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Abstract

Recently Rao-Blackwellized particle filters have been introduced as an effective means
to solve the simultaneous localization and mapping (SLAM) problem. In such a particle
filter each particle carries an individual map of the environment. Accordingly, a key
question is how to reduce the number of particles. Additionally, the approach leaves
open how to move the robot in order to improve the accuracy of the learned maps. In
this paper we present novel solutions to both problems. First we present an efficient
way to compute improved proposal distributions in the prediction step which drastically
reduces the uncertainty about the robot’s pose. Furthermore, we present an approach to
effectively reduce the number of re-sampling steps which seriously reduces the particle
depletion problem. Finally, we describe a technique allowing the robot to actively close
loops during exploration. By re-entering already visited areas our algorithm reduces
the localization error and this way produces more accurate maps. Experimental results
carried out with mobile robots in large-scale indoor and outdoor environments illustrate
the advantages of our methods over previous approaches.

1 Introduction

Simultaneous mapping and localization belongs to one of the fundamental problems of mobile ro-
botics. Robots that are able to concurrently maintain a model of their environment and to localize
themselves relatively to this model are regarded as fulfilling a major precondition of truly autonomous
mobile vehicles. Recently, Rao-Blackwellized particle filters have been introduced as an effective
means for solving the SLAM problem with occupancy grid maps [4]. The key idea of this approach
is to use a particle filter in which each particle carries its own map which is computed based on the
trajectory of that particle. The major disadvantage of this approach lies in the huge memory require-
ments, since one map has to be maintained for each particle. Therefore, effective ways to reduce the
number of required particles are of utmost importance when environments which large loops have to
be mapped.

As many other approaches to solve the SLAM problem, Rao-Blackwellized particle filters do not
belong to the integrated techniques since they only estimate the map of the environment and the
location of the vehicle and lack a method to actively control the motions of the vehicle. Controlling
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Figure 1. Two different maps obtained from a real world experiment performed in Sieg Hall at
the University of Washington. In the left image the robot traversed the loop on the left side only
once before it entered the corridor. Accordingly, it was unable to localize itself correctly when
it closed the loop. In the right image, the robot traversed the loop twice and therefore could
correctly estimate its position in the map. The accuracy of the resulting map therefore is much
higher.
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the movements of the robot, however, can have a serious influence on the quality of the resulting map.
For example, a robot that enters already visited terrain can more accurately localize itself relative to its
map compared to an approach which separates the SLAM problem from the control problem and uses
an exploration strategy that seeks to visit unknown terrain as fast as possible In general, if the robot
uses an exploration strategy that avoids re-visiting known areas of the environment, the probability of
making correct associations is reduced.

Figure 1 gives an example that illustrates why an integrated approach that performs active place re-
visiting provides better results than approaches that do not consider re-entering known terrain during
the exploration phase. In the situation shown in the left image the robot traversed the loop just
once. The robot was not able to correctly determine the angle between the loop and the straight
corridor, because it did not collect enough data to accurately localize itself. The second map shown
in the right image has been obtained with the approach described in this paper after the robot traveled
twice around the loop before entering the corridor. As can be seen from the figure, this reduces the
orientation error from approximately 7 degrees (left image) to 1 degree (right image). This example
illustrates that the capability to actively close loops during exploration allows the robot to reduce its
pose uncertainty during exploration and thus results in more accurate maps.

In this paper we present a highly efficient variant of the standard Rao-Blackwellized mapping tech-
nique which seriously reduces the number of particles needed. This is achieved by using an adaptive
motion model which applies a scan-matching procedure during the prediction phase and which es-
timates the parameters of the motion model based on the uncertainty in the scan-matching process.
Additionally we introduce an adaptive resampling scheme that maintains the particle diversity and this
way reduces the particle depletion problem. Finally, we present an integrated algorithm that generates
trajectories which actively close loops. Our algorithm explicitely takes into account the uncertainty
about the pose of the robot during the exploration task. Additionally it avoids that the robot becomes
overly confident during the loop closing process. We present practical experiments carried out in
large-scale in- and outdoor environments, which can be mapped by our system with 50 particles or
even less. Additionally, we present results illustrating that our active loop-closing algorithm yields
more accurate maps than a combination of Rao-Blackwellized mapping with a standard exploration
behavior that forces the robot to always visit unknown areas.

This paper is organized as follows. After the discussion of related work in the following section, we
briefly explain the idea of Rao-Blackwellized mapping in Section 3. Section 4 presents our adaptive
techniques to improve the performance this mapping framework. In Section 5 we present our inte-
grated algorithm that actively controls the robot during mapping. Section 6 then presents experiments
carried out on real robots as well as in simulation.



2 Related Work

In the past, several techniques have been proposed to reduce the number of necessary particles in the
particle filter. One solution is to choose the optimal proposal distribution [3, 19]. Unfortunately, such
a distribution is generally unavailable in a form suitable for sampling. However, in several domains
it is possible to use Gaussian approximations of the optimal proposal distribution. For example, the
unscented particle filter [19] attempts to estimate a Gaussian approximation of the proposal given
the model of the system. In FastSLAM-2 [13] the proposal distribution is also approximated by a
Gaussian within a Rao-Blackwellized particle filter for landmark-based mapping. In this paper we
follow a similar idea in the context of Rao-Blackwellized mapping with grid maps. In particular we
utilize a scan-matching procedure for computing a Gaussian approximation of the observation model.
This extends our previous work [9] since the proposal distribution is computed on a per-particle basis
and dependent on the current observation and the individual maps.

Within the context of exploring unknown environments several previous publications are relevant.
Most exploration techniques presented so far focus on generating motion commands that minimize
the time needed to cover the whole terrain [1, 10, 20, 21]. Other methods seek to optimize the view-
points of the robot to maximize the expected information gain and to minimize the uncertainty of
the robot about grid cells [7, 17]. The majority of approaches, however, assumes that the location
of the robot is known during exploration. In the area of SLAM, most of the papers focus on the
aspect of state estimation as well as belief representation and update [2, 4, 5, 8, 9, 13, 14, 15, 18].
These techniques are passive and do not include means to actively control the motions of the robots.
Recently, several integrated approaches have been proposed. For example, Makarenko et al. [12]
extract landmarks out of laser range scans and use an Extended Kalman Filter to solve the SLAM
problem. They furthermore introduce a utility function which trades-off the cost of reaching frontiers
with the utility of selected positions with respect to a potential reduction of the pose uncertainty. The
approach is similar to the work done by Feder et al. [6] who consider local decisions to improve
the pose estimate during mapping. Both techniques, however, rely on the fact that the environment
contains landmarks that can be uniquely determined during mapping. In contrast to this, the approach
presented in this paper makes no assumptions about distinguishable landmarks in the environment.
It uses raw laser range scans to compute accurate grid maps. It considers the utility of re-entering
known parts of the environment and following an encountered loop to reduce the uncertainty of the
robot in its pose. This way, the resulting maps become highly accurate.

3 Rao-Blackwellized Mapping

To estimate the map of the environment we use an efficient implementation of the Rao-Blackwellized
particle filter for simultaneous localization and mapping proposed by Murphy et al. [4]. The key idea
of this approach is to estimate a posterior p(x1.; | z1.¢, u1.¢) about potential trajectories z1.; of the robot
given its observations z1.; and its odometry measurements u1.; and to use this posterior to compute a
posterior over maps and trajectories:

p(m, L1t | Zl:ta“l:t) = p(m ’ 131:t721:t)p(371:t | Zl:ta“l:t)- (1)

This can be done efficiently, since the quantity p(m | 1., 21.;) can be computed analytically once
x1,4 and zp,, are known. To estimate the posterior p(z1.; | 21.,u1.;) Over the potential trajectories
Rao-Blackwellized mapping uses a particle filter in which an individual map is associated to each
sample. Each map is constructed given the observations z1.; and the trajectory x.; represented by the
corresponding particle.



The particle filter algorithm consists of three major steps. The first step computes the successor
state distribution by sampling from a so called proposal distribution 7. The second step assigns an
individual importance weight to each particle. These weights account for the fact that the proposal
distribution 7 in general is not equal to the true proposal distribution. The third step is the resampling
step in which each particle survives with a probability proportional to its importance weight. This
resampling process is necessary since only a finite number of particles is used to approximate a
posterior and since it allows to apply a particle filter in situations in which the proposal distribution
differs from the true one.

In Rao-Blackwellized particle filters for SLAM each particle represents a possible trajectory of the
robot. Drawing particles from a proposal distribution is necessary since the exact motion of the robot
cannot be determined. Therefore the proposal distribution is often called motion model. The weight

wﬁi) of particle ¢ being at position xii) is computed according to importance sampling principle:

(3) — p(SL’EZ) ‘ 21, Ul:t, .To) (2)

(x| 21, s, o)

The effectiveness of a particle filter can be measured in terms of the number of particles required
for correctly representing the estimated posterior. Key questions, that have to be solved in practical
applications, are how the proposal distribution is computed, when the resampling should be carried
out, and how the robot should move through the environment to aquire the necessary data.

Throughout the remainder of this paper, we describe techniques to compute accurate proposal
distribution, to adaptively determine when to resample, and how to actively close loops during explo-
ration. All approaches in common lead to a highly efficient Rao-Blackwellized mapping technique
that scales to environments that are by one order of magnitude larger than those that could be mapped
with previous grid-based variants of Rao-Blackwellized mapping.

4 Adaptive Sampling for Improved Rao-Blackwellized Mapping

In this section we describe two enhancements to Rao-Blackwellized mapping. First we introduce an
improved motion model, which allows to draw samples in a highly accurate way. We then present
an adaptive resampling strategy, which performs a resampling step based on an estimate about how
well the current sample set represents the posterior. As a consequence, the risk of particle depletion
is reduced.

As explained above, during the execution of the particle filter one needs to draw samples from
a proposal distribution 7. This distribution has to be defined by the user and should be as close
as possible to the true distribution (see Eq. (1)). Unfortunately, a closed form of this posterior is
not known in general. In the context of mobile robot localization, the samples therefore are usually
drawn from the motion model p(z; | z;_1, u;) of the robot. The appropriateness of this approach also
depends on the likelihood function p(z; | x;), which specifies the perception model and is used to
compute the importance weights. If the variance of the motion model is significantly larger than the
variance of the observation model p(z; | x;) there is a high risk that the drawn samples represent the
posterior in a poor way. Such a situation can typically be observed when laser range finders are used
for mobile robot localization. Due to the high accuracy of this sensor the corresponding likelihood
function is extremely peaked compared to the model of the odometry.

The current state-of-the-art Rao-Blackwellized mapping algorithms draw particles from a fixed
motion model. In order to ensure the convergence of the filter a fixed motion model needs to over-
estimate the error of the robot’s motion. Even if consecutive range measurements are transformed into
highly accurate odometry measurements using a scan-matching approach like in our previous work [9]
the corresponding motion model has to take into account the worst case scenario. In principle, if all
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Figure 2. The two components of the motion model. Within in interval L the product of both
functions is dominated by the observation likelihood. Accordingly the model of the odometry

error can safely be approximated by a constant value.

measurements are maximum range readings this is equivalent to the raw odometry. Conservative
approximations typically cause the particle filter to require more samples since the diversity of the
particles often is higher than needed. The model introduced in this section is adaptive and adjusts
the variance of the proposal according to the accuracy of the scan-matching process. Accordingly, it
requires less samples than a conservative approach.

A Rao-Blackwellized mapping technique can be significantly improved by drawing from the opti-
mal proposal distribution (see Doucet [3]):

G G) )= p(z | mt 1,x§))p( |2 )
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When using a laser range finder, the llkehhood function p(z, | m{”,, 2" is usually extremely
peaked and dominates the product p(z; | mt L zl ))p( ) | xi )1, ut) w1th1n the meaningful area of

the likelihood function. Therefore it is possible to approximate p(x; (@) | xt 1, Uy) by a constant k
within the interval L) given by:
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Figure 2 illustrates a motion model and the dominant likelihood function as well as the interval L®.

Under this assumption it is possible to formulate an approximation for the right hand side of Eq. (3):
p(z | mt 17%(&))]7(551(51) | 220, ue) - p(z | mt 1L ())
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In our current system we locally approximate the distribution around the maximum of the likelihood
function using a Gaussian so that we obtain
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With such an approximation we obtain a closed form, which is suitable for sampling. The parameters

,ugi) and z,ﬁ“ can be computed by evaluating the likelihood function for a set of points {x;} sampled
around the optimal pose obtained from the scan-matching process for particle ¢
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where 7 = Zszl plze | MY, x;) is a normalizer. Note that the scan-matching process as well as the

computation of ,ul(f) and Zii) needs to be carried out for each particle.
Furthermore, we have to specify how the importance weights are computed under this proposal
distribution. We can approximate the importance weight w(® for each particle i by:
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The overall idea can be summarized as follows. We use a Gaussian to approximate the optimal
proposal distribution based one a scan-matching process which is carried out once per particle. The
parameters of this Gaussian are obtained by the maximum likelihood position provided by the scan
matcher and by sampling around that position. Given this Gaussian we compute the importance
weights based on Eq. (9).

A further aspect that has a major influence on the performance of a particle filter is the resampling
step. During resampling particles with a low importance weight w(® are typically replaced by samples
with a high weight. On the one hand, this technique is necessary since only a finite number of
particles are used to approximate a posterior. Resampling furthermore allows to apply a particle filter
in situations in which the true posterior differs from the proposal distribution. On the other hand, the
resampling step can delete good samples from the sample set so that the quality of the approximation
decreases or, in the worst case, the filter diverges.

Accordingly, it is important to find a criterion when to perform a resampling step. Liu [11] intro-
duced the so-called number of particles Nz to estimate how well the current particle set represents
the true posterior. This quantity is computed as

Ny = ——— (10)

Zz‘]\il (w(i))z.

The intuition behind Nz is as follows. If the samples were drawn from the true posterior the impor-
tance weights of the samples would be equal to each other. The worth the approximation the higher
the variance of the importance weights. Since N4 can be regarded as a measure of the dispersion of
the importance weights, it is a useful measure to evaluate how well the particle set approximates the
true posterior. Our approach follows the one proposed by Doucet [3] to determine whether or not a
resampling should be carried out. We resample each time N .4 drops below a given threshold which
was set to % where NV is the number of particles. In our experiments we found that this technique
drastically reduces the risk of replacing good particles, because the number of resampling operations
is reduced and resampling operations are only performed when needed.

S [Exploration With Active Loop-Closing for Rao-Blackwellized
Mapping

During Rao-Blackwellized mapping, whenever the robot explores new terrain, all samples have more
or less the same importance weight, since the most recent measurement is typically consistent with the



Figure 3. The (red) dots and lines in these three image represent the nodes and edges of G,
In the left image Z(i) contains two nodes. In the middle image the robot is closing a loop.
Afterwards the robot continues exploring unknown terrain (right image).

part of the map constructed from the immediately preceding observations. As a result, the uncertainty
of the particle filter increases. As soon as it re-enters known terrain, however, the maps of some
particles are consistent with the current measurement and some are not. Accordingly the weights of
the samples differ largely. Due to the resampling step the uncertainty about the pose of the robot
usually decreases.

Note that this effect is much smaller if the robot just moves backward a few meters to re-visit previ-
ously scanned areas. This is because each map associated to a particle is generally locally consistent.
Inconsistencies mostly arise when the robot re-enters areas explored some time ago. Therefore, vis-
iting places seen further back in the history has a stronger effect on the differences between the
importance weights and typically also on the reduction of uncertainty compared to places recently
observed.

The key idea of our approach is to identify opportunities for closing loops during terrain acquisi-
tion. Here closing a loop means actively re-entering the known terrain and following a previously
traversed path. To determine whether there exists a possibility to close a loop we consider two dif-
ferent representations of the environment. In our current system we associate to each particle ¢ an
occupancy grid map m(® and a topological map G, which both are updated based on the robot’s
perceptions and actions while it is performing the exploration task. In the topological map G the
vertices represent positions visited by the robot. The edges represent the trajectory corresponding to
the particle 7. To construct the topological map we initialize it with one node corresponding to the
starting location of the robot. Let xgi) be the pose of particle ¢ at the current time step t. We add a

new node at xgi) to G if the distance between xii) and all other nodes in GV exceeds a threshold of

¢ = 2.5m or if none of the other nodes in G is visible from 2"

Vn € nodes(GY) [distm@(:pii),n) >c V not_visiblem(o(xy),n) . (11)

Whenever a new node is added, we also add an edge from this node to the most recently visited node.
To determine whether or not a node is visible from another node we perform a ray-casting operation
in the occupancy grid m(.

Figure 3 depicts such a graph for one particular particle during different phases of an exploration
task. In each image, the topological map G is printed on top of metric map m(®). To motivate the
idea of our approach we would like to refer the reader to the left image of this figure. Here the robot
was almost closing a loop. This can be detected by the fact that the length of the shortest path between
the current pose of the robot and previously visited locations in the topological map G was large
whereas it was small in the grid-map m(®.

Thus, to determine whether or not a loop can be closed we compute for each sample ¢ the set Z (i)

(4)

of positions of interest, which contains all nodes that are close to current pose ,"” of particle i based



on the grid map m ¥ but are far away given the topological map G of particle i:
(i) = {xl(f) € nodes(GM) | distmu)(xi,i),xy)) <c A distgu)(xi,i),xgi)) > o} (12)

Here dist (21, x2) is the length of the shortest path from x; to x5 given the representation M. The
distance between two nodes in G is given by the length of the shortest path between both nodes. The
terms ¢, and cs are constants that must satisfy the constraint ¢; < co. In our current implementation
the values of these constants are ¢; = 6m and ¢, = 20m.

If Z(i) # 0 there exist so-called shortcuts from xtl) to the positions in Z(7). These shortcuts
represent edges that would close a loop in the topological map G. The left image of Figure 3
illustrates a situation in which a robot encounters the opportunity to close a loop since Z (i) contains
two nodes. The key idea of our approach is to use such shortcuts whenever the uncertainty of the
robot in its pose becomes too large. The robot then re-visits portions of the previously explored area
and this way reduces the uncertainty in its position.

To determine the most likely movement allowing the robot to follow a previous path of a loop, one
in principle has to integrate over all particles and consider all potential outcomes of that particular
action. Since this would be too time consuming for online-processing we consider only the particle
¢* with the highest accumulated importance weight:

T
o= argmaxZwlgi). (13)
U —

Here w.” is the weight of sample i at time step ¢. If T (i*) # 0 we choose the node x;, from Z(i*)

which is closest to :cgiﬂ:

x;, = argmin distm[i*}(azy*],x). (14)

x€Z(i*)

In the sequel z;, is denoted as the entry point at which the robot has the possibility to close a loop. .
corresponds to the last time the robot was at the node x,, .

To determine whether or not the robot should activate the loop-closing behavior our system con-
stantly monitors the uncertainty H(¢) about the robot’s pose at the current time step. The necessary
condition for starting the loop-closing process is the existence of an entry point z, and that H(¢)
exceeds a given threshold. Once the loop-closing process has been activated, the robot approaches z;,
and then follows the path taken after arriving previously at z;,. During this process the uncertainty in
the pose of the vehicle typically decreases, because the robot is able to localize itself in the map built
so far and unlikely particles vanish.

We furthermore have to define a criterion for deciding when the robot actually has to stop following
a loop. A first attempt could be to introduce a threshold and to simply stop the trajectory following
behavior as soon as the uncertainty becomes smaller than the given value. This criterion, however, can
be problematic especially in the case of nested loops. Suppose the robot encounters the opportunity to
close a loop that is nested within an outer and so far unclosed loop. If it eliminates all of its uncertainty
by repeatedly traversing the inner loop, particles necessary to close the outer loop may vanish. As
a result, the filter diverges and the robot fails to build a correct map. Such a situation is shown in
Figure 4. To remedy this so-called particle depletion problem [19] we introduce a constraint on the
uncertainty of the filter. Let H(t.) denote the uncertainty of the posterior when the robot visited the
entry point the last time. The new constraint allows the robot to re-traverse the loop only as long as
its current uncertainty H(t) exceeds H(t.). If the constraint is violated the robot resumes its frontier-
based exploration process. The idea of this constraint is to avoid the depletion of relevant particles
during the loop-closing process.



Figure 4. An example for divergence based on particle depletion. A robot traveled through the
inner loop several times (left image). After this the diversity of hypotheses about the trajectory
outside the inner loop had decreased too much (middle image) and the robot is unable to close
the outer loop correctly (right image).

Algorithm 1 The loop-closing algorithm
Compute Z (%)
if Z(i*) # () then begin
H — H(t.)
path — 2\ shortest_pathgi (azte,:cl[fﬂ)
while H(t) > H A H(t) > threshold do
robot_follow(path)

end

To better illustrate the importance of this constraint consider the following example: A robot moves
from place A to place B and then repeatedly observes B. While it is mapping B it does not get
any further information about A. Since each particle represents a whole trajectory of the robot also
hypotheses representing ambiguities about A will vanish when reducing potential uncertainties about
B. Our constraint avoids the depletion of particles representing ambiguities about A by aborting the
loop-closing behavior at B as soon as the uncertainty drops below the uncertainty stemming from A.

Finally we have to describe how we actually measure the uncertainty in the pose estimate. The
most popular way of measuring the uncertainty of a posterior is to calculate its entropy. The entropy,
however, has the disadvantage that it does not consider the distance between the individual peaks of
multi-modal distributions. In our experiments we figured out that we obtain better results if we use
the volume expanded by the samples instead of the entropy of the posterior. We therefore calculate
the pose uncertainty by determining the volume of the oriented bounding box around the particle
cloud. A good approximation of the minimal oriented bounding box can be obtained efficiently by a
principal component analysis.

We use a frontier-based exploration strategy [1] to choose target points for the robot as long as it is
localized well enough or no loop can be closed. In our current system we determine frontiers based on
the map of the most likely particle *. Here a frontier is any known cell that is an immediate neighbor
of an unknown, unexplored cell [21].

A precise formulation of the loop-closing strategy is given by Algorithm 1. In our implementation
this algorithm runs as a background process, which triggers interrupts of the frontier-based exploration
procedure. An application of this algorithm in a simulation run is illustrated in Figure 3.

Note that our loop-closing technique can also handle multiple nested loops. During the loop-closing
process the robot follows its previously taken trajectory to re-localize. It does not leave this trajectory
until the termination criterion, described in previous section, is fulfilled. Therefore it never starts a



Figure 5. Active loop-closing in an environment with multiple nested loops.

new loop-closing process before the current one is completed. A typical example with multiple nested
loops is shown in Figure 5. In the situation depicted in the left image the robot starts with the loop-
closing process for the inner loop. After completing this loop it moves to the second inner one and
again starts the loop-closing process. Since our algorithm considers the uncertainty at the entry point
it keeps enough variance in the filter to close the outer loop. In general, the quality of the solution
and whether or not the overall process succeeds depends on the number /V of particles used. Since
determining N is an open research problem this quantity has to be defined by the user in our current
system.

6 Experiments

Our approach has been implemented and evaluated in a series of real world and simulation experi-
ments. For the real world experiments we used an iRobot B21r robot, an ActivMedia Pioneer 2-DX8,
and an ActivMedia Pioneer 2-AT outdoor robot. All robots are equipped with a SICK laser range
finder. For the simulation experiments we used the real-time simulator of the Carnegie Mellon Robot
Navigation Toolkit (CARMEN) [16].

The experiments described in this section are designed to illustrate that our approach can be used
to actively learn accurate maps of large environments. It also shows that the improvements of the
underlying mapping algorithm have a major influence on quality of the solution. Furthermore, our
experiments demonstrate that our integrated approach yields better results than an approach without
active loop-closing. Additionally, we analyze how the active termination of the loop-closure influ-
ences the result of the mapping process.

6.1 The Improved Motion Model and Adaptive Resampling

To see the enhancements obtained by utilizing our improved motion model and adaptive resampling
technique consider Figure 6, which show two maps created from exactly the same data set. This data
was acquired using a Pioneer 2-AT robot on our campus at the University of Freiburg. The size of the
environment is approximately 250m x 250m and the robot traveled 1.750km. During data acquisition
several people walked by, cars passed and also the ground surface was not absolutely flat which makes
the mapping task hard. The left image shows a map created with our improved mapper, whereas the
right image was constructed with a Rao-Blackwellized mapper lacking the adaptive resampling and
the improved motion model but using a scan-matched odometry as input. Both techniques used 30
particles and we used optimized parameters for each approach. As can be seen the sequence of scans
in the left map are locally consistent but only the map using the improved techniques is globally



Figure 6. The campus of the Department of Computer Science at the University of Freiburg.
The left image shows a map created with the improved Rao-Blackwellized mapping technique,
wheres the right image was constructed with a Rao-Blackwellized mapper lacking the improved
techniques introduced in this paper.
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Figure 7. The left image depicts a map of the Intel Research Lab as well as the trajectory of the
robot during data acquisition. The robots started at (a), traversed the big loop (b), and closed
it (c). It then re-visited the loop again (d) and started exploring the rooms (e). The right plot
shows the evolution of N.g. Each time it drops below 40 a resampling is performed.

consistent and at the same time extremely accurate. Note that in general an accurate map could also
be build without our improvements, although it would requires seriously more particles.

The next experiment illustrates the evolution of the measure N g used for our adaptive resampling
technique. As mentioned above, we permanently monitor Vg and perform resampling only if this
value drops below £'.

Figure 7 plots the value of N4 for a complete mapping task. As can be seen the first resampling is
carried out after the first loop-closure, labeled with (c). During the whole experiment only 8 resam-
pling actions were performed, which enabled the filter to keep several hypotheses for a longer period
of time. Note the relationship between the value of N.g and whether or not the robot moves through
known or unknown terrain. Also note that the value significantly drops when the robots closes a loop
(c). This is because the likelihood the the observation varies largely between different particles in
such a situation. However, as long as the robot is accurately localized or explores unknown areas this
parameter drops only slightly (see (b) and (d)).
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Figure 8. This image shows the resulting map of an exploration experiment carried out using a
Pioneer 2 robot equipped with a laser range scanner in the entrance hall of the Department for
Computer Science at the University of Freiburg. Also shown is the path of the robot as well as
entry and exit points where the robot started and stopped the active loop-closing process.

6.2 Real World Exploration

The first experiment was carried out to illustrate that our current system can effectively control a
mobile robot to actively close loops during exploration. To perform this experiment we used a Pio-
neer 2 robot to explore the main lobby of the Department for Computer Science at the University of
Freiburg. The size of this environment is S1m times 18m. Figure 8 depicts the final result obtained
by a completely autonomous exploration run using our active loop-closing technique. It also depicts
the trajectory of the robot, which has an overall length of 280m. The robot decided four times to
re-enter a previously visited loop in order to reduce the uncertainty in its pose. Figure 8 also shows
the corresponding entry points as well as the positions where the robot left the loops (“exit points™).
As can be seen the resulting map is quite accurate.

6.3 Active Loop-Closing vs. Frontier-Based Exploration

The next experiment was carried out to compare our algorithm with a standard exploration strategy
that does not consider loop closing actions. Note that the current implementation of our exploration
system does not use the improved mapper and build maps using the standard approach. Nevertheless
the problem discussed in the following hold also for the improved technique if reducing the number
of particles or increasing the size of the map. Currently we are working on an integration of both
system.

The right image of Figure 1 shows the map obtained with a B21r robot in the Sieg Hall at the
University of Washington using our algorithm. To eliminate the influence of measurement noise and
different movements of the robot we removed the data corresponding to the second loop traversal from
the recorded data file and used this data as input to our mapping algorithm. This way we simulated
the behavior of a greedy exploration strategy which forces the robot to directly enter the corridor after
returning to the starting location in the loop. As can be seen from the left image of Figure 1, an
approach that does not actively re-enter the loop fails to correctly estimate the angle between the loop
and the corridor which should be oriented horizontally in that figure. Whereas the angular error is 7
degrees with the standard approach it is only 1 degree with our method. Both maps correspond to the
particle with the highest accumulated importance factor.

To quantitatively evaluate the advantage of the loop-closing behavior we performed a series of
simulation experiments in an environment similar to the Sieg Hall. We performed 20 experiments,
10 with active loop-closing and 10 without. After completing the exploration task we measured the
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Figure 9. Comparison of our loop-closing strategy with a purely frontier-based exploration tech-
nique. The left bar in this graph plots the average error in the pose of the robot obtained with
our loop-closing strategy. The right bar shows the average error obtained with a frontier-based
approach. As can be seen, our technique significantly reduces the distances between the error in
the relative pose estimates.

average error in the relative distances between positions lying on the resulting estimated trajectory
and the ground truth provided by the simulator. The results are depicted in Figure 9. As can be seen
the active loop-closing behavior significantly reduces the error in the position of the robot.

6.4 Importance of the Termination Criterion

In this final experiment we analyze the importance of the constraint that terminates the active loop-
closing behavior as soon as the current uncertainty H(¢) of the belief drops under the uncertainty
H(t.) of the posterior when the robot was at the entry point last time.

In this simulated experiment the robot had to explore an environment containing two nested loops
(see Figure 10). In one case we simply used a constant threshold to determine whether or not the
loop-closing behavior should be stopped. In the second case we applied the additional constraint that
the uncertainty should not become smaller than H(¢.).

Figure 4 (in Section 5) shows the map of the particle with the highest accumulated importance
weight obtained with our algorithm using a constant threshold instead of considering H(t.). In this
case the robot repeatedly traversed the inner loop (left image) until its uncertainty was reduced be-
low a threshold. After three and a half rounds it decided to again explore unknown terrain, but the
diversity of hypotheses had decreased too much (middle image). Accordingly the robot was unable
to accurately close the outer loop (right image). We repeated this experiment several times and in
no case the robot was able to correctly map the environment. In contrast to that, our approach using
the additional constraint always generated an accurate map. One example run is shown in Figure 10.
Here the robot stopped the loop-closing after traversing half of the inner loop. In both cases we used
80 particles.

As this experiment illustrates, the termination of the loop-closing is important for the convergence
of the filter and to obtain accurate maps in environments with several (nested) loops. Note that similar
results in principle can also be obtained without this termination constraint if the number of particles
is dramatically increased. Since exploration is an online problem and since every particle carries its
own map it is of utmost importance to keep the number of particles as small as possible. Therefore
our approach also can be regarded as a contribution to limit the number of particles during Rao-
Blackwellized mapping.
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Figure 10. Different situations during the traversal of a nested loop. After exploring unknown
areas the robot detected an opportunity to close a loop (a). It then traversed parts of the inner
loop until its uncertainty H(t) did not exceed the uncertainty H(t.) of the posterior at the entry
point. It then left the loop to explore new terrain (b). After this enough hypotheses were left
to correctly close the outer loop (c). In contrast to that, a system considering only a constant
threshold fails to correctly close the outer loop (see Figure 4).

7 Conclusion

In this paper we presented several improvements to Rao-Blackwellized particle filtering for simul-
taneous localization and mapping. First, we presented an approach to compute a highly accurate
proposal distribution using scan-matching. Additionally, we dynamically determine whether or not a
resampling step needs to be performed. Both approaches in common allow to reduce the number of
necessary samples in Rao-Blackwellized mapping and at the same time scale this approach to larger
environments. Finally, we introduced a technique to actively close loops. This algorithm forces the
robot to re-visit previously traversed loops. Thus, it reduces the uncertainty in the data association
and the pose estimate.

Our approach has been implemented and tested on various platforms and in indoor and outdoor
environments. Experimental results demonstrate that our current system is able to build large-scale
maps with fifty particles or less. Additionally, experiments carried out with our loop-closing algorithm
indicate that integrated approaches to exploration and SLAM yield significantly better maps.

Nevertheless, there are several remaining tasks to be solved. One general problem of Rao-Black-
wellized mapping is that the number of particles needed to build an accurate map is not known in
advance. A further limitation is that there are no means to recover from a divergence of the filter
without a complete re-run of the whole algorithm. Finally, it appears interesting to investigate whether
the number of effective particles Vg can be used as an indicator to decide whether or not continue
the active loop-closing process.
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