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Abstract
In this paper we introduce coverage maps as a new
way of representing the environment of a mobile
robot. Coverage maps store for each cell of a given
grid a posterior about the amount the corresponding
cell is covered by an obstacle. Using this represen-
tation a mobile robot can more accurately reason
about its uncertainty in the map of the environment
than with standard occupancy grids. We present
a model for proximity sensors designed to update
coverage maps upon sensory input. We also de-
scribe how coverage maps can be used to formulate
a decision-theoretic approach for mobile robot ex-
ploration. We present experiments carried out with
real robots in which accurate maps are build from
noisy ultrasound data. Finally, we present a com-
parison of different view-point selection strategies
for mobile robot exploration.

1 Introduction
Generating maps is one of the fundamental tasks of mobile
robots and many researchers have focused on the problem of
how to represent the environment as well as how to acquire
models using this representation [5, 9, 10, 14, 17]. The map-
ping problem itself has several aspects that have been studied
intensively in the past. Some of the most important aspects
are the localization of the vehicle during mapping, appropri-
ate models of the environment and the sensors, as well as
strategies for guiding the vehicle. In literature, the localiza-
tion problem plays an important role, since the quality of the
resulting map depends strongly on the accuracy of the pose
estimates during the mapping process. However, the accu-
racy of the map also depends on the choice of view-points
during exploration. Especially if noisy sensors are used, the
map will be quite inaccurate in areas which have been sensed
a few times only or maybe even from disadvantageous view-
points.

Exploration is the task of guiding a vehicle in such a way
that it covers the environment with its sensors. Efficient ex-
ploration strategies are also relevant for surface inspection,
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mine sweeping, or surveillance [3, 12]. In the past, several
strategies for exploration have been developed. One group
of approaches deals with the problem of simultaneous local-
ization and mapping [1, 4], an aspect that we do not address
in this paper. A common technique for exploration strategies
is to extract frontiers between known and unknown areas [2,
7, 20] and to visit the nearest unexplored place. These ap-
proaches only distinguish between scanned and un-scanned
areas and do not take into account the actual information gath-
ered at each view-point. To overcome this limitation, Gonza-
les et al. [8] determine the amount of unseen area that might
be visible to the robot from possible view-points. To incorpo-
rate the uncertainty of the robot about the state of the environ-
ment Moorehead et al. [13] as well as Bourgault et al. [1] use
occupancy grids [14] and compute the entropy of each cell in
the grid to determine the utility of scanning from a certain lo-
cation. Whaite and Ferrie [19] present an approach that also
uses the entropy to measure the uncertainty in the geometric
structure of objects that are scanned with a laser range sensor.
In contrast to the work described here they use a paramet-
ric representation of the objects to be scanned. Edlinger and
Puttkamer [7] developed a hierarchical exploration strategy
for office environments. Their approach first explores rooms
and then traverses through doorways to explore other parts
of the environment. Tailor and Kriegman [16] describe a sys-
tem for visiting all landmarks in the environment of the robot.
Their robot maintains a list of unvisited landmarks that are ap-
proached and mapped by the robot. Dudek et al. [6] propose
a strategy for exploring an unknown graph-like environment.
Their algorithm does not consider distance metrics and is de-
signed for robots with very limited perceptual capabilities.
Recently Koenig has shown, that a strategy, which guides
the vehicle to the closest point that has not been covered yet,
keeps the traveled distance reasonably small [11]. However,
as experiments reported in this paper illustrate, such tech-
niques can lead to a serious increase of measurements nec-
essary to build an accurate map if the robot is not able to
incorporate measurements on-the-fly while it is moving. This
might be the case, for example, for robots extracting distance
information from camera images.

In this paper we introduce coverage maps as a new proba-
bilistic way to represent the belief of the robot about the state
of the environment. In contrast to occupancy grids [14], in
which each cell is considered as either occupied or free, cov-
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Figure 1: Typical occupancy map obtained in situations in which
cells are only partly occupied (left image) and a coverage map con-
taining the corresponding coverage values (right image).

erage maps represent in each cell of a given discretization a
posterior about the amount this cell is covered by an object.
As an example consider the situation depicted in Figure 1 in
which a cell is partly covered by an obstacle. With the stan-
dard occupancy algorithm the probability that this cell is oc-
cupied will converge to 1 if the sensors of the robot repeatedly
detect the obstacle. The left picture of this figure shows the
resulting occupancy probabilities (black represents high like-
lihood). Since the object does only cover 20% of this cell, a
coverage value of .2 (as shown in the right image of Figure 1)
would be a better approximation of the true situation. In ad-
dition to the representation aspect, we also present a sensor
model that allows the robot to appropriately update a cover-
age map upon sensory input and describe how coverage maps
can be used to realize a decision-theoretic approach to explo-
ration of unknown environments.

This paper is organized as follows. In the next section we
introduce coverage maps. In Section 3 we present a proba-
bilistic technique to update a given coverage map upon sen-
sory input. In Section 4 we describe a decision-theoretic ap-
proach to exploration based on coverage maps. In Section 5
we present experiments illustrating that our approach allows
a mobile robot can learn accurate maps from noisy range sen-
sors. Additionally, we present experiments comparing differ-
ent view-point selection strategies for exploration.

2 Coverage Maps
As already mentioned above, occupancy grids rest on the as-
sumption that the environment has binary structure, i.e. that
each grid cell is either occupied or free. This assumption,
however, is not always justified. For example, if the envi-
ronment contains a wall that is not parallel to the x- or y-
axis of the grid there must be grid cells which are only partly
covered. In occupancy grids the probability that such cells
are occupied will inevitably converge to one (see Figure 1).
Coverage maps overcome this limitation by storing a poste-
rior about its coverage for each cell. Coverage values range
from 0 to 1. Whereas a coverage of 1 means that the cell is
fully occupied, an empty cell has a coverage of 0. Since the
robot usually does not know the true coverage of a grid cell,
it maintains a probabilistic belief p(cl) about the coverage of
the cell cl. In principle, there are different ways of represent-
ing p(cl). They range from parametric distributions such as
(mixtures of) Gaussians or non-parametric variants such as
histograms. Throughout this paper we assume that each p(cl)
is given by a histogram over possible coverage values. More
precisely, we store a histogram for each grid cell, in which
each bin contains the probability that the corresponding grid
cell has the particular coverage. A typical example is depicted
in Figure 2. It shows the posterior for the cell containing the
obstacle in the situation illustrated in Figure 1 obtained after
30 measurements.
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Figure 2: Coverage posterior for the cell containing the obstacle in
the situation depicted in Figure 1.

3 Updating Coverage Maps
To update a coverage map based on sensory input, we ap-
ply a Bayesian update scheme similar to that of occupancy
grids. Throughout this paper we assume that our sensor pro-
vides distance information. Accordingly, we have to convert
the distance information to coverage values. What we need
to know is the coverage map c that has the highest likelihood
under all distance measurements d0, . . . , dT . If we use Bayes
rule and assume that consecutive measurements are indepen-
dent given that we know the map c, we obtain:

p(c | d0, . . . , dT )
Bayes

=
p(d0, . . . , dT | c) · p(c)

p(d0, . . . , dT )
(1)

= β · p(c) · p(d0, . . . , dT | c) (2)

= β · p(c) ·
T∏

t=0

p(dt | c) (3)

Next we need to know how to determine the likelihood p(dt |
c) of measuring dt given the map c. Again we apply Bayes
rule and obtain:

p(c | d0, . . . , dT )
Bayes

= β · p(c) ·
T∏

t=0

p(c | dt) · p(dt)
p(c)

(4)

= β · ξ
T+1

p(c)T
·
T∏

t=0

p(c | dt) (5)

= β′ ·
T∏

t=0

p(c | dt) (6)

Equation (5) is obtained from Equation (4) by assuming that
p(c) is constant and that ξ = p(dt) is constant for every t. The
variables β and β′ represent normalization constants ensuring
that the left-hand side sums up to one over all c. Under the
strong assumption that the individual cells of a coverage map
are independent1 we finally obtain:

p(c | d0, . . . , dT ) = β′ ·
T∏

t=0

L∏

l=0

p(cl | dt) (7)

= β′ ·
L∏

l=0

T∏

t=0

p(cl | dt) (8)

1This independence is frequently assumed in the context of occu-
pancy maps. We would like to refer to a recent work by Thrun [18]
on how to better deal with the dependency between cells.



Thus, to update a map given a measurement dt we simply
have to multiply the current belief about the coverage of each
cell cl by the belief about the coverage of this cell resulting
from dt. Additionally the maximum likelihood coverage map
is obtained by choosing the mode of the coverage histogram
for each cell cl.

It remains to describe how we actually compute p(cl | dt),
i.e. how we determine the distribution about the potential cov-
erage values of a cell cl with distance dl to the sensor given a
measurement dt. In our current system, we use a mixture of
a Gaussian N (µ, σ) and a uniform distribution γ to compute
the probability p(cl = x | dt) that the coverage of cl is x:

p(cl = x | dt) = γ(dl, dt) +

N (µ(dl − dt), σ(dl, dt), x). (9)

The value of the uniform distribution is computed using the
function γ(dl, dt) which increases monotonously in dl and d.
It reflects a typical behavior of proximity sensors like sonars,
because the accuracy of a measurement decreases with the
distance to the obstacle.

The mean µ(dl − d) of the Gaussian is computed in the
following way:

µ(dl − d) =





0, (dl − d) < − r2
1
2 + dl−d

r , |dl − d| < r
2

1, (dl − d) > r
2

(10)

where r is the grid resolution of the map. Note that we dis-
tinguish three situations, depending on whether the measure-
ment ends in cl or not. Suppose that the measurement does
not end in cl and the distance dl is shorter than d. In this case
we have dl − d < − r2 . In such a situation, the mean of the
Gaussian is zero, since it is more likely that a cell covered
by a range measurement that does not end in it is completely
empty. The second line of Equation (10) represents the situa-
tion in which d ends within cl. In this case the mean is inverse
proportional to the amount the cell is covered by d. Finally,
cells lying up to 20cm behind a cell, in which the measure-
ment ends, are most likely completely occupied so that the
mean is 1.

The value of the standard deviation σ(dl, d) of the Gaus-
sian also is a function that is monotonously increasing in dl
and d except when |dl − d| < r

2 . In this range σ(dl, d) has a
constant value that exceeds all values outside of this interval.

To obtain the optimal parameters for the functions in
our sensor model we apply the maximum likelihood princi-
ple. We first apply a highly accurate scan-alignment proce-
dure [10] on laser range information. Next we manually ex-
tract geometric objects from the corresponding range data.
Given these geometric primitives we use straightforward ge-
ometric projections to compute the ground truth information,
i.e., the exact coverage of each cell of a given discretiza-
tion. We evaluate a particular setting for the parameters of our
model by determining the likelihood of the ground truth given
a coverage map obtained using this setting. To maximize the
likelihood we apply local search techniques in the parameter
space. Figure 3 plots p(cl = x | d) for a measured distance of
d = 1m obtained for ultrasound data recorded with our B21r
robot Albert, which is depicted in picture (a) of Figure 4. As
the plot illustrates, for a measured distance of 1m, cells close
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Figure 3: Sensor model p(cl = x | d) for a measured distance
d = 100cm.

to the robot are unoccupied with high likelihood. However,
cells close to the measured distance are covered with high
probability. Figure 4 shows two coverage maps build from
real sonar data obtained by a real robot. Image (b) depicts a
map of the Sieg Hall at the University of Washington and (c)
a map of the office environment of our laboratory.

4 Strategies for Choosing the Next View-Point
One of the key problems during exploration is to choose ap-
propriate vantage points. At the selected location the robot
will perform the next measurement to retrieve new informa-
tion about its environment. In this section we will present
four methods to choose an appropriate position. In general
there are two different aspects that are relevant for the view-
point selection. On the one hand, the uncertainty of the robot
in the map should be as small as possible, and on the other
hand, the number of measurements to be incorporated as well
as the distance traveled should be minimized.

To determine the uncertainty in the state of a particular
cell we consider the entropy of the posterior for that cell.
Entropy is a general measure for the uncertainty of a be-
lief. The entropy H of a histogram h consisting of n bins
hi (i = 1, . . . , n) is defined as:

H(h) = −
n∑

i=1

p(hi) · log p(hi). (11)

H is maximal in case of a uniform distribution. The mini-
mal value zero is obtained if the system is absolutely certain
about the state of the corresponding cell. Thus, if we want to
minimize the uncertainty in the current map, all we need to
do is to reduce the entropy of the histograms in the coverage
map. Furthermore, we can specify, at which moment the ex-
ploration task has been completed. Suppose the size of the
environment is limited. Then the goal of the exploration pro-
cess for a coverage map c has been achieved if H(h(cl)) < ε
for all cells cl ∈ c that can be reached by the robot. Here h(cl)
corresponds to the histogram representing the coverage of cl.
Additionally, the system has to detect a situation in which the
robot is unable to reduce the entropy of a cell below ε to en-
sure the termination of the exploration task. In our system
this is achieved by monitoring the change of entropy. If this
change is below .001 for five consecutive measurements, the
cell is regarded as explored enough.
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Figure 4: Picture (a) shows our B21r robot Albert equipped with a ring of 24 sonar sensors. Image (b) depicts a coverage map generated for
data collected in the Sieg Hall building of the University of Washington. Picture (c) displays the coverage map of our laboratory environment.

4.1 Closest Location (CL)
A simple and frequently used strategy is to drive to the closest
location at which the robot can gather information about a cell
that has not been explored well enough. This way the ques-
tion whether a cell has been explored well enough depends
on the actual measure used to quantify the uncertainty about
individual grid cells. In our approach this measure is the en-
tropy. A cell is regarded as been sensed accurately enough if
the entropy of the coverage belief does not exceed ε or if it
does not change any longer. This strategy CL does not take
into account how much information will be obtained at a par-
ticular view-point. Rather it seeks to minimize the distance to
that location:

lnext = argmin
l∈L(c)

dc(l, x), (12)

where L(c) is the set of cells which have a grid cell with high
entropy in its visible range and dc(l, x) is the distance be-
tween the locations l and x given the current map c of the
environment.

4.2 Maximum Information Gain (IG) and
(IG WIN)

The second strategy is solely governed by the information
gain that can be obtained about the environment at a specific
view-point. The information gain is defined as the change
of entropy introduced by incorporating the measurement ob-
tained at that location into the map. If we integrate a single
measurement d into a cell cl, the information gain is defined
as:

I(h(cl) | d) = H(h(cl))−H(h′d(cl)) (13)

where h′d(cl) is the histogram of cell cl after integrating mea-
surement d according to our sensor model. The information
gain of a measurement is then computed as the sum of the
information gains for all cells covered by that measurement.
Since we do not know which measurement we will receive
if the robot measures at a certain position l, we have to inte-
grate over all possible measurements to compute the expected
information gain for that view-point:

E[I(l)] =
∑

d

p(d | c) ·
∑

ci∈C(l,d)

I(h(ci) | d) (14)

Here C(l, d) is the set of cells covered by measurement d. To
efficiently compute the likelihood of an observation p(d | c)
we apply a ray-tracing technique similar to Moravec and Elfes
[14] using the current maximum likelihood coverage map.

Since the complexity of Equation (14) depends exponen-
tially on the number of dimensions of the measurement, we
consider all measurements independently. For example, for
our robot equipped with 24 ultrasound sensors we compute
the average information gain over all 24 sensors.

The next view-point is then defined as:

lnext = argmax
l∈L(c)

E[I(l)] (15)

One of the disadvantages of this strategy is that it does not
take into account the distance to be traveled by the robot. To
deal with this problem we also consider the strategy IG WIN
which restricts the search for potential vantage points to a
local window until this has been explored. Once this has been
done, there is no need for the robot to return to this area again.

4.3 Combination of IG and CL (IG CL)
The final strategy discussed in this paper tries to combine
the properties of the strategies CL and IG. The goal is to
find an optimal tradeoff between the evaluation functions (12)
and (15):

lnext = argmax
l∈L(c)

[
α · E[I(l)]

maxl′∈L(c)E[I(l′)]

− dc(l, x)

maxl′∈L(c) dc(l′, x)

]
(16)

By adapting the weight α the user can easily influence the be-
havior of a robot and optimize its performance for a special
task. A value close to zero results in a behavior similar to the
strategy CL. For high values of α the strategy converges to the
strategy IG. Please note that functions of this type have suc-
cessfully been applied in the past for coordinating multiple
robots during exploration [2, 15].

5 Experiments
We implemented the models and exploration strategies de-
scribed above and performed a series of exploration runs in
different environments. The goal of the experiments pre-
sented in this section is to illustrate that a robot can build
accurate maps using our models. Additionally we describe
experiments in which we analyze the properties of the four
view-point selection techniques described above.

5.1 Advantage over Scan Counting
The first experiment is designed to illustrate that an approach
which considers the uncertainty in the belief about the cover-
age of a cell to select view-points yields more accurate maps
than techniques relying on scan counting approaches. Scan
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Figure 5: These images depict maps and trajectories of the robot obtained in the corridor of our office environment. The left map (a) is
a typical occupancy grid map obtained when every cell needs to be covered just once. Image (b) shows a coverage map obtained with the
strategy CL. The rightmost image (c) shows an occupancy map obtained using scan counting with a threshold of n = 50.

technique path length |{ci | H(h(ci)) > 0.65}|
coverage maps 89.1m 0%
counting 26.6m 21%
ext. counting 90.6m 1.5%

Table 1: Data from the experiments shown in Figure 5. To com-
pute the entropy for the scan counting results we generated coverage
maps from the recorded sonar data.

counting techniques count the number of times a cell is inter-
cepted by a measurement. Several exploration techniques [2,
7, 20] assume that a place is explored if it has been scanned
once. This is problematic especially when the underlying sen-
sors are noisy. Figure 5 (a) shows a typical occupancy grid
map of our laboratory environment obtained from real sonar
data when using the scan counting technique. Since the ex-
ploration process is stopped as soon as all reachable locations
were covered by a measurement, many cells of the resulting
occupancy map have a high uncertainty (see Table 1). This
is due to the high amount of sensor noise, which sonars of-
ten produce. On the other hand, if we use our approach and
consider the uncertainty in the coverage of individual cells to
select view-points, the resulting maps are more accurate (see
Figure 5(b)).

Obviously, a straightforward extension of the scan count-
ing would be to assume that each cell has to be covered n
times and not only once. An occupancy grid obtained by
this extension can be seen in Figure 5 (c). In this experiment
we additionally discounted longer beams in order to account
for the fact that range sensors provide fewer information for
distant places. Whereas this map looks similar as the cor-
responding coverage map, the robot’s uncertainty about the
state of the environment is higher. This is illustrated by the
values given in Table 1. The right column of this table con-
tains the percentage of cells in c for which the entropy ex-
ceeds the given threshold. Thus, even extended scan counting
does not guarantee that in the end every cell is explored well
enough. Typically, some cells will be measured too often,
others not often enough.

Figure 6 shows the result of a series of 50 simulation ex-
periments. In these experiments we forced the robot to reach
a scan count of n where n varied between 1 and 130.2 We
counted the number of cells m that would be explored well
enough given the entropy criterion for coverage maps and
plotted the length of the overall path againstm. The resulting
graph is shown in Figure 6. The cross on the right side indi-

2In practice, a good candidate value of n would be the maximum
number of measurements necessary to obtain a coverage map that
fulfills the entropy threshold criterion
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Figure 6: Average path length of the robot depending on the num-
ber of sufficiently explored cells (left image) and the simulation en-
vironment used during this experiment (right image).

cates the path length obtained when using the strategy CL for
coverage maps. As can be seen, if more than 85% of the map
should be explored well enough, a decision-theoretic explo-
ration strategy yields shorter trajectories than extended scan
counting.

5.2 A Comparison of the View-Point Selection
Strategies

Robots performing 2-d exploration tasks with sonars oder
laser scanners normally integrate every sensor measurement
because the amount of data is reasonably small and easy to
integrate. In this section we consider the situation that an-
alyzing a measurement produces high costs. This might by
the case if e.g. the distance information needs to be extracted
from stereo images. In such a situation the number of mea-
surements needed for the exploration task is a value of in-
terest. As mentioned above, one of the major advantages of
our coverage maps is that they allow the integration of the
uncertainty into the selection process of the next view-point.
The experiments in this section are designed to compare the
performance of the different strategies. To carry out the ex-
periments, we varied the size of the local window when using
IG WIN and the weightα in the evaluation function of IG CL
(see Equation (16)). In Figure 7 (a) and (b) the numbers be-
hind IG CL show the value of the weight α and the numbers
behind IG WIN indicate the radius of a circle which defines
the local window. The results have been obtained using 20
runs per strategy in the environment shown in Figure 7 (d).
Please note that further experiments carried out in alternative
environments showed similar results and are omitted for the
sake of brevity. The maximum allowed entropy during all
experiments described in this section was set to .6.

Figure 7 (a) shows the average number of measurements
necessary to complete the exploration task for each strategy.
As can be seen from the figure, the strategy IG needs the min-
imum amount of measurements. The strategy IG CL with
α = 1.0 needs approximately the same number of measure-
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Figure 7: Figure (a) shows the average number of measurements needed by different strategies, whereas in (b) depicts the average path
length of the exploration for each strategy. The value behind IG WIN shows the size of the local window and behind IG CL the value of
the parameter α. The error-bars show the .05 significance interval. The images (c) and (d) show the paths driven during the exploration
experiment. Figure (c) shows a sample path of method IG and the (d) a path generated by CL.

ments as IG. The strategy CL requires the maximum number
of measurements compared to all other strategies considered
here. The reason is that it only seeks to minimize the path
length without considering the information gained at particu-
lar locations. The error-bars correspond to the 5% confidence
interval.

In our experiments we found that a nearest neighbor view-
point selection strategy like CL outperforms an approach con-
sidering information gain if the robot is allowed to integrate
measurements while it is moving (assuming that the acquisi-
tion and integration of measurements can be done fast). This
can be seen in Figure 7 (b), which plots the average path
length driven by the robot during the exploration task for
all different strategies. With respect to the path length the
strategy CL shows the best behavior as the resulting trajec-
tories are shorter than those of all other techniques. Thus,
the CL strategy efficiently covers the terrain. In contrast to
that, the IG strategy ignores the distance to be driven and
therefore produces an extremely long path which results in
the worst behavior of all strategies (see also Figure 7 (c) &
(d)). The IG CL strategy with α = .3 appears to yield a good
trade-off between number of measurements and overall path
length. According to the experiments it slightly outperforms
the IG WIN strategy.

6 Conclusions
In this paper we have introduced a new representation scheme
for maps build with mobile robots from sensor data. In con-
trast to standard occupancy maps our coverage maps store
a posterior for each cell about its coverage. This offers the
opportunity to more accurately compute the uncertainty of
the robot about the corresponding area in the environment.
Additionally, we have presented a sensor model designed to
update these maps upon sensory input. Finally, we have com-
pared decision-theoretic approaches to guide a vehicle during
exploration.

The technique has been implemented and evaluated in ex-
tensive simulation runs and real world applications. The ex-
periments illustrate that by using coverage maps it is possible
to build accurate maps even if noisy sensors are used. Exper-
iments analyzing different exploration strategies indicate that
a technique combining the maximum uncertainty reduction
and the distance to be traveled yields the best trade-off be-
tween the number of necessary measurements and the length
of the resulting paths.
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