in the
map model are unable to localize a vehicle correctly in certain situations. This is es-
pecially a problem when performing global localization while the environment is not
static.



Chapter 11

Discussion

11.1 Conclusion

L
earning map is one of the key problems in mobile robotics, since many ap-
plications require known spacial models. Robots that are able to acquire an
accurate map of the environment on their own are regarded as fulfilling a
major precondition of truly autonomous mobile vehicles. The autonomous

map learning problem has several important aspects that need to be solved simulta-
neously in order to come up with accurate models. These problems are mapping,
localization, and path planning. Additionally, most mapping approaches assume that
the environment of the mobile robots is static and does not change over time. This as-
sumption, however, is unrealistic since most places are populated by humans. Taking
into account non-static aspects is therefore an desirable feature for mapping systems.

In this thesis, we focused on the problem of learning accurate maps with single-
and multi-robot systems. We presented solutions to a seriesof open problems in this
context. We started with the problem of exploring an environment with a mobile robot
equipped with a noisy sensor. We presented a decision-theoretic framework that rea-
sons about potential observations to be obtained at the robot’s target locations. In this
way, the robot is able to select the action that provides the highest expected uncertainty
reduction in its map. This allows the robot to build accurateenvironment models not
exceeding a given level of uncertainty. As the underlying representation, we defined
coverage maps which can be seen as an extension of occupancy grid maps that allow
us to model partly occupied cells. We then presented in Chapters 4 and 5 a technique
to coordinate a team of robots during exploration. The main challenge in this context is
to assign appropriate target locations to each robot so thatthe overall time to complete
the exploration task is minimized. This collaboration between the robots is achieved
by assigning utilities to all potential target locations. Whenever a target location is
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assigned to a robot, the utility of all locations that are visible from the assigned one
are discounted. This leads to a balanced distribution of robots over the environment
and reduces the amount of redundant work as well as the risk ofinterference. As a
result, we obtained a significant reduction of the overall time needed to complete the
exploration mission. We described a way of dealing with limited communication in
the network link. This was achieved by applying our centralized technique for sub-
teams of robots which are currently able to communicate. Furthermore, we learned
typical properties of indoor environments using the AdaBoost algorithm in combina-
tion with simple, single-valued features. By enabling the robots to add semantic labels
to the individual places in the environment, the coordination of large robot teams can
be optimized. We focused on the exploration of corridors, which typically have a high
number of branchings to adjacent rooms, where large teams ofrobots can be better
distributed over the environment. Using this technique to cover the environment with
a team of robots, the task can be carried out in an even shorterperiod of time.

Whenever robots act in the real world, their actions and observations are affected
by noise. Building spacial models under those conditions without consider active con-
trol is widely known as the simultaneous localization and mapping (SLAM) problem.
It is often called a chicken and egg problem, since a map is needed to localize a ve-
hicle while at the same time an accurate pose estimate is needed to build a map. We
presented in Chapter 6 a solution to the SLAM problem which isbased on a Rao-
Blackwellized particle filter using grid maps. In such a filter, each sample represents
a trajectory hypothesis and maintains its own map. Each map is updated based on the
trajectory estimate of the corresponding particle. The main challenge in the context
of Rao-Blackwellized mapping is to reduce its complexity, typically measured by the
number of samples needed to build an accurate map. We presented a highly efficient
technique which uses an informed proposal distribution to create the next generation
of particles. We consider the most recent sensor observation to obtain an accurate pro-
posal distribution. This allows us to draw samples only in those areas where the robot
is likely to be located. We furthermore reduced the number ofresampling actions in
the particle filter which helps to make particle depletion less likely. As a result, our
technique enables us to construct grid maps from large datasets in which the robots
traveled for around 2 km in indoor as well as in structured outdoor environments. We
are able to obtain maps with outstanding accuracy requiringaround one order of mag-
nitude less samples than other state-of-the-art Rao-Blackwellized mapping systems.

After having developed an efficient and accurate tool to dealwith the uncertainty
in the pose of the vehicle, we considered the problem of how tocombine exploration
and SLAM systems in Chapter 7. Since exploration strategiestypically try to cover
unknown terrain as fast as possible, they avoid repeated visits to known areas. This
strategy, however, is suboptimal in the context of the SLAM problem because the robot
needs to revisit places in order to localize itself. A good pose estimate is necessary to
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make the correct data association, i.e., to determine if thecurrent measurements fit into
the map built so far. In the case in which the robot uses an exploration strategy that
avoids multiple visits to the same place, the probability ofmaking the correct associa-
tions is reduced. To overcome this limitation, we developeda relocalization technique
for exploration based on loop-closing actions. First, the robot has to detect loops which
have not been traversed to far. This is done by maintaining a dual representation of the
environment. Beside a grid map, we construct a topological map based on the trajec-
tory of the vehicle. By comparing both models, we are able to reliably detect loops.
This information is then used to reenter the known parts of the environment in order
to relocalize the vehicle. This often leads to better aligned maps especially at the loop
closure point.

The problem of the presented technique lies in its heuristicestimation of when
to abort the loop-closing process. If the robot moves for an extremely long period
of time through known areas, the so-called particle depletion problem can affect the
filter. Particle depletion is the phenomenon that hypotheses which are needed later on,
for example to close a second loop, vanish while the robot stays in a first, inner loop.
Chapter 8 describes a technique that allows a mobile robot topropagate the particle
diversity through a loop after actively closing it. By creating a backup of the filter
when entering a loop and recovering the uncertainty when leaving the loop, the robot
can stay an arbitrary period of time in a loop without depleting important hypotheses.
As shown in our experiments, this approach yields accurate maps while reducing the
risk that the filter gets overly confident.

Chapter 9 presented an integrated approach that simultaneously addresses map-
ping, localization, and path planning. It extends the ideason decision-theoretic ex-
ploration presented in Chapter 3 and allows us to deal with the pose uncertainty of
the vehicle. It applies the Rao-Blackwellized particle filter presented in Chapter 6 to
model the posterior about the trajectory of the vehicle and the map of the environment.
The decision-theoretic action selection technique aims tominimize the uncertainty in
joint posterior about the poses of the robot and the map. In this context, we showed
that the entropy of a Rao-Blackwellized filter can be separated into two components:
The uncertainty of the posterior about the trajectory and the uncertainty in the map
multiplied with the likelihood of the corresponding sample.

Whenever our approach evaluates a set of actions, it takes into account sequences
of potential observations in order to minimize the uncertainty in the overall posterior.
This is achieved by simulating observation sequences basedon the posterior about the
map. The actions which are taken into account guide the robotin order to explore
unknown areas, move it to places which are well-known in order to reduce the pose
uncertainty, or actively close loops according to Chapter 7. As a result, we obtain a
robust active map learning approach that
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• minimizes the uncertainty in the robot’s world model,

• considers the cost of carrying out an action,

• reasons about potential observation sequences based on theposterior about the
map of the environment,

• considers exploration, place revisiting, and loop-closing actions, and

• is able to deal with uncertainty in the pose of the robot.

Finally, we addressed the problem of mapping and localization in non-static envi-
ronments. The assumption of a static world is unrealistic since most places in which
robots are deployed are populated by humans. In the last three years, different tech-
niques that are able to deal with dynamic aspects during mapping were presented. This
was typically achieved by filtering out the measurements which were reflected by dy-
namic objects. In Chapter 10, we chose a different approach.Instead of removing the
non-static aspects from the map model, we presented a technique to map their typical
configurations. The idea behind this approach is that several non-static objects occur
only in a limited number of states. Doors, for example, are typically either open or
closed and a parking space is either free or occupied by a car.Therefore, it makes
sense to include their typical configurations into the environment model. By clustering
local sub-maps, we are able to come up with a map model that maintains different
possible configurations for local areas.

We then extended the standard Monte-Carlo localization approach to enable a mo-
bile robot to localize itself in this kind of map and at the same time estimate the current
state of the environment. This allows us to perform the localization task more robustly
in case the environment is not static. In practical experiments, we showed that an
approach that is not able to model different spacial states failed to localize a robot cor-
rectly whereas our approach succeeded.

All techniques presented in this thesis have been implemented and thoroughly
tested. The experiments have been carried out on real robotsas well as in simula-
tion. We carried out the real world experiments using ActivMedia Pioneer and iRobot
B21r platforms. All simulation experiments, except the ones presented in Chapter 4
and 5, have been carried out using the simulator of the Carnegie Mellon Robot Navi-
gation Toolkit (CARMEN).

The contributions of this thesis are solutions to various previously unsolved or un-
addressed aspects of the map learning problem with mobile robots. In Chapter 9, we
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developed an active map learning system that integrates most of our techniques de-
scribed in the preceding chapters of this work. In summary, the approaches presented
in this thesis allow us to answer the following questions:

• How to coordinate a team of mobile robots so that the overall exploration time
and the amount of redundant work is minimized?

• How to accurately and efficiently solve the grid-based simultaneous localization
and mapping problem for robots equipped with a laser range finder?

• How to adapt an exploration technique to the needs of the underlying SLAM
approach?

• How to reduce the risk of particle depletion in the context ofactive Rao-Blackwellized
mapping?

• How to generate actions and reason about potential observation sequences for
an exploring mobile robot with the goal to minimize the uncertainty in its world
model?

• How to deal with non-static worlds in the context of map learning and localiza-
tion?

11.2 Future Work

Despite the encouraging results presented in this thesis, there are different aspects that
could be improved. The main issues are pointed out in the following subsections.

11.2.1 Multi-Robot Coordination

One interesting research direction is to consider situations in which robots are able to
communicate with each other but do not know their relative positions. In this case,
the exploration problem becomes even harder since the robots now have to solve two
problems. On the one hand they have to extend the map and on theother hand they
need to find out where they are relative to each other. An interesting approach which
allows the robots to establish a common frame of reference has been presented by Ko
et al. [2003]. Additionally, one could investigate scenarios in which the environment
changes over time.
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11.2.2 Exploration

Learningtypical structures of the environment and using them as background knowl-
edge for future tasks can improve the performance of robots not only in the context
of multi-robot exploration. A single robot can also benefit from such knowledge. By
learning appropriate priors of the map posterior, a robot could, for example, plan better
trajectories through the unobserved parts of the environment. This problem, however,
turns out to be quite difficult. There exist approaches[Fox et al., 2003] that learn pri-
ors from previously explored environments and use them for future tasks. We strongly
believe that solutions to this problem will offer significant improvements in a wide
area of robotic applications.

11.2.3 Simultaneous Localization and Mapping

One way of improving our SLAM approach is to use more compact map models and
in this way reduce the memory requirements. Furthermore, itis possible to speed
up the computation of the proposal distribution. This can beachieved by choosing
representatives from the sample set and by performing the computations only for those
samples. We are currently exploring solutions in this direction. Preliminary results
done together with Giorgio Grisetti show a speed-up of around one order of magnitude
compared to the approach presented in this thesis.

Furthermore, building maps from sensor data is typically done only for a limited
period of time. After the robot has acquired a map, it uses this model for a variety of
different tasks. An interesting aspect in the context of maplearning is the life-long
map learning problem where the robot has to update and maintain its model of the
environment for a long period of time. In general, the longerthe robot integrates ob-
servations obtained in an environment into its grid map, themore the map gets blurred.
The reason for this are small errors in the observations, ambiguous situations for the
scan-matcher, as well as the sampling process for drawing the next generation of sam-
ples. One possibility to overcome this problem is to abort the map update process and
focus on localizing the vehicle. Whenever the robot detectschanges in the environ-
ment it would have to consider switching back to the SLAM problem and updating the
map model appropriately. How to achieve this in an robust andefficient way has – due
to the best of our knowledge – not been addressed so far.

11.2.4 Mapping and Localization in Non-Static Environments

One possibility to extend the approach to mapping and localization in non-static envi-
ronments is to combine our map model with techniques for SLAM. This is an inter-
esting and challenging problem, since the robot is in general unable to distinguish if
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it moves through unknown areas or revisits known terrain which has changed since its
last visit. Furthermore, it involves the problem of online map clustering.

To support life-long learning one can consider integratinga time dependency into
the map representation in order to remove configurations that have not been observed
for a long period of time. However, this again introduces theproblem of when to
update the map representation and when to localize within the map.

A further aspect, which has not been analyzed in detail is theuse of topological
information for dividing the environment into sub-maps. Such a segmentation would
probably lead to more intuitive sets of sub-maps.
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Appendix A

A.1 Probability Theory

A.1.1 Product Rule

The following equation is called the product rule

p(x, y) = p(x | y) · p(y) (A.1)

= p(y | x) · p(x). (A.2)

A.1.2 Independence

If x andy are independent, we have

p(x, y) = p(x) · p(y). (A.3)

A.1.3 Bayes’ Rule

The Bayes’ rule, which is frequently used in this thesis, is given by

p(x | y) =
p(y | x) · p(x)

p(y)
. (A.4)

The denominator is a normalizing constant that ensures thatthe posterior of the left
hand side adds up to 1 over all possible values. Thus, we oftenwrite

p(x | y) = η · p(y | x) · p(x). (A.5)

In case the background knowledgee is given, Bayes’ rule turns into

p(x | y, e) =
p(y | x, e) · p(x | e)

p(y | e)
. (A.6)
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A.1.4 Marginalization

The marginalization rule is the following equation

p(x) =

∫

y

p(x, y) dy. (A.7)

In the discrete case, the integral turns into a sum

p(x) =
∑

y

p(x, y). (A.8)

A.1.5 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which can be
derived using the product rule

p(x) =

∫

y

p(x | y) · p(y) dy, (A.9)

and the corresponding sum for the discrete case

p(x) =
∑

y

p(x | y) · p(y). (A.10)

A.1.6 Markov Assumption

The Markov assumption (also called Markov property) characterizes the fact that a
variablext depends only on its direct predecessor statext−1 and not onxt′ with t′ <
t− 1

p(xt | x1:t−1) = p(xt | xt−1). (A.11)
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