
Kumulative Habilitation eingereicht an der

Technischen Fakultät der

Albert-Ludwigs-Universität Freiburg im Breisgau

Spatial Modeling and Robot Navigation

Dr. Cyrill Stachniss

August 1, 2009

Abstract

This habilitation thesis deals with the broad topic of robot navigation and with its foundations

in spatial modeling, scene understanding, and action generation. Robot navigation is the process

of autonomously making a sequence of decisions that allows a mobile robot to travel robustly

to selected locations in the environment. This ability involves a large set of problems that need

to be solved including sensor data interpretation, state estimation, environment modeling, scene

understanding, learning, coordination, and motion planning. The ability to navigate autonomously

has special practical relevance, since navigations tasks are embedded in most robotic applications.

In this work, we present innovative solutions for acquiring models of the environment with

mobile robots and for robustly navigating using these models. A representation of the environment

is needed for a wide range of robotic applications. Here, a model of the environment representing

its geometry is only a starting point. To allow for intelligent decision making or higher level func-

tionalities, a robot needs information about the topology of the space as well as knowledge about

objects in the scene in order to act robustly and interact in real world settings. These problems

are addressed in this work. We furthermore present novel approaches for decision making, trajec-

tory planning, localization, exploration, and related topics. We propose probabilistic solutions to

a variety of these problems and consider different types of robots with different sensing modali-

ties. This includes classical wheeled robots as well as computer-controlled cars, flying vehicles,

and humanoid robots. Our solutions are important building blocks that enable robots to operate

autonomously and effectively in the real world.

The contributions of this habilitation thesis are innovative solutions to a variety of open prob-

lems in the context of model learning and efficient robot navigation which captured the attention

of research community to-date. Most of the presented approaches are of probabilistic nature, they

explicitly consider uncertainty, and include learning techniques. All developed approaches have

been applied and evaluated on real mobile robots in realistic settings, have proven robustness, and

have shown significant improvements over state-of-the-art methods in robotics.

Contents

I Summary 1

1 Introduction 3

2 Mapping Environments with Mobile Robots 9

2.1 Map Learning by Means of Rao-Blackwellized Particle Filters 9

2.2 Bridging the Gap between Grid-based and Feature-based SLAM 10

2.3 Active Feature Selection for Navigation Tasks under Limited Resources 11

2.4 Maximum Likelihood Mapping by Pose Graph Optimization 11

2.5 Towards Benchmarking of SLAM Approaches . 13

3 Localization 15

3.1 A Sensor Model for Localization with Low-Cost Laser Range Finders 15

3.2 A Sensor Model for Accurate Laser Range Finders 16

4 Special Sensing Modalities 17

4.1 Visual Localization . 17

4.2 Range Sensing from Omnidirectional Vision . 18

4.3 Vision-based Map Learning for Flying Vehicles 20

4.4 Estimating Landmark Locations from Geo-Referenced Photographs 21

4.5 Gas Distribution Modeling . 24

5 Towards Understanding Environments 28

5.1 Hybrid Maps . 28

5.2 Vegetation Estimation . 30

5.3 Classifying Objects in Scenes . 30

5.4 Identifying Objects by Tactile Sensing . 32

5.5 Learning Kinematic Models of Objects . 33

6 Action Selection for Navigation 35

6.1 Exploration . 35

6.2 Navigation amongst Deformable Objects . 39

6.3 Computer-controlled Cars . 41

i

6.4 Learning by Demonstration for Acquiring Manipulative Skills 47

7 Conclusion 49

II Publications 63

Part I

Summary

2

Chapter 1

Introduction

One of the main goals in service robotics is to develop truly autonomous robots that support us

humans. Home environments are envisioned as one of the key application areas for service robots.

Robots operating in such environments are typically faced with a variety of problems that result

from the rather unstructured surroundings compared to industrial applications.

The ability to model the surrounding space and at the same time to navigate autonomously and

reliably has significant practical relevance – not only in domestic service robotics. In most robotics

applications, autonomous navigation is an integral part of the robot’s mission. Most tasks can only

be carried out if enough information about the scene the robot operates in is available. Ideally, a

robot is able to autonomously infer appropriate models of the environment by observation, without

requiring manual teaching.

The contribution of this habilitation thesis are solutions to various problems in the context of

model learning and robot navigation. Here, the term navigation does not refer to path planning

only. It includes state estimation, localization, i.e., estimating the position of the robot given a map

of the environment, exploration, i.e., steering a robot so that it can efficiently construct accurate

models of the space, as well as path planning and controlling the motion of robotic actuators such

as manipulators.

In this work, we present methods that enable robots to achieve such desired capabilities. All

techniques developed in the context of this habilitation thesis have been evaluated on physical

robots and the experiments, that are presented in the individual papers, illustrate the achievements

over the state-of-the-art. The individual scientific contributions can furthermore be seen as building

blocks for achieving integrated autonomous systems. Some of the presented techniques are avail-

able as open source implementations to the community and are frequently used by other research

groups. Furthermore, the majority of recorded robotic datasets is provided to the public.

In this cumulative habilitation thesis, the citations [J1]-[J9] refer to journal publications

whereas [C1]-[C25] refer to conference papers and [W1]-[W5] to reviewed workshop papers re-

spectively. All citations with numbers only refer to other publications. The summary of our publi-

cations is organized as follows.

4 CHAPTER 1: INTRODUCTION

Chapter 2: Mapping Environments with Mobile Robots

We summarize our novel solutions to the problem of acquiring the geometric representation

of the environment in view of the uncertainty of sensor data and the robot’s position. This is

often referred to as the simultaneous localization and mapping (SLAM) problem. SLAM is a

“chicken-or-egg” problem since a map is needed for localization while a good pose estimate

is required to build a map. We will present efficient techniques for constructing maps from

sensor data in two-dimensional as well as in three-dimensional scenes using different types

of sensors and robotic platforms.

Our key contributions in the context of SLAM are:

1. An improved technique for computing 2D grid maps using a particle filter. The ap-

proach extends our previously presented method for particle filter-based SLAM and

provides an analysis of the often made assumption of Gaussian proposal distributions

in this context. Our approach overcomes limitations imposed by the Gaussians while

being computationally as efficient as an approach using a Gaussian proposal.

2. A learning approach for bridging the gap between feature-based and grid-based SLAM.

By means of reinforcement learning, we enable a robot to estimate which underlying

representation of its surroundings is best suited to correct the pose of the robot. The

resulting, adaptive approach is able to switch in each step of the algorithm between a

feature and a grid map in order to use the best of both worlds.

3. An innovative approach to actively deciding whether observed features should be con-

sidered during SLAM or neglected for reasons of efficiency. The approach, which

based on reinforcement learning, allows robots with highly limited computational re-

sources to solve navigation tasks in unknown environments.

4. A highly efficient method for computing maximum likelihood maps estimated by

means of pose-graph optimization. Our technique, which is inspired by stochastic

gradient descent, allows for correcting large errors in the trajectory estimate of the

robot and can deal with bad initial guesses. This method is one of the most efficient

approaches in the SLAM community at the moment.

5. A framework for objectively measuring the performance of different SLAM algorithms

based on the notation of relative errors.

Chapter 3: Localization

This chapter covers the pose estimation problem given a model of the environment. Pose

estimation refers to the problem of computing and updating the position and orientation of

the robot relative to a given map of the environment. We present novel sensor models for

probabilistic Monte-Carlo localization to exploit the properties of the sensors that are often

used in robotics in order to improve the localization performance. In contrast to Chapter 4,

we focus here on robots equipped with laser range finders.

Our key contributions in the context of robot localization are novel methods for obtaining

better sensor models which can be applied in the popular Monte-Carlo localization frame-

5

work. We show how the localization performance can be significantly improved by

1. exploiting specific sensor properties as well as surface properties of scanned objects

and

2. explictly considering dependencies of nearby laser range observations within one scan.

Chapter 4: Special Sensing Modalities

Laser range finders are probably the most frequently used sensors in the robotics community.

In this chapter, we will present innovative solutions to problems that arise when other sensing

modalities are used. First, we focus on cameras as alternative sensors to laser range finders,

second, we consider gas concentration sensors for acquiring gas distribution maps.

Vision sensors become more and more popular in robotics, as they are at the same time

cheap, light-weight, and they constitute a rich source of information about the environment.

Monocular cameras, however, do not directly provide proximity information, which is often

required by traditional robotic state estimation approaches. We present solutions for coping

with visual data in the context of robotics. This includes metric localization of a robot based

on monocular image data and the estimation of proximity information from single images

in indoor environments. The latter allows mobile robots to avoid using laser range finders

while being able to estimate the extends of free space in the surroundings. We furthermore

illustrate how to exploit image databases like Flickr.com as an additional source of informa-

tion for a robot. Based on geo-referenced and labeled photographs, we show how to localize

pictured objects such as buildings in the scene.

Besides the use of cameras, we describe a novel approach to estimating gas distributions us-

ing a mobile robot equipped with gas sensors. This is an important task for robots deployed

for pollution monitoring, surveillance of industrial facilities, or inspection of contaminated

areas. The gas distribution modeling problem has a different nature than most other robotic

perception problems due to the specific characteristics of gas distributions and their chaotic

structure. By modeling gas distributions with a probabilistic regression technique, we are

able to learn predictive models for gas distributions.

Our key contributions presented in this chapter are:

1. A technique for metrically localizing a robot using only a monocular camera. The

presented technique is based on the Monte-Carlo localization framework and proposes

a sensor model that does not require a fixed data association for the observed visual

features. As a result, a robust, vision-only localization technique for a humanoid robot

was successfully developed.

2. A new approach for estimating proximity information based on omnidirectional im-

ages similar to the results obtained by traditional range finders. The approach uses

Gaussian process regression in combination with dimensionality reduction to establish

a correspondence between the image data and proximity information obtained on a

training set. We learn a regressor that can be used on robots not equipped with laser

range finders for mapping, localization, or navigation. The maps obtained with our

6 CHAPTER 1: INTRODUCTION

approach show a quality that is roughly comparable to maps build with robotic sonar

sensors.

3. An application of the optimization solution to the SLAM problem presented in Chap-

ter 2 to flying vehicles using a down-looking camera. We present a so-called SLAM

front-end that estimates incremental motion constraints as well as loop-closing con-

straints from image data. The resulting system is easy to implement and has success-

fully been applied to different light-weight flying platforms.

4. An approach to estimating the location of visual landmarks in an environment based

on geo-referenced photographs. This is a step towards using tagged, geo-referenced

images, for example, obtained from Flickr.com or similar databases to estimate the

location of the pictured objects. The approach applies RPROP-based optimization

to find the landmark locations that best explain the data. Examples are shown for

buildings located in Freiburg downtown.

5. A regression-based approach to gas distribution modeling via a Gaussian process mix-

ture model and an efficient way to learn gas distribution maps with this approach. The

mixture components are used to explictly consider the effect of local patches within the

in general chaotic structure of gas distributions. We show that the resulting predictive

models perform significantly better than existing gas distribution modeling approaches

used in the robotics community.

Chapter 5: Towards Understanding Environments

To go beyond the aspects of pure geometry, we present our solution to the problem of learn-

ing a hybrid model of the space covering the topology and geometry of an environment as

well as semantic information. Here, semantic information refers to things such as labels,

vegetation, or specific objects. This hybrid representation can be used subsequently to in-

struct robots in a natural way by humans. We furthermore address aspects of the scene

analysis problem focusing on objects in the surroundings of the robot. We will present solu-

tions for classifying objects observed with a laser range finder in an unsupervised way and

show how to learn actuation models for observed objects.

Our key contributions towards understanding environments are innovative approaches for:

1. Learning hybrid representations of environments modeling the topology of the scene,

its geometry, as well as semantic information. The approach utilizes findings presented

in Chapter 2 and estimates semantic labels for places in the scene by means of the

AdaBoost algorithm in combination with simple features extracted from sensor data.

By smoothing the obtained labels using probabilistic relaxation labeling and a region

extraction method, the topology of the scene can be inferred.

2. Estimating which parts of an outdoor environment contain vegetation. This is a valu-

able information for robots navigating outdoors. By utilizing the remission values of

laser range data in combination with the proximity information, we learn classifiers us-

ing the support vector machine framework. By analyzing vibrations measured with an

7

inertial measurement unit, we furthermore found an efficient way for easily generating

a large amount of training data for the learning phase.

3. Classifying objects perceived with a 3D laser range scanner in an unsupervised fash-

ion. By means of latent Dirichlet allocation, distributions over objects in a scene can

be determined by a mobile robot without supervision. These distributions allow for

grouping unknown objects and for assigning new objects to an existing categorization.

We additionally show how tactile sensors can be used to classify and identify objects.

4. Modeling articulated objects that a robot observes in typical domestic environments

such as doors, cabinets with drawers, or other collections of moving parts. Only based

on observations, we are able to learn kinematic models by inferring the connectivity

of rigid parts and the articulation models for the corresponding links. Our method

uses a mixture of parameterized and parameter-free Gaussian process representations

and finds low-dimensional manifolds that provide the best explanation of the given

observations. The models in turn can be used predict the motion of object parts to

facilitate actions such as grasping or planning manipulation trajectories.

5. Identifying objects based on tactile information. Our approach applies two arrays of

pressure sensors in combination with the bag-of-features approach often used in com-

puter vision to distinguish and identify objects grasped by a robot.

Chapter 6: Action Selection for Navigation

This chapter covers different robotic problems in which the central aspect is the action a

single robot or a team of robots has to carry out to efficiently solve the given task. In detail,

we focus on single and multi-robot exploration, navigation amongst deformable objects, au-

tonomous computer-controlled cars, and the imitation of a human demonstrator for learning

manipulative tasks by demonstration.

First, we present our solutions to enable robots to autonomously explore an unknown envi-

ronment in an effective way. Here, we address the single and the multi-robot exploration

problem, presenting information-theoretic concepts for exploring the three-dimensional

space and a solution for effectively coordinating a team of exploring robots.

Second, we introduce a new method to deal with environments that contain non-rigid ob-

jects. Deformable objects that frequently occur in real world environments are, for example,

curtains or plants. We present a technique that considers the deformability of objects during

robot navigation.

Third, we address autonomous cars. Computer-controlled cars represent an application area

that is closely related to robotics since similar state estimation and planning problems need

to be solved under tight time constraints. We present our autonomous Smart car that is able

to drive autonomously on streets and in rough terrain.

Finally, we address the problem of teaching a robot manipulation tasks. In our system, a

robot is able to derive an abstract task description by observing a human demonstrator. A

manipulation robot is then able to reproduce the observed task even in modified settings.

8 CHAPTER 1: INTRODUCTION

Our key contributions in the context of decision making for autonomous navigation are

techniques for

1. Transferring our previously developed information-gain driven exploration technique

for two-dimensional scenes into the three-dimensional world. Our approach allows an

exploring robot to estimate the potential gain of future observation. It reasons about

potential observations it may obtain when carrying out an action. This leads to strate-

gies that effectively reduce the uncertainty in the robot’s belief.

2. Efficiently coordinating a team of robots by an improved coordination mechanism.

The approach exploits the structure of indoor environments and segments the space to

generate areas which the individual robots have to explore separately. The segment-

based assignment is then solved by means of the Hungarian method. This approach

reduces the amount of redundant work and the risk of interference between robots and

thus yields a more efficient exploration strategy.

3. Path planning and collision avoidance for environments containing deformable objects.

Our planning method operates in combination with an existing physical simulation

engine to estimate the deformations caused by the interaction between robots and the

objects in the scene. Besides efficiently answering path queries, the approach can avoid

collisions with unknown dynamic and potentially rigid obstacles.

4. Autonomously driving a computer-controlled car. We present our development of a

real, autonomous car that is fully controlled by a set of computers, perceives the en-

vironment based on its sensors, builds three-dimensional models of the scene, accu-

rately localizes itself, plans and executes trajectories in previously unknown or partially

known environments.

5. Instructing a robot by demonstration. Our contribution here is a probabilistic frame-

work based on a dynamic Bayesian network for learning manipulative tasks. By re-

peatedly observing a demonstrator, a robot can infer which parts of a manipulative task

are relevant for describing the abstract action. The approach is able to successfully

reproduce tasks such as pick and place tasks or cleaning a whiteboard based on a few

observation sequences only.

Chapter 7: Conclusion

Finally, we will conclude this habilitation thesis followed by the publications submitted for

this cumulative habilitation.

Chapter 2

Mapping Environments with Mobile

Robots

Models of the environment are needed for a wide range of robotic applications, including trans-

portation tasks, search and rescue, and efficient vacuum cleaning. Learning maps has therefore

been a major research focus in the robotics community over the last decades. The key problem

when learning maps with mobile robot is the uncertainty in the pose of the robot during data ac-

quisition as well as the noise in the sensor used to observe the environment. In the literature, the

mobile robot mapping problem under pose uncertainty is often referred to as the simultaneous

localization and mapping (SLAM) or concurrent mapping and localization (CML) problem [19;

20; 23; 35; 37; 55; 57; 58; 77; 49]. SLAM is considered to be a complex problem because to

localize itself a robot needs a consistent map of the scene while at the same time for acquiring the

map the robot requires a good estimate of its own pose. This mutual dependency among the pose

and the map estimates makes the SLAM problem hard and requires searching for a solution in a

high-dimensional space.

2.1 Map Learning by Means of Rao-Blackwellized Particle Filters

Efficient mapping system that apply Rao-Blackwellized particle filters to maintain a joint posterior

about the trajectory of the robot and the map of the environment typically assume a Gaussian

proposal distribution [5; 33; 37; 55; 57; 56; 70]. A proposal distribution inside a particle filter is

used to efficiently draw the next generation of samples. In general, the closer the proposal is to the

target distribution, the more efficient is the algorithm.

Based on a previously developed SLAM system that uses such a Gaussian proposals and has

been published in the PhD thesis [70], we investigate a way to determine how often the observation

likelihood function from which the proposal is typically derived is actually Gaussian or not [C18].

We show that in most cases the Gaussian assumption is a valid approximation, however, in around

3% to 6% of all cases, the distribution is clearly multi-modal. We therefore present in [C18] an

alternative sampling strategy based on a two-step sampling procedure that is able to accurately

10 CHAPTER 2: MAPPING ENVIRONMENTS WITH MOBILE ROBOTS

cover the different modes of the observation likelihood function while being as effective as the

Gaussian proposal.

In addition to that, we propose an orthogonal optimization to the algorithm which allows parti-

cles with similar trajectory estimates to share a map of the environment [J9], [C24]. In the typical

formulation of the Rao-Blackwellized particle filter for mapping, each sample has to maintain its

own model of the world conditioned on the trajectory estimate. Depending on the number of sam-

ples needed to build accurate maps, this can introduce large memory requirements. Our method

overcomes this serious shortcoming of Rao-Blackwellized particle filter-based approaches and al-

lows practical implementations to maintain around one order of magnitude more samples while

requiring approximatively the same run time.

We furthermore illustrate how such kind of mapping techniques can be adapted in order to

be applicable for legged robots. Especially humanoids have become a popular research platform

in the robotics community. Compared to wheeled vehicles, they have several drawbacks such

as stability problems, limited payload capabilities, violation of the flat world assumption, and

they typically provide only very rough odometry information, if at all. In our approach [C14],

we investigate the problem of learning accurate grid maps with humanoid robots by adapting the

previously described mapping approach to dealing with some of the above-mentioned difficulties.

As a result, our approach is able to robustly learn accurate medium-sized maps with a humanoid

equipped with a laser range finder. We present an experiment in which our mapping system builds

highly accurate maps using data acquired with a humanoid in our office environment containing

two loops. The resulting maps have a similar accuracy as maps built with a wheeled robot.

2.2 Bridging the Gap between Grid-based and Feature-based SLAM

One important design decision for the development of autonomously navigating mobile robots is

the choice of the representation of the environment. This includes the question which type of fea-

tures should be used or whether a dense representation such as an occupancy grid map is more

appropriate. We present an approach [J5], [C21] which performs SLAM using multiple represen-

tations of the environment simultaneously. It uses reinforcement learning to decide when to switch

to an alternative representation method depending on the current observation. This allows the

robot to update its pose and map estimate based on the representation that models the surrounding

of the robot in the best way. The approach has been implemented on a real robot and evaluated

in scenarios, in which a robot has to navigate in- and outdoors and therefore switches between a

landmark-based representation and a dense grid map. In practical experiments, we demonstrate

in [J5] that our approach allows a robot to robustly map environments which cannot be adequately

modeled by either of the individual representations.

2.3 ACTIVE FEATURE SELECTION FOR NAVIGATION TASKS UNDER LIMITED RESOURCES 11

2.3 Active Feature Selection for Navigation Tasks under Limited Re-

sources

The trend towards light-weight robots and other embedded systems introduces strong resource

restrictions to applied algorithms. Such systems and especially small flying vehicles have higher

limitations with respect to the computational power and memory capacity than a wheeled robot.

It is thus important to develop efficient algorithms that scale with the computational constraints of

the underlying hardware.

Efficient algorithms to address the SLAM problem in combination with data association tech-

niques (such as nearest neighbor assignment [57], sampling-based [56], or via the Hungarian

method [W2]) are often only one building block for carrying out mapping task on small scale

robots. An orthogonal alternative is to actively select observations and/or a subset of features that

should be incorporated into the mapping procedure since the memory and computational require-

ments increase with the number of landmarks that need to be maintained by the robot.

In practice, there are many scenarios in which the number of visible landmarks during a navi-

gation task is significantly larger than the number of landmarks which can be processed efficiently

using an embedded device. This leads to the question which landmark should be stored and main-

tained by the robot to optimally solve the navigation task. A landmark is only useful if it contributes

to keep an accurate pose estimate of the robot at the right time and in this way is valuable for the

navigation task. We therefore investigate in [C6] a technique for learning a landmark selection

policy that optimizes the navigation task carried out by the robot given its computational or mem-

ory constraints. The approach combines Kalman filter-based SLAM with reinforcement learning

to learn general policies to trigger the incorporation of new features.

We show in [C6] that the policies learned with our approach are not limited to the environment

they have been learned in. Rather, they can also be applied successfully in environments with

different properties of the underlying landmark distribution.

2.4 Maximum Likelihood Mapping by Pose Graph Optimization

To address the map learning problem from a more general point of view that focusing on one

specific type of robot or sensor setting, we developed an approach that separates the interpretation

of the sensor data from the estimation problem itself. An elegant framework for separating these

two problems is the use of a so-called SLAM front-end and back-end. As the front-end, one refers

to as the interpretation of the sensor data and the back-end as the approach that performs the

estimation or optimization. In theory, this separation can be found in most probabilistic estimation

techniques for SLAM such as extended Kalman filter, unscented Kalman filter, particle filters,

information filters, etc. In practice, however, assumptions about the sensor or the vehicle are

often incorporated into the design of the SLAM algorithm in order to build a high performance

realization.

One attractive way that allows for realizing an efficient SLAM system while having a strictly

12 CHAPTER 2: MAPPING ENVIRONMENTS WITH MOBILE ROBOTS

separated front-end and back-end are the so-called pose graph-based or network-based approaches.

In this formulation, one models the poses of the robot during mapping by nodes in a graph [21;

26; 29; 35; 38; 52; 59; 60; 83]. Spatial constraints between poses that result from observations

and from odometry are encoded in the edges between the nodes. Approaches for solving this

formulation of the SLAM problem seek to find the configuration of the nodes that maximizes

the observation likelihood encoded in the constraints. A highly related view to this problem is

given by the spring-mass model in physics. In this view, the nodes are regarded as masses and the

constraints as springs connected to the masses. The minimal energy configuration of the springs

and masses describes a solution to the mapping problem.

Popular solutions to compute a pose graph configuration that minimizes the error intro-

duced by the constraints are iterative approaches. They can be used to either correct all

poses simultaneously [35; 42; 52; 83] or to locally update parts of the graph [21; 29; 38; 59;

60], [J6], [C22]. Depending on the used technique, different parts of the graph are updated in each

iteration. The strategy for defining and performing these local updates has a significant impact on

the convergence speed.

We developed a novel approach [J6], [C22; C19; C17], that is inspired by a variant of stochas-

tic gradient descent in the spirit of Olson’s algorithm [60] but parameterizes the nodes in the graph

according to a tree structure. This structure allows a robot to efficiently update local regions in

each iteration of the algorithm. This methods converges significantly faster to accurate pose graph

configurations than existing methods and compared to other approaches to 3D mapping, our tech-

nique utilizes a more accurate way to distribute the rotational error over a sequence of poses [J6].

Furthermore, the complexity of our approach scales with the size of the environment and not with

the length of the trajectory as it is the case for most alternative methods. In addition to that,

we developed an incremental solution [C17] designed for online problems by reusing previously

computed solutions and by optimizing only updating parts of the map.

We demonstrated that this approach is well suited to deal with different robotic platforms and

different sensor modalities. We used the approach using laser range data obtained with traditional

SICK scanners [C22] on mobile robots, using SICK scanners on a rotating platform to obtain

3D data mounted on a car [C23] [J6], using a Velodyne 3D laser range scanners on a car [J6],

based on vision data with a helicopter and by manually carrying a camera [J7] as well as on a

blimp. This illustrates that our method is well suited to be applied to a wide range of mapping

problems. We show in [J6] that our approach is highly robust to the initial configuration of the

graph and outperforms related state-of-the-art methods such as Olson’s algorithm [60] or Multi-

level relaxation proposed by Frese et al. [29]. An example for an uncorrected and corresponding

corrected trajectory of an autonomous car obtained with our approach is shown in Figure 2.1.

All such methods operating on pose graphs have a drawback that they have to store the whole

trajectory of the robot. The is not critical for standard mapping scenarios but in case of life-long

map learning, the increasing memory and computational resources can become problematic. We

therefore developed a technique [J2] to efficiently prune the pose graph. Our technique considers

the information gain of observation and is able to discard poses that do not provide new informa-

tion. As a result, the computational complexity does not increase when the robot moves in known

2.5 TOWARDS BENCHMARKING OF SLAM APPROACHES 13

before optimizationinstrumented car after optimization

Figure 2.1: The left image shows the instrumented car used to record the data around the EPFL

campus in Lausanne. The middle and right image depict the constraint network before and after

optimization. The corrected network is overlayed with an aerial image.

areas. Thus, a robot operating in a bounded environment can apply our technique for life long map

learning.

2.5 Towards Benchmarking of SLAM Approaches

Whereas dozens of different techniques to tackle the SLAM problem have been proposed, there

is no gold standard for comparing the results of different SLAM algorithms. In the community

of feature-based estimation techniques, researchers often measure the Euclidian or Mahalanobis

distance between the estimated landmark location and the true location (if this information is avail-

able). As we illustrate in [J3] and [C4], comparing results based on an absolute reference frame

can have serious shortcomings. In the area of grid-based estimation techniques, people often use

visual inspection to compare maps or overlays with blueprints of buildings.

We address the problem of creating an objective benchmark for comparing SLAM approaches.

We propose a framework [J3], [C4] for analyzing the results of SLAM approaches based on a

metric for measuring the error of the corrected trajectory. The metric uses only relative relations

between poses and does not rely on a global reference frame. Such relative constraints result from

externally provided, that means known or accurately measured, distances between locations in the

space. This idea is related to graph-based SLAM approaches discussed above, namely to consider

the energy that is needed to deform the trajectory estimated by a SLAM approach into to ground

truth trajectory. Our method enables us to compare SLAM approaches that use different estimation

techniques or different sensor modalities since all computations are made based on the corrected

trajectory of the robot.

A certain disadvantage of our method is that it requires manual work that has to be carried out

by a human that knows the topology of the environment. The manual work, however, has to be

done only once for creating a benchmark dataset and than allows other researchers to evaluate their

methods with rather low efforts. To simplify comparisons for future researchers, we provide sets

14 CHAPTER 2: MAPPING ENVIRONMENTS WITH MOBILE ROBOTS

of relative relations needed to compute our metric for an extensive set of datasets frequently used

in the SLAM community. The relations have been obtained by manually matching laser-range

observations to avoid potential errors caused by matching algorithms. Our benchmark framework

allows the user an easy analysis and objective comparisons between different SLAM approaches.

Chapter 3

Localization

Estimating the pose of a robot relative to a given map is a well studied problem in robotics. Most

of the effective solutions today rely on probabilistic estimation techniques such as Kalman or

information filters in case of roughly Gaussian estimates (e.g., for GPS-based localization) or

particle filters to model arbitrary densities.

The approaches presented in this chapter extend the particle filter-based Monte-Carlo local-

ization [17] in the sense that we provide better sensor models for sensor often used in robotics to

improve the performance of the pose estimation system. In this chapter, we focus on laser-based

localization only. Localization based on cameras will be addressed in Section 4.1.

3.1 A Sensor Model for Localization with Low-Cost Laser Range

Finders

One of the key challenges in context of probabilistic localization, however, lies in the design of the

so-called observation model p(z | x,m) which is a likelihood function that specifies how to compute

the likelihood of an observation z given the robot is at pose x in a given map m. For probabilistic

approaches the proper design of the likelihood function is essential.

Many successful approaches to localization rely on data provided by range sensors [2; 34; 28;

43; 78]. Laser range sensors provide distance and bearing information to objects in the environ-

ment. In practice, one has to deal with erroneous readings (sometimes called “maximum-range”

readings) that result from poor-reflecting surfaces or readings obtained in situations in which no

obstacle is within the measurement range of the sensor. Especially, low-cost laser range sensors

such as the popular Hokuyo URG-04LX suffer from erroneous readings caused by objects with low

reflecting surface properties. One popular approach that explicitly models failures corresponding

to low or non reflectance is the ray-cast model proposed by Fox et al. [28]. This model, however,

as well as most others do not take into account that the likelihood of erroneous readings depends

on the reflection properties of the corresponding surfaces.

We present in [C8] a novel approach that explicitly considers the reflection properties of sur-

faces and thus the expectation of valid range measurements. In addition to the expected range

16 CHAPTER 3: LOCALIZATION

measurement, we compute the probability of reflectance for a beam given the relative pose of the

robot to the obstacle taking into account the angle of incidence of the beam. We estimate the re-

flection properties of surfaces using data collected with a mobile robot equipped with a laser range

scanner. As we demonstrate in experiments carried out with a real robot, our technique leads to

significantly improved localization results compared to a state-of-the-art observation model. With

our models, a robot can faster reduce its pose uncertainty and focus the belief during global local-

ization.

3.2 A Sensor Model for Accurate Laser Range Finders

In our method [C11], we propose a novel probabilistic observation model for accurate proximity

sensors such as SICK laser range finders. Our method has two advantages over most previous

approaches. First, it explicitly considers the dependencies between the individual beams of a range

scan, and second, is accounts for the multi-modal nature of the observation function. It does so

while still considering that the observation is obtained from a time-of-flight proximity sensor such

as a laser range finder. This is achieved by considering place-dependent measurement models and

utilizing a Gaussian mixture model together with a dimensionality reduction technique.

Given the high resolution of typical laser range finders (.25 to 1 degree), the assumption that

all beam are independence leads to highly peaked likelihood function. In practice, this problem is

dealt with by sub-sampling the measurements [80], by introducing minimal likelihoods for beams,

or by other means of regularization of the resulting likelihoods (see Arulampalam et al. [3]). In

contrast to this, we propose to overcome the peakedness is to consider that the likelihood mod-

els are location-dependent and that the location of the robot is modeled by set finite set of pose

hypotheses (particles).

The key idea is to determine for each location in the space a set of potential observations, here

considering the whole scan not individual beams. This done not only for one pose but also for a

local neighborhood. Our approach then learns a high-dimensional Gaussian mixture observation

model for each pose in the space. This model is computed in a preprocessing step and can then be

used online to compute the likelihood of an observation.

In practical experiments carried out with data obtained with a real robot, we demonstrate that

our new model substantially outperforms existing sensor models and allows for highly accurate

and peaked pose estimate, being highly robust to perturbations, and allowing for fast global local-

ization.

Chapter 4

Special Sensing Modalities

Cameras have become popular sensors in the robotics community. Compared to proximity sen-

sors such as laser range finders, they have the advantage of being cheap, lightweight, and energy

efficient. The drawback of cameras, however, is the fact that due to the projective nature of the

image formation process, it is not possible to sense depth information directly. In this chapter, we

address robotic vision problems, namely localization based on camera images, range sensing based

on single images, a front-end for vision-based SLAM, and landmark location estimation based on

geo-referenced images.

4.1 Visual Localization

The ability of a robot to localize itself is required for most robotic applications and this topic

was studied intensively in the past. Many approaches exist that use distance information provided

by a proximity sensor for localizing a robot in the environment. However, for some types of

robots, proximity sensors are not the appropriate choice because they do not agree with their design

principle. Humanoid robots, for example, which are constructed to resemble a human, are typically

equipped with vision sensors and lack proximity sensors like laser scanners. Therefore, it is natural

to equip these robots with the ability of vision-based localization.

In our work [C25], we present an approach to vision-based mobile robot localization that

uses a single perspective camera. We apply the well-known Monte-Carlo localization (MCL)

technique [17] to estimate the robot’s position. MCL uses a set of random samples, also called

particles, to represent the belief of the robot about its pose. To locate features in the camera

images, we use the Scale Invariant Feature Transform (SIFT) developed by Lowe [51].

Whereas existing systems, that perform metric localization and mapping using SIFT features,

apply stereo vision in order to compute the 3D position of the features [5; 24; 65; 66], we rely on

a single camera only during localization. Since we want to concentrate on the localization aspect,

we facilitate the map acquisition process by using a robot equipped with a camera and a proximity

sensor. During mapping, we create a 2D grid model of the environment. In each cell of the grid, we

store those features that are supposed to be at that 2D grid position. Since the number of observed

18 CHAPTER 4: SPECIAL SENSING MODALITIES

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

p
o
si

ti
o
n
 e

rr
o
r

[m
]

time

odometry
weighted mean

Figure 4.1: Evolution of the error during a typical localization experiment (left), typical observa-

tion obtained by the robot (second left) and two pictures of the humanoid robot Max during our

experiments.

SIFT features is typically high, we appropriately down-sample the number of features in the final

map. During MCL, we then rely on a single perspective camera and do not use any proximity

information. Our approach estimates for clusters of particles the set of potentially visible features

using ray-casting on the 2D grid. We then compare those features to the features extracted from the

current image. In the observation model of the particle filter, we consider the difference between

the measured and the expected angle of similar features. By applying the ray-casting technique, we

avoid comparing the features extracted out of the current image to the whole database of features

(as the above mentioned approaches do), which can lead to serious errors in the data association.

As we demonstrate in practical experiments with a mobile robot in an office environment [C25],

our technique is able to reliably track the position of the robot. We also present experiments

illustrating that the same map of SIFT features can be used for self-localization by different types

of robots equipped with a single camera only and without proximity sensors.

4.2 Range Sensing from Omnidirectional Vision

The major role of perception, in humans as well as in robotic systems, is to discover geometric

properties of the current scene in order to act in it reasonably and safely. For artificial systems,

vision sensors provides a rich source of information about the local environment, since it captures

the entire scene – or at least the most relevant part of it – in a single image. Much research has

thus concentrated on the question of how to extract geometric scene properties, such as distances

to nearby objects, from such images.

This task is complicated by the fact that only a projection of the scene is recorded and, thus,

it is not possible to sense depth information directly. From a geometric point of view, one needs

at least two images taken from different locations to recover the depth information analytically.

An alternative approach that requires just one monocular camera image and that we follow in [J1]

and [C16], is to learn from previous experience how visual appearance is related to depth. Such

an ability is also highly developed in humans, who are able to utilize monocular cues for depth

perception [74].

As a motivating example, consider the left image of Figure 4.2, which shows the image of an

4.2 RANGE SENSING FROM OMNIDIRECTIONAL VISION 19

Figure 4.2: Left: Our approach estimates proximity information from a single image after having

learned how visual appearance is related to depth. Right: Robot setup for the easy acquisition of

training data using a mobile robot equipped with an omnidirectional camera (monocular camera

with a parabolic mirror) as well as a laser range finder.

office environment (180◦ of an omnidirectional image warped to a panoramic view). Overlayed

in white, we visualize the most likely area of free space that is predicted by our approach. We

aim at learning the function that, given an image, maps measurement directions to their corre-

sponding distances to the closest obstacles. Such a function can be utilized to solve various tasks

of mobile robots including local obstacle avoidance, localization, mapping, exploration, or place

classification.

The contribution of our work [J1], [C16] is a new approach to range estimation based on

omnidirectional images. The task is formulated as a supervised regression problem in which the

training set is acquired by combining image date with proximity information provided by a laser

range finder. In a first step, we extract visual features from the image data. We extract for every

viewing direction α a vector of visual features v from a single image. Features are obtained by

supervised and unsupervised dimensionality reduction techniques as well as manually designed

features based on algorithms for edge detection. We consider principal component analysis, linear

discriminant analysis, as well as local linear embedding for dimensionality reduction.

In the second step, these low-dimensional features serve as the input to a learning engine that

seeks to infer range information. The learning approach aims to find the relationship between

visual input and the free space around the robot. We phrase the problem as learning the range

function f (v) = y that maps the visual input v to distances y. We learn this function in a supervised

manner using a training set of observed features and corresponding laser range measurements.

As a learning framework in our proposed system, we apply Gaussian processes [63] since this

technique is able to model non-linear functions and offers a direct way of estimating uncertainties

for its predictions. The GP framework allows us to compute a Gaussian estimate for any new

query input that is not included in the training set. It provides a range prediction y together with a

predictive uncertainty of each feature input v.

To additionally consider the angular dependencies, we apply as a third step the Gaussian beam

20 CHAPTER 4: SPECIAL SENSING MODALITIES

processes (GBP) model [62] to learn a heteroscedastic GBP for the set of predicted indexed by

their bearing angles and make the final range predictions.

In sum, to obtain the prediction of a full range scan given one omnidirectional image, our

approach proceeds as follows:

1. Warp the omnidirectional image into a panoramic view.

2. Extract for every pixel column i a vector of visual features vi.

3. Use a GP to make independent range predictions about yi.

4. Learn a heteroscedastic GBP for the set of predicted ranges {yi}
n
i=1 indexed by their bearing

angles αi and make the final range predictions for the same bearing angles.

We evaluated our visual range prediction approach a different dataset recorded at the University

of Freiburg and the DFKI in Saarbruecken. Besides measuring the prediction accuracy, we applied

a probability mapping approach to the sensor data. Figure 4.3 presents the laser-based maps (left

column) and maps using the predicted ranges from the vision data (right column) for the two

environments (Freiburg on top and Saarbruecken below). In both cases, it is possible to build a

map, which is comparable to maps obtained with infrared proximity sensors [36] or sonars [79].

4.3 Vision-based Map Learning for Flying Vehicles

In Section 2.4, we described our SLAM back-end, that allows to compute pose graphs with low

error configurations. Our approach described here, is the corresponding SLAM front-end that can

be applied to extract constraints from camera images. We developed a novel approach presented

in [J7] and [C20] that allows aerial vehicles to acquire visual maps of large environments using

an attitude sensor and low quality cameras pointing downwards. Such a setup can be found on

different air vehicles such as blimps or helicopters. Our system deals with cameras that provide

comparably low quality images which are also affected by significant motion blur. Our technique

uses visual features and estimates the correspondences between features using a variant of the

PROSAC algorithm. This allows our approach to extracting spatial constraints between camera

poses which can then be used to address the SLAM problem by applying graph methods. We

additionally address the problem of efficiently identifying loop closures which is essential for

SLAM. Furthermore, our approach can operate in two different configurations: with a stereo as

well as with a monocular camera. If a stereo setup is available, our approach is able to learn

visual elevation maps of the ground. If, however, only one camera is carried by the vehicle, our

system can be applied by making a flat ground assumption providing a visual map without elevation

information. The advantages of our approach is that it is easy to implement, provides robust pose

and map estimates, and that is suitable for small flying vehicles. Figure 4.4 depicts our blimp

and helicopter used to evaluate this work as well as an example camera image obtained with our

light-weight camera. In [J7], [C20], we present several experiments with flying vehicles which

demonstrate that our method is able to construct maps of large outdoor and indoor environments.

4.4 ESTIMATING LANDMARK LOCATIONS FROM GEO-REFERENCED PHOTOGRAPHS 21

Figure 4.3: Example maps of the Freiburg AIS lab (top row) and DFKI Saarbruecken (bottom row)

using real laser data (left) and the range predictions of our approach extracted from omnidirectional

camera images (right).

4.4 Estimating Landmark Locations from Geo-Referenced Pho-

tographs

In addition to the classical map learning approach in robotics where the robot carries its sensors, we

furthermore explore the possibility to use other resources for estimating the location of landmarks.

Popular Internet resources such as Flickr or Google Image Search offer a large amount of real world

imagery. Many of these images contain geo-references, i.e., the locations where the photographs

have been taken in longitude and latitude coordinates as well as manual annotations such as marked

image regions and a tag word like “cathedral”. We are interested in how this large amount of freely

available data can be used to infer quantitative knowledge about the world. We focus on the

problem of localizing a discrete set of distinct landmarks on a larger spatial scale, like a town or

city center based on a set of geo-referenced photographs of an environment annotated with labels

for distinct landmarks.

A robot that is able to utilize a so far unused source of information offers new ways for building

models of places it has not observed directly. It furthermore allows a robot to also refine or annotate

22 CHAPTER 4: SPECIAL SENSING MODALITIES

Figure 4.4: Two aerial vehicles used to evaluate our mapping approach as well as an example

image recorded from an on-board camera.

exiting models. Consider, for example, a mobile tour guide robot deployed to a city center or to

an archaeological site. Given the localized landmarks and the corresponding imagery, the system

could offer a large range of location-dependent information without requiring a human expert to

collect and formalize this knowledge.

In our work [C10], we consider the problem of estimating the positions of landmarks given a

set of geo-referenced photographs. The longitude and latitude information of the locations from

which the photos have been taken are assumed to be known approximatively by means of a standard

consumer GPS device. By combining this data with labeled regions in the photos referring to

objects, such as buildings, our approach is able to localize these buildings and to determine the

direction from which the photo has been taken. In contrast to bearing-only SLAM, our approach

does not require a continuous image stream from a camera. We furthermore assume to have no

knowledge about the orientation of the camera at any point in time. We address this problem by

formulating it as an optimization problem. As we showed in [C10], we are able to accurately

localize the labeled buildings based on photos taken in an urban environment.

Figure 4.5 depicts the downtown area of Freiburg, where the location of six distinct buildings

are marked by circles. Our approach is able to estimate the positions of such landmarks based on a

set of photos taken while walking through the city center (estimated locations marked by crosses).

4.4 ESTIMATING LANDMARK LOCATIONS FROM GEO-REFERENCED PHOTOGRAPHS 23

real landmark location

estimated landmark location

Figure 4.5: The downtown area of Freiburg and the location of six distinct buildings (Herz-Jesu

Kirche, train station, Chemie Hochhaus, Muenster, Martinstor, Schwabentor). The circles show

the true locations, the circles the one estimated by our approach.

24 CHAPTER 4: SPECIAL SENSING MODALITIES

4.5 Gas Distribution Modeling

The problem of modeling gas distributions has important applications in industry, science, and

every-day life. Mobile robots equipped with gas sensors are deployed, for example, for pollution

monitoring in public areas [22], surveillance of industrial facilities producing harmful gases, or

inspection of contaminated areas within rescue missions.

Building gas distribution maps is a challenging task in principle due to the chaotic nature

of gas dispersal and because only point measurements of gas concentration are available. The

complex interaction of gas with its surroundings is dominated by two physical effects. First, on

a comparably large timescale, diffusion mixes the gas with the surrounding atmosphere achieving

a homogeneous mixture of both in the long run. Second, turbulent air flow fragments the gas

emanating from a source into intermittent patches of high concentration with steep gradients at

their edges [64]. This chaotic system of localized patches of gas makes the modeling problem a

hard one. Precise physical simulation of the gas dynamics in the environment requires immense

computational resources as well as precise knowledge about the physical conditions, which is not

known in most practical scenarios.

When considering gas concentration measurements obtained with a mobile robot, we observed

that distributions often consists of a rather smooth “background” signal and several peaks, which

indicate high gas concentrations. So, the challenge in gas distribution mapping is to model this

background signal while being able to cover also the areas of high concentration and their sharp

boundaries. Since it is comparably costly to acquire measurements, one is also interested in reduc-

ing the number of samples needed to build a representation. It is important to note that the noise is

dominated by the large fluctuations of the instantaneous gas distribution and not by the electronic

noise of the gas sensors.

In our approach [J4], [C13], we address the task of modeling a gas distribution by finding a

probabilistic model that best explains the observations and that is able to accurately predict new

ones. To achieve this, we treat gas distribution mapping as a supervised regression problem. We

derive a solution by means of a sparse mixture model of Gaussian processes [82] that is able to

handle both physical phenomena highlighted above.

Gaussian processes (GPs) [63] are a non-linear, non-parametric regression technique. It pro-

vides a prediction and in addition to that a predictive uncertainty of the estimate. In GPs, one

places a prior on the space of functions p(f) using the following definition. A Gaussian process is

a collection of random variables, any of which have a joint Gaussian distribution.

More formally, if we assume that {(xi, fi)}
n
i=1 with fi = f (xi) are samples from a Gaussian

process and define f = (f1, . . . , fn)
⊤, we have

f ∼ N (µ,K) , µ ∈Rn
,K ∈Rn×n

. (4.1)

The interesting part of the model is the covariance matrix K which is specified by [K]i j :=

cov(fi, f j) = k(xi,x j) using a covariance function k. It defines the covariance of any two func-

tion values { fi, f j} sampled from the process given their input vectors {xi,x j} as parameters.

4.5 GAS DISTRIBUTION MODELING 25

Intuitively, the covariance function specifies how similar two function values f (xi) and f (x j) are

depending only on the corresponding inputs. A standard choice for k is a squared exponential

function but also other functions are frequently used such as the Matern kernel.

Let X = [x1; . . . ;xn]
⊤ be the n× d matrix of the inputs and X∗ be defined analogously for

multiple test data points. In the GP model, any finite set of samples is jointly Gaussian distributed.

A prediction of f (X∗) yields a Gaussian with predictive mean f̄ (X∗) and variance V[f (X∗)].

In a GP mixture model, one uses a set of GPs which are the individual components. One uses

a so-called gating function to define the influence of the individual components over the input

space. The hyperparameters of the components as well as the gating function is learned using

the Expectation Maximization algorithm [18]. In the EM algorithm, it is required to compute an

correspondance probability for each training input of belonging to one component. Since standard

GPs require a crisp assinment of the inputs, modifications to the GP appraoch are required. A soft

assignment can be achived by introducing individual observation noise terms for the training data

which incorporate the assignement probabilities. As a result, one obtains a model that is well suited

to capture the properties of gas distributions by allowing a rather smooth “background” process in

combination with a process for modeling localized gas pachtes and therehot-spot like characters.

The three main steps of the GP mixture model approach are:

1. Initializing the Mixture Components: In a first step, the initial component is computed

based in samples data points. To improve the estimate of gas concentration in areas that

are poorly modeled by this initial model, we learn an “error GP model” that captures the

absolute differences between a set of target values and the predictions so far. By initializing

future mixture components based on input data for locations sampled from the error GP, the

new componets will improve the estimate in so far badly approximated areas.

2. Iterative Learning via Expectation-Maximization: The Expectation Maximization (EM)

algorithm is used to learn the mixture correspondance variables for the inputs and to optimize

the hyperparameters of the covariance function of the GPs.

In the E-step, we estimate the probability P(z(x j) = i) that data point j corresponds to model

i. This is done by computing the marginal likelihood of each data point for all models

individually. Thus, the new P(z(x j) = i) is computed given the previous estimate as

P(z(x j) = i) ←
P(z(x j) = i) ·Ni(y j;x j)

∑m
k=1 P(z(x j) = k) ·Nk(y j;x j)

. (4.2)

In the M-step, we update the components of our mixture model. This is achieved by inte-

grating the probability that a data point belongs to a model component into the individual

GP learning steps. This is achieved by modifying the prediction mean estimate to

f̄i(X∗) = k(X∗,X)
[

k(X,X)+Ψi
]−1

y , (4.3)

26 CHAPTER 4: SPECIAL SENSING MODALITIES

where Ψi is a matrix with

[Ψi] j j =
σ2

n

P(z(x j) = i)
(4.4)

and zeros in the off-diagonal elements (instead of σ2
n I as in the standard GP gas, with ober-

vation noise σN). The matrix Ψi allows us to consider the probabilities that the individual

inputs belong to the corresponding components.

3. Learning the Gating Function: The gating function defines for an arbitrary data point the

likelihood of being assigned to the individual mixture components. The EM algorithm learns

the assignment probabilities for all training inputs x j, maximizing the overall data likelihood.

To generalize these assignments to the whole input space, we place another GP prior on the

gating variables. Concretely, we learn a gating GP for each component i that uses the x j as

inputs and the z(x j) obtained from the EM algorithm as targets. Let f̄ z
i (x) be the prediction

of z for the i-th GP. Given this set of m GPs, we can compute the correspondence probability

for a new test point x∗ as

P(z(x∗) = i) =
exp(f̄ z

i (x∗))

∑m
j=1 exp(f̄ z

j (x∗))
. (4.5)

Carrying out these three steps sequentially, allows us to efficiently learn a GP mixture model

that turns out to be well suited to model distributions of gas concentrations. In experiments with

real robots equipped with an ethanol sensor and cups of ethanol distributed in different environ-

ments, we were able to show that our approach is well-suited to model gas distributions. An

example distribution is depicted in Figure 4.6.

We compared our method with three different approaches: grid-based averaging with linear

interpolation for areas where no observations have been obtained. Second, the kernel extrapolation

technique of Lilienthal and Duckett [50] and finally to a standard GP approach. For comparisons,

we used the MSE (see Figure 4.7) and the average negative log likelihood using a a test set of gas

concentration measurements in a cross-validation fashion. We can show that our approach clearly

outperforms the spatial averaging using the grid and standard GPs. Futhermore, our approach

also outperformed the kernel extrapolation technique of Lilienthal and Duckett significantly. In

constrast to kernel extrapolation and spatial averaging, our approach is also able to provide a

predictive uncertainty of the estimate and in this way provides an uncertainty of the prediction.

4.5 GAS DISTRIBUTION MODELING 27

Figure 4.6: Example illustration of a gas distribution learned from concentration data recorded

in a corridor environment using our GP mixture model. Left: predictive mean, right: predictive

uncertainty. The gas source was placed at the location (10, 3).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

A
v
e
ra

g
e
 M

S
E

3-rooms corridor outdoor

GP mixture (Matern3 cov)
GP mixture (Matern5 cov)

GP mixture (SE cov)
kernel extrapolation
grid w. interpolation

Figure 4.7: Experimental comparison of our GP mixture model with different covariance functions

to other state-of-the art alternatives in three real-world setting. The bars show the mean squared

error of predicted gas concentration w.r.t. the measured one on a test set, averaged over 10 runs.

Chapter 5

Towards Understanding Environments

In real world settings, robots need more information about their surroundings than a metric de-

scription of the obstacles in the world. In this chapter, we introduce our achievements that allow

robots to get a better understanding of the scene. First, we show how to learn hybrid models of the

environment combining metric, topological as well as semantic information. Second, we present

an approach that allows a robot to group similar objects observed in a scene and compute an as-

signment of objects to classes. Finally, we present an approach to learning kinematic models of

everyday objects such as door or drawers based on observation obtained with a mobile robot.

5.1 Hybrid Maps

In the mobile robot map learning community, one typically distinguishes between the type of

model the mapping approach learns: metric or topological maps. Metric maps like such as occu-

pancy, feature, or geometric maps model the objects observed by the sensor. These maps are often

used to explicitly represent obstacles and driveable areas. Typically, the resulting model strongly

depends on the sensors used by the robot to perceive its environment. Metric maps often bear

resemblance to floor plans used in architecture.

For different robotic tasks, however, the robot can improve its capabilities or performance

if sematic or topological information is available. In contrast to metric maps, topological maps

model the structure of the environment using a graph. The different places in the environment

are represented by nodes in that graph. Topological maps became also popular in the robotics

community because they are believed to be cognitively more adequate. Compared to metric maps,

they can be stored in a compact manner and can facilitate the communication with the users.

While most other mapping approaches address either metric or topological map learning, we

focus on constructing a hybrid map that covers metric aspects as well as the topology of the en-

vironment [J8]. This enables a mobile robot to use the best suited model for the task it performs.

Our approach consists of two steps. In the first one, we apply a highly efficient particle filter to

solve the simultaneous localization and mapping problem, see previous chapter and [C18], [J9].

This step is based on grid maps and eliminates the pose uncertainty of the robot by selecting the

5.1 HYBRID MAPS 29

Door 1

Corridor

Room 4

Door 2 Door 3

Room 2Room 1

Door 4 Door 5 Door 6

Room 3 Room 5

(a) Adaboost classification (b) After smoothing (c) Resulting hybrid map

corridor room doorway

Figure 5.1: This figure shows a map of the building 79 at the University of Freiburg. Image (a)

depicts the result of applying the sequential AdaBoost with a classification rate of 97.3%, and (b)

depicts the result of applying relaxation and the detection of incorrect labeled regions (marked

with circles), and (c) the final hybrid map showing the topology and the corresponding regions as

metric models with semantic labels.

most likely configuration based on a joint posterior about the trajectory of the robot and the map

of the environment.

In the second step, we use the grid map resulting from the first step in order to infer the topol-

ogy. The key ideas is to estimate semantic information about local areas as proposed in a previous

work and during the PhD thesis [70; 53]. The approach computes rather simple geometric features

from laser range scans and estimates a semantic label such as corridor, room, or doorway for each

location in the space using the AdaBoost algorithm. This approach, however, treats every location

in the space individually. Due to the structure of environments made by humans, the semantic

class does not change randomly between nearby poses. Therefore, it makes sense to consider a

smoothing approach between places located close together. Therefore, we apply probabilistic re-

laxation labeling to smooth the semantic labels. This reduces the risk of false classifications and

improves the estimate of the semantic class of poses. Based on the smoothed class labels and the

grid map, one can extract distinct places in the environment that refer, for example, to individual

rooms. Building a graph structure that connects the individual places based on the connectivity,

that can easily be extracted from the grid map, allows a mobile robot to learn a consistent topo-

logical representation of the space and at the same time an accurate metric model. One advantage

of this approach is that the nodes of the resulting graph correspond to the individual semantic re-

gions. This links the metric and the topological representations. As a result, a robot is finally able

to maintain a hybrid representation of the space allowing it to select the model that is best suited

to solve a given task.

Figure 5.1 illustrates the extraction of semantic information and the resulting hybrid model for

an office space at building 79 at the University of Freiburg.

30 CHAPTER 5: TOWARDS UNDERSTANDING ENVIRONMENTS

Figure 5.2: Left: Aerial image of the computer science campus in Freiburg, courtesy of Google

Maps, Copyright 2008, DigitalGlobe. Right: Corresponding mapping result obtained with a mo-

bile robot driving on the paved road around the building. The image shows a 2D projection of the

3D map including labeled areas.

5.2 Vegetation Estimation

The techniques described above is designed for indoor environments. In most outdoor navigation

scenarios including autonomous cars, autonomous wheelchairs, surveillance robots, or transporta-

tion vehicles, also the classification of the terrain plays an important role as most of the robots have

been designed for navigation on streets or paved paths rather than on natural surfaces covered by

grass or vegetation. The navigation outside of paved paths might be uncomfortable for passengers

or even might introduce the risk for the robot of getting stuck. Furthermore, driving on grass will

in general increase wheel slippage and in this way lead to potential errors in the odometry. In ad-

dition to that, a technique for terrain classification can directly combined with the above described

approach to learn hybrid maps for outdoor scenes. Accordingly, the robust detection of vegetated

areas is an important requirement for robots in any of the above-mentioned situations.

We therefore developed a novel approach [C3] for vegetation detection from laser measure-

ments by exploiting the laser remission values. In our algorithm, the laser remission is modeled

as a function of distance, incidence angle, and material. We classify surface terrain based on 3D

scans of the surrounding of the robot based on support vector machines. The model is learned in

a self-supervised way using vibration-based terrain classification. Practical experiments demon-

strate that our approach yields a classification accuracy of over 99% in all tested settings. This

evaluation was carried out based on a series of real-world experiments at the campus of the Uni-

versity of Freiburg. An example map obtained with a mobile robot is shown in Figure 5.2. We also

demonstrate in [C3] how the learned classifier can be used to improve autonomous navigation.

5.3 Classifying Objects in Scenes

In home environments, which are envisioned as one of the key application areas for service robots,

a robot does not only need a model of the space but also has to deal with a variety of different

objects. The ability to distinguish objects based on observations and to relate them to known

5.3 CLASSIFYING OBJECTS IN SCENES 31

class 1 (human)

class 3 (box)
class 2 (balloon)

Figure 5.3: Example of a scene observed with a laser range scanner mounted on a pan-tilt unit.

Points with the same color resemble objects belonging to the same class.

classes of objects is important for autonomous service robots. Analyzing a scene and identifying

objects and their classes based on sensor data is a hard problem due to the varying appearances of

the objects belonging to specific classes. In our work [C2], we consider a robot that can observe a

scene with a 3D laser range scanner. The goal is to learn a model for object classes unsupervised, to

perform a consistent classification of the observed objects, and to obtain a correct classification of

unseen objects belonging to one of the known object classes. As an illustrating example, consider

Figure 5.3 which depicts a typical point cloud of a scene considered. It contains four people, a box,

and a balloon-like object. The individual colors of the 3D data points illustrate the corresponding

object classes that we want our algorithm to infer.

An important distinction between different approaches to object detection and recognition is

the way the objects or classes are modeled. Models can be engineered manually, learned from a set

of labeled training data (supervised learning) or learned from unlabeled data (unsupervised learn-

ing). While the former two categories have the advantage that detailed prior knowledge about the

objects can be included easily, the effort for manually building the model or labeling a significant

amount of training data becomes infeasible with increasing model complexity and larger sets of

objects to identify. Furthermore, in applications where the objects to distinguish are not known

beforehand, a robot needs to build its own model, which can then be used to classify the data.

The contribution of our work is a novel approach for discovering object classes from range

data in an unsupervised fashion and for classifying observed objects in new scans according to

these classes. Thereby, the robot has no a-priori knowledge about the objects it observes. Our

approach operates on a 3D point cloud recorded with a laser range scanner. We apply latent

Dirichlet allocation (LDA) [7], a method that has recently been introduced to seek for topics in text

documents [32]. The approach models a distribution over feature distributions that characterize the

classes of objects. Compared to most popular unsupervised clustering methods such as k-means

or hierarchical clustering, no explicit distance metric is required. To describe the characteristics

of surfaces belonging to objects, we utilize a variant of spin-images as local features that serve as

input to the LDA. The learned feature distributions can subsequently be used as models for the

classification of unseen data. An important property of our approach is that it is unsupervised and

32 CHAPTER 5: TOWARDS UNDERSTANDING ENVIRONMENTS

Figure 5.4: Example point cloud segments of a box, balloon, human, swivel chair, and regular

chair.

Figure 5.5: Resulting topic mixtures for 82 segments containing scanned objects computed via

LDA (the labels were not provided to the system).

does not need labeled training data to learn the partitioning.

We show in practical experiments on real 3D data that a mobile robot following our approach is

able to identify similar objects in different scenes while at the same time labeling dissimilar objects

differently. Examples for 3D range scans of objects under consideration are depicted in Figure 5.4,

consisting of boxes, balloons, humans, and different types of chairs. Even for datasets containing

complex objects with varying appearance such as humans, we achieve a robust performance with

over 90% correctly grouped objects. An example visually illustrating the performance of our

approach is depicted in Figure 5.5. It shows the topics assigned by our approach to a set of 82 scan

segments. The labels in this diagram show the true object class. Each color in the diagram denotes

one topic and the ratios of colors denote for each object segment the class assignment weight. As

the diagram shows, except of one chair, all objects are grouped correctly when using the maximum

likelihood assignment.

We furthermore demonstrate that our approach clearly outperforms unsupervised clustering ap-

proaches such as hierarchical clustering. LDA does not only achieve higher classification accuracy

throughout the entire parameter range, it is also less sensitive to the choice of parameters.

5.4 Identifying Objects by Tactile Sensing

We also considered tactile sensing as a potential source of information in order to detect objects

in the scene. In [C5], we present a novel approach for identifying objects using touch sensors

installed in the finger tips of a robot manipulator. Our approach operates on low-resolution inten-

sity images that are obtained when the robot grasps an object. We apply a bag-of-words approach

5.5 LEARNING KINEMATIC MODELS OF OBJECTS 33

Figure 5.6: Left and middle: examples for observations of a moving door of a microwave oven.

Right: visualization of the 1-dimensional kinematic model of the door learned by our approach.

that is frequently used in the vision community [1; 14; 15; 86] for object or scene identification.

By means of unsupervised clustering on training data, our approach learns a vocabulary which is

used to generate a histogram codebook. The histogram codebook models distributions over the

vocabulary and is the core identification mechanism. As the objects are larger than the sensor, the

robot typically needs multiple grasp actions at different positions to uniquely identify an object. To

reduce the number of required grasp actions, we apply a decision-theoretic framework that mini-

mizes the entropy of the probabilistic belief about the type of the object. To efficiently calculate the

expected information gain of the next grasp action, we approximate it based on the distribution of

potential observations extracted from the training data. In our experiments carried out with various

industrial and household objects, we demonstrate that our approach is able to discriminate between

a large set of objects. We furthermore show that using our approach a robot is able to distinguish

visually similar objects that have with different elasticity properties by using only the information

from the touch sensor.

5.5 Learning Kinematic Models of Objects

Robots operating in home environments must be able to also interact with articulated objects such

as doors or drawers. Ideally, robots are able to autonomously infer articulation models by obser-

vation. This means that a robot is able to infer and model potential movements of objects which

is a prerequisite for actions such an autonomously opening doors. We therefore developed an

approach [C1] to learn kinematic models of such object.

The considered problem can be formulated as follows: Given a sequence of locations from

observed objects parts, learn a compact kinematic model describing the whole articulated object.

This kinematic model has to define (i) which parts are connected, (ii) the dimensionality of the

latent (not observed) actuation space of the object, and (iii) a kinematic function between different

body parts in a generative way allowing a robot to reason also about unseen configurations.

We assume that objects consist of different rigid parts and our approach has to infer the con-

nectivity of that rigid parts. Additionally, we learn articulation models for the corresponding links.

Our approach uses a mixture of parameterized models, for example, to describe typical joints

34 CHAPTER 5: TOWARDS UNDERSTANDING ENVIRONMENTS

such as a rotational joint or a prismatic joint, as well as parameter-free kinematic models. The

parameter-free models apply a mixture of non-linear dimensionality reductions to find the mani-

fold that encodes the hidden action variable and Gaussian process regression. Our approach then

selects models of the individual links that provide the best explanation of the given observations.

Our approach has been implemented and thoroughly evaluated. We demonstrate in the experimen-

tal section that our technique allows for learning accurate models of different articulated objects

from real data. An example of the door of a microwave oven as well as the infered model of the

door is depicted in Figure 5.6. This is an important step towards autonomous robots understanding

and actively handling objects in their environment.

Chapter 6

Action Selection for Navigation

This chapter presents solutions to different robotic problems in which the central aspect is action

selection for a single robot or a team of robots. In detail, we focus on single and multi-robot

exploration, navigation amongst deformable objects, computer-controlled cars, and the imitation

of a human demonstrator to learn manipulative tasks by demonstration.

6.1 Exploration

There are several applications like planetary exploration, reconnaissance, rescue, mowing, or

cleaning in which the complete coverage of a terrain belongs to the integral parts of a robotic

mission. To allow a mobile robot to explore an unknown environment on its own, the robot has

to generate exploration trajectories that allow for perceiving the environment with its sensors. In

the past, different variants of the robot exploration problem have been studied. One typically

distinguishes between single-robot and multi-robot exploration problems. In the context of the

single-robot exploration problem, key questions are the generation of trajectories so that the robot

can efficiently cover the space with its sensors and the ability to deal with the uncertainty in the

sensor data and the pose information. In case multiple robots are deployed, the focus often lies on

the coordination of the robots’ actions to avoid redundant work and physical interference between

robots.

Both problems received considerable attention in the past in the robotics community. Most

exploration approaches, however, assume that the robot lives in a plane and do not consider the

full 3D space. To overcome this limitation, we developed a novel exploration system [W3] that

allows a robot to explore the 3D space learning 3D multi-level surface maps from laser range

data. The approach can be seen as an extension of our previous work [70; 71] in the sense that it

estimates the expected information gain of future observations.

In case multiple robots are used to explore an environment, the coordination of the individual

agents is crucial for high performance. Based on our previous work [10], we presented a frame-

work [C12] that utilized typical structures in indoor environments. By extracting regions which

typically correspond to rooms and assigning robots to explore such sub-regions separately, the

36 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

coordination of the agents can be significantly improved.

6.1.1 Information Gain-based Exploration in 3D

Our 3D information gain-based exploration approach [W3] is an exploration technique that extents

known techniques from 2D [70; 71] into the three-dimensional space. It allows us to address

problems which are not encountered in traditional 2D representations such as negative obstacles,

roughness, and slopes of non-flat environments. Our approach constructs a full three-dimensional

model using so-called multi-level surface (MLS) maps. MLS maps [83], [61], [C23], [W4], use a

two-dimensional grid structure that stores multiple elevation values. In particular, they store in each

cell of a discrete grid the height of the surface in the corresponding area. In contrast to elevation

maps, MLS maps allow us to store multiple surfaces in each cell. Each surface is represented by a

Gaussian with the mean elevation and its uncertainty. This representation enables a mobile robot

to model environments with structures like bridges, underpasses, buildings, or mines.

Our approach is formulated in a probabilistic way and the robot selects actions that reduce its

uncertainty in the world model when selecting new target locations for sweeping the environment

with its sensor. In order to evaluate the information gain of a candidate viewpoint, we perform a

ray-cast operation on the map to determine the 3D patches in the map that are likely to be hit by

a laser measurement. This allows us to efficiently reason about the potential measurements. The

approach then estimates the expected information gain which is the reduction of uncertainty in its

model. It finally selects the candidate viewpoint that minimizes the model uncertainty as well as

the travel cost to reach the corresponding view point. Figure 6.1 illustrates parts of the decision

process and the trajectories resulting from two real world experiments with a mobile robot. It

should be noted that our approach is also able to deal with negative obstacles like, for example,

abysms, which is a problem of robots exploring a three-dimensional world.

6.1.2 Coordinated Multi-Robot Exploration by Space Segmentation

In our work [C12], we consider the problem of efficient exploration with teams of mobile robots

that seek to minimize the overall time required to complete the mission. To achieve this, the

robots have to select appropriate target locations, to minimizing the traveled distance, to avoid

interference between agents, and to avoid redundant work. The coordination task can roughly be

separated into two subsequent tasks. First, the identification of potential exploration targets and

second, the assignment of the individual robots to the target locations.

A popular method for generating potential exploration targets has been proposed by Yamauchi

et al. [85]. In this approach, robots are sent to the borders between the explored and the un-

explored space called frontiers. A large set of approaches operate based on frontiers or very

similar concepts exists [10; 31; 67; 72; 73; 88]. Such coordination strategies consider individ-

ual locations rather than segments of the environment. Segmentation approaches which have

recently received an increased amount of attention [9; 30; 87], [J8]. In our work, we intro-

duce a new online coordination strategy for multi-robot exploration. It uses a segmentation of

the already explored area to assign robots to segments instead of directly assigning them to

6.1 EXPLORATION 37

viewpoint

next

start

robot

(a) Robot reached the first viewpoint. (b) Robot reached the fourth viewpoint.

(c) Robot reached the final viewpoint. (d) Perspective view of the final map.

Figure 6.1: Exploration in a simulated indoor environment. One can see four rooms, a corridor,

and the foyer where the robot started the exploration.

Figure 6.2: Illustration of coordination by space segmentation: Target assignments for the robots

are obtained by exploiting different segments extracted from the partial map.

38 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

frontier targets. In our current implementation, the segmentation consists of typically indoor

structures such as individual rooms, corridors, or similar. A small illustration of a segmenta-

tion into three regions during exploration is given in Figure 6.2. Based on this segmentation,

the robots are distributed over the environment. To achieve this, the Hungarian method [44;

45] is applied to find the optimal pairing of robots and targets given a cost function which en-

codes the reachability of segments. This approach distributes a team of robots more effectively

than existing methods. This leads to a reduction of redundant work as well as the avoidance of

interference between robots and as a result, the exploration time is significantly reduced.

6.2 NAVIGATION AMONGST DEFORMABLE OBJECTS 39

6.2 Navigation amongst Deformable Objects

Path planning is an elementary problem in robotics and the ability to plan collision-free paths is

a precondition for numerous applications of autonomous robots. The path planning problem has

traditionally received considerable attention in the past and has been well-studied. The majority

of approaches, however, has focused on the problem of planning paths in static environments and

with rigid obstacles [47; 12; 48]. In the real world, not all obstacles are rigid and considering this

knowledge can enable a robot to accomplish navigation tasks that otherwise cannot be carried out.

For example, in our everyday life we deal with many deformable objects such as plants, curtains,

or cloth and we typically utilize the information about the deformability of objects when carrying

out a movement.

As a motivating example, consider a robot that needs to pass through a curtain to move from its

current position to the goal location since no other path exists in the environment. In this particular

situation, traditional approaches that do not take the deformability of objects into account, will fail

since no collision-free path exists. In contrast to this, approaches that know about deformability of

objects are able to determine the deformation cost introduced by passing the curtain and to utilize

this information during path planning.

One potential method of taking deformations of objects into account is by generating trajec-

tories using a method such as probabilistic roadmaps [39] and considering deformable objects

as free space. When answering path queries, the planner has to simulate the deformation of the

non-rigid objects resulting from the interaction with the robot. However, performing an appro-

priate physical simulation typically requires significant computational efforts which makes such

an approach unsuitable for online trajectory planning. Therefore, we propose an approach [C15;

C7] to learn an approximative deformation cost function in a preprocessing step. The advantage of

our method is that this function can be evaluated efficiently during planning. In this way, our ap-

proach reduces the time to solve a path query from several minutes to a few hundred milliseconds.

The contribution of our work is an approach [C15] to mobile robot path planning that explicitly

considers deformable objects in the environment. It employs the probabilistic roadmap method

and learns a deformation cost function using an appropriate physical simulation engine [68; 75;

76; 69] that is based on Finite Element theory. Our approach trades off the travel cost with the

deformation cost when answering path queries and can be executed online. Two snapshots of an

experiment are depicted in Figure 6.3. For each situation, the simulated deformation and the real

ones are shown.

In order to apply such an approach in the real world, the robot furthermore needs to be able

to appropriately interpret its sensory input during the interaction with the deformable objects. For

example, during the interaction, the robot necessarily gets close to the deformable object so that its

field of view might get obstructed. For safe navigation, however, the robot still needs to be able to

identify the measurements that do not correspond to the deformable object and come from other,

unexpected, and possibly rigid objects.

We therefore developed a probabilistic approach [C7] that allows a mobile robot to distinguish

measurements caused by deformable objects it is interacting with from ordinary measurements.

40 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

Figure 6.3: Real and simulated deformations for two situations.

This allows the robot to utilize standard reactive collision avoidance techniques like potential

fields [41] or dynamic window techniques [8; 27; 54] by filtering out measurements that are

caused by the deformable objects the robot is interacting with. Additionally, the ability to reliably

identify measurements not perceiving parts of the deformable object enables the robot to correctly

interpret them also for the sake of collision avoidance. Our approach has been implemented on a

real robot and evaluated in a collision avoidance task carried out while the robot interacts with a

curtain. The results demonstrate that our approach allows the robot to safely avoid obstacles while

it is interacting with a deformable object.

6.3 COMPUTER-CONTROLLED CARS 41

Figure 6.4: Our computer-controlled Smart car and the sensor setup mounted on the roof of the

car. The right image shows our car during the first European Landrover Trials (ELROB).

6.3 Computer-controlled Cars

One interesting application area for techniques developed in the robotics community are computer-

controlled cars that can perceive the environment and drive autonomously. Especially, since the

DARPA Gran Challenge [16], the usage of cars instead of classical mobile robots became popu-

lar [13; 81; 84].

In a joint effort of the EPFL in Lausanne, the ETH Zurich, and the University of Freiburg, we

developed a computer-controlled car based on a Smart car. The Smart car has been modified and

equipped with five laser range finders, an inertial measurement unit, differential GPS, cameras,

and four computers. To goal of this project was to build an autonomous platform that is able to

build three-dimensional models of the environment, localize within these models, and can to plan

and execute collision free trajectories to a given target location. Photos of the car and its sensors

are shown in Figure 6.4.

6.3.1 Car Modifications

In order to turn the Smart car (Smart fortwo coupé passion 2005) into a robotic car, a series of

modifications have been carried out (more details can be found [W4]):

• An automotive engine control unit (ECU) has been installed between the computers and the

vehicles own CAN bus to allow for a clear interfacing.

• Customized access to the power steering system of the car.

• A separated emergency break system that mechanically activates the break pedal.

• An own electronic board to set gas commands.

• A 24V power generator has been installed to the engine output axis in order to power all the

electronic devices.

To perceive the environment, a set of sensors has been installed in the car, namely:

• Three laser scanner sensors for obstacle avoidance and navigation (SICK LMS291-S05).

• Two rotating laser range scanners to obtain a 3D scanning device.

• Perspective and omnidirectional cameras.

42 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

GPS
loss

GPS loss
c

a

b

Figure 6.5: Overlay of the estimated trajectory and the ortho-photo of the EPFL campus. The

zones where the GPS was not available are highlighted. The total traveled distance is around

2300m. The labels (a), (b), and (c) identify areas where GPS errors occurred but which did not

cause pose estimation failures due to the multi-sensor data fusion.

• A differential GPS system (Omnistar Furgo 8300HP).

• an optical gyroscope (KVH DSP3000).

• An inertial measurement unit (Crossbow NAV420).

In addition to that, four industrial PCs were installed in the car to carry out the necessary compu-

tations. The key functionality the car provided are

• Localization

• Mapping

• Path planning

6.3.2 GPS-based Localization

The localization system of the car mainly relies on GPS information. GPS alone, however, is

not sufficient to provide smooth pose estimates and furthermore cannot deal with GPS loss. We

therefore fused the data obtained by the inertial measurement unit, the differential GPS, the optical

gyro, and the wheel encoders.

Our localization system applies the inverse form of the Kalman filter, i.e., the information

filter. This filter has the property of summing information contributions from different sources in

the update stage. This characteristic is advantageous when many sensors are involved which is the

case in our application. As shown in [C23], the system allows for accurate pose estimation even

in case of temporary GPS loss. Figure 6.5 depicts a trajectory estimate of the vehicle during an

experiment over an ortho-photo of the EPFL campus.

6.3 COMPUTER-CONTROLLED CARS 43

6.3.3 Mapping

To achieve 3D mapping capabilities of the car, we developed a system that computes local three-

dimensional models of the surroundings of the vehicle. This is done by building a local multi-level

surface map [83],[C23],[W4] based on the laser range data. To apply the graph-based SLAM

approach presented in Chapter 2, a pose graph is created in which each node is linked to a local

multi-level surface map. To obtain constraints between nodes, we use a registration techniques

based on the iterative closest point algorithm. Instead of registering single points, we developed

a matching approach based on MLS maps [83], [61], [C23], [W4]. To efficiently register whole

maps, we incorporate a local traversability measure into the registration procedure which speeds

up the matching significantly.

An example for a map learned from the dataset used above to briefly illustrate the localization

capabilities of our system is shown in Figure 6.6. In this image, the yellow cells indicate traversable

area for the car, red to non-traversable ones and blue to vertical (also non-traversable) objects. A

second example for a 3D map learned at a military test side is depicted in Figure 6.7.

Such maps can then be used to plan trajectories and specify a goal location for the robot. Often,

local maps modeling the obstacles in the surroundings of the vehicle are sufficient for navigation

and global maps are not needed in most cases. There are, however, situations in which a map is

inherently needed to successfully perform the navigations task. This is, for example, the case for

autonomous parking in a large garage as shown by Kümmerle et al. [46].

6.3.4 Motion Planning

To actually plan a trajectory, the model of the environment can be used for global planning apply-

ing, for example, the popular A* algorithm or efficient variants. In our work [W5], we used Field

D* [25] since it allows for efficient replanning. This algorithm provides low-cost 2D paths through

grid-based representations of an environment and is able to repair these paths when accounting for

new information as the vehicle observes obstacles during its traverse. These 2D paths, however, do

not take into account the heading constraints of the vehicle. Instead, the approach approximates the

least-cost path to the goal for a vehicle that can turn in place. Since Field D* does not encode the

mobility constraints of the vehicle, it cannot be used alone for trajectory planning for the vehicle.

Consequently, we combine it with a local planner to provide feasible paths. One way to do this

is to use the Field D* path as the input to the local planner, which will then track this path to the

goal. As the vehicle navigates through the environment, the global Field D* path is updated based

on new information received through the onboard sensors, and the trajectories generated by the

local planner are subsequently updated to reflect the new global path. This approach works well in

static and structured environments, where the Field D* path can be quite accurately tracked using

the local planner.

For an unstructured driving scenario, the situation is more complicated because tracked dy-

namic obstacles may interfere entirely with the global path. Thus, it may not be possible to track

a planned path using a local planner. Instead, we need to evaluate a more general set of possible

local trajectories for the vehicle to execute, including some that do not follow the path reported by

44 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

Figure 6.6: Top view of a MLS map with a cell size of 50cm x 50cm showing the EPFL campus

(compare to the ortho-photo in Figure 6.5). The yellow surface patches are classified as traversable.

The area scanned by the robot spans approximately 300 by 250 meters. During the data acquisition,

the robot traversed five nested loops with a length of approximately 2,300m.

6.3 COMPUTER-CONTROLLED CARS 45

Figure 6.7: The left-hand image shows a top view of a MLS map of a military test site with a cell

size of 50cm x 50cm. During the data acquisition, the robot traversed three nested loops with a

length of approximately 1,200m. On the right-hand side three cutouts with the visualized Smart

car are depicted. The yellow surface patches are classified as traversable.

46 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

Figure 6.8: Motion planning illustration: A set of feasible local trajectories is generated (shown in

red). The cost of each of these trajectories is computed based on the cost of the cells the trajectory

travels and curvature information. A global path is planned from the end of each local trajectory to

the goal and the cost of this path is added to the cost of the trajectory. The best trajectory is shown

in blue, along with the global path from the end of this trajectory to the goal.

the planning algorithm. To achieve this, we use an approach that follows a large body of work on

outdoor mobile robot navigation (see [40]). We use a local planner to generate a set of possible

local trajectories and then evaluate each trajectory based on both, the cost of the trajectory itself (in

terms of curvature, terrain, distance, etc), as well as the cost of a global path from the endpoint of

the local trajectory to the goal. Rather than planning a single global path from the current vehicle

position to the goal, global paths are planned from each local trajectory endpoint. Figure 6.8 shows

an illustrative example of such a combined approach. Here, a set of local arc-based trajectories are

shown in red, with the best trajectory shown in blue. The best trajectory was selected based on a

combination of the cost of the trajectory itself and the cost of a global path from the end of the

trajectory to the goal (the goal is shown as a filled circle at the right of the figure). The global path

from the end of the best trajectory to the goal is also shown in blue.

In sum, the combination of techniques presented here [C23], [W4], [W5] are well-suited to

set up an autonomous, computer-controlled car that can perform basic driving. The developed

system is a step towards intelligent cars. There is, however, a large gap between current systems

and human-like driving capabilities.

6.4 LEARNING BY DEMONSTRATION FOR ACQUIRING MANIPULATIVE SKILLS 47

6.4 Learning by Demonstration for Acquiring Manipulative Skills

Several techniques exist for transferring new skills to robots. A promising technique is called

“imitation learning” or “learning by demonstration”: Here, a robotic system observes an instructor

that is performing a task [4; 6]. From multiple demonstrations, the robot has to infer a generalized

task description and to reproduce it accordingly even under modified conditions.

Teaching skills by direct demonstration is a very natural way of skill transfer in humans and

animals. In the aim to create versatile, adaptable, and sociable robotic platforms, research on the

mechanisms of learning new behaviors by observation has a very high potential. Furthermore,

learning from demonstrations can speed up the learning of complex behaviors enormously as it

provides strong prior information for the learning process. This can reduce the search space for

traditional learning algorithms significantly such that previously intractable tasks can be learned.

In addition to that, teaching a robot by means of demonstrations can be carried out by non-experts.

In our work [C9], we show that imitation learning is well suited as a user-friendly instruction

method for manipulation tasks. Our approach uses motion capture data generated by a vision

system to track body parts of a human instructor and the 3D positions of relevant objects in the

scene. The body configuration as well as the relations between objects and body parts of the

demonstrator are in turn modeled as normally distributed observation nodes of a dynamic Bayesian

network (DBN). For reproducing an observed skill, the network is evaluated at each time step in

order to infer the most-likely action. Within our framework, new constraints can be dynamically

added to the network, e.g., to incorporate collision avoidance during reproduction in order to deal

with unforeseen obstacles.

Our relation-based approach extends the recent work of Calinon and Billard [11] and formalize

the problem by means of a DBN. We furthermore allow for incorporating additional constraints

for modeling unexpected obstacles that should be considered during imitation.

To illustrate the capabilities of our method [C9], Fig. 6.9 illustrates a reproduction of a white-

board cleaning task by the robot that has been demonstrated by a human. First, a human repeatedly

cleaned a whiteboard in an area bounded by 4 markers. Then, we attached a sponge to the robot

and let it perform the demonstrated task. The corresponding photos are depicted in Fig. 6.9. A

second example illustrates the capabilities of the robot to reproduce tasks in the presence of un-

known obstacles. We showed the robot during reproduction phase an obstacle marker that was

not there during the learning phase, see first image of Fig. 6.10. Then, the robot had to clean the

whiteboard while avoiding obstacles (and thus not cleaning the area of the marker). For reasons

of illustration, we removed the marker during the experiment but kept it in the internal memory of

the robot. In this way, the reader can see that the robot did not clean the corresponding area. Eight

photos were taken during the reproduction and are depicted in Fig. 6.10. To avoid the area marked

as an obstacle area, the robot lifts the sponge away from the whiteboard (in the direction of the

observing camera).

In sum, the presented an approach to imitation learning enables a robot to observe, generalize,

and reproduce tasks from observing a human demonstrator. We formalized the problem using a

dynamic Bayesian network that is used for learning relations between the observed positions of the

48 CHAPTER 6: ACTION SELECTION FOR NAVIGATION

Figure 6.9: The reproduction of the board cleaning task by our robot. It imitates the zig-zag

movement for cleaning the board with the sponge. Note that the learned task representation allows

for cleaning differently sized surfaces based on the markers.

obstacle

not cleaned

Figure 6.10: A cleaning task in the presence of an obstacle. Initially, the position of the obstacle

is shown to the system. Then, the robot cleans the board avoiding the obstacle. As can be seen in

the last frame, parts of the text in the area of the obstacle marker was not wiped out.

objects and body parts of the instructor. Additional constraints, for example, to avoid unforeseen

obstacles can be added online. To imitate the action of a human, we estimate the actions that

maximize the joint probability distribution represented by the DBN. We evaluated the approach

and showed that a real robot equipped with a manipulator can learn and reproduce demonstrated

actions. Based on a pick-and-place and a whiteboard cleaning task, we illustrated the flexibility of

the method to generalize over different spatial setups.

Chapter 7

Conclusion

In this cumulative habilitation thesis, we summarized the developments and achievements made in

the context of learning models for mobile robots and autonomous robot navigation. A key concept

found in most of the presented approaches are probabilistic techniques explicitely considering

the uncertainty in the data. We developed innovative solutions to several important problems in

robotics, including:

• Various innovative techniques for efficient large scale robot map learning under significant

uncertainty as well as an appropriate benchmark solution for SLAM systems.

• Effective sensor models for Monte-Carlo localization techniques that better exploit the infor-

mation contained in the sensor data.

• Efficient probabilistic solutions to typical state estimation problems in robotics using different

sensor modalities, including proximity data and visual data, gas sensors, and tactile sensing.

• A novel technique for learning hybrid maps modeling metric, semantic, and topological infor-

mation.

• Supervised and unsupervised approaches for scene analysis and object modeling that allow the

robot to better understand its surroundings.

• Efficient strategies for single- and multi robot exploration.

• A novel solution for robot navigation in environments containing deformable objects.

• A computer-controlled car that is able to autonomously navigate, localize, and map its envi-

ronment.

• A learning by demonstration framework for teaching manipulation tasks.

Most of the developed techniques provide fundamental solutions to the addressed problems

and are based on probabilistic techniques. They offer robust solutions that can be applied under

significantly changed settings. This is illustrated by the fact that a series of techniques have been

applied to different robotic platforms, ranging from computer-controlled cars, over wheeled indoor

robots to humanoids and light-weight flying vehicles. In addition to that, we presented a variety of

solutions for different sensor modalities including laser range information, camera data, inertial,

tactile as well as gas sensors. All approaches have been evaluated on real robotic platforms, in

50 CHAPTER 7: CONCLUSION

realistic settings, often using publicly available datasets to allow for benchmarking. Whenever

possible, the techniques developed have been statistically evaluated. As presented in the individual

papers, all techniques show a significant improvement over the state-of-the-art in robotics.

We see the approaches presented here as building blocks for achieving integrated autonomous

systems that will support us in our everyday life. Despite the encouraging results reported in

this habilitation thesis, there is, of course, space for further improvements. Robots still act based

on what humans program. Furthermore, a large amount of background knowledge that we as

humans have learned during our whole life is not easily accessible for robots. There is large list of

capabilities robots need acquire until we can call them truly autonomous agents. Nevertheless, we

are approaching this goal and a series of tasks that have been considered as difficult ten years ago

can be solved rather effectively today, also using techniques presented here.

Journal Articles

[J1] C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin. A nonparametric learning

approach to range sensing from omnidirectional vision. Robots and Autonomous Systems.

Conditionally accepted.

[J2] H. Kretzschmar, G. Grisetti, and C. Stachniss. Life-long map learning for graph-based simul-

taneous localization and mapping. KI – Kuenstliche Intelligenz. Accepted for publication.

[J3] R. Kuemmerle, B. Steder, M. Ruhnke, G. Grisetti, C. Stachniss, C. Dornhege, and A. Kleiner.

On measuring the accuracy of slam algorithms. Autonomous Robots. In press.

[J4] C. Stachniss, C. Plagemann, and A.J. Lilienthal. Gas distribution modeling using sparse

gaussian process mixtures. Autonomous Robots, 26:187ff, 2009.

[J5] K.M. Wurm, C. Stachniss, and G. Grisetti. Bridging the gap between feature- and grid-based

slam. Robots and Autonomous Systems, 2009. In press.

[J6] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network optimization for

efficient map learning. IEEE Transactions on Intelligent Transportation Systems, 2009. In

press.

[J7] B. Steder, G. Grisetti, C. Stachniss, and W. Burgard. Visual slam for flying vehicles. IEEE

Transactions on Robotics, 24(8):1088–1093, 2008.

[J8] C. Stachniss, G. Grisetti, O. Martı́nez-Mozos, and W. Burgard. Efficiently learning metric and

topological maps with autonomous service robots. it – Information Technology, 49(4):232–

238, 2007.

[J9] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi. Fast and accurate slam

with rao-blackwellized particle filters. Robots and Autonomous Systems, 55(1):30–38, 2007.

Conference Papers

[C1] J. Sturm, V. Predeap, C. Stachniss, C. Plagemann, K. Konolige, and W. Burgard. Learning

kinematic models for articulated objects. In Proc. of the Int. Conf. on Artificial Intelligence

(IJCAI), Pasadena, CA, USA, 2009. To appear.

[C2] F. Enders, C. Plagemann, C. Stachniss, and W. Burgard. Scene analysis using latent dirichlet

allocation. In Proc. of Robotics: Science and Systems (RSS), Seattle, WA, USA, 2009.

[C3] K.M. Wurm, R. Kuemmerle, C. Stachniss, and W. Burgard. Improving robot navigation in

structured outdoor environments by identifying vegetation from laser data. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), St. Louis, MO, USA, 2009.

To appear.

[C4] W. Burgard, B. Steder, R. Kuemmerle, M. Ruhnke, G. Grisetti, C. Stachniss, C. Dornhege,

A. Kleiner, and Juan D. Tardos. How to compare the results of slam algorithms. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), St. Louis, MO, USA,

2009. To appear.

[C5] A. Schneider, J. Sturm C. Stachniss, M. Reisert, H. Burkhardt, and W. Burgard. Object iden-

tification with tactile sensors using bag-of-features. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), St. Louis, MO, USA, 2009. To appear.

[C6] H. Strasdat, C. Stachniss, and W. Burgard. Which landmark is useful? learning selection

policies for navigation in unknown environments. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), Kobe, Japan, 2009.

[C7] B. Frank, C. Stachniss, R. Schmedding, W. Burgard, and M. Teschner. Real-world robot

navigation amongst deformable obstacles. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Kobe, Japan, 2009.

[C8] M. Bennewitz, C. Stachniss, S. Behnke, and W. Burgard. Utilizing reflection properties of

surfaces to improve mobile robot localization. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Kobe, Japan, 2009.

[C9] C. Eppner, J. Sturm, M. Bennewitz, C. Stachniss, and W. Burgard. Imitation learning with

generalized task descriptions. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), Kobe, Japan, 2009.

CONFERENCE PAPERS 53

[C10] H. Kretzschmar, C. Stachniss, C. Plagemann, and W. Burgard. Estimating landmark loca-

tions from geo-referenced photographs. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), Nice, France, 2008.

[C11] P. Pfaff, C. Stachniss, C. Plagemann, and W. Burgard. Efficiently learning high-dimensional

observation models for monte-carlo localization using gaussian mixtures. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Nice, France, 2008.

[C12] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot exploration using a

segmentation of the environment. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), Nice, France, 2008.

[C13] C. Stachniss, C. Plagemann, A.J. Lilienthal, and W. Burgard. Gas distribution modeling

using sparse gaussian process mixture models. In Proc. of Robotics: Science and Systems

(RSS), Zurich, Switzerland, 2008.

[C14] C. Stachniss, M. Bennewitz, G. Grisetti, S. Behnke, and W. Burgard. How to learn accurate

grid maps with a humanoid. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), Pasadena, CA, USA, 2008.

[C15] B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Efficient path planning

for mobile robots in environments with deformable objects. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Pasadena, CA, USA, 2008.

[C16] C. Plagemann, F. Endres, J. Hess, C. Stachniss, and W. Burgard. Monocular range sens-

ing: A non-parametric learning approach. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Pasadena, CA, USA, 2008.

[C17] G. Grisetti, D. Lordi Rizzini, C. Stachniss, E. Olson, and W. Burgard. Online constraint

network optimization for efficient maximum likelihood map learning. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Pasadena, CA, USA, 2008.

[C18] C. Stachniss, G. Grisetti, N. Roy, and W. Burgard. Evaluation of gaussian proposal dis-

tributions for mapping with rao-blackwellized particle filters. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), San Diego, CA, USA, 2007.

[C19] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient estimation of

accurate maximum likelihood maps in 3d. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), San Diego, CA, USA, 2007.

[C20] B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, A. Rottmann, and W. Burgard. Learning

maps in 3d using attitude and noisy vision sensors. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), San Diego, CA, USA, 2007.

54 CONFERENCE PAPERS

[C21] K.M. Wurm, C. Stachniss, G. Grisetti, and W. Burgard. Improved simultaneous localiza-

tion and mapping using a dual representation of the environment. In Proc. of the European

Conference on Mobile Robots (ECMR), Freiburg, Germany, 2007.

[C22] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameterization for effi-

ciently computing maximum likelihood maps using gradient descent. In Proc. of Robotics:

Science and Systems (RSS), Atlanta, GA, USA, 2007.

[C23] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Siegwart. Towards mapping

of cities. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Rome, Italy,

2007.

[C24] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi. Speeding-up rao-

blackwellized slam. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),

pages 442–447, Orlando, FL, USA, 2006.

[C25] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric localization with scale-

invariant visual features using a single perspective camera. In H.I. Christiensen, editor, Eu-

ropean Robotics Symposium 2006, volume 22 of STAR Springer tracts in advanced robotics,

pages 143–157. Springer-Verlag Berlin Heidelberg, Germany, 2006.

Workshop Papers

[W1] P. Pfaff, R. Kuemmerle, D. Joho, C. Stachniss, R. Triebel, and W. Burgard. Navigation in

combined outdoor and indoor environments using m ulti-level surface maps. In Workshop

on Safe Navigation in Open and Dynamic Environments a t the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), San Diego, CA, USA, 2007.

[W2] H. Strasdat, C. Stachniss, M. Bennewitz, and W. Burgard. Visual bearing-only simulta-

neous localization and mapping with improved feature matching. In Fachgespräche Au-

tonome Mobile Systeme (AMS), Kaiserslautern, Germany, 2007.

[W3] D. Joho, C. Stachniss, P. Pfaff, and W. Burgard. Autonomous exploration for 3d map

learning. In Fachgespräche Autonome Mobile Systeme (AMS), Kaiserslautern, Germany,

2007.

[W4] P. Lamon, C. Stachniss, R. Triebel, P. Pfaff, C. Plagemann, G. Grisetti, S. Kolski, W. Bur-

gard, and R. Siegwart. Mapping with an autonomous car. In Workshop on Safe Navigation

in Open and Dynamic Environments at the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), Beijing, China, 2006.

[W5] S. Kolski, D. Furgeson, C. Stachniss, and R. Siegwart. Autonomous driving in dynamic

environments. In Workshop on Safe Navigation in Open and Dynamic Environments at the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Beijing, China, 2006.

Bibliography

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse,

part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(11):1475–1490, 2004.

[2] K.O. Arras, R. Philippsen, N. Tomatis, M. de Battista, M. Schilt, and R. Siegwart. A navigation

framework for multiple mobile robots and its application at the Expo.02 exhibition. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2003.

[3] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-

line non-linear/non-gaussian bayesian tracking. In IEEE Transactions on Signal Processing,

volume 50, pages 174–188, 2002.

[4] P. Bakker and Y. Kuniyoshi. Robot see, robot do: An overview of robot imitation. In In

AISB96 Workshop on Learning in Robots and Animals, pages 3–11, 1996.

[5] T.D. Barfoot. Online visual motion estimation using FastSLAM with SIFT features. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2005.

[6] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot programming by demonstration. In

B. Siciliano and O. Khatib, editors, Handbook of Robotics. Springer, 2008.

[7] D.M. Blei, A.Y. Ng, M.I. Jordan, and J. Lafferty. Latent dirichlet allocation. Journal of

Machine Learning Research, 3, 2003.

[8] O. Brock and O. Khatib. High-speed naviagation using the global dynamic window approach.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1999.

[9] E. Brunskill, T. Kollar, and N. Roy. Topological mapping using spectral clustering and clas-

sification. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), San

Diego, October 2007.

[10] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated multi-robot exploration.

IEEE Transactions on Robotics, 21(3):376–378, 2005.

[11] S. Calinon and A. Billard. A probabilistic programming by demonstration framework han-

dling skill constraints in joint space and task space. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), 2008.

BIBLIOGRAPHY 57

[12] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and S. Thrun.

Principles of Robot Motion. MIT Press, 2005.

[13] L.B. Cremean, T.B. Foote, J.H. Gillula, G.H. Hines, D. Kogan, K.L. Kriechbaum, J.C. Lamb,

J. Leibs, L. Lindzey, C.E. Rasmussen, A.D. Stewart, J.W. Burdick, and R.M. Murray. Alice:

An information-rich autonomous vehicle for high-speed desert navigation. Journal on Field

Robotics, 2006.

[14] G. Csurka, L. Dance, J. Willamowski, and C. Bray. Visual categorization with bags of key-

points. In Proc. of the European Conf. on Computer Vision (ECCV), Wokshop on Statistical

Learning in Computer Vision, pages 59–74, 2004.

[15] M. Cummins and P. Newman. FAB-MAP: Probabilistic Localization and Mapping in the

Space of Appearance. Int. Journal of Robotics Research, 27(6):647–665, 2008.

[16] DARPA. Darpa grand challenge rulebook. Website, 2004.

http://www.darpa.mil/grandchallenge05/Rules 8oct04.pdf.

[17] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile robots. In

Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Leuven, Belgium, 1998.

[18] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data via

the em algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

[19] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally efficient solution

to the simultaneous localisation and map building (SLAM) problem. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 1009–1014, San Francisco, CA, USA,

2000.

[20] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Blackwellized partcile filtering

for dynamic bayesian networks. In Proc. of the Conf. on Uncertainty in Artificial Intelligence

(UAI), pages 176–183, Stanford, CA, USA, 2000.

[21] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally consistent maps.

Journal of Autonomous Robots, 12(3):287 – 300, 2002.

[22] DustBot. DustBot - Networked and Cooperating Robots for Urban Hygiene.

http://www.dustbot.org, 2008.

[23] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localization and mapping with-

out predetermined landmarks. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI),

pages 1135–1142, Acapulco, Mexico, 2003.

[24] P. Elinas and J.J. Little. σMCL: Monte-Carlo localization for mobile robots with stereo

vision. In Proc. of Robotics: Science and Systems (RSS), 2005.

58 BIBLIOGRAPHY

[25] D. Ferguson and A. Stentz. Field d*: An interpolation-based path planner and replanner. In

Proc. of the Int. Symposium of Robotics Research (ISRR), 2005.

[26] J. Folkesson and H. Christensen. Graphical slam - a self-correcting map. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Orlando, FL, USA, 2004.

[27] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance.

IEEE Robotics & Automation Magazine, 4(1), 1997.

[28] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic envi-

ronments. Journal of Artificial Intelligence Research, 11, 1999.

[29] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for simultaneous

localisation and mapping. IEEE Transactions on Robotics, 21(2):1–12, 2005.

[30] S. Friedman, H. Pasula, and D. Fox. Voronoi random fields: Extracting topological struc-

ture of indoor environments via place labeling. In Manuela M. Veloso, editor, Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), pages 2109–2114, 2007.

[31] B.P. Gerkey and M.J. Matarić. Sold!: Auction methods for multirobot coordination. IEEE

Transactions on Robotics and Automation, 18(5):758– 768, 2002.

[32] T.L. Griffiths and M. Steyvers. Finding scientific topics. Proc Natl Acad Sci U S A, 101 Suppl

1:5228–5235, 2004.

[33] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with rao-

blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

[34] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison of local-

ization methods. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

1998.

[35] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. In

Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation

(CIRA), pages 318–325, Monterey, CA, USA, 1999.

[36] Y.S. Ha and H.H. Kim. Environmental map building for a mobile robot using infrared range-

finder sensors. Advanced Robotics, 18(4):437–450, 2004.

[37] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for gener-

ating maps of large-scale cyclic environments from raw laser range measurements. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 206–211, Las Vegas,

NV, USA, 2003.

[38] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh: a formalism for gen-

eralized localization. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), pages 1055–1060, 2001.

BIBLIOGRAPHY 59

[39] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for

path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and

Automation, 12(4):566–580, 1996.

[40] A. Kelly. An intelligent predictive control approach to the high speed cross country au-

tonomous navigation problem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1995.

[41] M. Khatib and R. Chatila. An extended potential field approach for mobile robot sensor-based

motions. In Proc. Int. Conf. on Intelligent Autonomous Systems (IAS’4), 1995.

[42] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical, decision-theoretic

approach to multi-robot mapping and exploration. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 3232–3238, Las Vegas, NV, USA, 2003.

[43] K. Konolige and K. Chou. Markov localization using correlation. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), 1999.

[44] H.W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2(1):83–97, 1955.

[45] H.W. Kuhn. Variants of the hungarian method for assignment problems. Naval Research

Logistics, 3:253–258, 1956.

[46] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard. Autonomous driving in

a multi-level parking structure. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 3395–3400, Kobe, Japan, 2009.

[47] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[48] S.M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

[49] J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale concurrent

mapping and localization. In Proc. of the Conf. on Neural Information Processing Systems

(NIPS), pages 169–179, Breckenridge, CO, USA, 2000.

[50] A. Lilienthal and T. Duckett. Building Gas Concentration Gridmaps with a Mobile Robot.

Robotics and Autonomous Systems, 48(1):3–16, 2004.

[51] D.G. Lowe. Object recognition from local scale-invariant features. In Proc. of the

Int. Conf. on Computer Vision (ICCV), Kerkyra, Greece, 1999.

[52] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.

Journal of Autonomous Robots, 4:333–349, 1997.

[53] O. Martı́nez-Mozos, C. Stachniss, and W. Burgard. Supervised learning of places from range

data using adaboost. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages

1742–1747, Barcelona, Spain, 2005.

60 BIBLIOGRAPHY

[54] J. Minguez and L. Montano. Nearness diagram navigation (nd): A new real time collision

avoidance approach. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), pages 2094–2100, 2000.

[55] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges. In

Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 1151–1156, Acapulco, Mexico,

2003.

[56] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with unknown data

association using FastSLAM. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 1985–1991, Taipei, Taiwan, 2003.

[57] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to

simultaneous localization and mapping. In Proc. of the National Conference on Artificial

Intelligence (AAAI), pages 593–598, Edmonton, Canada, 2002.

[58] K. Murphy. Bayesian map learning in dynamic environments. In Proc. of the Conf. on Neural

Information Processing Systems (NIPS), pages 1015–1021, Denver, CO, USA, 1999.

[59] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM with approximate

data association. In Proc. of the 12th Int. Conference on Advanced Robotics (ICAR), pages

242–249, 2005.

[60] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose graphs with poor

initial estimates. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages

2262–2269, 2006.

[61] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension of elevation maps for outdoor

terrain mapping and loop closing. Int. Journal of Robotics Research, 2007.

[62] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Gaussian beam processes: A non-

parametric bayesian measurement model for range finders. In Robotics: Science and Systems

(RSS), Atlanta, Georgia, USA, June 2007.

[63] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine Learning. The MIT

Press, Cambridge, Massachusetts, 2006.

[64] P.J.W. Roberts and D.R. Webster. Turbulent Diffusion. In H. Shen, A. Cheng, K.-H. Wang,

M.H. Teng, and C. Liu, editors, Environmental Fluid Mechanics - Theories and Application.

ASCE Press, Reston, Virginia, 2002.

[65] S. Se, D.G. Lowe, and J.J. Little. Global localization using distinctive visual features. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2002.

BIBLIOGRAPHY 61

[66] R. Sim, P. Elinas, M. Griffin, and J.J. Little. Vision-based SLAM using the Rao-

Blackwellised particle filter. In IJCAI Workshop on Reasoning with Uncertainty in Robotics

(RUR), 2005.

[67] K. Singh and K. Fujimura. Map making by cooperating mobile robots. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 254–259, Atlanta, GA, USA, 1993.

[68] J. Spillmann. Defcol studio. http://www.beosil.com/download/DefColStudio readme.txt,

2005. Last visited: 2009/06/10.

[69] J. Spillmann, M. Becker, and M. Teschner. Non-iterative computation of contact forces for

deformable objects. Journal of WSCG, 15(1–3):33–40, 2007.

[70] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD thesis, University of

Freiburg, Department of Computer Science, April 2006.

[71] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using rao-

blackwellized particle filters. In Proc. of Robotics: Science and Systems (RSS), pages 65–72,

Cambridge, MA, USA, 2005.

[72] C. Stachniss, O. Martı́nez-Mozos, and W. Burgard. Speeding-up multi-robot exploration

by considering semantic place information. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), pages 1692–1697, Orlando, FL, USA, 2006.

[73] C. Stachniss, O. Martinez Mozos, and W. Burgard. Efficient exploration of unknown indoor

environments using a team of mobile robots. Annals of Mathematics and Artificial Intelligence,

52:205ff, 2009.

[74] G. Swaminathan and S. Grossberg. Laminar cortical mechanisms for the perception of slanted

and curved 3-D surfaces and their 2-D pictorical projections. Journal of Vision, 2(7):79–79,

11 2002.

[75] M. Teschner, B. Heidelberger, M. Mueller, and M. Gross. A versatile and robust model for

geometrically complex deformable solids. In Proc. of Computer Graphics International, pages

312–319, 2004.

[76] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and M. Gross. Optimized spatial

hashing for collision detection of deformable objects. In Proc. Vision, Modeling, Visualization

(VMV), pages 47–54, 2003.

[77] S. Thrun. An online mapping algorithm for teams of mobile robots. Int. Journal of Robotics

Research, 20(5):335–363, 2001.

[78] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots. Int. Journal

of Robotics Research, 20(5):335–363, 2001.

62 BIBLIOGRAPHY

[79] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell,

and T. Schimdt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp, R.P.

Bonasso, and R. Murphy, editors, AI-based Mobile Robots: Case studies of successful robot

systems. MIT Press, Cambridge, MA, 1998.

[80] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[81] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,

M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,

C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,

P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney.

Winning the darpa grand challenge. Journal on Field Robotics, 2006.

[82] V. Tresp. Mixtures of gaussian processes. In Proc. of the Conf. on Neural Information

Processing Systems (NIPS), 2000.

[83] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor terrain mapping

and loop closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2006.

[84] C. Urmson. Navigation Regimes for Off-Road Autonomy. PhD thesis, Robotics Institute,

Carnegie Mellon University, 2005.

[85] B. Yamauchi. Frontier-based exploration using multiple robots. In Proc. of the Second Inter-

national Conference on Autonomous Agents, pages 47–53, Minneapolis, MN, USA, 1998.

[86] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for clas-

sification of texture and object categories: A comprehensive study. International Journal of

Computer Vision, 73(2):213–238, 2007.

[87] Z. Zivkovic, B. Bakker, and B. Kröse. Hierarchical map building and planning based on

graph partitioning. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages

803–809, 2006.

[88] R. Zlot, A.T. Stenz, M.B. Dias, and S. Thayer. Multi-robot exploration controlled by a market

economy. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Washington, DC,

USA, 2002.

Part II

Publications

[J1] C. Plagemann, C. Stachniss, J. Hess, F. Endres, and N. Franklin.

A nonparametric learning approach to range sensing from omnidirectional

vision. Robots and Autonomous Systems. Accepted for publication.

A Nonparametric Learning Approach

to Range Sensing from Omnidirectional Vision

Christian Plagemanna, Cyrill Stachnissb, Jürgen Hessb,

Felix Endresb, Nathan Franklinb

aStanford University, Computer Science Dept., 353 Serra Mall, Stanford, CA 94305-9010
bUniversity of Freiburg, Dept. of CS, Georges-Koehler-Allee 79, 79110 Freiburg, Germany

Abstract

We present a novel approach to estimating depth from single omnidirectional cam-

era images by learning the relationship between visual features and range mea-

surements available during a training phase. Our model not only yields the most

likely distance to obstacles in all directions, but also the predictive uncertainties

of these estimates. This information can be utilized by a mobile robot to build an

occupancy grid map of the environment or to avoid obstacles during exploration—

tasks that typically require dedicated proximity sensors such as laser range finders

or sonars. We show in this paper how an omnidirectional camera can be used as

an alternative to such range sensors. As the learning engine, we apply Gaussian

processes, a nonparametric approach to function regression, as well as a recently

developed extension for dealing with input-dependent noise. In practical experi-

ments carried out in different indoor environments with a mobile robot equipped

with an omnidirectional camera system, we demonstrate that our system is able to

estimate range with an accuracy comparable to that of dedicated sensors based on

sonar or infrared light.

Key words: omnidirectional vision, learning, range sensing, Gaussian processes

Preprint submitted to RAS - Special Issue on Omnidirectional Robot Vision November 20, 2009

Figure 1: Our system records intensity images (left) and estimates the distances to nearby obstacles

(right) after having learned how visual appearance is related to depth.

1. Introduction

The major role of perception, in humans as well as in robotic systems, is to

discover geometric properties of the current scene in order to act in it reasonably

and safely. For artificial systems, omnidirectional vision provides a rich source

of information about the local environment, since it captures the entire scene—or

at least the most relevant part of it—in a single image. Much research has thus

concentrated on the question of how to extract geometric scene properties, such

as distances to nearby objects, from such images.

This task is complicated by the fact that only a projection of the scene is

recorded and, thus, it is not possible to sense depth information directly. From

a geometric point of view, one needs at least two images taken from different

locations to recover the depth information analytically. An alternative approach

that requires just one monocular camera image and that we follow here, is to

learn from previous experience how visual appearance is related to depth. Such

an ability is also highly developed in humans, who are able to utilize monocular

cues for depth perception [1]. As a motivating example, consider the right image

in Figure 1, which shows the image of an office environment (180◦ of the omnidi-

rectional image on the left warped to a panoramic view). Overlayed in white, we

visualize the most likely area of free space that is predicted by our approach. We

explicitly do not try to estimate a depth map for the whole image, as for exam-

ple done by Saxena et al. [2]. Rather, we aim at learning the function that, given

an image, maps measurement directions to their corresponding distances to the

2

Figure 2: Reflections, glass walls and inhomogeneous surfaces make the relationship between

visual appearance and depth hard to model. One of the test environments at the University of

Freiburg (left) exhibits many of these factors. Our approach was also tested using a standard

perspective camera in this challenging environment (right).

closest obstacles. Such a function can be utilized to solve various tasks of mobile

robots including local obstacle avoidance, localization, mapping, exploration, or

place classification.

The contribution of this paper is a new approach to range estimation based on

omnidirectional images. The task is formulated as a supervised regression prob-

lem in which the training set is acquired by combining image date with proximity

information provided by a laser range finder. We explain how to extract appropri-

ate visual features from the images using algorithms for edge detection as well as

for supervised and unsupervised dimensionality reduction. As a learning frame-

work in our proposed system, we apply Gaussian processes since this technique is

able to model non-linear functions, offers a direct way of estimating uncertainties

for its predictions, and it has proven successful in previous work involving range

functions [3].

The paper is organized as follows. First, we discuss related work in Section 2.

Section 3 introduces the used visual features and how they can be extracted from

images. We then formalize the problem of predicting range from these features

and introduce the proposed learning framework in Section 4. In Section 5, we

present the experimental evaluation of our algorithm as well as an application to

the mapping problem.

3

2. Related Work

Estimating the geometry of a scene based on visual input is one of the fun-

damental problems in computer vision and is also frequently addressed in the

robotics literature. Monocular cameras do not directly provide 3D information

and therefore stereo systems are widely used to estimate the missing depth infor-

mation. Stereo systems either require a careful calibration to analytically calculate

depth using geometric constraints or, as Sinz et al. [4] demonstrated, can be used

in combination with non-linear, supervised learning approaches to recover depth

information. Often, sets of features such as SIFT [5] or SURF [6] are extracted

from two images and matched against each other. Then, the feature pairs are used

to constrain the poses of the two camera locations and/or the point in the scene

that corresponds to the image feature. In this spirit, the motion of a single cam-

era has been used by Davidson et al. [7] and Strasdat et al. [8] to estimate the

location of landmarks in the environment. In their work, Mikusic and Padjla [9]

have proposed a similar approach for recovering 3D structure from sequences of

omnidirectional images.

Sim and Little [10] present a stereo-vision based approach to the SLAM prob-

lem, which includes the recovery of depth information. Their approach contains

both the matching of discrete landmarks and dense grid mapping using vision.

An active way of sensing depth using a single monocular camera is known as

depth from defocus [11] or depth from blur. Such approaches typically adjust the

focal length of the camera and analyze the resulting local changes in image sharp-

ness. Torralba and Oliva [12] present an approach for estimating the mean depth

of full scenes from single images using spectral signatures. While their approach

is likely to improve a large number of recognition algorithms by providing a rough

scale estimate, the spatial resolution of their depth estimates does not appear to be

sufficient for the problem studied in this paper. Dahlkamp et al. [13] learn a map-

ping from visual input to road traversability in a self-supervised manner. They

use the information from laser range finders to estimate the terrain traversability

locally and then use visual data to extend the prediction to areas outside the field

of view of the laser range scanners. In contrast to our method, the laser range

data is used at all times since learning is not a separated process as in this pa-

per. Furthermore, different learning techniques and different features have been

applied.

The problem addressed by Saxena et al. [2] is closely related to our paper.

They utilize Markov random fields (MRFs) for reconstructing dense depth maps

from single monocular images. Compared to these methods, our Gaussian process

4

formulation provides the predictive uncertainties for the depth estimates directly,

which is not straightforward to achieve in an MRF model. An alternative ap-

proach that predicts 2D range scans using reinforcement learning techniques has

been presented by Michels et al. [14]. Menegatti et al. [15] proposed to simulate

range scans from detected color transitions in omnidirectional images and to ap-

ply scan-matching and Monte-Carlo methods for localizing a mobile robot. Such

color transitions are comparable to our set of edge-based features described in

Section 3.3, which form the low-level input to the learning approach described in

this paper.

Hoiem et al. [16] developed an approach to monocular scene reconstruction

based on local features combined with global reasoning. Whereas Han and Zhu [17]

presented a Bayesian method for reconstructing the 3D geometry of wire-like ob-

jects in simple scenes, Delage et al. [18] introduced an MRF model on orthogonal

plane segments to recover the 3D structure of indoor scenes. Ewert et al. [19]

extract depth cues from monocular image sequences in order to facilitate image

retrieval from video sequences. Their major cue for feature extraction is the mo-

tion parallax. Thus, their approach assumes translational camera motion and a

rigid scene.

In own previous work [3], we applied Gaussian processes to improve sensor

models for laser range finders. In contrast to that, the goal here is to exchange the

highly accurate and reliable laser measurements by noisy and ambiguous vision

features.

As mentioned above, one potential application of the approach described in

this paper is to learn occupancy grid maps. This type of maps and an algorithm

to update such maps based on ultrasound data has been introduced by Moravec

and Elfes [20]. In the past, different approaches to learn occupancy grid maps

from stereo vision have been proposed [21, 22]. If the positions of the robot are

unknown during the mapping process, the entire task turns into the so-called si-

multaneous localization and mapping (SLAM) problem. Vision-based techniques

have been proposed by Elinas et al. [23] and Davison et al. [7] to solve this prob-

lem. In contrast to the mapping approach presented in this paper, these techniques

mostly focus on landmark-based representations.

The contribution of this paper is a novel approach to estimating the proximity

to nearby obstacles in indoor environments from a single camera image. It is an

extension of our recent conference paper [24] that first presented the idea of esti-

mating depth from camera images using GP regression. The work presented here

additionally considers supervised dimensionality reduction, namely LDA, which

allows us to find a low dimensional space in which feature vectors corresponding

5

Figure 3: Our experimental setup. The training set was recorded using a mobile robot equipped

with an omnidirectional camera (monocular camera with a parabolic mirror) as well as a laser

range finder.

to different range measurements are better separated. In this way, the Gaussian

process is able to provide better estimates about predicted ranges.

3. Omnidirectional Vision and Feature Extraction

The task of estimating range information from images requires us to learn the

relationship between visual input and the extent of free space around the robot.

Figure 3 depicts the configuration of our robot used for data acquisition. An om-

nidirectional camera system (catadioptric with a parabolic mirror) is mounted on

top of a SICK laser range finder. This setup allows the robot to perceive the whole

surrounding area at every time step as the two example images in Figure 2 illus-

trate. It furthermore enables the robot to collect proximity data from the laser

range finders and relate them to the image data. As a result, our robot can eas-

ily acquire training data used in the regression task. The left images in Figure 1

and Figure 2 show typical situations from the two benchmark data sets used in

this paper. They have been recorded at the University of Freiburg (Figure 1) and

at the German Research Center for Artificial Intelligence (DFKI) in Saarbrücken

(Figure 2). By considering these example images, it is clear that the part of an

omnidirectional image which is most strongly correlated with the distance to the

nearest obstacle in a certain direction α is the strip of pixels oriented in the same

direction covering the area from the center of the image to its margins. With the

type of camera used in our experiments, such strips have a dimensionality of 420

(140 pixels, each having a hue, saturation, and a value component). To make

6

these strips easily accessible to filter operators, we warp the omnidirectional im-

ages into panoramic views (e.g., the right image in Figure 2) so that angles in

the polar representation now correspond to column indices in the panoramic one.

This transformation allows us to replace complicated image operations in the po-

lar domain by easier and more robust ones in a Cartesian coordinate system.

In the following, we denote with xi ∈ R
420 the individual pixel columns of an

image and with yi ∈ R the range values in the corresponding direction, that is, the

distances to the closest obstacles, respectively. Before describing how to learn the

relationship between the variables x and y, we discuss three alternative ways of

extracting meaningful low-dimensional features v from x which can be utilized

by the learning algorithm. The first approach applies unsupervised dimensionality

reduction (PCA) to compute low-dimensional features. As an alternative, we also

consider the linear discriminant analysis (LDA) as an supervised alternative to

obtain low-dimensional features. Finally, we discuss the use of manually designed

features extracted from the images that can be used for range prediction.

3.1. Unsupervised Dimensionality Reduction

Principal component analysis (PCA) is arguably the most common approach

to dimensionality reduction. We apply PCA for reducing the complexity of the

data to the raw 420-dimensional pixel vectors that are contained in the columns of

the panoramic images. In our approach, the PCA is implemented using eigenvalue

decomposition of the covariance matrix of the 420-dimensional training vectors.

PCA computes a linear transformation that maps the input vectors onto a new

basis so that their dimensions are ordered by the amount of variance of the data

set they carry. By selecting only the first k vectors of this basis representing the

dimensions with the highest variance in the data, one obtains a low-dimensional

representation without losing a large amount of information. The left diagram

in Figure 4 shows the remaining fraction of variance after truncating the trans-

formed data vectors after a certain number of components. The right diagram in

the same figure shows the 420 components of the first eigenvector for the Freiburg

data set grouped by hue, saturation, and value. Our experiments revealed that the

value channel of the visual input is more important than hue and saturation for our

task.

For the experiments reported on in Section 5, we trained the PCA on 600

input images and retained the first six principal components. This results in a

reduction from 420-dimensional input vectors to 6-dimensional ones. The GP

model, described in the Section 4, is then learned with these 6D features and is

named PCA-GP in the experimental section.

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
e

la
ti
v
e

 e
n

e
rg

y
 c

o
n

te
n

t

Number of eigenvectors

Saarbruecken
Freiburg

-0.16

-0.12

-0.08

-0.04

 0

 0.04

 0.08

 0 20 40 60 80 100 120 140

E
ig

e
n

v
e

c
to

r
V

a
lu

e

Pixel

Hue
Saturation

Value

Figure 4: Left: The amount of variance explained by the first principal components (eigenvectors)

of the pixel columns in the two data sets. Right: The 420 components of the first eigenvector of

the Freiburg data set.

3.2. Supervised Dimensionality Reduction

A drawback of PCA in our regression task is the fact that it does not consider

the range values yi when reducing the dimensionality of the input vectors xi. In

this way, it treats all components of the input vectors equally—no matter how

much information they actually carry about the range to be predicted. It can thus

be expected that supervised dimensionality reduction, where external, dependent

variables are considered explicitly, can lead to more accurate predictions. See Al-

paydin [25] for an overview of approaches and comparisons. One such technique

is the linear discriminant analysis (LDA). LDA is related to PCA in that it also

assumes a linear transformation between the original space and the reduced one.

But in contrast to PCA, it allows each data point to be given a class label. LDA

seeks a low-dimensional space in which the classes of the dataset are separated

best as illustrated in Figure 5 for a reduction from R
2 to R.

Let K be the number of classes Ci and xi the d-dimensional inputs. The ob-

jective is to find a d × k matrix W so that vi = W Txi with vi ∈ R
k and so that

the classes Ci are separated best in terms of distances between the vi. Let ri,t be

an indicator variable with ri,t = 1 if xt ∈ Ci and 0 otherwise. Let mi be the mean

of d-dimensional vectors xi. Then, the so-called scatter matrix of Ci is

Si =
∑

t

ri,t(xt −mi)(xt −mi)
T ,

8

data points

of class 2

axis selected by PCA

axis selected by LDA

of class 1

data points

Figure 5: Reduction from R
2 to R for PCA and LDA: PCA aims to keep the variance in the data

while LDA seeks to separate the two classes (illustrated by black and blue) as well as possible.

the total within-scatter matrix becomes

SW =
K
∑

i=1

Si =
K
∑

i=1

∑

t

ri,t(xt −mi)(xt −mi)
T ,

and the between-class scatter matrix is

SB =
K
∑

i=1

(

∑

t

ri,t

)

(mi −m)(mi −m)T ,

with m = 1

K

∑K

i=1
mi. Now let us consider the scatter matrices after projecting

using W . The between-class scatter matrix after projection is W T SBW , and the

within-scatter matrix accordingly, both are k × k dimensional. To goal is to de-

termine W in a way that the means of the classes W Tmi are as far apart from

each other as possible while the spread of their individual projected class sam-

ples is small. Similarly to covariance matrices, the determinant of a scatter matrix

characterizes the spread and it is computed as the product of the eigenvalues spec-

ifying the variance along the eigenvectors. Thus, we aim at finding the matrix W

that maximizes

J(W) =
|W T SBW |

|W T SW W |
.

The largest eigenvectors of S−1

W SB are the solution to this problem.

9

Applied to the range-regression task, we selected the discretized laser range

measurements as class label for each input data point. LDA then projects to a low-

dimensional space so that data points corresponding to the discretized range mea-

surements can be separated best. The GP model learned with the low-dimensional

features is named LDA-GP in our experimental evaluation.

3.3. Edge-based Features

Principal component analysis is an unsupervised method that does not take

into account any prior information and also the linear discriminant analysis only

uses information about class labels to perform dimensionality reduction to keep

the data separated. However, there might be additional information available

about the task to be solved—like the fact that distances to the closest obstacles

are to be predicted in our case. Driven by the observation that there typically is a

strong correlation between the extent of free space and the presence of horizontal

edge features in the panoramic image, we also assessed the potential of edge-type

features in our approach.

To compute such visual features from the warped images, we apply Laws’

convolution masks [26]. They provide an easy way of constructing local feature

extractors for discretized signals. The idea is to define three basic convolution

masks

• L3 = (1, 2, 1)T (Weighted Sum: Averaging),

• E3 = (−1, 0, 1)T (First difference: Edges), and

• S3 = (−1, 2,−1)T (Second difference: Spots),

each having a different effect on (1D) patterns, and to construct more complex fil-

ters by a combination of the basic masks. In our application domain, we obtained

good results with the (2D) directed edge filter E5L
⊤
5

, which is the outer product

of E5 and L5. Here, E5 is a convolution of E3 with L3 and L5 denotes L3 con-

volved with itself. After filtering with this mask, we apply an optimized threshold

to yield a binary response. This feature type is denoted as Laws5 in the experi-

mental section. As another well-known feature type, we applied the E3L
⊤
3

filter,

i.e. the Sobel operator, in conjunction with Canny’s algorithm [27]. This filter

yields binary responses at the image locations with maximal gray-value gradients

in gradient direction. We denote this feature type as Laws3+Canny in Section 5.

For both edge detectors, Laws5 and Laws3+Canny, we search along each image

10

Figure 6: Left: Example Laws5+LMD feature extracted from one of the Freiburg images. Right:

Histogram for Laws5+LMD edge features. Each cell in the histogram is indexed by the pixel

location of the edge feature (x-axis) and the length of the corresponding laser beam (y-axis).

The optimized (parametric) mapping function that is used as a benchmark in our experiments is

overlaid in green.

column for the first detected edge. This pixel index then constitutes the feature

value.

To increase the robustness of the edge detectors described above, we applied

lightmap damping as an optional preprocessing step to the raw images. This

means that, in a first step, a copy of the image is converted to gray scale and

strongly smoothed with a Gaussian filter, such that every pixel represents the

brightness of its local environment. This is referred to as the lightmap. The bright-

ness of the original image is then scaled with respect to the lightmap, such that the

value component of the color is increased in dark areas and decreased in bright ar-

eas. In the experimental section, this operation is marked by adding +LMD to the

feature descriptions. Figure 6 shows Laws5+LMD edge features extracted from

an image of the Freiburg data set.

All parameters involved in the edge detection procedures described above

were optimized to yield features that lie as close as possible to the laser end points

projected onto the omnidirectional image using the acquired training set. For our

regression model, we can now construct 4D feature vectors v consisting of the

Canny-based feature, the Laws5-based feature, and both features with additional

preprocessing using lightmap-damping. Since every one of these individual fea-

tures captures slightly different aspects of the visual input, the combination of all,

in what we call the Feature-GP, can be expected to yield more accurate predic-

tions than any single one.

11

As a benchmark for predicting range information from edge features, we also

evaluated the individual features directly. For doing so, we fitted a parametric

function to training samples of feature-range pairs. This mapping function com-

putes for each pixel location of an edge feature the length of the corresponding

laser beam. The right diagram in Figure 6 shows the feature histogram for the

Laws5+LMD features from one of our test runs that was used for the optimiza-

tion. The color of a cell (cx, cy) in this diagram encodes the relative amount of

feature detections that were extracted at the pixel location cx (measured from the

center of the omnidirectional image) and that have a corresponding laser beam

with a length of cy in the training set. The optimized projection function is over-

layed in green.

4. Learning Depth from Images

This section presents the learning method used in our approach to find the

relationship between visual input and the free space around the robot. Given a

training set of images and corresponding range scans acquired in a setting, we

can treat the problem of predicting range in new situations as a supervised learn-

ing problem. The omnidirectional images can be mapped directly to the laser

scans since both measurements can be represented in a common, polar coordinate

system. Note that our approach is not restricted to omnidirectional cameras in

principle. However, the correspondence between range measurements and omni-

directional images is a more direct one and the field of view is considerably larger

compared to standard perspective optics.

4.1. Gaussian Processes for Range Predictions

In the spirit of the Gaussian beam processes (GBP) model introduced in [3],

we propose to put a Gaussian process (GP) prior on the range function, but in

contrast, here we use the visual features v described in the previous section as

indices for the range values rather than the bearing angles α.

We extract for every viewing direction α a vector of visual features v from

an image c and phrase the problem as learning the range function f(v) = y that

maps the visual input v to distances y. We learn this function in a supervised

manner using a training set D = {vi, yi}
n
i=1

of observed features vi and corre-

sponding laser range measurements yi. If we place a GP prior (see, e.g., [28]) on

the non-linear function f , i.e., we assume that all range samples y indexed by their

corresponding feature vectors v are jointly Gaussian distributed, we obtain

12

y∗ = f(v∗) ∼ N (µ∗, σ
2

∗) (1)

for the noise-free range with

µ∗ = k⊤

v∗v
(K

vv
+ σ2

nI)
−1y (2)

σ2

∗ = k(v∗,v∗)− k⊤

v∗v
(K

vv
+ σ2

nI)
−1k

v∗v
(3)

for a new query feature v∗. Here, the matrix K
vv
∈ R

n×n denotes the covariance

matrix with [K
vv

]ij = k(vi,vj). Furthermore, k
v∗v
∈ R

n is given by [k
v∗v

]i =
k(v∗,vi), y = (y1, . . . , yn)⊤, and I is the identity matrix. σn denotes the global

noise parameter. As covariance function, we apply the squared exponential

k(vp,vq) = σ2

f · exp

(

−
1

2ℓ2
|vp − vq|

)

, (4)

where l and σf , as well as the global noise parameter σn, are the so-called hyper-

parameters. A standard way of learning these hyperparameters from data, which

we applied in this work, is to maximize the log data likelihood of the training data

using scaled conjugate gradients (see, e.g., [28] for details).

A particularly useful property of Gaussian processes for our application is the

availability of the predictive uncertainty at every query point. This means that new

features v∗ which lie close to points v of the training set, result in more confident

predictions than features which fall into a less densely sampled region of feature

space.

4.2. Modeling Angular Dependencies

So far, our model assumes independent range variables yi and it thus ignores

dependencies that arise, for instance, because “neighboring” range variables and

visual features are likely to correspond to the same object in the environment.

Angular dependencies can be included, for example, by (a) explicitly considering

the angle α as an additional index dimension in v or by (b) applying Gaussian

beam processes (GBPs) as an independent post-processing step to the predicted

range scan. While the first variant would require a large amount of additional

training data—since it effectively couples the visual appearance and the angle of

observation, the second alternative is relatively easy to realize and to implement.

Figure 3 gives a graphical representation of the second approach. The gray bars

group sets of variables that are fully connected and jointly distributed according to

13

Figure 7: Graphical model for predicting ranges r from a camera image c. The gray bars group

sets of variables that are fully connected and that are jointly distributed according to a GP model.

a GP model. We denote with GPy the Gaussian process that maps visual features

to ranges and with GPr the so-called heteroscedastic GP that is applied as a post-

processing step to single, predicted range scans. For GPr, the task is to learn

the mapping α 7→ r using a training set of predicted range values r. Since we

do not want to constrain the model to learning from the mean predictions µ∗(xi)
only, we need a way of incorporating the predictive uncertainties σ2

∗(vi) for the

feature-based range predictions y∗. This can be achieved by not using a fixed noise

matrix σ2

nI as in GPy (compare Eq. (2) and Eq. (3)), but instead its heteroscedastic

extension

R = diag
(

σ2

∗(v1), . . . , σ
2

∗(vn)
)

, (5)

see [3]. This matrix does not depend on a global noise parameter σn, but rather

on the individual confidence estimates σ2

∗(vi), with which GPy estimated the cor-

responding range value. Note that this “trick” of gating out training points by

artificially increasing their associated variance was also applied in recent work on

modeling gas distributions [29] for deriving a GP mixture model. A more detailed

discussion of the approach can be found there and in [30].

4.3. Summary of Our Approach

The full approach that also considers the angular dependencies in a range scan

is denoted by the postfix +GBP in the experimental evaluation. To obtain the

prediction of a full range scan given one omnidirectional image, we proceed as

follows:

1. Warp the omnidirectional image into a panoramic view.

14

2. Extract for every pixel column i a vector of visual features vi.

3. Use GPy to make independent range predictions about yi.

4. Learn a heteroscedastic GBP GPr for the set of predicted ranges {yi}
n
i=1

indexed by their bearing angles αi and make the final range predictions ri for

the same bearing angles.

As the following experimental evaluation revealed, this additional GBP treatment

(post-processing with GPr) further increases the accuracy of range predictions.

The gain, however, is rather small compared to what the GP treatment GPy adds to

the accuracy achievable with the baseline feature mappings. This might be due to

the fact that the extracted features—and the constellation of several feature types

even more so—carry information of neighboring pixel strips, such that angular

dependencies are incorporated at this early stage already.

5. Experimental Evaluation

The system for predicting range from single, omnidirectional images described

in the previous sections was implemented in C/C++ and Python and tested on

two benchmark data sets for image-based localization. The data sets, named

Freiburg and Saarbrücken have been acquired in the context of the EU project

CoSy. They have been made publicly available at [31] under the names COLD-

Freiburg and COLD-Saarbruecken. The data was recorded using a mobile robot

equipped with a laser scanner, an omnidirectional camera, and Odometry sensors

at the AIS lab of the University of Freiburg and at the German Research Center for

Artificial Intelligence (DFKI) in Saarbrücken. The two environments have quite

different characteristics—especially in the visual aspects. While the environment

in Saarbrücken mainly consists of solid, regular structures and a homogeneously

colored floor, the lab in Freiburg exhibits many glass panes, an irregular, wooden

floor and challenging lighting conditions.

The goal of the experimental evaluation was to verify that the proposed sys-

tem is able to make sensible range predictions from single omnidirectional camera

images and to quantify the benefits of the GP approach in comparison to conceptu-

ally simpler approaches. We document a series of different experiments: First, we

evaluate the accuracy of the estimated range scans using (a) the individual edge

features directly, (b) the PCA-GP, (c) the LDA-GP, and (d) the Feature-GP, which

constitutes our regression model with the four edge-based vision features as input

dimensions. Then, we illustrate how these estimates can be used to build grid

maps of the environment. We also evaluated whether applying the GBP model,

15

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3 2 1 0 1 2 3 4 5

Ground Truth Distances (Laser)
Predicted means (FeatureGP)

Figure 8: Left: Estimated ranges projected back onto the camera image using the feature detectors

directly (small dots) and using the Feature-GP model (red points). Right: Prediction results and

the true laser scan at one of the test locations visualized from a birds-eye view.

which was introduced in [3], as a post-processing step to the predicted range scans

can further increase the prediction accuracy. The GBP model places a Gaussian

process prior on the range function (rather than on the function that maps fea-

tures to distances) and, thus, also models angular dependencies. We denote these

models by Feature-GP+GBP, PCA-GP+GBP, and LDA-GP+GBP.

5.1. Quantitative Results

Table 1 summarizes the average RMSE (root mean squared error) obtained for

different system configurations, which are detailed in the following. The error is

measured as the difference between measured laser ranges and ranges predicted

using the visual input. The first four configurations, referred to as C01 to C04,

apply the optimized mapping functions for the different edge features (see Fig-

ure 6). Depending on the data, the features provide estimates with an RMSE of

between 1.7 m and 3 m. We then evaluated the configurations C05 and C06 which

use the four edge-based features as inputs to a Gaussian process model as de-

scribed in Section 4 to learn the mapping from the feature vectors to the distances.

The learning algorithm was able to perform range estimation with an RMSE of

around 1 m. Note that we measure the prediction error relative to the recorded

laser beams rather than to the true geometry of the environment. Thus, we report

a conservative error estimate that also includes mismatches due to reflected laser

beams or due to imperfect calibration of the individual components. To give a

visual impression of the prediction accuracy of the Feature-GP, we give a typical

laser scan and the mean predictions in the right diagram in Figure 8.

16

Table 1: Average errors obtained with the different methods. The root mean squared errors

(RMSE) are calculated relative to the mean predictions for the complete test sets.

RMSE on test set

Configuration Saarbrücken Freiburg

C01: Laws5 1.70m 2.87m

C02: Laws5+LMD 2.01m 2.08m

C03: Laws3+Canny 1.74m 2.87m

C04: Laws3+Canny+LMD 2.06m 2.59m

C07: PCA-GP 1.24m 1.40m

C09: LDA-GP 1.20m 1.31m

C05: Feature-GP 1.04m 1.04m

C08: PCA-GP+GBP 1.22m 1.41m

C10: LDA-GP+GBP 1.17m 1.29m

C06: Feature-GP+GBP 1.03m 0.94m

The PCA-GP approach (denoted as C07) that does not require engineered fea-

tures, but rather works on the low-dimensional representation of the raw visual

input computed using the PCA. The resulting six-dimensional feature vector is

used as input to the Gaussian process model. With an RMSE of 1.2 m to 1.4 m,

the PCA-GP outperforms all four engineered features, but is not as accurate as

the Feature-GP. When using LDA for dimensionality reduction (C09) instead

of PCA, we observe a reduction of the prediction error by around 4-8 per cent.

Also the LDA is outperformed by Feature-GP in terms of prediction accuracy. It

should be stressed, however, that PCA-GP as well as LDA-GP do not require any

manually defined features as they operate on the observed 420-dimensional pixel

columns directly. For configurations C06, C08, and C10, we predicted the ranges

per scan using the same methods as above, but additionally applying the GBP

model [3] to incorporate angular dependencies between the predicted beams. This

post-processing step yields slight improvements compared to the original variants

C05, C07, and C09.

The left image in Figure 8 depicts the predictions based on the individual

vision features and the Feature-GP. It can be clearly seen from the image, that

the different edge-based features model different parts of the range scan well. The

Feature-GP fuses these unreliable estimates to achieve high accuracy on the whole

scan. The result of the Feature-GP+GBP variant for the same situation is given

in Figure 1. The right diagram in Figure 8 visualizes a typical prediction result and

17

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

R
M

S
E

Image Number

Laws3+Canny
Laws3+Canny+LMD

Laws5
Laws5+LMD
Feature-GP

Feature-GP+GBP

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500

R
M

S
E

Image Number

Laws3+Canny
Laws3+Canny+LMD

Laws5
Laws5+LMD
Feature-GP

Feature-GP+GBP

Figure 9: The evolution of the root mean squared error (RSME) for the individual images of the

Saarbrücken (left) and Freiburg (right) data sets.

the corresponding laser scan—which can be regarded here as the ground truth—

from a birds-eye view. The evolution of the RMSE for the different methods

over time is given in Figure 9. As can be seen from the diagrams, the prediction

using the Feature-GP model outperforms the other techniques and achieves a near-

constant error rate.

In summary, our GP-based technique outperforms the individual, engineered

features for range prediction. The smoothed approach (C06) yields the best pre-

dictions with an RMSE of around 1 m. One can obtain good results by a combi-

nation of LDA for dimensionality reduction and GP learning with an error that is

only slightly larger (C10 versus C06), even though this unsupervised method does

not have access to background information.

5.2. Error Analysis

In this section, we analyze the prediction accuracy of our proposed method

beyond the RMSE measure, that is, considering the entire distribution of predic-

tion error in order to identify and document its different causes. The left diagram

in Fig. 10 shows the histogram of prediction errors for a typical scan. It is clearly

visible, that the reported RMSE values are strongly influenced by the heavy tails

18

Figure 10: Error histograms for omnidirectional range prediction from single images. Left: Inde-

pendent predictions for fixed beam orientations. Right: Accounting for uncertain beam orienta-

tions due to small angular miscalibration of the test and training setup.

of the error distribution. The large majority of the predictions is accurate (less

than 30cm error), while very few predictions have a high error of up to 3m. Close

inspection of the results reveals, that such isolated high errors are mostly caused

by a small angular misalignment between the camera and the laser scanner which

recorded the reference test set. This effect is visualized in the right diagram in

Fig. 11. The diagram shows the “true distances” as measured by the laser scanner,

the predicted distances and the respective absolute errors. It can be seen that most

of the absolute prediction error accounts to beam 18520 (ID in the entire test set)

which is located close to a depth discontinuity. Already a very small angular mis-

alignment between laser scanner and camera can lead to such peaks in the error

function.

As a result, the reported RMSE values have to be seen as a tool for compar-

ing different approaches and settings rather than as a measure of precision for an

actual application. From our experience, error histograms and concrete prediction

examples deliver the best picture of the actual precision to be expected.

To show the influence of angular misalignment as well as long-range predic-

tions quantitatively, we give a comparison of different error measures in Tab. 2.

In the row labeled “fixed aligment”, we give the errors for direct comparisons

Table 2: Comparison of error measures.

Root Mean Squared Mean Absolute Mean relative

Error (RMSE) Error Error

Fixed alignment 0.88 m 0.55 m 0.19

Uncertain alignment 0.67 m 0.38 m 0.14

19

Figure 11: Left: Range predictions of method C05 (Feature-GP) for a single perspective camera

image taken from a test sequence. Right: Visualization of the prediction errors for a typical scan

from a test sequence. Most of the absolute prediction error is caused by small angular misalign-

ments (here: beam 18520) and for long-range predictions (exceeding 10m).

between laser beams and prediction w.r.t. a fixed beam orientation. For “uncer-

tain aligment”, we allow for a small angular misalignment of the laser beams and

their projections to the camera images. The relative errors in the last column are

computed by dividing the range predictions by the true distances.

As a reference for comparison, Saxena et al. [2] reports depth reconstruction

errors in indoor environments of 0.084 on a log scale (base 10), which corresponds

to 1.21m of mean absolute error. Including stereo information using a second

camera, their error drops to 0.079 in log scale, that is, 1.19m on a regular scale.

5.3. Using Perspective Cameras

To show the flexibility of our method, we conducted additional experiments

using a single perspective camera (as opposed to an omnidirectional one). In this

setting, the correspondence between range observations from the laser scanner

(available only during training) and the camera image is not as direct as for omni-

directional, axis-aligned cameras. Nevertheless, the mapping function is bijective

in the region observed by the camera and it can be computed analytically using

projective geometry. The right image in Fig. 2 shows an example image and the

laser beams transformed into image coordinates. The camera has a 50◦ field of

view and it covers approximately 2.2m to 30m in depth. The camera was tilted

downwards by 10◦. We recorded two data sets containing 600 images each. One

set was used for training, the other one for testing.

In this experiment, we additionally evaluated a combination of PCA and LDA,

for which we first reduced the dimensionality of the data to 50 using PCA and

20

then applied LDA to further reduce to 6 dimensions. This is a common approach

in face recognition, addressing the concern that LDA might perform poorly due

to too little training data. PCA and LDA were learned from 100 images randomly

drawn from the training set and the GP models used 300 random images. Test

statistics were computed over the whole test set (50 beams per image).

Table 3 gives the quantitative results for this experiment. The observed trend

is similar to the one described in Sec. 5.1: The feature-based GP performs best,

while the unsupervised methods (LDA and PCA) follow up with a higher mean

prediction error. The combination of LDA and PCA did not yield significant ad-

vantages in this setting. The absolute prediction errors are higher compared to

the omnidirectional setting, mainly because the respective test set contains signif-

icantly more long-range predictions due to the heading of the camera towards the

long corridor.

Referring to the discussion in the previous section, it should be noted that the

distribution of errors is strongly biased towards errors caused by small angular

misalignments (see the right diagram in Fig. 11). For most practical applications,

for example obstacle avoidance, such small angular misalignments do not have a

negative impact. The left image in Fig. 11 shows a typical image from the test

sequence including the predictions made using C05 (Feature-GP).

Table 3: Average errors obtained with the different methods on single perspective camera images.

The root mean squared errors (RMSE) are calculated relative to the mean predictions for the

complete test sets.

Prediction errors (on single images of a perspective camera)

Configuration Mean absolute error RMSE

C09: LDA-GP 2.24m 3.52m

C07: PCA-GP 1.87m 3.10m

C11: PCA-LDA-GP 1.85m 3.02m

C05: Feature-GP 1.19m 2.65m

5.4. Non-Linear Dimensionality Reduction

In addition to PCA and LDA, we also considered applying non-linear dimen-

sionality reduction as a preprocessing step. Non-linear dimensionality reduction

can be described as seeking a low-dimensional manifold (not necessarily a linear

subspace) in which the observed data points can be represented well. Approaches

to this problem include local linear embedding (LLE) [32] and ISOMAP [33].

21

We implemented LLE, due to our positive experience with this technique in

the past. In this domain, however, LLE performed significantly worse than all

other techniques evaluated in Table 1. An analysis of the constructed manifolds

indicated that the low performance may be caused by the significant number of

outliers present in our real-world data sets. Similar observations about LLE and

the presence of outliers have also been reported by other researcher. Chang and

Yeung [34], for example, report that adding between 5% and 10% outliers to per-

fect data can prevent LLE from finding an appropriate embedding.

5.5. Learning Occupancy Maps from Predicted Scans

Our approach can be applied to a variety of robotics tasks such as obstacle

avoidance, localization, or mapping. To illustrate this, we show how to learn a

grid map of the environment from the predictive range distributions. Compared

to occupancy grid mapping where one estimates for each cell the probability of

being occupied or free, we use the so-called reflection probability maps. A cell of

such a map models the probability that a laser beam passing this cell is reflected

or not. Reflection probability maps, which are learned using the so-called count-

ing model, have the advantage of requiring no hand-tuned sensor model such as

occupancy grid maps (see [35] for further details). The reflection probability mi

of a cell i is given by

mi =
αi

αi + βi

, (6)

where αi is the number of times an observation hits the cell, i.e., ends in it, and

βi is the number of misses, i.e., the number of times a beam has intercepted a cell

without ending in it. Since our GP approach does not estimate a single laser end

point, but rather a full (normal) distribution p(z) of possible end points, we have to

integrate over this distribution (see Figure 12). More precisely, for each grid cell

ci, we update the cell’s reflectance values according to the predictive distribution

p(z) according to the following formulas:

αi ← αi +

∫

z∈ci

p(z) dz (7)

βj ← βi +

∫

z>ci

p(z) dz . (8)

Note that for perfectly accurate predictions, the extended update rule is equivalent

to the standard formula stated above.

22

Figure 12: The counting model for reflectance grid maps in conjunction with sensor models that

yield Gaussian predictive distributions over ranges.

We applied this extended reflection probability mapping approach to the tra-

jectories and range predictions that resulted from the experiments reported above.

Figure 13 presents the laser-based maps using a standard reflection probability

mapping system (left column) and our extended variant using the predicted ranges

(right column) for the two environments (Freiburg on top and Saarbrücken below).

In both cases, it is possible to build an accurate map, which is comparable to maps

obtained with infrared proximity sensors [36] or sonars [21].

6. Conclusion

This paper presents a new approach to estimating the free space around a robot

based on single images recorded with an omnidirectional camera. The task of es-

timating the range to the closest obstacle is achieved by applying a Gaussian pro-

cess model for regression, utilizing edge-based features extracted from the image

or, alternatively, using PCA or LDA to find a low-dimensional representation of

the visual input in an unsupervised manner. All learned models outperform the

optimized individual features.

We furthermore showed in experiments with a real robot that the range pre-

dictions are accurate enough to feed them into a mapping algorithm considering

predictive range distributions and that the resulting maps are comparable to maps

obtained with infrared or sonar sensors.

Acknowledgments

We would like to thank Andrzej Pronobis and Jie Luo for creating the CoSy

data sets. This work has partly been supported by the EC under contract number

FP7-231888-EUROPA and FP6-004250-CoSy, by the DFG under contract num-

ber SFB/TR-8, and by the German Ministry for Education and Research (BMBF)

through the DESIRE project.

23

Figure 13: Maps of the Freiburg AIS lab (top row) and DFKI Saarbrücken (bottom row) using real

laser data (left) and the predictions of the Feature-GP (right).

References

[1] G. Swaminathan, S. Grossberg, Laminar cortical mechanisms for the percep-

tion of slanted and curved 3-D surfaces and their 2-D pictorical projections,

Journal of Vision 2 (7) (2002) 79–79.

[2] A. Saxena, S. Chung, A. Ng., 3-d depth reconstruction from a single still

image, Int. Journal of Computer Vision (IJCV).

[3] C. Plagemann, K. Kersting, P. Pfaff, W. Burgard, Gaussian beam processes:

A nonparametric bayesian measurement model for range finders, in: Proc.

of Robotics: Science and Systems (RSS), 2007.

[4] F. Sinz, J. Quinonero-Candela, G. Bakir, C. Rasmussen, M. Franz, Learning

depth from stereo, in: 26th DAGM Symposium, 2004.

24

[5] D. Lowe, Distinctive image features from scale-invariant keypoints, Interna-

tional Journal of Computer Vision 60 (2) (2004) 91–110.

[6] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, SURF: Speeded up robust fea-

tures, Computer Vision and Image Understanding (CVIU) 110 (3) (2008)

346–359.

[7] A. Davision, I. Reid, N. Molton, O. Stasse, Monoslam: Real-time single

camera slam, IEEE Transaction on Pattern Analysis and Machine Intelli-

gence 29 (6).

[8] H. Strasdat, C. Stachniss, M. Bennewitz, W. Burgard, Visual bearing-only si-

multaneous localization and mapping with improved feature matching, 2007.

[9] B. Micusik, T. Pajdla, Structure from motion with wide circular field of view

cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence

28 (7) (2006) 1135–1149.

[10] R. Sim, J. J. Little, Autonomous vision-based exploration and mapping us-

ing hybrid maps and Rao-Blackwellised particle filters, in: Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006, pp.

2082–2089.

[11] P. Favaro, S. Soatto, A geometric approach to shape from defocus, IEEE

Trans. Pattern Anal. Mach. Intell. 27 (3) (2005) 406–417.

[12] A. Torralba, A. Oliva, Depth estimation from image structure, IEEE Trans-

actions on Pattern Analysis and Machine Learning.

[13] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, G. Bradski, Self-supervised

monocular road detection in desert terrain., in: Proc. of Robotics: Science

and Systems (RSS), 2006.

[14] J. Michels, A. Saxena, A. Ng, High speed obstacle avoidance using monoc-

ular vision and reinforcement learning, in: Int. Conf. on Machine Learning

(ICML), 2005, pp. 593–600.

[15] E. Menegatti, A. Pretto, A. Scarpa, E. Pagello, Omnidirectional vision scan

matching for robot localization in dynamic environments, IEEE Transactions

on Robotics 22 (3) (2006) 523–535.

25

[16] D. Hoiem, A. Efros, M. Herbert, Recovering surface layout from an image,

Int. Journal of Computer Vision (IJCV) 75 (1).

[17] F. Han, S.-C. Zhu, Bayesian reconstruction of 3d shapes and scenes from a

single image, in: IEEE Int. Workshop on Higher-Level Knowledge in 3D

Modeling and Motion Analysis, Washington, DC, USA, 2003, p. 12.

[18] E. Delage, H. Lee, A. Ng., Automatic single-image 3d reconstructions of

indoor manhattan world scenes., in: Proceedings of the 12th International

Symposium of Robotics Research (ISRR), 2005.

[19] R. Ewerth, M. Schwalb, B. Freisleben, Using depth features to retrieve

monocular video shots, in: Proceedings of the 6th ACM international con-

ference on Image and video retrieval (CIVR), ACM, New York, NY, USA,

2007, pp. 210–217.

[20] H. Moravec, A. Elfes, High resolution maps from wide angle sonar, in:

Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), St. Louis,

MO, USA, 1985, pp. 116–121.

[21] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig,

T. Hofmann, M. Krell, T. Schimdt, Map learning and high-speed navigation

in RHINO, in: AI-based Mobile Robots: Case studies of successful robot

systems, MIT Press, Cambridge, MA, 1998.

[22] K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, T. Yoshiga-

hara, Obstacle avoidance and path planning for humanoid robots using stereo

vision, in: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),

New Orleans, LA, USA, 2004.

[23] P. Elinas, R. Sim, J. J. Little, σSLAM: Stereo vision SLAM using the rao-

blackwellised particle filter and a novel mixture proposal distribution, in:

Proc. of ICRA, 2006.

[24] C. Plagemann, F. Endres, J. Hess, C. Stachniss, W. Burgard, Monocular

range sensing: A non-parametric learning approach, in: Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Pasadena, CA, USA, 2008.

[25] E. Alpaydin, Introduction To Machine Learning, MIT Press, 2004.

26

[26] E. R. Davies, Laws texture energy in texture, in: Machine Vision: Theory,

Algorithms, Practicalities, Acedemic Press, 1997.

[27] F. Canny, A computational approach to edge detection, IEEE Trans. Pattern

Analysis and Machine Intelligence (1986) 679–714.

[28] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT

Press, 2006.

[29] C. Stachniss, C. Plagemann, A. Lilienthal, W. Burgard, Gas distribution

modeling using sparse gaussian process mixture models, in: Proc. of

Robotics: Science and Systems (RSS), Zurich, Switzerland, 2008.

[30] V. Tresp, Mixtures of gaussian processes, in: Proc. of the Conf. on Neural

Information Processing Systems (NIPS), 2000.

[31] EU Project CoSy. [link].

URL http://www.cognitivesystems.org/

[32] S. Roweis, L. Saul, Nonlinear dimensionality reduction by locally linear em-

bedding, Science 290 (5500) (2000) 2323–2326.

[33] J. Tenenbaum, V. de Silva, J. Langford, A global geometric framework for

nonlinear dimensionality reduction., Science 290 (5500) (2000) 2319–2323.

[34] H. Chang, D.-Y. Yeung, Robust locally linear embedding, Pattern Recogni-

tion 39 (6) (2006) 1053–1065.

[35] W. Burgard, C. Stachniss, D. Haehnel, Autonomous Navigation in Dy-

namic Environments, Vol. 35 of STAR Springer tracts in advanced robotics,

Springer Verlag, 2007, Ch. Mobile Robot Map Learning from Range Data

in Dynamic Environments.

[36] Y. Ha, H. Kim, Environmental map building for a mobile robot using infrared

range-finder sensors, Advanced Robotics 18 (4) (2004) 437–450.

27

[J2] H. Kretzschmar, G. Grisetti, and C. Stachniss. Life-long map learning

for graph-based simultaneous localization and mapping. KI – Kuenstliche

Intelligenz. In press.

Life-long Map Learning for Graph-based

SLAM Approaches in Static Environments

Henrik Kretzschmar, Giorgio Grisetti, Cyrill Stachniss

In this paper, we consider the problem of life-long map learning with mobile robots using the graph-based formulation of the

simultaneous localization and mapping problem. To allow for life-long mapping, the memory and computational requirements

for mapping should remain bounded when re-traversing already mapped areas. Our method discards observations that do not

provide relevant new information with respect to the model constructed so far. This decision is made based on the entropy

reduction caused by observations. As a result, our approach scales with the size of the environment and not with the length

of the trajectory. The experiments presented in this paper illustrate the advantages of our method using real robot data.

1 Introduction

Maps of the environment are needed for a wide range of robotic
applications, including transportation tasks and many service
robotic applications. Therefore, learning maps is regarded as
one of the fundamental problems in mobile robotics. In the last
two decades, several effective approaches for learning maps have
been developed. The graph-based formulation of the simultane-
ous localization and mapping (SLAM) problem models the poses
of the robot as nodes in a graph. Spatial constraints between
poses resulting from observations or from odometry are encoded
in the edges between the nodes. Graph-based approaches such
as [Frese et al., 2005; Olson et al., 2006; Grisetti et al., 2007b],
which are probably the most efficient techniques at the moment,
typically marginalize out the features (or local grid maps) and
reduce the mapping problem to trajectory estimation without
prior map knowledge. Therefore, the underlying graph structure
is often called the pose graph.

The majority of approaches, however, assumes that map
learning is carried out as a preprocessing step and that the robot
later on uses the model for tasks such as localization or path
planning. A robot that is constantly updating the map of its
environment has to address the so-called life-long SLAM prob-
lem. This problem cannot be handled well by most graph-based
techniques since the complexity of these approaches grows with
the length of the trajectory. As a result, the memory as well as
the computational requirements grow over time and therefore
these methods cannot be applied in this context.

The contribution of this paper is a novel approach that en-
ables graph-based SLAM approaches to operate in the context
of life-long map learning in static scenes. Our approach is or-
thogonal to the underlying graph-based mapping technique and
applies an entropy-driven strategy to prune the pose graph while
minimizing the loss of information. This becomes especially im-
portant when re-traversing already mapped areas. As a result,
our approach scales with the size of the environment and not
with the length of the trajectory. It should be noted that not
only long-term mapping systems benefit from our method. Also
traditional mapping systems are able to compute a map faster
since less resources are claimed and less comparisons between
observations are needed to solve the data association problem.
We furthermore illustrate that the resulting grid maps are less
blurred compared to the maps built without our approach.

2 Related Work

There is a large variety of SLAM approaches available in the
robotics community. Common techniques apply extended and
unscented Kalman filters [Leonard and Durrant-Whyte, 1991;
Julier et al., 1995], sparse extended information filters [Thrun
et al., 2004; Eustice et al., 2005], particle filters [Montemerlo
and Thrun, 2003; Grisetti et al., 2007a], and graph-based, least
square error minimization approaches [Lu and Milios, 1997; Frese
et al., 2005; Olson et al., 2006; Grisetti et al., 2007b].

The group of graph-based SLAM approaches for estimating
maximum-likelihood maps is often regarded as the most effec-
tive means to reduce the error in the pose graph. Lu and Mil-
ios [1997] were the first to refine a map by globally optimizing
the system of equations to reduce the error introduced by con-
straints. Since then, a large variety of approaches for minimizing
the error in the constraint network have been proposed. Duckett
et al. [2002] use Gauss-Seidel relaxation. The multi-level relax-
ation (MLR) approach of Frese et al. [2005] apply relaxation at
different spatial resolutions. Given a good initial guess, it yields
very accurate maps particularly in flat environments. Folkesson
and Christensen [2004] define an energy function for each node
and try to minimize it. Thrun and Montemerlo [2006] apply vari-
able elimination techniques to reduce the dimensionality of the
optimization problem. Olson et al. [2006] presented a fast and
accurate optimization approach which is based on the stochastic
gradient descent (SGD). Compared to approaches such as MLR,
it still converges from a worse initial guess. Based on Olson’s
optimization algorithm, Grisetti et al. [2007b] proposed a differ-
ent parameterization of the nodes in the graph. The tree-based
parameterization yields a significant boost in performance. In
addition to that, the approach can deal with arbitrary graph
topologies. The approach presented in this paper is built upon
the work of Grisetti et al. [2007b].

Most graph-based approaches available today do not pro-
vide means to efficiently prune the pose graph, that has to be
corrected by the underlying optimization framework. Most ap-
proaches can only add new nodes or apply a rather simple deci-
sion whether to add a new node to the pose graph or not (such
as the question of how spatially close a node is to an existing
one). However, there are some notable exceptions: Folkesson
and Christensen [2004] combine nodes into so-called star nodes
which then define rigid local submaps. The method applies de-

Page 1

layed linearization of local subsets of the graph, permanently
combining a set of nodes in a relative frame. Related to that,
Konolige and Agrawal [2008] subsample nodes for the global
optimization and correct the other nodes locally after global op-
timization.

Other authors considered the problem of updating a map
upon changes in the environment. For example, Biber and Duck-
ett [2005] propose an approach to update an existing model of
the environment. They use five maps on different time scales
and incorporate new information by forgetting old information.
Related to that, Stachniss and Burgard [2005] learn clusters of
local map models to identify typical states of the environment.
Both approaches focus on modeling changes in the environment
but do not address the full SLAM problem since they require an
initial map to operate. The approach presented in this paper
further improves the node reduction techniques for graph-based
SLAM by estimating how much the new observation will change
the map. It explicitely considers the information gain of obser-
vations to decide whether the corresponding nodes should be
removed from the graph or not.

In the remainder of this paper, we will first introduce the
basic concept of pose graph optimization originally presented
in [Grisetti et al., 2007b]. In Section 4, we describe our contri-
bution to information-driven node reduction. In Section 5, we
finally presents our experimental evaluation.

3 Map Learning using Pose Graphs

The graph-based formulation of the SLAM problem models the
poses of the robot as nodes in a graph (a so-called pose graph).
Spatial constraints between poses resulting from observations
or from odometry are encoded in the edges between the nodes.
Most approaches to graph-based SLAM focus on estimating the
most-likely configuration of the nodes and are therefore referred
to as maximum-likelihood (ML) techniques. The approach pre-
sented in this paper also applies an optimization framework that
belongs to this class of methods.

3.1 Problem Formulation

The goal of graph-based ML mapping algorithms is to find the
configuration of the nodes that maximizes the likelihood of the
observations. Let x = (x1 · · · xn)T be a vector of parameters
which describes a configuration of the nodes. Let δji and Ωji

be respectively the mean and the information matrix of an ob-
servation of node j seen from node i. Let fji(x) be a function
that computes a zero noise observation according to the current
configuration of the nodes j and i.

Given a constraint between node j and node i, we can define
the error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

as well as the residual rji = −eji(x). Let C be the set of pairs
of indices for which a constraint δ exists. The goal of a ML
approach is to find the configuration of the nodes that minimizes
the negative log likelihood of the observations. Assuming the
constraints to be independent, this can be written as

x
∗ = argmin

x

X

〈j,i〉∈C

rji(x)T Ωjirji(x). (2)

3.2 Map Optimization

To solve Eq. (2), different techniques can be applied. Our work
applies the approach of Grisetti et al. [2007b] which is an ex-
tention of the work of Olson et al. [2006]. Olson et al. [2006]

propose to use a variant of the preconditioned stochastic gra-
dient descent (SGD) to compute the most likely configuration
of the nodes in the network. The approach minimizes Eq. (2)
by iteratively selecting a constraint and by moving the nodes of
the pose graph in order to decrease the error introduced by the
selected constraint. Compared to the standard formulation of
gradient descent, the constraints are not optimized as a whole
but individually. The nodes are updated according to the fol-
lowing equation:

x
t+1 = x

t + λ · H−1
J

T
jiΩjirji (3)

Here, x is the set of variables describing the locations of the
poses in the network and H−1 is a preconditioning matrix. Jji

is the Jacobian of fji, Ωji is the information matrix capturing
the uncertainty of the observation, rji is the residual, and λ

is the learning rate which decreases with the iteration. For a
detailed explanation of Eq. (3), we refer the reader to [Grisetti
et al., 2007b] or [Olson et al., 2006].

In practice, the algorithm decomposes the overall problem
into many smaller problems by optimizing subsets of nodes, one
subset for each constraint. Whenever a solution for one of these
subproblems is found, the network is updated accordingly. Ob-
viously, updating the constraints one after each other can have
antagonistic effects on the corresponding subsets of variables.
To avoid infinite oscillations, one uses the learning rate λ to
reduce the fraction of the residual which is used for updating
the variables. This makes the solutions of the different sub-
problems converge asymptotically to an equilibrium point which
is the solution reported by the algorithm.

3.3 Tree Parameterization for Efficient Map

Optimization

The poses p = {p1, . . . , pn} of the nodes define the configura-
tion of the graph. The poses can be described by a vector of
parameters x such that a bidirectional mapping between p and x

exists. The parameterization defines the subset of variables that
are modified when updating a constraint in SGD. An efficient
way of parameterizing the nodes is to use a tree. To obtain that
tree, we compute a spanning tree from the pose graph. Given
such a tree, one can define the parameterization for a node as

xi = pi − pparent(i), (4)

where pparent(i) refers to the parent of node i in the spanning
tree. As shown in [Grisetti et al., 2007b] this approach can
dramatically speed up the convergence rate compared to the
method of Olson et al. [2006].

The technique described so far is typically executed as a
batch process but there exists also an incremental variant [Grisetti
et al., 2008] which performs the optimization only on the por-
tions of the graph which are affected by the introduction of new
constraints. It is thus able to re-use the previously generated
solutions to compute the new one.

Page 2

3.4 The SLAM Front-end

The approach briefly described above only focuses on correcting
a pose graph given all constraints and is often referred to as
the SLAM back-end. In contrast to that, the SLAM front-end
aims at extracting the constraints from sensor data. In this
paper, we build our work upon the SLAM front-end described
in the Ph.D. thesis of Olson [2008]. We refer to this technique
as “without graph reduction”. The front-end generates a new
node every time the robot travels a minimum distance. Every
node is labeled with the laser-scan acquired at that position.
Constraints between subsequent nodes are generated by pairwise
scan-matching. Every time a new node is added, the front-end
seeks for loop closures with other nodes. It therefore computes
the marginal covariances of all nodes with respect to the newly
added one. This is done by using the approximate approach of
Tipaldi et al. [2007]. Once these covariances are computed, the
approach selects a set of candidate loop closures using the χ2

test. The corresponding edges are then created by aligning the
current observations with the ones stored in each candidate loop
closing node determined by the previous step. In addition to
that, an outlier rejection technique based on spectral clustering
is applied to reduce the risk of wrong matches.

The contribution of this paper is a technique that “sits” be-
tween the SLAM front-end and the optimizer, the SLAM back-
end, in order to enable a robot to perform life-long map learn-
ing in static worlds. It allows for removing redundant nodes
by considering the information gain of the observations. As we
will show in the remainder of this paper, our method allows
for efficient map learning especially in the context of frequent
re-traversals of previously mapped areas. In addition to that,
we illustrate that this technique improves the map quality when
learning grid maps and that it generates sharp boundaries be-
tween free and occupied spaces.

4 Our Approach for Life-Long Map

Learning

For life-long map learning, a robot cannot add new nodes to
the graph whenever it is re-entering already visited terrain. The
key idea of our approach is to prune the graph structure to limit
the number of nodes. Most existing approaches to graph reduc-
tion simply consider the position of a potential new node and
do not integrate it into the graph if it is spatially close to an
existing node. In this paper, we propose a different, information-
driven approach to node reduction. In contrast to considering
poses only, we measure the amount of information an observa-
tion contributes to the belief of the robot.

4.1 Information-Theoretic Node Reduction

The key idea of our approach is to measure the information gain
which is defined as the reduction of uncertainty caused by an
observation. To measure the uncertainty of the current belief of
the robot, we use the entropy. Entropy H is a general measure
for uncertainty in the belief over a random variable x. For a
discrete probability distribution, entropy is given by

H (p(x)) = −
X

x

p(x) log2 p(x). (5)

In theory, the entropy has to be computed over the full SLAM
posterior, thus taking into account the pose and the map uncer-
tainty. In our case, however, we seek for discarding observations
when re-traversing a known area. If the robot performs such
a re-traversal, it has already identified loop-closing constraints
that caused a pose correction carried out by the optimization
framework. Thus, the nodes which are discarded typically have
a minor effect on the pose uncertainty itself. Therefore, the rele-
vant part of the uncertainty is given by the map uncertainty. To
put this in other words, the optimization framework is a maxi-
mum likelihood estimator and its estimate is the node arrange-
ment. Based on this arrangement, the model can be computed
and thus the entropy. For a grid map, the entropy is

H(p(m)) =
X

c∈m

H(p(c)) (6)

= −
X

c∈m

`

p(c) log p(c) + p(¬c) log p(¬c)
´

, (7)

where c refers to the individual cells of the grid map m. The
idea of our approach is to discard all observations and the cor-
responding nodes in the graph which do not reduce the entropy.
Based on the entropy, we can define the information gain I of
an observation z by summing over all cells c in the map m as

I(z) =
X

c∈m

H(p(c)) − H(p(c|z)). (8)

Note that our approach does not perform its decision for the
most recent observation only. In contrast, it also considers old
observations for removal. In each step, our algorithm considers
the information gain for all measurements zi for i = 1, . . . , n

I(zi) =
X

c∈m

H(p(c | z1:i−1,i+1:n)) − H(p(c|z1:n)). (9)

To determine if an observation zi should be discarded, we check
if I(zi) is smaller than or equal to zero. Zero means that the ob-
servation does not contain novel information that would reduce
the uncertainty in the belief of the robot.

In practice, the sensor of the robot has only a limited range.
Therefore, only spatially close nodes (an thus measurements)
need to be considered here and not all scans z1:n in the map.
We compute the information gain according to Eq. (9) for all
observations in the vicinity of the robot according to a Dijkstra
expansion. Then, we remove observations until the one with the
lowest information gain has a value greater than zero.

In this section, we described how to identify nodes in the
graph corresponding to observations that can be discarded with-
out losing relevant information. In the next section, we describe
how to prune the graph while preserving most of the information
encoded in the edges.

4.2 Updating the Graph

To remove a node from the graph structure, the information en-
coded in the edges between the node and its neighbors should
not be discarded along with the node since it encodes relevant
spatial information. Simply removing all adjacent edges can
even lead to several disconnected graphs which is clearly unde-
sirable since in this case, the overall map would break apart into
unconnected submaps.

Page 3

i j j j

Figure 1: Left: Graph built according to the observations. Middle: Exactly marginalized but densely connected graph after removing
node i. Right: Approximate solution obtained by collapsing the edges at i into node j.

In theory, one needs to connect all pairs of neighbors of the
node to be removed to preserve the error function used for graph
optimization. This, however, can lead to a fully connected graph
which results in a quadratic number of edges. When removing
a node which has k neighbors, the total number of edges can
grow by up to 1

2
k(k − 1) − k. This introduces a complexity

which is not suited for life-long map learning. An illustration of
the graph update is depicted in the left and middle illustration
of Figure 1.

Therefore, we propose an alternative way of removing a node
which is an approximate solution but which does not increase
the computational cost. Let i be the node to be removed and N

be the set of neighbors of i. The key idea of our method is to
select one node j ∈ N and merge the information of all edges
connecting i into existing as well as new edges connecting j.
This results in removing all k edges at i and in adding (k − 1)
edges between j and N\{j}. If this results in two edges con-
necting the same two nodes j and one of its neighbors, these
edges can directly be merged (see also Figure 1, right). Conse-
quently, the overall number of edges always decreases at least
by 1.

Merging the information encoded in the edges can be done
in a straight forward manner since the edges encode Gaussian
constraints. Thus, concatenating two constraints with means δji

and δkj and information matrices Ωji and Ωkj is done by

δki = δji ⊕ δkj (10)

Ωki =
`

Ω−1
ji + Ω−1

kj

´−1
. (11)

Similar to that, merging two constraints δ1
ij and δ2

ij between
nodes j and i is done by

δji = Ω−1
ji (Ω

(1)
ji δ

(1)
ji + Ω

(2)
ji δ

(2)
ji) (12)

Ωji = Ω
(1)
ji + Ω

(2)
ji . (13)

To collapse a node i into one of its neighbors, one could se-
lect, in theory, an arbitrary node j ∈ N . However, the selection
of the node j can have a significant influence on the resulting
map that will be obtained. The reason for that is the underly-
ing optimization framework. Most existing approaches assume
Gaussian observations (the edges represent Gaussians) although
this assumption may not hold in practice. In addition to that,
some optimization systems assume roughly spherical covariances
to exhibit maximum performance. Thus, it is desirable to avoid
long edges to limit the effect of linearization errors. Our ap-
proach therefore considers all neighbors j ∈ N and selects the
one such that the sum of the lengths of all edges in the resulting
graph is minimized:

j
∗ = argmin

j∈N

X

e∈G(i→j)

length(e) (14)

In Eq. (14), G(i → j) refers to the graph that results when
collapsing node i into node j. Note that in practice, only the
edges at i and those at j need to be involved in the computation
and not the entire graph.

4.3 Gamma Index

To evaluate how densely connected a pruned pose graph is in
practice, we will evaluate real world data sets using the so-called
gamma index [Garrison and Marble, 1965]. The gamma in-
dex (γ) is a measure of connectivity of a graph. It is defined as
the ratio between the number of existing edges and the maxi-
mum number of possible edges. It is given by

γ =
e

1
2
v(v − 1)

, (15)

where e is the number of edges and v is the number of nodes in
the graph. The gamma index varies from 0 to 1, where 0 means
that the nodes are not connected at all and 1 means that the
graph is complete.

As we will show in the experiments, our approach leads to a
small and more or less constant gamma index, below 0.01 (in all
our datasets). In contrast to that, the sound pruning strategy
tends towards much higher gamma values.

5 Experimental Evaluation

The experimental evaluation of this work was carried out at the
University of Freiburg using a real ActivMedia Pioneer-2 robot
equipped with a SICK laser range finder and running CARMEN.
In addition to that, we considered a dataset that is frequently
used in the robotics community to analyze SLAM algorithms,
namely the Intel Research dataset provided by Dirk Hähnel.

5.1 Runtime

The experiments in this section are designed to show that our
approach to informed graph pruning is well suited for robot map-
ping – for life-long map learning as well as for standard SLAM.
In the first set of experiments, we present an analysis of how the
graph structure and thus the runtime increases when a robot
constantly re-traverses already mapped areas. We compare the
results of a graph-based optimization approach [Grisetti et al.,
2007b] in combination with a re-implementation of the SLAM
front-end of Olson [2008] to our novel method (using the same
front- and back-end).

In the experiment presented in Figure 2, the robot was con-
stantly re-visiting already known areas. It traveled forth and

Page 4

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

ti
m

e
 p

e
r

o
b

s
e

rv
a

ti
o

n
 [

s
]

observation

no graph reduction
our approach

 0

 1000

 2000

 3000

 4000

 0 1000 2000 3000 4000 5000

n
u

m
b

e
r

o
f

n
o

d
e

s

observation

no graph reduction
our approach

 0

 20000

 40000

 60000

 80000

 0 1000 2000 3000 4000 5000

n
u

m
b

e
r

o
f

e
d

g
e

s

observation

no graph reduction
our approach

Figure 2: Typical results of an experiment in which the robot moves in already visited areas. Left: Runtime per observation for the
standard approach (blue) and for our method (red). Middle and right: Number of nodes and edges in the graph for both methods.
Due to time reasons, the experiment for the standard approach was aborted after around 3500 observations.

 0

 5000

 10000

 15000

 20000

 0 500 1000 1500 2000 2500 3000

n
u

m
b

e
r

o
f

e
d

g
e

s

observation

no graph reduction
our approach

Figure 3: Results obtained by a robot moving at Freiburg Uni-
versity, building 079, repeatedly visiting the individual rooms and
the corridor. Top map image: standard approach without graph
pruning. Bottom map image: our approach.

back 100 times in an approximately 20 m long corridor in our
lab environment. This behavior leads to a runtime explosion
for the standard approach. Please note that this is not caused
by the underlying optimization framework (which is executed in
a few milliseconds) but by the SLAM front-end that looks for
constraints between the nodes in the graph considering all pre-
viously recorded scans. In contrast to that, our approach keeps
the number of nodes in the graph more or less constant and thus
avoids the runtime explosion.

In an additional experiment, the robot repeatedly visited dif-
ferent rooms and the corridor in our lab. Figure 3 shows the
resulting maps as well as the effect of the graph sparsification.
In sum, this experiment yields similar results than in the previous
experiment.

Figure 4: Robot moving 100 times forth and back in the cor-
ridor. Standard grid-based mapping approaches (top) tend to
generate thick and blurred walls whereas our graph sparsifica-
tion (bottom) does not suffer from this issue.

5.2 Improved Grid Map Quality by Infor-

mation-driven Graph Sparsification

The second experiment is designed to illustrate that our ap-
proach has a positive influence on the quality of the resulting
grid map. In contrast to feature-based approaches, grid maps
have one significant disadvantage when it comes to life-long map
learning. Whenever a robot re-enters a known region and uses
scan-matching, the chance of making a small alignment error is
nonzero. After the first error, the probability of making further
errors increases since the map the robot aligns its observation
with already has a (small) error. In the long run, this is likely
to lead to divergence or at least to artificially thick walls and
obstacles.

This effect, however, is significantly reduced when applying
our graph sparsification technique since scans are only main-
tained as long as they provide relevant information, otherwise,
they are discarded. To illustrate this effect, consider Figure 4.
The top image shows the result of 100 corridor traversals with-
out graph sparsification. The thick and blurred walls as a result
of the misaligned poses are clearly visible. In contrast to that,
the result obtained by our approach does not suffer from this
problem (bottom image). The same effect can also be observed
in the magnified areas in Figure 3.

5.3 Approximate Graph Update

We furthermore compared the effect of our approximate graph
update routine versus full marginalization of the nodes (see Fig-
ure 1 for an illustration). As discussed in Section 4.2, our node

Page 5

 0.01

 0.1

 1

 0 500 1000 1500 2000

g
a

m
m

a
 i
n

d
e

x
 (

γ)

observation

full marginalization
our approach

Figure 5: Evolution of the gamma index (Intel Research Lab).

removal technique is guaranteed to also decrease the number
of edges in the graph. In contrast to this, full marginalization
typically leads to densely connected graphs.

This effect can be observed in real world data such as the
Intel Research Lab, see Figure 5. This figure shows the gamma
indices of both graphs. As can be seen, the graph structure ob-
tained with our approach is and stays comparably sparse. The
corresponding graphs as well as the graph obtained by the stan-
dard approach are depicted in Figure 6.

This sparsity achieved by our approach has two advantages:
First, the underlying optimization method depends linearly on
the number of edges in the graph. Thus, having less edges
results in a faster optimization. Second, after multiple node re-
movals using full marginalization, it is likely that also spatially
distant nodes are connected via an edge. As mentioned in Sec-
tion 5.2, these long distant edges can be suboptimal for the
underlying optimization engine (as this is the case for [Grisetti
et al., 2007b]).

6 Conclusion

In this paper, we presented a novel approach that enables life
long map learning in static scenes. It is designed for mobile
robots that use a graph-based framework to solve the simulta-
neous localization and mapping problem. By considering the
information gain of observations, our method removes redun-
dant information from the graph and in this way keeps the size
of the pose-constraint network constant as long as the robot tra-
verses already mapped areas. We introduce an approximate way
to prune the graph structure that enables us to limit the com-
plexity and allows for highly efficient robotic map learning. The
approach has been implemented and thoroughly tested with real
robot data. We provided real world experiments and considered
standard benchmark datasets used in the SLAM community to
illustrate the advantages of our methods.

Note that even though this paper describes only 2D exper-
iments generated based on a 2D implementation of the work.
The extension to 3D, however, should be straightforward. Given
a local 3D grid (or more efficient representations such as oc-
trees), the entropy and thus the information gain can be com-
puted in the same way. Furthermore, the approximate marginal-
ization is directly applicable to any kind of constraint network.
Therefore, we believe that the approach can be directly applied
to 3D data even though we have not done this so far.

Figure 6: Map and graph obtained from the Intel Research Lab
dataset by using the standard (top) as well as by full marginal-
ization (middle) and by using our approach (bottom). Standard
approach: 1802 nodes, 3916 edges, full marginalization: 349
nodes, 13052 edges, our approach with approximate marginal-
ization: 354 nodes, 559 edges.

Page 6

Acknowledgment

We would like to thank Dirk Hähnel for providing the Intel Re-
search Lab dataset. This work has partly been supported by the
DFG under contract number SFB/TR-8 and by the EC under
contract number FP7-ICT-231888-EUROPA.

References

[Biber and Duckett, 2005] Biber, P., and Duckett, T. Dynamic Maps
for Long-Term Operation of Mobile Service Robots. In Proc. of
Robotics: Science and Systems (RSS), pages 17–24, 2005.

[Duckett et al., 2002] Duckett, T., Marsland, S., and Shapiro, J.
Fast, On-line Learning of Globally Consistent Maps. Autonomous
Robots, 12(3):287 – 300, 2002.

[Eustice et al., 2005] Eustice, R., Singh, H., and Leonard, J. Exactly
Sparse Delayed-State Filters. In Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), pages 2428–2435, 2005.

[Folkesson and Christensen, 2004] Folkesson, J., and Christensen, H.
Graphical SLAM - A Self-Correcting Map. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2004.

[Frese et al., 2005] Frese, U., Larsson, P., and Duckett, T. A Multi-
level Relaxation Algorithm for Simultaneous Localisation and Map-
ping. IEEE Transactions on Robotics, 21(2):1–12, 2005.

[Garrison and Marble, 1965] Garrison, W. L., and Marble, D. F. A
Prolegomenon to the Forecasting of Transportation Devel., 1965.

[Grisetti et al., 2007a] Grisetti, G., Stachniss, C., and Burgard, W.
Improved Techniques for Grid Mapping with Rao-Blackwellized Par-
ticle Filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

[Grisetti et al., 2007b] Grisetti, G., Stachniss, C., Grzonka, S., and
Burgard, W. A Tree Parameterization for Efficiently Computing
Maximum Likelihood Maps using Gradient Descent. In Proc. of
Robotics: Science and Systems (RSS), 2007.

[Grisetti et al., 2008] Grisetti, G., Rizzini, D. L., Stachniss, C., Olson,
E., and Burgard, W. Online Constraint Network Optimization for
Efficient Maximum Likelihood Map Learning. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2008.

[Julier et al., 1995] Julier, S., Uhlmann, J., and Durrant-Whyte, H.
A new Approach for Filtering Nonlinear Systems. In Proc. of the
American Control Conference, pages 1628–1632, 1995.

[Konolige and Agrawal, 2008] Konolige, K., and Agrawal, M.
FrameSLAM: From Bundle Adjustment to Real-Time Visual Map-
ping. IEEE Transactions on Robotics, 24(5):1066–1077, 2008.

[Leonard and Durrant-Whyte, 1991] Leonard, J., and Durrant-
Whyte, H. Mobile robot localization by tracking geometric bea-
cons. IEEE Transactions on Robotics and Automation, 7(4):376–
382, 1991.

[Lu and Milios, 1997] Lu, F., and Milios, E. Globally Consistent
Range Scan Alignment for Environment Mapping. Autonomous
Robots, 4:333–349, 1997.

[Montemerlo and Thrun, 2003] Montemerlo, M., and Thrun, S. Si-
multaneous Localization and Mapping with Unknown Data Associ-
ation using FastSLAM. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), pages 1985–1991, 2003.

[Olson et al., 2006] Olson, E., Leonard, J., and Teller, S. Fast Iter-
ative Optimization of Pose Graphs with Poor Initial Estimates. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 2262–2269, 2006.

[Olson, 2008] Olson, E. Robust and Efficient Robotic Mapping. PhD
thesis, MIT, Cambridge, MA, USA, 2008.

[Stachniss and Burgard, 2005] Stachniss, C., and Burgard, W. Mo-
bile Robot Mapping and Localization in Non-Static Environments.
In Proc. of the National Conference on Artificial Intelligence
(AAAI), pages 1324–1329, 2005.

[Thrun and Montemerlo, 2006] Thrun, S., and Montemerlo, M. The
graph SLAM algorithm with applications to large-scale mapping of
urban structures. The International Journal of Robotics Research,
25(5-6):403, 2006.

[Thrun et al., 2004] Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahra-
mani, Z., and Durrant-Whyte, H. Simultaneous Localization and
Mapping With Sparse Extended Information Filters. Int. Journal of
Robotics Research, 23(7/8):693–716, 2004.

[Tipaldi et al., 2007] Tipaldi, G. D., Grisetti, G., and Burgard, W.
Approximated Covariance Estimation in Graphical Approaches to
SLAM. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2007.

Contact

Cyrill Stachniss
Email: stachnis@informatik.uni-freiburg.de

Bild Henrik Kretzschmar is a PhD student at the
Department of Computer Science at Freiburg
University. He recently received his MSc de-
gree in computer science from the University
of Freiburg in 2009. His research interests lie
in the area of simultaneous localization and
mapping and probabilistic inference.

Bild Giorgio Grisetti is working as a Post-doc at
the Autonomous Intelligent Systems Lab at
Freiburg University headed by Wolfram Bur-
gard. Before, he was a PhD student at Uni-
versity of Rome La Sapienza were he received
his PhD degree. His research interests focus
providing effective solutions to mobile robot
navigation in all its aspects: SLAM, localiza-
tion and path planning.

Bild Cyrill Stachniss received his PhD degree
from the University of Freiburg in 2006. He
then was with the Swiss Federal Institute of
Technology in Zurich as a senior researcher.
Since 2007, he is an academic advisor at the
University of Freiburg. His research areas are
mobile robot navigation, exploration, SLAM
as well as learning approaches in the context
of robotics. He is an associate editor of the
IEEE Transactions on Robotics.

Page 7

[J3] R. Kuemmerle, B. Steder, M. Ruhnke, G. Grisetti, C. Stachniss,

C. Dornhege, and A. Kleiner. On measuring the accuracy of slam algo-

rithms. Autonomous Robots, 27:387-407, 2009.

Autonomous Robots manuscript No.

(will be inserted by the editor)

On Measuring the Accuracy of SLAM Algorithms

Rainer Kümmerle · Bastian Steder ·
Christian Dornhege · Michael Ruhnke ·
Giorgio Grisetti · Cyrill Stachniss ·
Alexander Kleiner

Received: date / Accepted: date

Abstract In this paper, we address the problem of creating an objective benchmark for

evaluating SLAM approaches. We propose a framework for analyzing the results of a SLAM

approach based on a metric for measuring the error of the corrected trajectory. This metric

uses only relative relations between poses and does not rely on a global reference frame. This

overcomes serious shortcomings of approaches using a global reference frame to compute

the error. Our method furthermore allows us to compare SLAM approaches that use different

estimation techniques or different sensor modalities since all computations are made based

on the corrected trajectory of the robot.

We provide sets of relative relations needed to compute our metric for an extensive

set of datasets frequently used in the robotics community. The relations have been obtained

by manually matching laser-range observations to avoid the errors caused by matching algo-

rithms. Our benchmark framework allows the user to easily analyze and objectively compare

different SLAM approaches.

Keywords SLAM; mapping accuracy; benchmarking

All authors are with the

University of Freiburg, Dept. of Computer Science, Georges Köhler Allee 79, 79110 Freiburg, Germany

Tel.: +49-761-203-8006, Fax: +49-761-203-8007

E-mail: {kuemmerl,steder,dornhege,ruhnke,grisetti,stachnis,kleiner}@informatik.uni-freiburg.de

This is a preprint of an article published in Journal of Autonomous Robots. The original publication is avail-

able at www.springerlink.com

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10514-009-9155-6&sa_campaign=Email/ACE/OF

2

1 Introduction

Models of the environment are needed for a wide range of robotic applications including

transportation tasks, guidance, and search and rescue. Learning maps has therefore been a

major research focus in the robotics community in the last decades. Robots that are able to

acquire an accurate model of their environment are regarded as fulfilling a major precondi-

tion of truly autonomous agents.

In the literature, the mobile robot mapping problem under pose uncertainty is often

referred to as the simultaneous localization and mapping (SLAM) or concurrent mapping

and localization (CML) problem [Smith and Cheeseman, 1986; Dissanayake et al., 2000;

Gutmann and Konolige, 1999; Hähnel et al., 2003; Montemerlo et al., 2003; Thrun, 2001;

Leonard and Durrant-Whyte, 1991]. SLAM is considered to be a complex problem because

to localize itself a robot needs a consistent map and for acquiring the map the robot requires a

good estimate of its location. This mutual dependency among the pose and the map estimates

makes the SLAM problem hard and requires searching for a solution in a high-dimensional

space.

Whereas dozens of different techniques to tackle the SLAM problem have been pre-

sented, there is no gold standard for comparing the results of different SLAM algorithms. In

the community of feature-based estimation techniques, researchers often measure the dis-

tance or Mahalanobis distance between the estimated landmark location and the true location

(if this information is available). As we will illustrate in this paper, comparing results based

on an absolute reference frame can have shortcomings. In the area of grid-based estimation

techniques, people often use visual inspection to compare maps or overlays with blueprints

of buildings. This kind of evaluation becomes more and more difficult as new SLAM ap-

proaches show increasing capabilities and thus large scale environments are needed for eval-

uation. In the community, there is a strong need for methods allowing meaningful compar-

isons of different approaches. Ideally, such a method is capable of performing comparisons

between mapping systems that apply different estimation techniques and operate on dif-

ferent sensing modalities. We argue that meaningful comparisons between different SLAM

approaches require a common performance measure (metric). This metric should enable the

user to compare the outcome of different mapping approaches when applying them on the

same dataset.

In this paper, we propose a novel technique for comparing the output of SLAM algo-

rithms. We aim to establish a benchmark that allows for objectively measuring the perfor-

mance of a mapping system. We propose a metric that operates only on relative geometric

relations between poses along the trajectory of the robot. Our approach allows for making

comparisons even if a perfect ground truth information is not available. This enables us to

present benchmarks based on frequently used datasets in the robotics community such as

the MIT Killian Court or the Intel Research Lab dataset. The disadvantage of our method

is that it requires manual work to be carried out by a human that knows the topology of

the environment. The manual work, however, has to be done only once for a dataset and

then allows other researchers to evaluate their methods easily. In this paper, we present

manually obtained relative relations for different datasets that can be used for carrying out

comparisons. We furthermore provide evaluations for the results of three different mapping

techniques, namely scan-matching, SLAM using Rao-Blackwellized particle filter [Grisetti

et al., 2007b; Stachniss et al., 2007b], and a maximum likelihood SLAM approach based on

the graph formulation [Grisetti et al., 2007c; Olson, 2008].

The remainder of this paper is organized a follows. First, we discuss related work in

Section 2 and present the proposed metric based on relative relations between poses along

3

the trajectory of the robot in Section 3. Then, in Section 4 and Section 5 we explain how to

obtain such relations in practice. In Section 6, we briefly discuss how to benchmark if the

tested SLAM system does not provide pose estimates. Next, in Section 7 we provide a brief

overview of the datasets used for benchmarking and in Section 8 we present our experiments

which illustrate different properties of our method and we give benchmark results for three

existing SLAM approaches.

2 Related Work

Learning maps is a frequently studied problem in the robotics literature. Mapping tech-

niques for mobile robots can be classified according to the underlying estimation technique.

The most popular approaches are extended Kalman filters (EKFs) [Leonard and Durrant-

Whyte, 1991; Smith et al., 1990], sparse extended information filters [Eustice et al., 2005a;

Thrun et al., 2004], particle filters [Montemerlo et al., 2003; Grisetti et al., 2007b], and

least square error minimization approaches [Lu and Milios, 1997; Frese et al., 2005; Gut-

mann and Konolige, 1999; Olson et al., 2006]. For some applications, it might even be

sufficient to learn local maps only [Hermosillo et al., 2003; Thrun and colleagues, 2006;

Yguel et al., 2007].

The effectiveness of the EKF approaches comes from the fact that they estimate a fully

correlated posterior about landmark maps and robot poses. Their weakness lies in the strong

assumptions that have to be made on both, the robot motion model and the sensor noise. If

these assumptions are violated the filter is likely to diverge [Julier et al., 1995; Uhlmann,

1995].

Thrun et al. [2004] proposed a method to correct the poses of a robot based on the in-

verse of the covariance matrix. The advantage of sparse extended information filters (SEIFs)

is that they make use of the approximative sparsity of the information matrix. Eustice et

al. [2005a] presented a technique that more accurately computes the error-bounds within

the SEIF framework and therefore reduces the risk of becoming overly confident.

Dellaert and colleagues proposed a smoothing method called square root smoothing and

mapping (SAM) [Dellaert, 2005; Kaess et al., 2007; Ranganathan et al., 2007]. It has several

advantages compared to EKF-based solutions since it better covers the non-linearities and

is faster to compute. In contrast to SEIFs, it furthermore provides an exactly sparse factor-

ization of the information matrix. In addition to that, SAM can be applied in an incremental

way [Kaess et al., 2007] and is able to learn maps in 2D and 3D.

Frese’s TreeMap algorithm [Frese, 2006] can be applied to compute nonlinear map es-

timates. It relies on a strong topological assumption on the map to perform sparsification of

the information matrix. This approximation ignores small entries in the information matrix.

In this way, Frese is able to perform an update in O(logn) where n is the number of features.

An alternative approach to find maximum likelihood maps is the application of least

square error minimization. The idea is to compute a network of constraints given the se-

quence of sensor readings. It should be noted that our approach for evaluating SLAM meth-

ods presented in this paper is highly related to this formulation of the SLAM problem.

Lu and Milios [1997] introduced the concept of graph-based or network-based SLAM

using a kind of brute force method for optimization. Their approach seeks to optimize the

whole network at once. Gutmann and Konolige [1999] proposed an effective way for con-

structing such a network and for detecting loop closures while running an incremental es-

timation algorithm. Duckett et al. [2002] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of relations. To make the problem linear, they assume

4

knowledge about the orientation of the robot. Frese et al. [2005] propose a variant of Gauss-

Seidel relaxation called multi-level relaxation (MLR). It applies relaxation at different res-

olutions. MLR is reported to provide very good results in flat environments especially if the

error in the initial guess is limited.

Olson et al. [2006] presented an optimization approach that applies stochastic gradient

descent for resolving relations in a network efficiently. Extensions of this work have been

presented by Grisetti et al. [2007c; 2007a] Most approaches to graph-based SLAM such as

the work of Olson et al., Grisetti et al., Frese et al., and others focus on computing the best

map and assume that the relations are given. The ATLAS framework [Bosse et al., 2003],

hierarchical SLAM [Estrada et al., 2005], or the work of Nüchter et al. [2005], for example,

can be used to obtain the constraints. In the graph-based mapping approach used in this

paper, we followed the work of Olson [2008] to extract constraints and applied [Grisetti et

al., 2007c] for computing the minimal error configuration.

Activities related to performance metrics for SLAM methods, such as the work de-

scribed in this paper, can roughly be divided into three major categories: First, competition

settings where robot systems are competing within a defined problem scenario, such as

playing soccer, navigating through a desert, or searching for victims. Second, collections of

publicly available datasets that are provided for comparing algorithms on specific problems.

Third, related publications that introduce methodologies and scoring metrics for comparing

different methods.

The comparison of robots within benchmarking scenarios is a straight-forward approach

for identifying specific system properties that can be generalized to other problem types.

For this purpose numerous robot competitions have been initiated in the past, evaluating

the performance of cleaning robots [EPFL and IROS, 2002], robots in simulated Mars envi-

ronments [ESA, 2008], robots playing soccer or rescuing victims after a disaster [RoboCup

Federation, 2009], and cars driving autonomously in an urban area [Darpa, 2007]. However,

competition settings are likely to generate additional noise due to differing hardware and

software settings. For example, when comparing mapping solutions in the RoboCup Rescue

domain, the quality of maps generated using climbing robots can greatly differ from those

generated on wheel-based robots operating in the plane. Furthermore, the approaches are

often tuned to the settings addressed in the competitions.

Benchmarking of systems from datasets has reached a rather mature level in the vision

community. There exist numerous data bases and performance measures, which are avail-

able via the Internet. Their purpose is to validate, for example, image annotation [Torralba

et al., 2007], range image segmentation [Hoover et al., 1996], and stereo vision correspon-

dence algorithms [Scharstein and Szeliski, 2002]. These image databases provide ground

truth data [Torralba et al., 2007; Scharstein and Szeliski, 2002], tools for generating ground

truth [Torralba et al., 2007] and computing the scoring metric [Scharstein and Szeliski,

2002], and an online ranking of results from different methods [Scharstein and Szeliski,

2002] for direct comparison.

In the robotics community, there are some well-known web sites providing datasets [Howard

and Roy, 2003; Bonarini et al., 2006] and algorithms [Stachniss et al., 2007a] for mapping.

However, they neither provide ground truth data nor recommendations on how to compare

different maps in a meaningful way.

Some preliminary steps towards benchmarking navigation solutions have been presented

in the past. Amigoni et al. [2007] presented a general methodology for performing exper-

imental activities in the area of robotic mapping. They suggested a number of issues that

should be addressed when experimentally validating a mapping method. For example, the

mapping system should be applied to publicly available data, parameters of the algorithm

5

should be clearly indicated (and also effects of their variations presented), as well as param-

eters of the map should be explained. When ground truth data is available, they suggest to

utilize the Hausdorff metric for map comparison.

Wulf et al. [2008] proposed the idea of using manually supervised Monte Carlo Local-

ization (MCL) for matching 3D scans against a reference map. They suggested that a refer-

ence map be generated maps from independently created CAD data, which can be obtained

from the land registry office. The comparison between generated map and ground truth has

been carried out by computing the Euclidean distance and angle difference of each scan,

and plotting these over time. Furthermore, they provided standard deviation and maximum

error of the track for comparisons. We argue that comparing the absolute error between two

tracks might not yield a meaningful assertion in all cases as illustrated in the initial exam-

ple in Section 3. This effect gets even stronger when the robot makes a small angular error

especially in the beginning of the dataset (and when it does not return to this place again).

Then, large parts or the overall map are likely to be consistent, the error, however, will be

huge. Therefore, the method proposed in this paper favors comparisons between relative

poses along the trajectory of the robot. Based on the selection between which pose relations

are considered, different properties can be highlighted.

Balaguer et al. [2007] utilize the USARSim robot simulator and a real robot platform for

comparing different open source SLAM approaches. They demonstrated that maps resulting

from processing simulator data are very close to those resulting from real robot data. Hence,

they concluded that the simulator engine could be used for systematically benchmarking

different approaches of SLAM. However, it has also been shown that noise is often but not

always Gaussian in the SLAM context [Stachniss et al., 2007b]. Gaussian noise, however, is

typically used in most simulation systems. In addition to that, Balaguer et al. do not provide

a quantitative measure for comparing generated maps with ground truth. As with many other

approaches, their comparisons were carried out by visual inspection.

The paper presented here extends our work [Burgard et al., 2009] with a more detailed

description of the approach, a technique for extracting relations from aerial images, and a

significantly extended experimental evaluation.

3 Metric for Benchmarking SLAM Algorithms

In this paper, we propose a metric for measuring the performance of a SLAM algorithm not

by comparing the map itself but by considering the poses of the robot during data acquisi-

tion. In this way, we gain two important properties: First, it allows us to compare the result

of algorithms that generate different types of metric map representations, such as feature-

maps or occupancy grid maps. Second, the method is invariant to the sensor setup of the

robot. Thus, a result of a graph-based SLAM approach working on laser range data can be

compared, for example, with the result of vision-based FastSLAM. The only property we

require is that the SLAM algorithm estimates the trajectory of the robot given by a set of

poses at which observations are made. All benchmark computations will be performed on

this set.

3.1 A Measure for Benchmarking SLAM Results

Let x1:T be the poses of the robot estimated by a SLAM algorithm from time step 1 to T . Let

x∗1:T be the reference poses of the robot, ideally the true locations. A straightforward error

6

x∗i

x∗i

xi

xi

x∗i ⊖ xi

x∗i ⊖ xi

Fig. 1 This figure illustrates a simple example where the metric in Eq. 1 fails. The light blue circles show the

reference positions of the robot {x∗i } while the dark red circles show the estimated positions of the robot {xi}.

The correspondence between the estimated locations and the ground truth is shown with dashed lines, and

the direction of motion of the robot is highlighted with arrows. In the situation shown in the upper part, the

robot makes a small mistake at the end of the path. This results in a small error. Conversely, in the situation

illustrated on the bottom part of the figure the robot makes a small error of the same entity, but at the beginning

of the travel, thus resulting in a much bigger global error.

metric could be defined as

ε(x1:T) =
T

∑
t=1

(xt ⊖ x∗t)
2
, (1)

where ⊕ is the standard motion composition operator and ⊖ its inverse. Let δi, j = x j ⊖ xi

be the relative transformation that moves the node xi onto x j and accordingly δ ∗
i, j = x∗j ⊖ x∗i .

Eq. 1 can be rewritten as

ε(x1:T) =
T

∑
t=1

(

(x1 ⊕δ1,2 ⊕ . . .⊕δt−1,t)⊖ (x∗1 ⊕δ ∗
1,2 ⊕ . . .⊕δ ∗

t−1,t)
)2

(2)

We claim that this metric is suboptimal for comparing the result of a SLAM algorithm.

To illustrate this, consider the following 1D example in which a robot travels along a straight

line. Let the robot make a translational error of e during the first motion, δ1,2 = δ ∗
1,2 +e, and

perfect estimates at all other points in time δt,t+1 = δ ∗
t,t+1 for t > 1. Thus, the error according

to Eq. 2, will be T · e, since δ1,2 is contained in every pose estimate for t > 1. If, however,

we estimate the trajectory backwards starting from xT to x1 or alternatively by shifting the

whole map by e, we obtain an error of e only. This indicates, that such an error estimate

is suboptimal for comparing the results of a SLAM algorithm. See also Figure 1 for an

illustration.

In the past, the so-called NEES measure proposed in [Bar-Shalom et al., 2001] as

ε(x1:T) =
T

∑
t=1

(xt − x∗t)
T Ωt(xt − x∗t), (3)

has often been used to evaluate the results of a SLAM approach (e.g., [Eustice et al., 2005b]).

Here Ωt represents the information matrix of the pose xt . The NEES measure, however,

suffers from a similar problem as Eq. 1 when computing ε . In addition to that, not all SLAM

algorithms provide an estimate of the information matrix and thus cannot be compared based

on Eq. 3.

7

Based on this experience, we propose a measure that considers the deformation energy

that is needed to transfer the estimate into the ground truth. This can be done — similar

to the ideas of the graph mapping introduced by Lu and Milios [1997] — by considering

the nodes as masses and connections between them as springs. Thus, our metric is based on

the relative displacement between robot poses. Instead of comparing x to x∗ (in the global

reference frame), we do the operation based on δ and δ ∗ as

ε(δ) =
1

N
∑
i, j

trans(δi, j ⊖δ ∗
i, j)

2 + rot(δi, j ⊖δ ∗
i, j)

2
, (4)

where N is the number of relative relations and trans(·) and rot(·) are used to separate

and weight the translational and rotational components. We suggest that both quantities

be evaluated individually. In this case, the error (or transformation energy) in the above-

mentioned example will be consistently estimated as the single rotational error no matter

where the error occurs in the space or in which order the data is processed.

Our error metric, however, leaves open which relative displacements δi, j are included in

the summation in Eq. 4. Using the metric and selecting relations are two related but different

problems. Evaluating two approaches based on a different set of relative pose displacements

will obviously result in two different scores. As we will show in the remainder of this section,

the set δ and thus δ ∗ can be defined to highlight certain properties of an algorithm.

Note that some researchers prefer the absolute error (absolute value, not squared) instead

of the squared one. We prefer the squared one since it derives from the motivation that the

metric measures the energy needed to transform the estimated trajectory into ground truth.

However, one can also use the metric using the non-squared error instead of the squared one.

In the experimental evaluation, we actually provide both values.

3.2 Selecting Relative Displacements for Evaluation

Benchmarks are designed to compare different algorithms. In the case of SLAM systems,

however, the task the robot finally has to solve should define the required accuracy and this

information should be considered in the measure.

For example, a robot generating blueprints of buildings should reflect the geometry of

a building as accurately as possible. In contrast to that, a robot performing navigation tasks

requires a map that can be used to robustly localize itself and to compute valid trajectories

to a goal location. To carry out this task, it is sufficient in most cases that the map is topolog-

ically consistent and that its observations can be locally matched to the map, i.e. its spatial

structure is correctly representing the environment. We refer to a map having this property

as being locally consistent. Figure 3 illustrates the concept of locally consistent maps which

are suited for a robot to carry out navigation tasks.

By selecting the relative displacements δi, j used in Eq. 4 for a given dataset, the user can

highlight certain properties and thus design a measure for evaluating an approach given the

application in mind.

For example, by adding only known relative displacements between nearby poses based

on visibility, a local consistency is highlighted. In contrast to that, by adding known rela-

tive displacements of far away poses, for example, provided by an accurate external mea-

surement device or by background knowledge, the accuracy of the overall geometry of the

mapped environment is enforced. In this way, one can incorporate additional knowledge (for

example, that a corridor has a certain length and is straight) into the benchmark.

8

4 Obtaining Reference Relations in Indoor Environments

In practice, the key question regarding Eq. 4 is how to determine the true relative displace-

ments between poses. Obviously, the true values are not available. However, we can de-

termine close-to-true values by using the information recorded by the mobile robot and

the background knowledge of the human recording the datasets, which, of course, involves

manual work.

Please note, that the metric presented above is independent of the actual sensor used. In

the remainder of this paper, however, we will concentrate on robots equipped with a laser

range finders, since they are probably the most popular sensors in robotics at the moment.To

evaluate an approach operating on a different sensor modality, one has two possibilities to

generate relations. One way would be to temporarily mount a laser range finder on the robot

and calibrate it in the robot coordinate frame. If this is not possible, one has to provide

a method for accurately determining the relative displacements between two poses from

which an observation has been taken that observes the same part of the space.

4.1 Initial Guess

In our work, we propose the following strategy. First, one tries to find an initial guess about

the relative displacement between poses. Based on the knowledge of the human, a wrong ini-

tial guess can be easily discarded since the human “knows” the structure of the environment.

In a second step, a refinement is proposed based on manual interaction.

4.1.1 Symeo System

One way for obtaining good initial guesses with no or only very few interactions can be

the use of the Symeo Positioning System LPR-B [Symeo GmbH, 2008]. It works similar to

a local GPS system but indoors and can achieve a localization accuracy of around 5 cm to

10 cm. The problem is that such a system designed for industrial applications is typically

not present at most robotics labs. If available, however, it is well suited for a rather accurate

initial guess of the robot’s position.

4.1.2 Initial Estimate via SLAM Approaches

In most cases, however, researchers in robotics will have SLAM algorithms at hand that can

be used to compute an initial guess about the poses of the robot. In the recent years, several

accurate methods have been proposed to serve as such a guess (see Section 2). By manually

inspecting the estimates of the algorithm, a human can accept, refine, or discard a match and

also add missing relations.

It is important to note that the output is not more than an initial guess and it is used to

estimate the visibility constraints which will be used in the next step.

4.2 Manual Matching Refinement and Rejection

Based on the initial guess about the position of the robot for a given time step, it is possible

to determine which observations in the dataset should have covered the same part of the

9

Fig. 2 User interface for matching, accepting, and discarding pairs of observations.

space or the same objects. For a laser range finder, this can easily be achieved. Between

each visible pair of poses, one adds a relative displacement into a candidate set.

In the next step, a human processes the candidate set to eliminate wrong hypotheses by

visualizing the observation in a common reference frame. This requires manual interaction

but allows for eliminating wrong matches and outliers with high precision, since the user is

able to incorporate his background knowledge about the environment.

Since we aim to find the best possible relative displacement, we perform a pair-wise

registration procedure to refine the estimates of the observation registration method. It fur-

thermore allows the user to manually adjust the relative offset between poses so that the

pairs of observations fit better. Alternatively, the pair can be discarded.

This approach might sound labor-intensive but with an appropriate user interface, this

task can be carried out without a large waste of resources. For example, for a standard dataset

with 1,700 relations, it took an unexperienced user approximately four hours to extract the

relative translations that then served as the input to the error calculation. Figure 2 shows a

screen-shot of the user interface used for evaluation.

It should be noted that for the manual work described above some kind of structure in

the environment is required. The manual labor might be very hard in highly unstructured

scenes.

4.3 Other Relations

In addition to the relative transformations added upon visibility and matching of observa-

tions, one can directly incorporate additional relations resulting from other sources of infor-

mation, for example, given the knowledge about the length of a corridor in an environment.

By adding a relation between two poses — each at one side of the corridor — one can incor-

porate knowledge about the global geometry of an environment if this is available. This fact

is, for example, illustrated by the black dashed line in Figure 3 that implies a known distance

between two poses in a corridor that are not adjacent. Figure 4 plots the corresponding error

identified by the relation.

10

In the experimental evaluation, we will show one example for such additional relations

used in real world datasets. In this example, we utilize relations derived from satellite image

data.

5 Obtaining Reference Relations in Outdoor Environments

The techniques described in the previous section can be used to obtain a close-to-ground-

truth for indoor environments. In outdoor scenarios however, the manual validation of the

data is usually less practical due to the reduced structure and the large size. In wide open

areas it may be difficult for a human operator to determine whether a potential alignment

between laser scans is good or not due to the limited range of the scanner. Furthermore the

poor structure of the environment makes this procedure hard even when the laser senses a

high number of obstacles.

GPS is commonly used to bound the global uncertainty of a vehicle moving outdoors.

Unfortunately, GPS suffers from outages or occlusions so that a robot relying on GPS might

encounter substantial positioning errors. Especially in urban environments, GPS is known

to be noisy. Even sophisticated SLAM algorithms cannot fully compensate for these errors

as there still might be lacking relations between observations combined with large odometry

errors that introduce a high uncertainty in the current position of the vehicle.

As an alternative to GPS, it is possible to use aerial images to determine relations close

to the ground truth. We investigated this approach in our previous work [Kümmerle et al.,

2009] and we show that this solution yields a better global consistency of the resulting map,

if we consider the prior information. Satellite images of locations are widely available on

the web by popular tools like Google-Earth or Microsoft Live-Earth. This data can be used

as prior information to localize a robot equipped with a 3D laser range finder.

The overall approach is based on the Monte-Carlo localization framework [Dellaert et

al., 1998]. The satellite images are captured from a viewpoint significantly different from

the one of the robot. However, by using 3D scans we can extract 2D information which is

more likely to be consistent with the one visible in the reference map. In this way, we can

prevent the system from introducing inconsistent prior information.

In the following, we explain how we adapted Monte Carlo Localization (MCL) to oper-

ate on aerial images and how to select points from 3D scans to be considered in the observa-

tion model of MCL. This procedure returns a set of candidate robot locations x̂i. From those

positions, we then select a subset of pairs of locations from which to compute the reference

displacements δ̂i, j to be used in the metric.

5.1 Monte Carlo Localization

To estimate the pose x of the robot in its environment, we consider probabilistic localization,

which follows the recursive Bayesian filtering scheme. The key idea of this approach is to

maintain a probability density p(xt | z1:t ,u0:t−1) of the location xt of the robot at time t given

all observations z1:t and all control inputs u0:t−1. This posterior is updated as follows:

p(xt | z1:t ,u0:t−1) = (5)

α · p(zt | xt) ·
∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1.

11

(a) (b) (c) (d)

Fig. 3 Example of the performance measure on maps generated using different sensor setups. The relations

between close-by positions are determined by a human assisted scan-alignment procedure performed on scans

acquired at close-by locations. The long dashed line represents a relation added by manually measuring the

relative distance at two locations of the robot: (a) the reference map obtained from the relative measurements,

(b) the reference map superimposed with the network of relative measurements, (c) a map obtained by scan

matching using a 4 meters range sensor, with the superimposed relation (this map is still usable for navi-

gating a robot), (d) a map obtained by cropping the range of the sensor to 3 meters. Whereas the quality of

the rightmost map is visibly decreased, it is also adequate for robot navigation since it preserves a correct

topology of the environment (all doorways are still visible) and it correctly reflects the local spatial structure

of the corridor. Therefore, it is locally consistent, but not globally consistent as (a). See also Figure 4 for

corresponding error plots.

 1e-08

 1

 0 40 80 120 160 200

er
ro

r
o
f

th
e

re
la

ti
o
n

relation #

(d)
(c)

 0.01

 1

 100

 65 70 75

er
ro

r
o
f

th
e

re
la

ti
o
n

relation #

(d)
(c)

Fig. 4 This figure shows the behavior of the error metric for the maps (c) and (d) in Figure 3. On the left we

plot the error introduced by the individual relations. The right plot is a magnification of the left one in the

region corresponding to the manually introduced relations marked on the images with the dashed line. This

results in a substantial increase of the global ε of SLAM results under comparison.

12

(a) (b)

Fig. 5 (a) A Google Earth image of the Freiburg campus. (b) The corresponding Canny image. Despite the

considerable clutter, the structure of the buildings and the vertical elements are clearly visible.

Here, α is a normalization constant which ensures that p(xt | z1:t ,u0:t−1) sums up to one over

all xt . The terms to be described in Eq. 5 are the prediction model p(xt | ut−1,xt−1) and the

sensor model p(zt | xt). One contribution of this work is an appropriate computation of the

sensor model in the case that a robot equipped with a 3D range sensor operates in a given

birds-eye map.

MCL is a variant of particle filtering [Doucet et al., 2001] where each particle corre-

sponds to a possible robot pose and has an assigned weight w[i]. The belief update from

Eq. 5 is performed according to the following two alternating steps:

1. In the prediction step, we draw for each particle with weight w[i] a new particle according

to w[i] and to the prediction model p(xt | ut−1,xt−1).
2. In the correction step, a new observation zt is integrated. This is done by assigning a

new weight w[i] to each particle according to the sensor model p(zt | xt).

Furthermore, the particle set needs to be re-sampled according to the assigned weights to

obtain a good approximation of the pose distribution with a finite number of particles.

So far, we have described the general framework of MCL. In the next section, we will

describe the sensor model for determining the likelihood p(zt | xt) of perceiving the 3D scan

zt from a given robot position xt within an aerial image. For convenience, we will drop the

time index t in the remainder of this section.

5.2 Sensor Model for 3D Range Scans in Aerial Images

The task of the sensor model is to determine the likelihood p(z | x) of a reading z given

the robot is at pose x. In our current system, we apply the so called endpoint model or

likelihood fields [Thrun et al., 2005]. Let zk be the endpoints of a 3D scan z. The endpoint

model computes the likelihood of a reading based only on the distances between a scan point

ẑk re-projected onto the map according to the pose x of the robot and the point in the map d̂k

which is closest to ẑk as:

p(z | x) = f (‖ẑ1 − d̂1‖, . . . ,‖ẑk − d̂k‖). (6)

13

(a)

(b) (c)

(d) (e)

Fig. 6 (a) A 3D scan represented as a point cloud. (b) The aerial image of the scene. (c) The Canny edges

extracted from (b). (d) A view from the top, where the gray value represents the maximal height per cell. The

darker the color the lower the height. (e) Extracted height variations from (d).

If we assume that the beams are independent and the sensor noise is normally distributed we

can rewrite Eq. 6 as

f (‖ẑ1 − d̂1‖, . . . ,‖ẑk − d̂k‖) ∝ ∏
j

e
(ẑ j−d̂ j)2

σ2 . (7)

Since the aerial image only contains 2D information about the scene, we need to select a

set of beams from the 3D scan, which are likely to result in structures that can be identified

14

and matched in the image. In other words, we need to transform both the scan and the image

into a set of 2D points which can be compared via the function f (·).
To extract these points from the image we employ the standard Canny edge extraction

procedure [Canny, 1986]. The idea behind this is that if there is a height gap in the aerial

image, there will often also be a visible change in intensity in the aerial image and we

assume that this intensity change is detected by the edge extraction procedure. In an urban

environment, such edges typically correspond to borders of roofs, trees, fences or other

structures. Of course, the edge extraction procedure returns a lot of false positives that do

not represent any actual 3D structure, like street markings, grass borders, shadows, and other

flat markings. All these aspects have to be considered by the sensor model.

A straightforward way to address this problem is to select a subset of beams zk from

the 3D scan which will then be used to compute the likelihood. The beams which should

be considered are the ones which correspond to significant variations along the z direction

of the 3D scan. For vertical structures, a direct matching between the extracted edges and

the measurements of a horizontal 2D laser range scanner can be performed, as discussed by

Früh and Zakhor [2004]. If a 3D laser range finder is available, we also attempt to match

variations in height that are not purely vertical structures, like trees or overhanging roofs.

This procedure is illustrated by the sequence of images in Figure 6.

In the current implementation, we considered variations in height of 0.5 m and above

as possible positions of edges that could also be visible in the aerial image. The positions

of these variations relative to the robot can then be matched against the Canny edges of the

aerial image in a point-by-point fashion, similar to the matching of 2D-laser scans against

an occupancy grid map. Additionally, we employ a heuristic to detect when the prior is not

available, i.e., when the robot is inside of a building or under overhanging structures. This is

based on the 3D perception. If there is a ceiling which leads to range measurements above

the robot no global relations from the localization are integrated, since we assume that the

area the robot is sensing is not visible in the aerial image.

Figure 7 shows an example trajectory estimated with this technique (in red) and the

GPS positions (in blue). As can be seen, the estimates are more accurate than the GPS

data. Thus the improved guess facilitates the manual verification of the data. Note that the

approach presented here is used to obtain the candidate relations for outdoor datasets. A

human operator has to accept or decline all relations found by the approach.

6 Benchmarking for Algorithms without Trajectory Estimates

A series of SLAM approaches estimate the trajectory of the robot as well as a map. However,

in the context of the EKF, researchers often exclude an estimate of the full trajectory to

lower the computational load. To facilitate evaluation one could store the current pose for

each processing step and use it to build a trajectory. This would lead to good results if only

local accuracy is considered. However, global corrections appearing later in run-time are not

represented correctly.

We see two solutions to overcome this problem: (a) depending on the capabilities of the

sensor, one can recover the trajectory as a post processing step given the feature locations

and the data association estimated by the approach. This procedure could be quite easily

realized by a localization run in the built map with given data association (the data asso-

ciation of the SLAM algorithm). (b) in some settings this strategy can be difficult and one

might argue that a comparison based on the landmark locations is more desirable. In this

case, one can apply our metric operating on the landmark locations instead of based on the

15

Fig. 7 Trajectory estimated using satellite images versus GPS data overlaid on the image of the ALU-FR

campus.

poses of the robot. In this case, the relations δ ∗
i, j can be determined by measuring the relative

distances between landmarks using, for example, a highly accurate measurement device.

The disadvantage of this approach is that the data association between estimated land-

marks and ground truth landmarks is not given. Depending on the kind of observations, a

human can manually determine the data association for each observation of an evaluation

datasets as done by Frese [2008]. This, however, might get intractable for SIFT-like features

obtained with high frame rate cameras. Note that all metrics measuring an error based on

landmark locations require such a data association as given. Furthermore, it becomes impos-

sible to compare significantly different SLAM systems using different sensing modalities.

Therefore, we would recommend the first option to evaluate techniques such as EKF.

7 Datasets for Benchmarking

To validate the metric, we selected a set of datasets representing different kinds of environ-

ments from the publicly available datasets. We extracted relative relations between robot

poses using the methods described in the previous sections by manually validating every

single observation between pairs of poses.

As a challenging indoor corridor-environment with a non-trivial topology including

nested loops, we selected the MIT Killian Court dataset 1 (Infinite Corridor) and the dataset

of the ACES building at the University of Texas, Austin 2. As a typical office environment

with a significant level of clutter, we selected the dataset of building 079 at the Univer-

sity of Freiburg, the Intel Research Lab dataset 3, and a dataset acquired at the CSAIL at

1Courtesy of Mike Bosse
2Courtesy of Patrick Beeson
3Courtesy of Dirk Haehnel

16

Fig. 8 Maps obtained by the reference datasets used to validate our metric. From top to bottom and left to

right: MIT Killian Court (Boston), ACES Building (Austin), Intel Research Lab (Seattle), MIT CS Building

(Boston), building 079 University of Freiburg, and the University Hospital in Freiburg. The depicted map

of the University Hospital was obtained by using the background information extracted from the satellite

images.

17

MIT. For addressing outdoor environments, we recorded a new dataset at the park area of

the University Hospital, Freiburg. To give a visual impression of the scanned environments,

Figure 8 illustrates maps obtained by executing state-of-the-art SLAM algorithms [Grisetti

et al., 2007b; 2007c; Olson, 2008]. All datasets, the manually verified relations, and map

images are available online at:

http://ais.informatik.uni-freiburg.de/slamevaluation/

8 Experimental Evaluation

This evaluation is designed to illustrate the properties of our method. We selected three pop-

ular mapping techniques, namely scan matching, a Rao-Blackwellized particle filter-based

approach, and a graph-based solution to the SLAM problem and processed the datasets dis-

cussed in the previous section.

We provide the scores obtained from the metric for all combinations of SLAM approach

and dataset. This will allow other researchers to compare their own SLAM approaches

against our methods using the provided benchmark datasets. In addition, we also present

sub-optimally corrected trajectories in this section to illustrate how inconsistencies affect

the score of the metric. We will show that our error metric is well-suited for benchmarking

and this kind of evaluation.

8.1 Evaluation of Existing Approaches using the Proposed Metric

In this evaluation, we considered the following mapping approaches:

Scan Matching: Scan matching is the computation of the incremental, open loop maxi-

mum likelihood trajectory of the robot by matching consecutive scans [Lu and Milios,

1994; Censi, 2006]. In small environments, a scan matching algorithm is generally suf-

ficient to obtain accurate maps with a comparably small computational effort. However,

the estimate of the robot trajectory computed by scan matching is affected by an in-

creasing error which becomes visible whenever the robot reenters in known regions

after visiting large unknown areas (loop closing or place revisiting).

Grid-based Rao-Blackwellized Particle Filter (RBPF) for SLAM: We use the RBPF

implementation described in [Grisetti et al., 2007b; Stachniss et al., 2007b] which is

available online [Stachniss et al., 2007a]. It estimates the posterior over maps and tra-

jectories by means of a particle filter. Each particle carries its own map and a hypothesis

of the robot pose within that map. The approach uses an informed proposal distribution

for particle generation that is optimized to laser range data. In the evaluation presented

here, we used 50 particles. Note that a higher number of samples may improve the per-

formance of the algorithm.

Graph Mapping: This approach computes a map by means of graph optimization [Grisetti

et al., 2007c]. The idea is to construct a graph out of the sequence of measurements. Ev-

ery node in the graph represents a pose along the trajectory taken by the robot and the

corresponding measurement obtained at that pose. Then, a least square error minimiza-

tion approach is applied to obtain the most-likely configuration of the graph. In general,

it is non-trivial to find the constraints, often referred to as the data association problem.

Especially in symmetric environments or in situations with large noise, the edges in the

18

Table 1 Quantitative results of different approaches/datasets on the translation error as well as the corre-

sponding standard deviation and the maximum error. 1 scan matching has been applied as a preprocessing

step to improve the odometry.

Translational error Scan Matching RBPF (50 part.) Graph Mapping

m (abs) / m2 (sqr)

Aces

Eq. 4 using absolute errors 0.173 ± 0.614 0.060 ± 0.049 0.044 ± 0.044

Eq. 4 using squared errors 0.407 ± 2.726 0.006 ± 0.011 0.004 ± 0.009

Maximum absolute error of a relation 4.869 0.433 0.347

Intel

Eq. 4 using absolute errors 0.220 ± 0.296 0.070 ± 0.083 0.031 ± 0.026

Eq. 4 using squared errors 0.136 ± 0.277 0.011 ± 0.034 0.002 ± 0.004

Maximum absolute error of a relation 1.168 0.698 0.229

MIT Killian Court

Eq. 4 using absolute errors 1.651 ± 4.138 0.122 ± 0.3861 0.050 ± 0.056

Eq. 4 using squared errors 19.85 ± 59.84 0.164 ± 0.8141 0.006 ± 0.029

Maximum absolute error of a relation 19.467 2.5131 0.765

MIT CSAIL

Eq. 4 using absolute errors 0.106 ± 0.325 0.049 ± 0.0491 0.004 ± 0.009

Eq. 4 using squared errors 0.117 ± 0.728 0.005 ± 0.0131 0.0001 ± 0.0005

Maximum absolute error of a relation 3.570 0.5081 0.096

Freiburg bldg 79

Eq. 4 using absolute errors 0.258 ± 0.427 0.061 ± 0.0441 0.056 ± 0.042

Eq. 4 using squared errors 0.249 ± 0.687 0.006 ± 0.0201 0.005 ± 0.011

Maximum absolute error of a relation 2.280 0.8561 0.459

Freiburg Hospital

Eq. 4 using absolute errors 0.434 ± 1.615 0.637 ± 2.638 0.143 ± 0.180

Eq. 4 using squared errors 2.79 ± 18.19 7.367 ± 38.496 0.053 ± 0.272

Maximum absolute error of a relation 15.584 15.343 2.385

Freiburg Hospital, only global relations (see text)

Eq. 4 using absolute errors 13.0 ± 11.6 12.3 ± 11.7 11.6 ± 11.9

Eq. 4 using squared errors 305.4 ± 518.9 288.8 ± 626.3 276.1 ± 516.5

Maximum absolute error of a relation 70.9 65.1 66.1

graph may be wrong or imprecise and thus the resulting map may yields inconsistencies.

In our current implementation of the graph mapping system, we followed the approach

of Olson [2008] to compute constraints.

For our evaluation, we manually extracted the relations for all datasets mentioned in the

previous section. The manually extracted relations are available online, see Section 7. We

then carried out the mapping approaches and used the corrected trajectory for computing the

error according to our metric. Please note, that the error computed according to our metric

(as well as for most other metrics too) can be separated into two components: a translational

error and a rotational error. Often, a “weighting-factor” is used to combine both error terms

into a single number, see, for example, [Pfaff et al., 2006]. In our evaluation, however, we

provide both terms separately for a better transparency of the results.

We processed all benchmark datasets from Section 7 using the algorithms listed above.

A condensed view of each algorithm’s performance is given by the averaged error over all

relations. In Table 1, we give an overview on the translational error of the various algo-

rithms, while Table 2 shows the rotational error. Comparing two algorithms can be done by

comparing the values given in the tables, namely the maximum error as well as the average

error. It can be seen that the more advanced algorithms (Rao-Blackwellized particle filter

19

Table 2 Quantitative results of different approaches/datasets on the rotational error as well as the correspond-

ing standard deviation and the maximum error. 1 scan matching has been applied as a preprocessing step to

improve the odometry.

Rotational error Scan Matching RBPF (50 part.) Graph Mapping

deg (abs) / deg2 (sqr)

Aces

Eq. 4 using absolute errors 1.2 ± 1.5 1.2 ± 1.3 0.4 ± 0.4

Eq. 4 using squared errors 3.7 ± 10.7 3.1 ± 7.0 0.3 ± 0.8

Maximum absolute error of a relation 12.1 7.9 3.5

Intel

Eq. 4 using absolute errors 1.7 ± 4.8 3.0 ± 5.3 1.3 ± 4.7

Eq. 4 using squared errors 25.8 ± 170.9 36.7 ± 187.7 24.0 ± 166.1

Maximum absolute error of a relation 4.5 34.7 6.4

MIT Killian Court

Eq. 4 using absolute errors 2.3 ± 4.5 0.8 ± 0.81 0.5 ± 0.5

Eq. 4 using squared errors 25.4 ± 65.0 0.9 ± 1.71 0.9 ± 0.9

Maximum absolute error of a relation 21.6 7.41 5.4

MIT CSAIL

Eq. 4 using absolute errors 1.4 ± 4.5 0.6 ± 1.21 0.05 ± 0.08

Eq. 4 using squared errors 22.3± 111.3 1.9 ± 17.31 0.01 ± 0.04

Maximum absolute error of a relation 26.3 18.21 0.8

Freiburg bldg 79

Eq. 4 using absolute errors 1.7 ± 2.1 0.6 ± 0.61 0.6 ± 0.6

Eq. 4 using squared errors 7.3 ± 14.5 0.7 ± 2.01 0.7 ± 1.7

Maximum absolute error of a relation 9.9 6.41 5.4

Freiburg Hospital

Eq. 4 using absolute errors 1.3 ± 3.0 1.3 ± 2.3 0.9 ± 2.2

Eq. 4 using squared errors 10.9 ± 50.4 7.1 ± 42.2 5.5 ± 46.2

Maximum absolute error of a relation 27.4 28.0 29.6

Freiburg Hospital, only global relations (see text)

Eq. 4 using absolute errors 6.3 ± 5.2 5.5 ± 5.9 6.3 ± 6.2

Eq. 4 using squared errors 66.1 ± 101.4 64.6 ± 144.2 77.2 ± 154.8

Maximum absolute error of a relation 27.3 35.1 38.6

and graph mapping) usually outperform scan matching. This is mainly caused by the fact

that scan matching only locally optimizes the result and will introduce topological errors

in the maps, especially when large loops have to be closed. A distinction between RBPF

and graph mapping seems difficult as both algorithms perform well in general. On average,

graph mapping seems to be slightly better than a RBPF for mapping. It should also be noted

that for the outdoor dataset (Freiburg hospital), the RBPF mapper was not able to close the

large loop and therefore was substantially worse than the graph mapper.

To visualize the results and to provide more insights about the metric, we do not provide

the scores only but also plots showing the error of each relation. In case of high errors in

a block of relations, we label the relations in the maps. This enables us to see not only

where an algorithm fails, but can also provide insights as to why it fails. Inspecting those

situations in correlation with the map helps to understand the properties of algorithms and

gives valuable insights on its capabilities. For three datasets, a detailed analysis using these

plots is presented in Section 8.2 to Section 8.4. The overall analysis provides the intuition

that our metric is well-suited for evaluating SLAM approaches.

20

 0

 10

 20

 0 1000 2000 3000 4000 5000

an
g

u
la

r
er

ro
r

[d
eg

]

relation #

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

tr
an

sl
at

io
n
al

 e
rr

o
r

[m
]

relation #

 0

 1

 2

 3

 0 1000 2000 3000 4000 5000

tr
an

sl
at

io
n

al
 e

rr
o

r
[m

]

relation #

 0

 5

 10

 0 1000 2000 3000 4000 5000

an
g

u
la

r
er

ro
r

[d
eg

]

relation #

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000

tr
an

sl
at

io
n

al
 e

rr
o

r
[m

]

relation #

 0

 5

 10

 0 1000 2000 3000 4000 5000

an
g

u
la

r
er

ro
r

[d
eg

]

relation #

3

2

1

2

1

2 3

1

3

1

2

2
1

Fig. 9 This figure illustrates our metric applied to the MIT Killian Court dataset. The reference relations

are depicted in light yellow, while the relations marked in the plots are shown in dark blue. The left column

shows the results of pure scan-matching, the middle column the result of a RBPF-based technique with 50

samples, and the right column shows the result of a graph-based approach. The regions marked in the map

correspond to regions in the error plots having high error. Due to its inability of dealing with loop closures

scan matching has a high error when revisiting known regions. However, the absence of significant structure

along the corridors for scan registration is an issue for both the graph-based and the RBPF approach. All in

all, the graph-based approach outperforms the other methods.

8.2 MIT Killian Court

The MIT Killian Court dataset has been acquired in a large indoor environment, where

the robot mainly observed corridors lacking structures that support accurate pose correc-

tion. The robot traverses multiple nested loops – a challenge especially for the RBPF-based

technique. We extracted close to 5,000 relations between nearby poses that are used for

evaluation. Figure 9 shows three different results and the corresponding error distributions

to illustrate the capabilities of our method. Regions in the map with high inconsistencies

correspond to relations having a high error. The absence of significant structure along the

corridors results in a small or medium re-localization error of the robot in all compared ap-

proaches. In sum, we can say the graph-based approach outperforms the other methods and

that the score of our metric reflects the impression of a human about map quality obtained by

visually inspecting the mapping results (the vertical corridors in the upper part are supposed

to be parallel).

21

8.3 Freiburg Indoor Building 079

The building 079 of the University of Freiburg is an example for an indoor office environ-

ment. The building consists of one corridor which connects the individual rooms. Figure 10

depicts the results of the individual algorithms (scan matching, RBPF, graph-based). In the

first row of Figure 10, the relations having a translational error greater than 0.15 m are high-

lighted in blue.

In the left plot showing the scan matching result, the relations plotted in blue are gen-

erated when the robot revisits an already known region. These relations are visible in the

corresponding error plots (Figure 10 first column, second and third row). As can be seen

from the error plots, the relations with a number greater than 1,000 have a larger error than

the rest of the dataset. The fact that the pose estimate of the robot is sub-optimal and that the

error accumulates can also be seen by the rather blurry map and that some walls occur twice.

In contrast to that, the more sophisticated algorithms, namely RBPF and graph mapping, are

able to produce consistent and accurate maps in this environment. Only very few relations

show an increased error (illustrated by dark blue relations).

8.4 Freiburg University Hospital

This dataset consists of 2D and 3D laser range data obtained with one statically mounted

SICK scanner and one mounted on a pan-tilt unit. The robot was steered through a park area

that contains a lot of bushes and which is surrounded by buildings. Most of the time, the

robot was steered along a bike lane with cobble stone pavement. The area is around 500 m

by 250 m in size.

Figure 11 depicts the three mapping results, one obtained with scan matching (left), one

with the RBPF (middle), and one with the graph mapper (right). The quality of all maps

is lower than the quality of the map depicted in Figure 8. The reason for that is that while

building the map in Figure 8, we also used the satellite image data which was not available

for the algorithms under evaluation.

Based on the error plots in Figure 11 as well as the overall score depicted in the tables,

we can see that graph mapping outperforms the RBPF and scan matching. The RBPF was

not able to close the large loop and therefore performed similar to scan matching. However,

note that in most parts of the map, the results of the scan matcher and RBPF are comparable

to the one of graph mapping. Significant differences can be observed in the areas labeled as

1 and 3. Here, the two approaches fail to build a consistent map which is the reason for the

significantly higher overall error.

In the area labeled as 4, the results of all algorithms yield matching errors. In that area,

the robot makes a 180 degree turn and looks towards the open park area where almost

no structure that would allow for pose correction is visible. Therefore, none of the tested

algorithms was able to build a perfect map here.

Note that for this dataset, we present two alternative sets of relations. One using only

local relations based on the sensor range. In addition, we provide a set where the relations are

generated for pairs of randomly sampled poses. This set should be used if global consistency

is desired. A comparison between the two data sets can be seen in Figure 12. The histograms

count relations based by the difference in the time indices of the connected poses. As can be

seen from the left image, using local relations based on the sensor range leads to a peaked

histogram, since the relations only cover a small time frame. Additional minor peaks occur

if the robot re-visits a region. In contrast, the set of relations used to evaluate the global

22

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500

tr
an

sl
at

io
n
al

 e
rr

o
r

[m
]

relation #

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500

tr
an

sl
at

io
n
al

 e
rr

o
r

[m
]

relation #

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500

tr
an

sl
at

io
n
al

 e
rr

o
r

[m
]

relation #

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500

an
g
u
la

r
er

ro
r

[d
eg

]

relation #

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500

an
g
u
la

r
er

ro
r

[d
eg

]

relation #

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500

an
g
u
la

r
er

ro
r

[d
eg

]

relation #

Fig. 10 This figure shows the Freiburg Indoor Building 079 dataset. Each column reports the results of one

approach. Left: scan-matching, middle: RBPF and right a graph based algorithm. Within each column, the

top image shows the map, the middle plot is the translational error and the bottom one is the rotational error.

consistency of the map is less peaked. Here, the relations uniformly sub-sample all available

pairwise combinations of robot poses.

8.4.1 Utilizing Additional Relations

To illustrate that it is possible to incorporate additional relations as claimed in Section 4.3,

we added in a further experiment the satellite image data which was used to obtain the

close-to-true pose information for the Freiburg hospital. These additional relations favor

23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000

a
n
g
u
la

r
e
rr

o
r

[d
e
g
]

relation #

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000

a
n
g
u
la

r
e
rr

o
r

[d
e
g
]

relation #

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000

a
n
g
u
la

r
e
rr

o
r

[d
e
g
]

relation #

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

tr
a
n
sl

a
ti

o
n
a
l

e
rr

o
r

[m
]

relation #

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

tr
a
n
sl

a
ti

o
n
a
l

e
rr

o
r

[m
]

relation #

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500 3000

tr
a
n
sl

a
ti

o
n
a
l

e
rr

o
r

[m
]

relation #

4

1

1

3

3

2

1

2

3

4

3

4

1 2

4

2

1

1

3

3

4

3

2

1

3

3

1

4

2

4
321

4

3
1

2

3
2

1

4

Fig. 11 Maps and error plots of the Freiburg University Hospital. Each column reports the results of one

approach. Left: scan-matching, middle: RBPF and right a graph based algorithm. The second row depicts

the created maps. The first row shows close-ups of areas in these maps. The error plots in the middle are

regarding translation and on the bottom regarding rotation. There are corresponding areas marked in the plots

and the maps.

24

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000 7000

co
u
n
t

sensor readings between poses

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000 6000 7000

co
u
n
t

sensor readings between poses

Fig. 12 Comparison of local relations with global relations based on their histograms. The abscissa shows

the number of sensor readings between the two positions in a relation (a bin size of 10 was chosen). On the

left side the histogram for the local relation set is shown, while the right side displays the global relations.

approaches that are able to generate global consistency as it is desired for robots that, for

example, build blueprints.

The resulting scores for such a setting are given in the last rows of Table 1 and Table 2,

respectively. As expected, the error in case of the evaluation including global relations is

higher.

8.5 Summary of the Experiments

Our evaluation illustrates that the proposed metric provides a ranking of the results of map-

ping algorithms that is likely to be compatible with a ranking obtained from visual inspection

by humans. Inconsistencies yield increased error scores since in the wrongly mapped areas

the relations obtained from manual matching are not met. By visualizing the error of each

relation as done in the plots in this section, one can identify regions in which algorithms

fail and we believe that this helps to understand where and why different approaches have

problems to build accurate maps.

We furthermore encourage authors to evaluate their algorithms based on multiple datasets

and not just using a single in order to illustrate the generality of the method and not being

optimized for a single dataset.

9 Conclusion

In this paper, we have presented a framework for analyzing the results of SLAM approaches

that allows for creating objective benchmarks. We proposed a metric for measuring the error

of a SLAM system based on the corrected trajectory. Our metric uses only relative relations

between poses and does not rely on a global reference frame. This overcomes serious short-

comings of approaches using a global reference frame to compute the error. The metric even

allows for comparing SLAM approaches that use different estimation techniques or different

sensor modalities.

In addition to the proposed metric, we provide robotic datasets together with relative

relations between poses for benchmarking. These relations have been obtained by manu-

ally matching observations and yield a high matching accuracy. We present relations for

self-recorded datasets with laser range finder data as well as for a set of log-files that are

frequently used in the SLAM community to evaluate approaches. In addition, we provide

25

an error analysis for three mapping systems including two modern laser-based SLAM ap-

proaches, namely a graph-based approach as well as system based on a Rao-Blackwellized

particle filter. We believe that our results are a valuable benchmark for SLAM researchers

since we provide a framework that allows for objectively and comparably easy analyzing

the results of SLAM systems.

Acknowledgments

This work has partly been supported by the DFG under contract number SFB/TR-8 and the

European Commission under contract numbers FP6-2005-IST-6-RAWSEEDS, FP7-231888-

EUROPA, and FP6-IST-045388-INDIGO. The authors gratefully thank Mike Bosse, Patrick

Beeson, and Dirk Haehnel for providing the MIT Killian Court, the ACES, and the Intel Re-

search Lab datasets.

References

[Amigoni et al., 2007] F. Amigoni, S. Gasparini, and M. Gini. Good experimental methodologies for robotic

mapping: A proposal. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.

[Balaguer et al., 2007] B. Balaguer, S. Carpin, and S. Balakirsky. Towards quantitative comparisons of robot

algorithms: Experiences with SLAM in simulation and real world systems. In IROS 2007 Workshop, 2007.

[Bar-Shalom et al., 2001] Y Bar-Shalom, X.R. Li, and T. Kirubarajan. Estimation with Application to Track-

ing and Navigation. Jonh Wiley and Sons, 2001.

[Bonarini et al., 2006] A. Bonarini, W. Burgard, G. Fontana, M. Matteucci, D. G. Sorrenti, and J. D. Tar-

dos. Rawseeds a project on SLAM benchmarking. In Proceedings of the IROS’06 Workshop on Bench-

marks in Robotics Research, 2006. available online at http://www.robot.uji.es/EURON/pdfs/Lecture Notes

IROS06.pdf.

[Bosse et al., 2003] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An ALTAS framework for scalable

mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 1899–1906, Taipei,

Taiwan, 2003.

[Burgard et al., 2009] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kümmerle, C. Dornhege,

M. Ruhnke, A. Kleiner, and J. D. Tardós. A comparison of slam algorithms based on a graph of rela-

tions. In Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS), 2009. To appear.

[Canny, 1986] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.

Intell., 8(6):679–698, 1986.

[Censi, 2006] A. Censi. Scan matching in a probabilistic framework. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2291–2296, 2006.

[Darpa, 2007] Darpa. Darpa Urban Challenge, 2007. http://www.darpa.mil/grandchallenge/.

[Dellaert et al., 1998] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile

robots. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Leuven, Belgium, 1998.

[Dellaert, 2005] F. Dellaert. Square Root SAM. In Proc. of Robotics: Science and Systems (RSS), pages

177–184, Cambridge, MA, USA, 2005.

[Dissanayake et al., 2000] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally efficient

solution to the simultaneous localisation and map building (SLAM) problem. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 1009–1014, 2000.

[Doucet et al., 2001] A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-Carlo Methods in

Practice. Springer Verlag, 2001.

[Duckett et al., 2002] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally consistent

maps. Autonomous Robots, 12(3):287 – 300, 2002.

[EPFL and IROS, 2002] EPFL and IROS. Cleaning Robot Contest, 2002.

http://robotika.cz/competitions/cleaning2002/en.

[ESA, 2008] ESA. Lunar robotics challenge, 2008. http://www.esa.int/esaCP/SEM4GKRTKMF index 0.html.

[Estrada et al., 2005] C. Estrada, J. Neira, and J.D. Tardós. Hierachical SLAM: Real-time accurate mapping

of large environments. IEEE Transactions on Robotics, 21(4):588–596, 2005.

[Eustice et al., 2005a] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state filters. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2428–2435, 2005.

26

[Eustice et al., 2005b] R. Eustice, M. Walter, and J.J. Leonard. Sparse extended information filters: Insights

into sparsification. In Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS), pages 641–648,

Edmonton, Cananda, 2005.

[Frese et al., 2005] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm for simultaneous

localisation and mapping. IEEE Transactions on Robotics, 21(2):1–12, 2005.

[Frese, 2006] U. Frese. Treemap: An o(logn) algorithm for indoor simultaneous localization and mapping.

Autonomous Robots, 21(2):103–122, 2006.

[Frese, 2008] U. Frese. Dlr spatial cognition data set. http://www.informatik.uni-

bremen.de/agebv/en/DlrSpatialCognitionDataSet, 2008.

[Früh and Zakhor, 2004] C. Früh and A. Zakhor. An automated method for large-scale, ground-based city

model acquisition. International Journal of Computer Vision, 60:5–24, 2004.

[Grisetti et al., 2007a] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient estimation

of accurate maximum likelihood maps in 3D. In Proc. of the Int. Conf. on Intelligent Robots and Systems

(IROS), San Diego, CA, USA, 2007.

[Grisetti et al., 2007b] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping

with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23:34–46, 2007.

[Grisetti et al., 2007c] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameterization for

efficiently computing maximum likelihood maps using gradient descent. In Proc. of Robotics: Science

and Systems (RSS), 2007.

[Gutmann and Konolige, 1999] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic envi-

ronments. In Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation

(CIRA), 1999.

[Hähnel et al., 2003] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM algorithm for

generating maps of large-scale cyclic environments from raw laser range measurements. In Proc. of the

Int. Conf. on Intelligent Robots and Systems (IROS), pages 206–211, 2003.

[Hermosillo et al., 2003] J. Hermosillo, C. Pradalier, S. Sekhavat, C. Laugier, and G. Baille. Towards motion

autonomy of a bi-steerable car: Experimental issues from map-building to trajectory execution. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2003.

[Hoover et al., 1996] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof, K. K.

Bowyer, D. W. Eggert, A. W. Fitzgibbon, and R. B. Fisher. An experimental comparison of range image

segmentation algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7):673–

689, 1996.

[Howard and Roy, 2003] A. Howard and N. Roy. Radish: The robotics data set repository, standard data sets

for the robotics community, 2003. http://radish.sourceforge.net/.

[Julier et al., 1995] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for filtering nonlinear

systems. In Proc. of the American Control Conference, pages 1628–1632, 1995.

[Kaess et al., 2007] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental smoothing and

mapping with efficient data association. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),

2007.

[Kümmerle et al., 2009] R. Kümmerle, B. Steder, C. Dornhege, A. Kleiner, G. Grisetti, and W. Burgard.

Large scale graph-based SLAM using aerial images as prior information. In Proc. of Robotics: Science

and Systems (RSS), 2009.

[Leonard and Durrant-Whyte, 1991] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by

tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7(4):376–382, 1991.

[Lu and Milios, 1994] F. Lu and E. Milios. Robot pose estimation in unknown environments by matching

2d range scans. In IEEE Computer Vision and Pattern Recognition Conference (CVPR), pages 935–938,

1994.

[Lu and Milios, 1997] F. Lu and E. Milios. Globally consistent range scan alignment for environment map-

ping. Autonomous Robots, 4:333–349, 1997.

[Montemerlo et al., 2003] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An im-

proved particle filtering algorithm for simultaneous localization and mapping that provably converges. In

Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pages 1151–1156, 2003.

[Nüchter et al., 2005] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM with approxi-

mate data association. In Proc. of the 12th Int. Conference on Advanced Robotics (ICAR), pages 242–249,

2005.

[Olson et al., 2006] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose graphs with poor

initial estimates. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2262–2269,

2006.

[Olson, 2008] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, Massachusetts Institute of

Technology, Cambridge, MA, USA, 2008.

27

[Pfaff et al., 2006] P. Pfaff, W. Burgard, and D. Fox. Robust monte-carlo localization using adaptive like-

lihood models. In H.I. Christiensen, editor, European Robotics Symposium 2006, volume 22 of STAR

Springer tracts in advanced robotics, pages 181–194. Springer-Verlag Berlin Heidelberg, Germany, 2006.

[Ranganathan et al., 2007] A. Ranganathan, M. Kaess, and F. Dellaert. Loopy sam. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), 2007.

[RoboCup Federation, 2009] RoboCup Federation. RoboCup Competitions, 2009. http://www.robocup.org.

[Scharstein and Szeliski, 2002] D. Scharstein and R. Szeliski. Middlebury stereo vision page, 2002.

http://www. middlebury. edu/stereo.

[Smith and Cheeseman, 1986] R. C. Smith and P. Cheeseman. On the representation and estimation of spa-

tial uncertainty. International Journal of Robotics Research, 5(4):56–68, 1986.

[Smith et al., 1990] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial realtionships in

robotics. In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, pages 167–193. Springer Verlag,

1990.

[Stachniss et al., 2007a] C. Stachniss, U. Frese, and G. Grisetti. OpenSLAM.org – give your algorithm to

the community. http://www.openslam.org, 2007.

[Stachniss et al., 2007b] C. Stachniss, G. Grisetti, N. Roy, and W. Burgard. Evaluation of gaussian proposal

distributions for mapping with rao-blackwellized particle filters. In Proc. of the Int. Conf. on Intelligent

Robots and Systems (IROS), 2007.

[Symeo GmbH, 2008] Symeo GmbH. http://www.symeo.de, 2008.

[Thrun and colleagues, 2006] S. Thrun and colleagues. Winning the darpa grand challenge. Journal on Field

Robotics, 2006.

[Thrun et al., 2004] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simultane-

ous localization and mapping with sparse extended information filters. Int. Journal of Robotics Research,

23(7/8):693–716, 2004.

[Thrun et al., 2005] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[Thrun, 2001] S. Thrun. An online mapping algorithm for teams of mobile robots. Int. Journal of Robotics

Research, 20(5):335–363, 2001.

[Torralba et al., 2007] A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: the open annotation tool,

2007. http://labelme.csail.mit.edu/.

[Uhlmann, 1995] J. Uhlmann. Dynamic Map Building and Localization: New Theoretical Foundations. PhD

thesis, University of Oxford, 1995.

[Wulf et al., 2008] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner. Benchmarking urban six-degree-of-

freedom simultaneous localization and mapping. Journal of Field Robotics, 25(3):148–163, 2008.

[Yguel et al., 2007] M. Yguel, C.T.M. Keat, C. Braillon, C. Laugier, and O. Aycard. Dense mapping for

range sensors: Efficient algorithms and sparse representations. In Proc. of Robotics: Science and Systems

(RSS), 2007.

[J4] C. Stachniss, C. Plagemann, and A.J. Lilienthal. Gas distribution

modeling using sparse gaussian process mixtures. Autonomous Robots,

26:187ff, 2009.

Autonomous Robots manuscript No.

(will be inserted by the editor)

Learning Gas Distribution Models

using Sparse Gaussian Process Mixtures

Cyrill Stachniss · Christian Plagemann ·

Achim J. Lilienthal

Received: date / Accepted: date

Abstract In this paper, we consider the problem of learning two-dimensional spatial models

of gas distributions. To build models of gas distributions that can be used to accurately

predict the gas concentration at query locations is a challenging task due to the chaotic nature

of gas dispersal. We formulate this task as a regression problem. To deal with the specific

properties of gas distributions, we propose a sparse Gaussian process mixture model, which

allows us to accurately represent the smooth background signal and the areas with patches of

high concentrations. We furthermore integrate the sparsification of the training data into an

EM procedure that we apply for learning the mixture components and the gating function.

Our approach has been implemented and tested using datasets recorded with a real mobile

robot equipped with an electronic nose. The experiments demonstrate that our technique is

well-suited for predicting gas concentrations at new query locations and that it outperforms

alternative and previously proposed methods in robotics.

Keywords Gas distribution modeling · gas sensing · Gaussian processes · mixture models

C. Stachniss

University of Freiburg, Dept. of Computer Science, Georges Koehler Allee 79, 79110 Freiburg, Germany

Tel.: +49-761-203-8024, Fax: +49-761-203-8007, E-mail: stachnis@informatik.uni-freiburg.de

C. Plagemann

Stanford University, Computer Science Dept., 353 Serra Mall, Stanford, CA 94305-9010, USA

Phone: +1-650-723-9558, Fax: +1-412-725-1449, E-mail: plagemann@stanford.edu

A. J. Lilienthal

University of Örebro, AASS Research Institute, Fakultetsgatan 1, 70182 Örebro, Sweden

Tel.: +46-19-30-3602, Fax: +46-19-30-3463, E-mail: achim@lilienthals.de

2

1 Introduction

The problem of modeling gas distributions has important applications in industry, science,

and every-day life. Mobile robots equipped with gas sensors can be deployed for pollution

monitoring in public areas [DustBot, 2008], surveillance of industrial facilities producing

harmful gases, or inspection of contaminated areas within rescue missions.

Although humans have a comparably good odor sensor allowing to distinguish between

around 10 000 odors, it is hard for us to build spatial representations of sensed gas distri-

butions. Building gas distribution maps is a challenging task in principle due to the chaotic

nature of gas dispersal and because only point measurements of gas concentration are avail-

able. The complex interaction of gas with its surroundings is dominated by two physical

effects. First, on a comparably large timescale, diffusion mixes the gas with the surrounding

atmosphere achieving a homogeneous mixture of both in the long run. Second, turbulent air

flow fragments the gas emanating from a source into intermittent patches of high concen-

tration with steep gradients at their edges [Roberts and Webster, 2002]. This chaotic system

of localized patches of gas makes the modeling problem a hard one. In addition, gas sensors

provide information about a small spatial region only since gas sensor measurements require

direct interaction between the sensor surface and the molecules to be analyzed. This makes

gas sensing different to perceiving the environment with other popular robotic sensors like

laser range finders, with which a larger area can be measured directly.

Fig. 1 illustrates actual gas concentration measurements recorded with a mobile robot

along a corridor containing a single gas source. The distribution consists of a rather smooth

“background” signal and several peaks, which indicate high gas concentrations. The chal-

lenge in gas distribution mapping is to model this background signal while being able to

cover also the areas of high concentration and their sharp boundaries.

From a probabilistic point of view, the task of modeling a gas distribution can be de-

scribed as finding a model that best explains the observations and that is able to accurately

predict new ones. A suitable measure for evaluating models and for comparing alternative

ones is to consider the predictive data likelihood of an independent test set. This measure

compares each test data point (which is not contained in the training set) with a predictive

distribution estimated by the model. For this, it does not require insight into the model in-

ternals and it does not depend on any explicit notion of model complexity or the number of

model parameters as, for example, the Bayesian Information Criterion (BIC). The predictive

data likelihood is therefore the measure of choice for evaluating especially nonparametric

models. As a drawback, one needs a sufficiently large amount of data to be able to separate

out a test set without risking that the training set becomes too small to capture the sought-

after distribution. The gas mapping application comes with an abundance of available data,

such that the predictive test set likelihood constitutes a robust measure for model accuracy.

Simple spatial averaging, which represents a straight-forward approach to the model-

ing problem, disregards the different nature of the background concentration and the peaks

resulting from areas of high gas concentrations and, thus, achieves only limited prediction

accuracy. On the other hand, precise physical simulation of the gas dynamics in the environ-

ment would require immense computational resources as well as precise knowledge about

the physical conditions, which is not known in most practical scenarios.

To achieve a balance between model accuracy and efficiency, we treat gas distribution

mapping as a supervised regression problem. We derive a solution by means of a sparse

mixture model of Gaussian processes [Tresp, 2000] that is able to handle both physical phe-

nomena highlighted above. Formally, we interpret gas sensor measurements obtained from

static sensors or from a mobile robot as noisy samples from a time-constant distribution.

3

5 10 152

3

4

2

4

6

8

10

x [m]
y [m]

g
a

s
 s

e
n

s
o

r
re

s
p

o
n

s
e

Fig. 1 Gas concentration measurements acquired by a mobile robot in a corridor. The distribution consists of

a rather smooth “background” signal and several peaks, which indicate high gas concentrations.

This implies that the gas distribution in fact exhibits a time-constant structure, an assump-

tion that is often made in unventilated and un-populated indoor environments [Wandel et al.,

2003].

While existing approaches to gas distribution mapping, such as averaging [Ishida et al.,

1998, Purnamadjaja and Russell, 2005, Pyk et al., 2006] or kernel extrapolation [Lilien-

thal and Duckett, 2004] represent the average concentration per location only, our mixture

model actually allows us to do both, computing the mean gas concentration as well as the

multi-modal, predictive densities. We further obtain a more accurate estimate of the gas con-

centration by distinguishing explicitly different components of the distribution, particularly

a “background” component where the concentration varies smoothly and a second compo-

nent that corresponds to the area in which localized patches of gas occur. In a scenario with

a constant, uniform airflow, the latter mixture component represents the gas plume [Murlis

et al., 1992].

As a by-product, we present a generic algorithm that learns a GP mixture model and at

the same time reduces the number of used training data points in order to achieve an efficient

representation even for large data sets. We demonstrate in experiments carried out with real

mobile robots that our model has a lower mean squared error and a higher data likelihood

on test data sets than other existing methods for gas distribution modeling. Thus, it allows

to predict gas concentration at query locations more accurately.

This article is organized as follows. After introducing our mixture model in Sec. 2,

we propose our method for learning the model components from data and for achieving a

sparse approximation in Sec. 3. We then present experimental results involving real mobile

platforms in Sec. 4 and discuss related work in Sec. 5.

2 A Mixture Model for Gas Distributions

The general gas distribution mapping problem given a set of concentration measurements

y1:n acquired at locations x1:n, is to learn a predictive model p(y∗ | x∗,x1:n, y1:n) for gas

concentrations y∗ at a query location x∗. We approach this problem in a nonparametric way,

i.e., not assuming a parametric form of the underlying function f(·) in y = f(x) + ǫ, using

the Gaussian process model [Rasmussen and Williams, 2006]. In this Bayesian approach to

the non-linear regression problem, one places a prior on the space of functions p(f) using

4

the following definition: A Gaussian process is a collection of random variables, any of

which have a joint Gaussian distribution. More formally, if we assume that {(xi, fi)}ni=1

with fi = f(xi) are samples from a Gaussian process and define f = (f1, . . . , fn)⊤, we

have

f ∼ N (µ,K) , µ ∈ Rn
,K ∈ Rn×n

. (1)

For simplicity of notation, we can assume µ = 0, since the expectation is a linear operator

and, thus, for any deterministic mean function m(x), the Gaussian process over f ′(x) :=

f(x)−m(x) has zero mean.

The interesting part of the model is indeed the covariance matrix K. It is specified by

[K]ij := cov(fi, fj) = k(xi,xj) using a covariance function k which defines the covari-

ance of any two function values {fi, fj} sampled from the process given their input vectors

{xi,xj} as parameters. Intuitively, the covariance function specifies how similar two func-

tion values f(xi) and f(xj) are depending only on the corresponding inputs. The standard

choice for k is the squared exponential covariance function

kSE(xi,xj) = σ
2

f exp

−1

2

|xi − xj |2
ℓ2

!

, (2)

where the so-called length-scale parameter ℓ defines the global smoothness of the function f

and σ2

f denotes the amplitude (or signal variance) parameter. These parameters, along with

the global noise variance σ2
n that is assumed for the noise component, are known as the

hyperparameters of the process. They are denoted as θ = 〈σf , ℓ, σn〉.
Given a setD = {(xi, yi)}ni=1 of training data where xi ∈ Rd are the inputs and yi ∈ R

the targets, the goal in regression is to predict target values y∗ ∈ R at a new input point x∗.

Let X = [x1; . . . ;xn]⊤ be the n × d matrix of the inputs and X∗ be defined analogously

for multiple test data points. In the GP model, any finite set of samples is jointly Gaussian

distributed

»

y

f(X∗)

–

∼ N
„

0,

»

k(X,X) + σ2
nI k(X,X∗)

k(X∗,X) k(X∗,X∗)

–«

, (3)

where k(X,X) refers to the covariance matrix built by evaluating the covariance function

k(·, ·) for all pairs of all row vectors 〈xi,xj〉 of X. To make predictions at X∗, we obtain

the predictive mean

f̄(X∗) := E[f(X∗)] = k(X∗,X)
h

k(X,X) + σ
2
nI
i−1

y (4)

and the (noise-free) predictive variance

V[f(X∗)] = k(X∗,X∗)− k(X∗,X)
h

k(X,X) + σ
2
nI
i−1

k(X,X∗) , (5)

where I is the identity matrix. The corresponding (noisy) predictive variance for an obser-

vation y∗ can be obtained by adding the noise term σ2
n to the individual components of

V[f(X∗)].

The standard GP model recapitulated above has two major limitations in our problem

domain. First, the computational complexity is high, since to compute the predictive vari-

ance given in Eq. (5), one needs to invert the matrix k(X,X) + σ2
nI. This introduces a

complexity of O(n3) where n is the number of training examples. As a result, an important

5

issue for GP-based solutions to practical problems is the reduction of this complexity. This

can, as we will show in Sec. 3, be achieved by artificially limiting the training data set in a

way that introduces small loss in the data likelihood while at the same time minimizing the

runtime. As a second limitation, the standard GP model generates a uni-modal distribution

per input location x. This assumption hardly fits our application domain in which a rela-

tively smooth “background” signal is typically mixed with medium- and high-concentration

“packets” of gas. In the following, we address this issue by deriving a mixture model of

Gaussian processes.

2.1 Mixtures of Gaussian Process Models

The GP mixture model [Tresp, 2000] constitutes a locally weighted sum of several Gaussian

process models. For simplicity of notation, we consider without loss of generality the case

of single predictions only (x∗ instead of X∗). Let {GP1, . . . ,GPm} be a set of m Gaussian

processes representing the individual mixture components. Let P (z(x∗) = i) be the proba-

bility that x∗ is associated with the i-th component of the mixture. Let f̄i(x∗) be the mean

prediction of GPi at x∗. The likelihood of observing y∗ is thus given by

h(x∗) := p(y∗ | x∗) =
m
X

i=1

P (z(x∗) = i)Ni(y∗;x∗) , (6)

where we define Ni(y;x) as the Gaussian density function with mean f̄i(x) and variance

V[fi(x)] + σ2
n evaluated at y. One can sample from such a mixture by first sampling the

mixture component according to P (z(x∗) = i) and then sampling from the corresponding

Gaussian. For some applications such as information-driven exploration missions, it is prac-

tical to estimate the mean and variance for this multi-modal model. The mean E[h(x∗)] of

the mixture model is given by

h̄(x∗) := E[h(x∗)] =
m
X

i=1

P (z(x∗) = i)f̄i(x∗) (7)

and the corresponding variance is computed as

V[h(x∗)] =
m
X

i=1

P (z(x∗) = i)
“

V[fi(x∗)] + (f̄i(x∗)− h̄(x∗))
2
”

. (8)

2.2 The Choice of the Covariance Function

The covariance function in a Gaussian Process as well as in our mixture model is a crucial

component as it encodes knowledge about the function to approximate. It specifies the de-

pendency between two function values f(xi), f(xj) and this dependency is computed only

based on the corresponding inputs.

The standard choice for the covariance function is the squared exponential (SE) shown

in Eq. (2), however, there are several other possibilities to define a covariance function. In

this paper, we also analyze how the choice of the covariance function affects the quality of

the gas distribution model. In detail, we analyze the squared exponential and two instances

of the Matérn covariance function.

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

c
o

v
a

ri
a

n
c
e

input distance

SE, l=.5
SE, l=1
SE, l=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

c
o

v
a

ri
a

n
c
e

input distance

Mat 3/2, l=.5
Mat 3/2, l=1
Mat 3/2, l=2

Fig. 2 Example plots of the squared exponential covariance function (left) and the Matérn 3/2 covariance

function (right), each plotted for varying hyperparameters.

In case of the Matérn covariance function, we consider the so-called “Matérn 3/2” and

“Matérn 5/2” functions among the class of Matérn kernels. They are given by

kMat 3/2(xi,xj) = σ
2

f

1 +

√
3||xi,xj ||

l

!

exp

−
√

3||xi,xj ||
l

!

(9)

and

kMat 5/2(xi,xj) = σ
2

f

1 +

√
5||xi,xj ||

l
+

5||xi,xj ||2
3l2

!

exp

−
√

5||xi,xj ||
l

!

. (10)

As for the case of the SE covariance function, the parameter ℓ is the length-scale that defines

the global smoothness of the function f and σ2

f denotes the amplitude (or signal variance)

parameter.

Fig. 2 shows 2d-plots of these covariance functions illustrating the assumed dependency

between data points of the function to model depending only on the distance of the inputs.

When comparing the properties of the individual covariance functions, the SE function is

a rather smooth one and, therefore, leads to a comparably strong smoothing of the function

approximation. This, however, might contradict the nature of gas distribution as well as

other physical phenomena. Therefore, we also consider the Matérn covariance function that

typically produces rougher estimates and thus might be better suited for the problem studied

in this paper. Among the two Matérn kernels used in this paper, the Matérn 5/2 is smoother

than the Matérn 3/2.

3 Learning the Model from Data

Given a training setD = {(xj , yj)}nj=1 of gas concentration measurements yj and the corre-

sponding sensing locations xj , the task is to jointly learn the assignment z(xj) of data points

to mixture components and, given this assignment, the individual regression models GPi.

Tresp [2000] describes an approach based on Expectation Maximization (EM) for solving

this task. We take his approach, but also seek to minimize the number of training data points

to achieve a computationally tractable model even for large training data sets D. This is of

major importance in our application, since typical gas concentration data sets easily exceed

n = 1 000 data points and the standard GP model (see Sec. 2) is of cubic complexityO(n3).

7

Different solutions have been proposed for lowering this upper bound, such as dividing the

input space into different regions and solving these problems individually or by deriving

sparse approximations for the whole space. Sparse GPs [Smola and Bartlett, 2000, Snelson

and Ghahramani, 2006a] use a reduced set of inputs to approximate the full GP model. This

new set can be either a subset of the original inputs [Smola and Bartlett, 2000] or a set of

r new pseudo-inputs [Snelson and Ghahramani, 2006a] which are obtained using an opti-

mization procedure. This reduces the complexity fromO(n3) toO(nr2) with r ≪ n, which

in practice results in a nearly linear complexity.

We apply a method similar to sparse GPs and select a subset of the original inputs. In the

remainder of this section, we describe a greedy forward-selection algorithm integrated into

the EM-learning procedure which achieves a sparse mixture model by selecting a subset of

the original inputs. while also maximizing the cross validation data likelihood.

3.1 Initializing the Mixture Components

In a first step, we subsample n1 data points and learn a standard GP for this set (including

the optimization of the hyperparameters). This model GP1 constitutes the first mixture com-

ponent. To improve the estimate of gas concentration in areas that are poorly modeled by

this initial model, we learn an “error model”, termed GP∆, that captures the absolute dif-

ferences between a set of target values and the predictions of GP1. We then sample points

according to GP∆ and use them to initialize the next mixture component. In this way, the

new mixture is initialized with the data points that are poorly approximated by the first one

and a hyperparameter optimization is performed. This process is repeated until the desired

number of model components is reached. For typical gas modeling scenarios, we found that

two mixture components are sufficient to achieve good results. In our experiments, the con-

verged mixture models nicely reflect the bimodal nature of gas distributions, having one

smooth “background” component and a layer of locally concentrated structures.

It should be mentioned, that depending on the actual data, the error model (“error GP”)

might have to be evaluated at all n − n1 inputs which would lead to large computational

overhead. Instead, we actually average multiple spatially close measurements and evaluate

only at uniformly sampled locations. This is clearly an approximation but only used for the

error model of our approach. We, however, did not encounter problems using this strategy

which is actually used only for initialization.

3.2 Iterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be used to obtain a maximum likelihood

estimate when hidden and observable variables need to be estimated. It consists of two

steps, the so-called estimation (E) step and the maximization (M) step which are executed

alternately.

In the E-step, we estimate the probability P (z(xj) = i) that data point j corresponds

to model component i. This is done by computing the likelihood of each data point for the

model components individually. Thus, the new P (z(xj) = i) is computed given the previous

estimate as

P (z(xj) = i)← P (z(xj) = i)Ni(yj ;xj)
Pm

k=1
P (z(xj) = k)Nk(yj ;xj)

. (11)

8

In the M-step, we update the components of our mixture model. This is achieved by

integrating the probability that a data point belongs to a model component into the individual

GP learning steps (see also [Tresp, 2000]). This is achieved by modifying Eq. (4) to

f̄i(X∗) = k(X∗,X)
h

k(X,X) + Ψ
i
i−1

y , (12)

where Ψi is a matrix with

[Ψi]jj =
σ2

n

P (z(xj) = i)
(13)

and zeros in the off-diagonal elements. Eq. (5) is updated accordingly. The matrix Ψi al-

lows us to consider the probabilities that the individual inputs belong to the corresponding

components. Figuratively speaking, the contribution of an unlikely data point to a model is

reduced by increasing the data point specific noise term. If the assignment probability, on

the other hand, is one, only σ2
n remains and the point is fully included as in the standard GP

model.

Learning a GP model also involves the estimation of its hyperparameters θ = {σf , ℓ, σn}.
To estimate them for GPi, we first apply a variant of the hyperparameter heuristic used

by Snelson and Ghahramani [2006a] in their open-source implementation. We extended it

to incorporate the correspondence probability P (z(xk) = i) into this initial guess

ℓ ← max
xj

P (z(xj) = i) ||xj − x̄|| (14)

σ
2

f ←
Pn

j=1
P (z(xj) = i) (yj − E[y])2
Pn

j=1
P (z(xj) = i)

(15)

σ
2
n ←

1

4
σ

2

f , (16)

where x̄ refers to the weighted mean of the inputs, each xj having a weight of P (z(xj) = i).

To optimize the hyperparameters based on this initial estimate, one could apply, for ex-

ample, Rasmussen’s conjugate-gradient–based approach [Rasmussen, 2006]. In our experi-

ments, however, this approach lead to overfitting problems and we therefore resorted to cross

validation-based optimization. Concretely, we repeatedly sample hyperparameters and eval-

uate the model accuracy according to Sec. 3.2 on a separate validation set. As a hyperparam-

eter sampling strategy, we draw in each even iteration of this sampling new hyperparameters

from an uninformed prior and in each odd iteration, we improve the current best parameters

θ′ by sampling from a Gaussian with mean θ′. The standard deviation of that Gaussian is

decreased with the iteration number.

In our experiments, this rather straight forward strategy converged quickly after a few

iterations (approx. 50 iterations, see Fig. 11 for an example). Note that there are more so-

phisticated strategies, for example simulated annealing, that can be used instead. However,

we selected a simpler approach since it provided satisfactory results and can be implemented

with five lines of code.

3.3 Learning the Gating Function

In our mixture model, the gating function defines for each data point the probability of being

assigned to the individual mixture components. The EM algorithm learns the assignment

9

probabilities for the used training inputs xj , maximizing the cross validation data likelihood.

To generalize these assignments to the whole input space (to form a proper gating function),

we place another GP prior on the gating variables. Concretely, we learn a gating GP for each

component i that uses the xj as inputs and the z(xj) obtained from the EM algorithm as

targets. Let f̄z
i (x) be the prediction of z for GPi. Given this set of m GPs, we can compute

the correspondence probability for a new test point x∗ as

P (z(x∗) = i) =
exp(f̄z

i (x∗))
Pm

j=1
exp(f̄z

j (x∗))
. (17)

3.4 Summary

This section briefly summarizes our approach for learning the GP mixture model. First,

we initialize the mixture components which are individual GPs. This done by randomly

sampling data point for the first component. Then, an error GP is learned to estimate the

prediction error. The data points for the subsequent component are then sampled based on

the error GP. Second, the we apply the expectation maximization algorithm to optimize

the mixture components and to estimate the hidden mixture/class assignment variables. In

each iteration of the EM, the hyperparameters for the mixture components are iteratively

optimized. Finally, the gating function is learned using again the GP framework. The gating

function models the class assignments for the whole input space. Learning is done based on

separated training and test sets.

3.5 Illustrating Example

To visualize our approach, we now give a simple, one-dimensional example. The left dia-

gram of Fig. 3 shows simulated data points, of which most were sampled uniformly from

the interval [2 : 2.5] and some are distributed with a larger spread at two distinct locations.

The same diagram also shows a standard GP model learned on this set, which is not able

to explain the data well. The right diagram of the figure shows GP∆, i.e. the resulting er-

ror model, which characterizes the local deviations of the model predictions from the data

points. Based on this model, a second mixture component is initialized and used as input to

the EM algorithm.

The individual diagrams in Fig. 4 illustrate the iterations of the EM algorithm (to be read

from left to right and from top to bottom). They depict the two components of the mixture

model. The learned gating function after convergence of the algorithm is depicted in the left

diagram of Fig. 5. The right diagram in the same figure gives the final GP mixture model. It

is clearly visible that the mixture model better represents this data set than the standard GP

model, which assumes a smooth, uni-modal process (see the left diagram of Fig. 3).

4 Experimental Results

We carried out pollution monitoring experiments in a real-world setting, in which a mobile

robot followed a predefined sweeping trajectory covering the area of interest. Along its path,

the robot was stopped for several seconds, 10 s (outdoors) and 30 s (indoors), at predefined

points to acquire measurements. The spacing between the grid points was set to values

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

5

10

15

Fig. 3 Left: The standard GP used to initialize the first mixture component. Right: The error GP used to

initialize the next mixture component.

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

Fig. 4 Components during different iterations of the EM algorithm.

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

2

4

6

8

10

Fig. 5 Left: The learned gating function. Right: Resulting distribution of the GP mixture model.

11

Dataset GP GP GP GPM avg GPM avg GPM avg

(SE) (Mat3/2) (Mat5/2) (SE) (Mat3/2) (Mat5/2)

3-rooms -1.22 -1.25 -1.27 -1.50 -1.51 -1.52

corridor -0.98 -1.06 -0.98 -1.58 -1.58 -1.60

outdoor -1.11 -1.17 -1.22 -1.72 -1.88 -1.85

Table 1 Average negative log likelihoods of test data points for different approaches. The results of the

comparison between the GP and the GP mixture model with corresponding covariance functions shown in

this table differ significantly (10 repetitions, α = 5%).

Dataset GP GPM avg GPM

3-rooms -1.22 -1.50 -1.54

corridor -0.98 -1.58 -1.60

outdoor -1.11 -1.72 -1.80

Table 2 Comparison between standard GP (GP), the GP mixture model with averaging (GPM avg) according

to Eq. (8) and Eq. (7), and the GP mixture model with multi-modal estimates (GPM) based on 10 repetitions

(here using the SE covariance function).

between 0.5 m to 2.0 m depending on the topology of the available space, see Fig. 6. In

the experiments, the sweeping motion was performed twice in opposite directions which

allows us to use the second visit for evaluating our predictions. Due to the slow response

of the gas sensors and in order to avoid disturbance to the gas distribution created by the

robot itself, the robot was driven at a maximum speed of 5 cm/s in between the stops. The

gas source was a small cup filled with ethanol and in the experiments, the robot approached

the cup up to a distance of approximatively 0.1 m.

The robot was equipped with a SICK laser range scanner used for pose correction, with

an electronic nose, and an anemometer. The electronic nose is a Figaro TGS 2620 gas sensor

enclosed in an aluminum tube. This tube was mounted horizontally at the front side of the

robot. The electronic nose is actively ventilated through a fan that creates a constant airflow

towards the gas sensor. This lowers the effect of external airflow and the movement of the

robot on the sensor response.

Note that in this work, we concentrate only on the gas concentration measurements and

do not consider the pose uncertainty of the vehicle. One can apply one of the various SLAM

systems available to account for the uncertainty in the robot’s pose [Frese, 2006, Grisetti et

al., 2007, Lilienthal et al., 2007].

4.1 Inspected Environments

Three environments with different properties were selected for the pollution monitoring

experiments. The first experiment, termed 3-rooms, was carried out in an enclosed indoor

area that consists of three rooms which are separated by slightly protruding walls in between

them. The area covered by the robot is approximately 14 m × 6 m. There is little exchange

of air with the “outer world” in this environment. The gas source was placed in the central

room and all three rooms were monitored by the robot. The second location was a part of

a corridor with open ends and a high ceiling. The area covered by the trajectory of the

robot is approximately 14 m × 2 m. The gas source was placed on the floor in the middle

of the investigated corridor segment. Finally, an outdoor scenario was considered. Here, the

experiments were carried out in an 8 m× 8 m region that is part of a much bigger open area.

12

Fig. 6 Pictures of the robot inspecting three different environments as well as the corresponding sweeping

trajectories.

low medium high

Fig. 7 Color schema for the gas concentrations visualizations (Matlab default). Gas distribution measure-

ments are always normalized between 0 and 1 given the current set of observations used for learning the

model.

We used the raw sensor readings in all three environments as training sets and applied

our approach to learn the gas distribution models. The robot moved through the environment

twice. We used the first run for learning the model and the second one for evaluating it. To

benchmark our results, we compare against gas distribution models learned using (a) stan-

dard GP regression, (b) a grid-based interpolation approach, and (c) kernel extrapolation.

For the Gaussian process regression, we furthermore analyze the influence of different co-

13

Initial, uni-modal model Error model

Means of the mixture components Gating function

GPM mean (3D view) Standard GP mean (3D view)

GPM mean (2D view) Standard GP mean (2D view)

GPM Variance (2D view) Standard GP variance (2D view)

Fig. 8 The 3-rooms dataset with one ethanol gas source in the central room. The room structure itself is not

visualized here. In all plots, blue represents low, yellow reflects medium, and red refers to high values. See

Fig. 7 for the color encoding. The unit of the x- and y-axis is meter.

14

variance functions in the obtained results. For the visualizations, we always used the default

Matlab color scheme depicted also in Fig. 7 and normalized the gas concentration measure-

ments obtained to values between zero and one.

4.2 Evaluation

Fig. 8 shows the learned models for the 3-room dataset. The left plot in the first row illus-

trates the mean prediction for the standard GP on the subsampled training set that defines

the first mixture component. The right diagram depicts the error GP representing the differ-

ences between the initial prediction and a set of observations. Based on the error GP, a new

mixture component is initialized and the EM algorithm is carried out. The means of the two

mixture components after convergence are shown in the left diagram of the second row and

the learned gating function is visualized in the adjacent diagram on the right. The left dia-

gram in the third row shows the mean prediction of the final mixture model. As can be seen,

the model consists of a smooth “background” distribution and a peak of gas concentration—

close to the gas source—with a sharp boundary. In contrast to this, the standard GP (right

diagram in the third row) learned using the same data is overly smooth for this dataset, es-

pecially in proximity to the gas source. For both models, the squared exponential covariance

function has been used here.

Table 1 summarizes the negative log likelihoods of the test data (second part of the

dataset, which was not used for training) given our mixture model (GPM) as well as the

standard GP model (GP). As can be seen, our GPM method outperforms the standard GP

model in all settings. A t-test on 10 repeated learning runs revealed that these results are

significant (α = 5%). Two reasons for the increased model accuracy of GPM w.r.t. standard

GPs can be seen in the 2D plots in the last two rows of Fig. 8. First, as already mentioned

before, the standard GP overly smoothes the area close to the gas source and, second, its

variance estimates around the source are too low (since standard GPs assume a constant

noise rate for the whole domain). The table furthermore analyses the results obtained with

different covariance functions. The Matérn kernels perform on average slightly better than

the squared exponential function. This is probably the case because the Matérn kernels are

less smooth which is in line with the nature of the problem addressed in this paper. In

Table 2, we provide two likelihoods for our model, the one given in Eq. (6) (called “GPM”

in the table) and the one computed based on the averaged prediction specified in Eq. (7) and

Eq. (8) (called “GPM avg”).

Fig. 9 visualizes the final results for the corridor experiment for the GPM model (means

of the mixture components in the left diagram and the predictive uncertainty on the right).

The raw dataset from this experiment is plotted in Fig. 1. In this experiment, the area of

high gas concentration was also mapped comparably accurate by the standard GP, but again

the variance close to the area of high gas concentration was too small. This can seen by

comparing the images in the right column of Fig. 9, which show the standard GP results for

different covariance functions in the top three rows and for the GPM below.

By carefully inspecting the results (best viewed in color), one can see slight differences

resulting from the covariance functions. The squared exponential function yields smoother

results than the Matérn kernels which can be seen on the border around the areas of high

concentrations. The results measured by means of the NLPD computed based on separated

test sets over multiple runs illustrate that the GPM models always outperformed the standard

model (see tables). Furthermore, the Matérn kernels seem to be slightly better suited to

15

model gas distributions since they are less smooth compared to the squared exponential

function.

Similar results are also obtained in the outdoor dataset. Mean and variance predictions of

the different GP mixture models with different covariance functions are provided in Fig. 10.

The corresponding result of the standard GP including a plot that illustrates the evolution of

the negative log likelihood (NLPD) during sampling of the hyperparameters for the standard

GP model and mixture GP model (SE covariance) is given in Fig. 11.

In all our experiments, we limited the number of data points in the reduced input set

to n1 = 100. The datasets itself contained between 2 500 and 3 500 measurements so our

model was able to make accurate predictions with less than 5% of the data. Matrices of that

size can be easily inverted. As a result the overall computation time for learning our model

including cross validation is around 1 minute for all datasets shown above running Matlab

on a standard laptop computer without explicitly optimized code.

Finally, we compared the mean estimates of our mixture model to the results obtained

with the method of Lilienthal and Duckett [2004] as well as with an often used approach that

uses a grid in combination with linear interpolation like in [Pyk et al., 2006]. The results of

this comparison in terms of the MSE measure are shown in Fig. 12. As can be seen from the

diagram, our method outperforms both alternative methods.

4.3 Distribution Modeling in an Easy Setup

We also tested our gas distribution modeling algorithm with a “smoother” data set. The

electronic nose on the mobile robot is also equipped with a temperature sensor and we used

the temperature measurements as input to the gas distribution modeling algorithm proposed

in this paper. Even so, the obtained measurements were temperature measurements instead

of gas concentration measurements, our approach can be directly applied.

The measurements were recorded along a random sweeping trajectory in a corridor. The

data set indicates a roughly linear gradient in the temperature distribution. In this situation,

we expect that our mixture model should perform similar compared to the standard GP

approach or the kernel extrapolation technique since the simpler techniques are also well

suited to model such a function.

We therefore carried out the modeling task based on the temperature datasets with the

different approaches. Our expectation was actually matched perfectly in this setting. Both

mixture components of our method actually converged to approximatively the same solution

and this model is more or less identical to the one generated by the standard GP approach

as well as to the kernel extrapolation method. All three approaches yield nearly identical

results differing by less than 1%. This holds for the MSE as well as for the NLPD (for GP

and GPM), see Fig. 13. Obviously, the standard GP has a lower computational load than

the mixture approach and thus is preferable if the designer of the system can ensure that no

mixture components are needed to model the data.

5 Related Work

A common approach to creating representations for time-averaged concentration fields is to

acquire measurements using a fixed grid of gas sensors over a long period of time. Equidis-

tant gas sensor locations can be used to directly measure and map the average concentration

values according to a given grid approximation of the environment. This approach was taken

16

Standard GP (SE) predictive mean (left) and variance (right)

Standard GP (Matérn 5/2) predictive mean (left) and variance (right)

Standard GP (Matérn 3/2) predictive mean (left) and variance (right)

GP mixture (SE) predictive mean (left) and variance (right)

GP mixture (Matérn 5/2) predictive mean (left) and variance (right)

GP mixture (Matérn 3/2) predictive mean (left) and variance (right)

Fig. 9 Models learned from concentration data recorded in the corridor environment. The gas source was

placed at the location (10, 3). We evaluated the standard GP and the our mixture model all using the different

covariance functions. The unit of the x- and y-axis is meter.

17

GPM (SE) predictive mean GPM (SE) predictive variance

GPM (Matérn 5/2) predictive mean GPM (Mat5) predictive variance

GPM (Matérn 3/2) predictive mean GPM (Mat3) predictive variance

Fig. 10 Results for the outdoor dataset in an 8 m by 8 m area with an ethanol source in the center. The

measured airflow indicates a major wind direction approximately from south-east to north-west. The unit of

the x- and y-axis is meter.

18

−8 −6 −4 −2 0

−2

0

2

4

6

−8 −6 −4 −2 0

−2

0

2

4

6

Standard GP predictive mean Standard GP predictive variance

-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6

 0 10 20 30 40 50 60

N
L

P
D

 o
f

b
es

t
m

o
d

el

iteration

Standard GP model
Mixture model

Evolution of the NLPD during hyperparameter sampling

Fig. 11 Corresponding results for the outdoor dataset obtained with the standard GP model (top) and the

evolution of the NLPD shown for the first 60 iterations (bottom). The unit of the x- and y-axis in the plots in

the first row is meter.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

A
v
e
ra

g
e
 M

S
E

3-rooms corridor outdoor

GP mixture (Matern3 cov)
GP mixture (Matern5 cov)

GP mixture (SE cov)
kernel extrapolation
grid w. interpolation

Fig. 12 Experimental comparison of our GP mixture model with different covariance functions to two alter-

native techniques in three real-world settings. The bars show the mean squared error of predicted compared

to the measured concentration on a test set, averaged over 10 runs.

19

 0

 0.002

 0.004

 0.006

 0.008

 0.01
A

v
er

ag
e

M
S

E

GPM GP kernel ex

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

A
v

er
ag

e
N

L
P

D

GPM GP

Fig. 13 Experimental comparison of the GP mixture model (GPM), the standard GP model (GP), and kernel

extrapolation in a simple setting. Top: As expected, all three approaches perform more or less equal. Bottom:

Model learned by the GPM approach (all approaches produced highly similar estimates). The unit of the x-

and y-axis in the plots in the bottom row is meter.

by Ishida et al. [1998]—additionally considering partially simultaneous measurements. A

similar method was used in [Purnamadjaja and Russell, 2005], but instead of the average

concentration, the peak concentration observed during a sampling period of 20 s was con-

sidered to create the map.

Consecutive measurements with a single sensor and time-averaging over 2 minutes for

each sensor location were used by Pyk et al. [2006] to create a map of the distribution of

ethanol. Methods, which aim at determining a map of the instantaneous gas distribution

from successive concentration measurements, rely on the assumption of a time-constant

distribution profile, i.e. on uniform delivery and removal of the gas to be analyzed as well as

on stable environmental conditions. Thus, the experiments of Pyk et al. were performed in

a wind tunnel with a constant airflow and a homogeneous gas source. To make predictions

about locations outside of the directly observed regions, the same authors apply bi-cubic

interpolation in the case of equidistant measurements and triangle-based cubic filtering in

the case, in which the measurement points are not equally distributed. A problem with such

interpolation methods is that there is no means of “averaging out” instantaneous response

fluctuations at measurement locations. Even if response values are measured close to each

other, they will appear independently in the gas distribution map with interpolated values

in between. Consequently, interpolation-based maps tend to become more and more jagged

the more new measurements are added [Lilienthal et al., 2006].

Histogram-based methods approximate the continuous distribution of gas concentration

by means of binning according to regular grids. Hayes et al. [2002] for instance suggest

20

using two-dimensional histograms over the number of “odor hits” received in the corre-

sponding area. “Odor hits” are counted whenever the response level of a gas sensor exceeds

a defined threshold. In addition to the dependency of the gas distribution map on the se-

lected threshold, a disadvantage of processing binary information only is that useful infor-

mation contained in the (continuous) sensor readings is discarded. Further disadvantages of

histogram-based methods for gas distribution modeling are their dependency on a properly

chosen bin size and the lack of generalization across bins or beyond the inspection area.

Gas distribution mapping based on kernel extrapolation can be seen as an extension of

the histogram-based approach. The idea was introduced by Lilienthal and Duckett [2004].

In this model, spatial integration is carried out by convolving sensor readings and mod-

eling the information content of the point measurements with a Gaussian kernel. As dis-

cussed in [Lilienthal et al., 2006], this method is related to nonparametric estimation us-

ing Parzen windows. The complexity of model-free approaches for converging to a sta-

ble representation—either in terms of time consumption or the number of sensors—scales

quadratically with the size of the environment.

A model-based approach to estimate concentration maps has been described by Mar-

ques et al. [2005]. In this approach, the work space is discretized into a 2-d regular grid

and the concentration in each cell is represented by a state variable. Using an advection-

diffusion model of chemical transport, a reduced order Kalman filter is applied in order to

estimate the state variables corresponding to the grid cells. According to the assumption of a

non-turbulent transport model, the experimental run presented was carried out in an indoor

environment with artificially introduced laminar airflow of approx. 1.5 m/s. Model-based

approaches have also been applied to infer the parameters of an analytical gas distribution

model from the measurements [Ishida et al., 1998]. They naturally depend on the charac-

teristics of the assumed model. Complex numerical models based on the simulation of fluid

dynamics are computationally expensive and require accurate knowledge of the state of the

environment (boundary conditions) which are typically not available in practice. Simpler an-

alytical models, on the other hand, often make rather unrealistic model assumptions which

hardly fit the real situation. Model-based approaches also rely on well-calibrated gas sensors

and an established understanding of the sensor-environment interaction.

The Kalman filter approach by Marques et al. [2005] provides an estimate of the predic-

tive uncertainty. A related approach is the work by Blanco et al. [2009] in which a Kalman

filter is used for sequential Bayesian estimation on a 2-d grid. Instead of the advection-

diffusion model, a stationary distribution is assumed in the latter work. It is important to

note that the covariance obtained from these two approaches is the covariance of the mean,

which can only decrease as new observations are processed. Since the predictive variance

computed with the algorithm proposed in this paper can adapt to the real variability of the

measurements at each location, its performance in terms of the average negative log likeli-

hood is substantially better than with the approach by Blanco et al. [2009] (personal commu-

nication). We believe that this is also true for the mapping algorithm by Marques et al. [2005]

although the two methods cannot be compared directly due to the strong assumptions on the

environmental conditions by Marques et al.

In contrast to the above-mentioned approaches, we apply a Gaussian process-based mix-

ture model to the problem of learning probabilistic gas distribution maps. The history of

the idea behind the Gaussian process approach to regression dates back to Wiener [1964],

Kolmogoroff [1941], O’Hagan [1978], and others (see [Rasmussen and Williams, 2006,

Sec. 2.8]). For a detailed and quantitative comparison of GPs with alternative approaches

such as neural networks, we refer to [Rasmussen, 1996]. GPs allow us to model the depen-

dencies between measurements by means of a covariance function. They enable us to make

21

predictions at locations not observed so far and do not only provide the mean gas distribution

but also the predictive uncertainty. Our mixture model is furthermore able to model sharp

boundaries around areas of high gas concentration. Technically, we build on Tresp’s mixture

model of GP experts (see [Tresp, 2000]) better deal with the varying properties in the data.

Extensions of this technique using infinite mixtures have been proposed by Rasmussen and

Ghahramani [2002] and Meeds and Osindero [2006]. Other model extensions that aim at

increasing the expressiveness of Gaussian processes include, e.g., heteroscedastic GPs for

modeling input-dependent noise [Le et al., 2005, Kersting et al., 2007, Snelson and Ghahra-

mani, 2006b], nonstationary GPs for modeling input-dependent smoothness [Paciorek and

Schervish, 2003, Plagemann et al., 2008, Schmidt and O’Hagan, 2003], or special covari-

ance functions for non-vectorial inputs [Driessens et al., 2006, Collins and Duffy, 2002].

Compared to the latter extensions to the standard GP model, the mixture model approach

can be seen as the natural choice for the gas-mapping task, since the distribution of data

points is multi-modal. Future work, however, could include a quantitative comparison of the

alternative approaches or aim at integrating several of them.

The work presented here extends our previous RSS’2008 paper [Stachniss et al., 2008].

First, we investigated the use of different covariance functions in the GP model for gas distri-

bution mapping. This showed that there are better choices than the previously used squared

exponential covariance function. Second, we extended the experimental section providing a

larger set of experiments. We furthermore identified and evaluated a scenario which is well

designed for the standard GP approach and evaluated the performance of our proposed mix-

ture model. It turned out that in such a situations, designed for the standard GP, our approach

performs equally well.

6 Conclusion

We considered the problem of modeling gas distributions from sensor measurements by

means of sparse Gaussian process mixture models. Gaussian processes are an attractive

modeling technique in this context since they do not only provide a gas concentration esti-

mate for each point in the space but also the predictive uncertainty. Our approach learns a

GP mixture model and simultaneously decreases the computational complexity by reducing

the training set in order to achieve an efficient representation even for a large number of ob-

servations. The mixture model allows us to explicitly distinguish the different components

of the spatial gas distribution, namely areas of high gas concentration from the smoothly

varying background signal. This improves the accuracy of the gas concentration prediction.

Our method has been implemented and tested using gas sensors mounted on a real robot.

With our method, we obtain gas distribution models that better explain the sensor data com-

pared to techniques such as the standard GP regression for gas distribution mapping. Our

approach and the one of Lilienthal and Duckett [2004] provide similar mean gas concen-

tration estimates, their approach as well as the majority of techniques in the field, however,

lack the ability of also estimating the corresponding predictive uncertainties.

Acknowledgments

This work has partly been supported by the DFG under contract number SFB/TR-8, and by

the EC under contract number FP6-045299-Dustbot: Networked and Cooperating Robots

22

for Urban Hygiene, and FP7-224318-DIADEM: Distributed Information Acquisition and

Decision-Making for Environmental Management.

References

[Blanco et al., 2009] J.L. Blanco, J. Gonzalez, and A.J. Lilienthal. An efficient approach to probabilistic gas

distribution mapping. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2009. Submitted

to ICRA 2009.

[Collins and Duffy, 2002] M. Collins and N. Duffy. Convolution kernels for natural language. Proc. of the

Conf. on Neural Information Processing Systems (NIPS), 1:625–632, 2002.

[Driessens et al., 2006] K. Driessens, J. Ramon, and T. Gärtner. Graph kernels and Gaussian processes for

relational reinforcement learning. Machine Learning, 2006.

[DustBot, 2008] DustBot. DustBot - Networked and Cooperating Robots for Urban Hygiene.

http://www.dustbot.org, 2008.

[Frese, 2006] U. Frese. Treemap: An o(logn) algorithm for indoor simultaneous localization and mapping.

Journal of Autonomous Robots, 21(2):103–122, 2006.

[Grisetti et al., 2007] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid mapping with

rao-blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

[Hayes et al., 2002] A.T. Hayes, A. Martinoli, and R.M. Goodman. Distributed Odor Source Localization.

IEEE Sensors Journal, Special Issue on Electronic Nose Technologies, 2(3):260–273, 2002.

[Ishida et al., 1998] H. Ishida, T. Nakamoto, and T. Moriizumi. Remote Sensing of Gas/Odor Source Loca-

tion and Concentration Distribution Using Mobile System. Sensors and Actuators B, 49:52–57, 1998.

[Kersting et al., 2007] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely heteroscedastic

gaussian process regression. In International Conference on Machine Learning (ICML), Corvallis, Ore-

gon, USA, March 2007.

[Kolmogoroff, 1941] A. Kolmogoroff. Interpolation und extrapolation von stationren zuflligen folgen .(rus-

sian. german. Bull. Acad. Sci. URSS, Ser. Math., 5:3–14, 1941.

[Le et al., 2005] Q.V. Le, A.J. Smola, and S. Canu. Heteroscedastic gaussian process regression. In Pro-

ceedings of the 22nd international conference on Machine learning, pages 489–496, New York, NY, USA,

2005. ACM Press.

[Lilienthal and Duckett, 2004] A. Lilienthal and T. Duckett. Building Gas Concentration Gridmaps with a

Mobile Robot. Robotics and Autonomous Systems, 48(1):3–16, 2004.

[Lilienthal et al., 2006] A. Lilienthal, A. Loutfi, and T. Duckett. Airborne Chemical Sensing with Mobile

Robots. Sensors, 6:1616–1678, 2006.

[Lilienthal et al., 2007] A. Lilienthal, A. Loutfi, J.L. Blanco, C. Galindo, and J. Gonzalez. A rao-

blackwellisation approach to gdm-slam: Integrating slam and gas distribution mapping. In Proc. of the

European Conference on Mobile Robots (ECMR), pages 126–131, 2007.

[Marques et al., 2005] Lino Marques, André Martins, and A. T. de Almeida. Environmental monitoring

with mobile robots. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages

3624–3629, 2005.

[Meeds and Osindero, 2006] E. Meeds and S. Osindero. An alternative infinite mixture of gaussian process

experts. In Advances in Neural Information Processing Systems, 2006.

[Murlis et al., 1992] J. Murlis, J. S. Elkington, and R. T. Carde. Odor Plumes and How Insects Use Them.

Annual Review of Entomology, 37:505–532, 1992.

[O’Hagan, 1978] A. O’Hagan. Curve fitting and optimal design for prediction. Journal of the Royal Statis-

tical Society B, 40(1), 1978.

[Paciorek and Schervish, 2003] Christopher J. Paciorek and Mark J. Schervish. Nonstationary Covariance

Functions for Gaussian Process Regression. In Proc. of the Conf. on Neural Information Processing

Systems (NIPS), 2003.

[Plagemann et al., 2008] C. Plagemann, K. Kersting, and W. Burgard. Nonstationary gaussian process re-

gression using point estimates of local smoothness. In Proc. of the European Conference on Machine

Learning (ECML), Antwerp, Belgium, 2008.

[Purnamadjaja and Russell, 2005] A.H. Purnamadjaja and R.A. Russell. Congregation Behaviour in a Robot

Swarm Using Pheromone Communication. In Proc. of the Australian Conf. on Robotics and Automation,

2005.

[Pyk et al., 2006] P. Pyk, S. Bermúdez Badia, U. Bernardet, P. Knüsel, M. Carlsson, J. Gu, E. Chanie, B.S.

Hansson, T.C. Pearce, and P.F. Verschure. An Artificial Moth: Chemical Source Localization Using a

Robot Based Neuronal Model of Moth Optomotor Anemotactic Search. Autonomous Robots, 20:197–

213, 2006.

23

[Rasmussen and Ghahramani, 2002] C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of gaussian pro-

cess experts. In Advances in Neural Information Processing Systems 14, 2002.

[Rasmussen and Williams, 2006] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine

Learning. The MIT Press, 2006.

[Rasmussen, 1996] C.E. Rasmussen. Evaluation Of Gaussian Processes And Other Methods For Non-Linear

Regression. PhD thesis, Graduate Department of Computer Science, University of Toronto, 1996.

[Rasmussen, 2006] C.E. Rasmussen. Minimize. http://www.kyb.tuebingen.mpg.de/

bs/people/carl/code/minimize, 2006.

[Roberts and Webster, 2002] P.J.W. Roberts and D.R. Webster. Turbulent Diffusion. In H. Shen, A. Cheng,

K.-H. Wang, M.H. Teng, and C. Liu, editors, Environmental Fluid Mechanics - Theories and Application.

ASCE Press, Reston, Virginia, 2002.

[Schmidt and O’Hagan, 2003] A.M. Schmidt and A. O’Hagan. Bayesian inference for nonstationary spatial

covariance structure via spatial deformations. JRSS, series B, 65:745–758, 2003.

[Smola and Bartlett, 2000] A.J. Smola and P.L. Bartlett. Sparse greedy gaussian process regression. In NIPS,

pages 619–625, 2000.

[Snelson and Ghahramani, 2006a] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-

inputs. In Advances in Neural Information Processing Systems 18, pages 1259–1266, 2006.

[Snelson and Ghahramani, 2006b] E. Snelson and Z. Ghahramani. Variable noise and dimensionality reduc-

tion for sparse gaussian process es. In Uncertainty in Artifical Intelligence, 2006.

[Stachniss et al., 2008] C. Stachniss, C. Plagemann, A. Lilienthal, and W. Burgard. Gas distribution mod-

eling using sparse gaussian process mixture models. In Proc. of Robotics: Science and Systems (RSS),

Zurich, Switzerland, 2008. To appear.

[Tresp, 2000] V. Tresp. Mixtures of gaussian processes. In Proc. of the Conf. on Neural Information Pro-

cessing Systems (NIPS), 2000.

[Wandel et al., 2003] M. Wandel, A. Lilienthal, T. Duckett, U. Weimar, and A. Zell. Gas distribution in

unventilated indoor environments inspected by a mobile robot. In Proc. of the Int. Conf. on Advanced

Robotics (ICAR), pages 507–512, 2003.

[Wiener, 1964] N. Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. The MIT

Press, 1964.

[J5] K.M. Wurm, C. Stachniss, and G. Grisetti. Bridging the gap between

feature- and grid-based slam. Robots and Autonomous Systems, 2009. In

press.

Bridging the Gap Between Feature- and Grid-based SLAM

Kai M. Wurm Cyrill Stachniss Giorgio Grisetti
University of Freiburg, Dept. of Computer Science, Georges-Köhler-Allee 79, 79110 Freiburg, Germany

Abstract

One important design decision for the development of autonomously navigating mobile robots is the choice of the

representation of the environment. This includes the question which type of features should be used or whether a

dense representation such as occupancy grid maps is more appropriate. In this paper, we present an approach which

performs SLAM using multiple representations of the environment simultaneously. It uses reinforcement to learn

when to switch to an alternative representation method depending on the current observation. This allows the robot

to update its pose and map estimate based on the representation that models the surrounding of the robot in the

best way. The approach has been implemented on a real robot and evaluated in scenarios, in which a robot has to

navigate in- and outdoors and therefore switches between a landmark-based representation and a dense grid map. In

practical experiments, we demonstrate that our approach allows a robot to robustly map environments which cannot

be adequately modeled by either of the individual representations.

Key words: SLAM, features, grid maps, learning, dual representation

1. Introduction

Building maps is one of the fundamental tasks of
mobile robots. In the literature, the mobile robot
mapping problem is often referred to as the simul-
taneous localization and mapping (SLAM) problem.
It is considered to be a complex problem, because
for localization a robot needs a consistent map of
the environment and for acquiring a map a robot re-
quires a good estimate of its location. This mutual
dependency between the estimates about the pose
of the robot and the map of the environment makes
the SLAM problem hard and involves searching for
a solution in a high-dimensional space.

A large variety of different estimation techniques
has been proposed to address the SLAM problem.
Extended Kalman filters, sparse extended informa-
tion filters, maximum likelihood methods, particle
filters, and several other techniques have been ap-
plied to estimate the trajectory of the robot as well
as a map of the environment. Most approaches to

mapping use a single scheme for representing the
environment. Among the most popular ones are
feature-based models such as sets of landmarks or
dense representations such as occupancy grids. In
a practical robotic application, the decision which
model to use is largely influenced by the type of
the environment the robot is deployed in. In large
open spaces with predefined landmarks, for exam-
ple, feature-based approaches often are preferred,
whereas occupancy grid maps have widely been
used in unstructured environments. In real world
scenarios, however, one generally cannot assume
that the environment is uniformly covered by spe-
cific features. Consider, for example, a surveillance
system which can operate both inside of buildings
and outside on parking spaces or large outdoor
storage areas. Such a system has to be capable of
dynamically choosing the best representation in
each area to maximize its robustness.

The contribution of this paper is a novel approach
which allows a mobile robot to utilize different rep-

Preprint submitted to Robotics and Autonomous Systems July 8, 2009

resentations of the environment. At the example of
a combination of feature-based models with occu-
pancy grid maps we describe how a robot can per-
form the mapping process using both types of repre-
sentation. It applies reinforcement learning to select
the representation that is best suited to model the
area surrounding the robot based on the current sen-
sor observations and the state of the filter. We apply
the approach in the context of a Rao-Blackwellized
particle filter to maintain the joint posterior about
the trajectory of the robot and the map of the envi-
ronment.

As we will demonstrate in the experiments, our
approach outperforms pure grid and pure feature-
based approaches. Furthermore, our approach al-
lows for modeling heterogeneous environments
which cannot be adequately represented by either
of the single representations. A motivating example
is shown in Figure 1. Here, the environment con-
sists of outdoor and indoor parts. A feature-based
representation is well suited to model the outdoor
part (Figure 1a) but cannot be used to correct
odometry errors inside the buildings due to the lack
of relevant features. A grid-based representation, in
contrast, leads to false matches in the outdoor parts
due to the sparsity of non max-range measurements
there but accurately represents the inside of the
buildings (see Figure 1b). Our system combines the
advantages of both representations to generate a
consistent map (Figure 1c).

This paper is organized as follows. After a dis-
cussion of related work, we briefly introduce the
SLAM approach utilized in this paper, namely Rao-
Blackwellized particle filters, in Section 3. Whereas
Section 4 presents our approach for mapping with
a dual representation of the environment, Section 5
explains our model selection technique based on re-
inforcement learning. Finally, we present experimen-
tal results obtained in simulation and on real robots
in Section 6.

2. Related Work

Mapping techniques for mobile robots can be
roughly classified according to the map represen-
tation and the underlying estimation technique.
One popular map representation is the occupancy
grid [16]. Whereas such grid-based approaches are
computationally expensive and typically require a
huge amount of memory, they are able to represent
arbitrary objects. It should be noted that to correct

the robot pose estimate a certain amount of obsta-
cles in the range of the robot’s sensor is needed.
This can be a problem if the range of the sensor is
short as is the case with small scale laser scanners
or if the environment is a large open area.

Feature-based representations are attractive be-
cause of their compactness. This is a clear advan-
tage in terms of memory consumption and process-
ing speed. However, such systems rely on predefined
feature extractors, which assumes that some struc-
tures in the environments are known in advance.
This clearly limits the field of action of a robot.

The model of the environment and the applied
state estimation technique are often coupled. One of
the most popular approaches are extended Kalman
filters (EKFs) in combination with predefined land-
marks. The effectiveness of the EKF approaches re-
sults from the fact that they estimate a fully cor-
related posterior about landmark maps and robot
poses [12,20]. Their weakness lies in the strong as-
sumptions that have to be made on both the robot
motion model and the sensor noise. Moreover, the
landmarks are assumed to be uniquely identifiable.
There exist techniques [18] to deal with unknown
data association in the SLAM context, however, if
these assumptions are violated, the filter is likely to
diverge [5,11,25].

Thrun et al. [24] proposed a method that uses the
inverse of the covariance matrix. The advantage of
the sparse extended information filters (SEIFs) is
that they make use of the approximative sparsity of
the information matrix and in this way can perform
predictions and updates in constant time. Eustice
et al. [4] presented a technique to make use of ex-
actly sparse information matrices in a delayed-state
framework.

In a work by Murphy, Doucet, and colleagues [2,17],
Rao-Blackwellized particle filters (RBPF) have
been introduced as an effective means to solve the
SLAM problem. Each particle in a RBPF repre-
sents a possible trajectory of the robot and a map
of the environment. The framework has been sub-
sequently extended by Montemerlo et al. [14,15]
for approaching the SLAM problem with land-
mark maps. To learn accurate grid maps, RBPFs
have been used by Eliazar and Parr [3] and Hähnel
et al. [8]. Whereas the first work describes an effi-
cient map representation, the second presents an
improved motion model that reduces the number
of required particles. The work of Grisetti et al. [6]
describes an improved variant of the algorithm
proposed by Hähnel et al. [8] combined with the

2

(a) Feature-based mapping system (no features inside the buildings). Features are illustrated by circles.

(b) Grid-based mapping system (few structural information outside)

(c) Combining features and grid maps

Figure 1. When mapping environments that contain large open spaces with few landmarks as well as dense structures, a
combination of feature maps and grids maps outperforms the individual techniques.

ideas of FastSLAM2 [14]. Instead of using a fixed
proposal distribution, the algorithm computes an
improved Gaussian proposal distribution on a per-
particle basis on the fly. A further extension of
this method which overcomes the limitation of the
Gaussian assumption has recently been presented
by Stachniss et al. [21]. Additional improvements
concerning both runtime and memory requirements
have been achieved by Grisetti et al. [7] by reusing
already computed proposal distributions.

So far, there exist only very few methods that
try to combine feature-based models with grid
maps. One is the hybrid metric map (HYMM) ap-
proach [10]. It estimates the location of features
and performs a triangulation between them. In this
triangulation, a so called dense map is maintained
which can be transformed according to the update of
the corresponding landmarks. This allows the robot
to obtain a dense map by using a feature-based
mapping approach. However, it is still required that
the robot is able to reliably extract landmarks.

A hybrid map is also used in [19]. Sim et al. pro-
pose a vision-based SLAM system which extracts 3D
point landmarks from stereo camera images. In ad-
dition to the map of landmarks, an occupancy grid
map is constructed which is used for safe navigation
of the robot. In contrast to the approach described in
this paper, the SLAM-system is only using the fea-
ture map for pose estimation, while the grid map is
used for path planning in an exploration task. A sim-
ilar approach is described by Makarenko et al. [13].
Here, an decision-theoretic exploration algorithm is
described which uses a feature map for SLAM and
maintains a grid map to determine known and un-
known regions of the environment. However, the grid
map is not used to correct the estimate of the robot’s
pose. Another combination of grid and feature maps
has been proposed by Ho and Newman [9]. They use
grid maps and visual features in a SLAM system.
While the grid map generated from laser scans is
used for pose estimation, visual features are used to
improve the detection of loop closures.

3

3. Mapping with Rao-Blackwellized Particle

Filters

According to Murphy [17], the key idea of the Rao-
Blackwellized particle filter for SLAM is to estimate
the joint posterior p(x1:t,m | z1:t, u1:t−1) about the
map m and the trajectory x1:t = x1, . . . , xt of the
robot. This estimation is performed given the obser-
vations z1:t = z1, . . . , zt and the odometry measure-
ments u1:t−1 = u1, . . . , ut−1 obtained by the mo-
bile robot. The Rao-Blackwellized particle filter for
SLAM makes use of the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1). (1)

This factorization allows us to first estimate only
the trajectory of the robot and then to compute the
map given that trajectory. This technique is often
referred to as Rao-Blackwellization.

Typically, Eq. (1) can be calculated efficiently
since the posterior about maps p(m | x1:t, z1:t)
can be computed analytically using “mapping with
known poses” [16] since x1:t and z1:t are known.

To estimate the posterior p(x1:t | z1:t, u1:t−1)
about the potential trajectories, one can apply a
particle filter. Each particle represents a potential
trajectory of the robot. Furthermore, an individual
map is associated with each sample. The maps are
built from the observations and the trajectory hy-
pothesis represented by the corresponding particle.

This framework allows a robot to learn models of
the environment and estimate its trajectory but it
leaves open how the environment is represented. So
far, this approach has been applied using feature-
based models [14,15] or grid maps [3,6,8,17]. Each
representation has its advantages and one typically
needs some prior information about the environment
to select the appropriate model. In this paper, we
combine both types of maps to represent the envi-
ronment. This allows us to combine the advantages
of both worlds. Depending on the most recent obser-
vation, the robot selects that model which is likely
to be the best model in the current situation. In
case the environment suggests the use of one single
model, the result is the same as using the original
approach.

4. Dual Model of the Environment

Our mapping system applies such a Rao-
Blackwellized particle filter to maintain the joint
posterior about the trajectory of the robot and the
map of the environment. In contrast to previous al-
gorithms, each particle carries a grid map as well as
a map of features. The key idea is to maintain both
representations simultaneously and to select in each
step the model that is best suited to update the
pose and map estimate of the robot. Our approach
is independent of the actual features that are used.
In our current system, we use a laser range finder
and extract clusters of beam end points which are
surrounded by free space. In this way, we obtain fea-
tures from trees, street lamps, etc. Note that other
feature detectors can be transparently integrated
into our approach. The detector itself is completely
transparent to the algorithm.

In each step, our algorithm considers the current
estimate as well as the current sensor and odometry
observation to select either the grid or the feature
model to perform the next update step. This deci-
sion affects the proposal distribution in the particle
filter used for mapping. The proposal distribution
is used to obtain the next generation of particles as
well as to compute the importance weights of the
samples.

In the remainder of this section, we first introduce
the characteristics of our particle filter. We then ex-
plain in the subsequent section how to actually se-
lect the model for the current step.

If the grid map is to be used, we draw the new
particle poses from an improved proposal distribu-
tion as introduced by Grisetti et al. [6]. This pro-
posal performs scan-matching on a per particle basis
and then approximates the likelihood function by a
Gaussian. This technique has been shown to yield
accurate grid maps of the environment, given that
there is enough structure to perform scan-matching
for an initial estimate.

When using feature maps, we apply the proposal
distribution as done by Montemerlo et al. [15] in the

FastSLAM algorithm. For each particle s
(i)
t−1 in the

current particle set a new hypothesis of the robot’s
pose is generated by sampling from the probabilistic
motion model:

s
(i)
t ∼ p(st | ut, s

(i)
t−1) (2)

After the proposal is used to obtain the next gener-
ation of samples, the importance weights are com-

4

puted according to Grisetti et al. [6] and Monte-
merlo et al. [15] respectively. Note that we compute

for each sample i two weights w
(i)
g (based on the grid

map) and w
(i)
f (based on the feature map). For re-

sampling, one weight is required but we need both
values in our decision process as explained in the
following section.

To carry out the resampling step, we apply the
adaptive resampling strategy originally proposed by
Doucet [1]. It computes the so-called effective sam-
ple size or effective number of particles (Neff) to de-
cide whether to resample or not. This is done based
on the weights resulting from the proposal used to
obtain this generation of samples.

5. Model Selection

The probably most important aspect of our pro-
posed algorithm is to decide which representation
to choose given the current sensor readings and the
filter. In the following, we describe different strate-
gies we investigated and which are evaluated in the
experimental section of this paper.

5.1. Observation Likelihood Criterion

A mapping approach that relies on scan-matching
is most likely to fail if laser readings cannot be
aligned to the map generated so far. For example,
this will probably be the case in large open space
with sparse observations. In such a situation it is
often better to use a pre-defined feature extractor
(in case there are feature) to estimate the pose of
the robot.

A measure that can be used to detect such a situa-
tion is the observation likelihood that scan-matching
seeks to maximize

l(zt, xt,mg,t) = max
xt

p(zt | xt,mg,t). (3)

To point-wise evaluate the observation likelihood
of a laser observation, we use the so called “beam
endpoint model” [23]. In this model, the individual
beams within a scan are considered to be indepen-
dent. The likelihood of a beam is computed based
on the distance between the endpoint of the beam
and the closest obstacle in the map from that point.

Calculating the average likelihood for all particles
results in a value that can be used as a heuristic to
decide which map representation to use in a given
situation:

l =
1

N

∑

i

l(zt, x
(i)
t ,m

(i)
g,t) (4)

A heuristic for selecting the feature-based represen-
tation instead of the grid map can be obtained based
on a threshold (l ≤ c1).

However, care has to be taken when choosing c1.
If this threshold is not chosen optimally the feature
map might be used even if it offers no advantage over
the grid map. This will increase the likelihood of a
poor state estimate and therefore of inconsistencies
in the map.

5.2. Neff Criterion

As described above, each particle i carries two

weights w
(i)
g and w

(i)
f , one for the grid-map and one

for the feature-map. These weights can be seen as an
indicator of how well a particle explains the data and
therefore can be also used as a heuristic for model
selection. Since the weights of a particle are based
on different types of measurement, they cannot be
compared directly. What can be compared, however,
is the weight distribution over the filter.

One way to measure this difference in the individ-
ual weights is to compute the variance of the weights.
Intuitively a set of weights with low variance does
not strongly favor any of the hypothesis represented
by the particles, while a high variance indicates that
some hypotheses are more likely than others.

This suggests that a strategy based on the Neff

value, which is strongly related to the variance of
the weights, can be a reasonable heuristic. Neff is
computed for both sets of weights as

N
g
eff =

1
∑N

i=1(w
(i)
g)2

and N
f
eff =

1
∑N

i=1(w
(i)
f)2

. (5)

It can be easily seen, that a higher variance in the
weights yields a lower Neff value. Assuming that a
set of particles with a higher variance in the weights
is usually more discriminative, it seems reasonable
to switch to the feature-based model whenever
N

f
eff < N

g
eff .

In our experiments, this heuristic generally led
to good results. Nevertheless, there are two aspects
which have to be considered.

Firstly the variance in particles weights usually
does not change abruptly but gradually. For this
reason, the Neff criterion might fail to indicate the
optimal point in time to switch the actively used
representation. This will most notably happen at

5

junctions between areas where one is best modeled
using grid maps and the other is best modeled using
feature maps. Note that such a behavior can also
be advantageous for example in case of false feature
detections.

A second problem arises from the fact that fre-
quent resampling in a particle filter can lead to par-
ticle depletion [1]. Since our implementation uses
adaptive resampling based on the Neff value, choos-
ing the representation with the lower Neff will in
general also lead to more frequent resampling ac-
tions.

5.3. Reinforcement Learning for Model Selection

Both approaches described above are clearly
heuristics. In this section, we describe how to use
reinforcement learning to combine the strengths of
both heuristics while avoiding their pitfalls. The
basic idea of reinforcement learning is to find a
mapping from states S to actions A which maxi-
mizes a numerical reward signal r (see [22] for an
introduction). Such a mapping is called a policy and
can be learned by interacting with the environment.
Inspired by the human learning method of trial and
error, this class of learning algorithms performs a
series of actions and analyzes the obtained reward.

There exist a number of algorithms for reinforce-
ment learning. Depending on the prior knowledge an
agent has about its environment some approaches
may be more appropriate than others. For exam-
ple, if it can be modeled as an Markov decision pro-
cess, techniques such as policy iteration can be uti-
lized. In case no model of the environment is avail-
able, Monte Carlo methods or Temporal-Difference
Learning (TD learning) can be applied.

For our approach, we use the SARSA algo-
rithm [22] which is a popular algorithm among
the TD methods and does not require a model of
the environment. It learns an action-value func-
tion Q(s, a) which assigns a value to state-action
pairs. Those values can then be used to generate a
policy (e.g., choose the action that has the highest
value in a given state). The basic steps are given in
Algorithm 1.

To apply this method to our model selection prob-
lem, we have to define the states S, the actions A,
and the reward r : S → R. Defining the actions is
straight forward as A = {ag, af}, where ag defines
the use of the grid map and af the use of the feature
map.

Algorithm 1 The SARSA Algorithm

Initialize Q(s, a) arbitrarily
for all episodes do

initialize s

choose a from s using policy derived from Q

repeat

take action a, observe r, s′

choose a′ from s′ using policy derived from Q

Q(s, a) = Q(s, a)+α[r+γQ(s′, a′)−Q(s, a)]
s = s′; a = a′

until s is a terminal state
end for

The state set has to be defined in a way that it rep-
resents all necessary information about the sensor
input and the filter to make a decision. To achieve
this, our state consists of the average scan matching
likelihood l, a boolean variable given by N

f
eff < N

g
eff ,

and a boolean variable indicating if a known feature
has currently been detected or not. This results in

S := {l} × {1
N

f

eff
<N

g

eff

} × {1 feature detected}. (6)

The value of l is divided into (here seven) discrete
intervals (0.0−0.15, 0.16−0.3, 0.31−0.45, 0.46−0.6,
0.61−0.75, 0.76−0.9, 0.91−1.0), resulting in 7×2×
2 = 28 states. It is important to keep the number of
states small since learning the policy otherwise may
require too many computational resources, even as a
preprocessing step which needs to be executed only
once.

The policy is learned on simulated data where the
true robot pose x∗

t is available in every time step
t. We use the weighted average deviation from the
true pose to define our reward-function. To avoid
a punishment that result from wrong decisions in
the past (e.g., a wrong rotation), we only use the
deviation accumulated since the last evaluation step
t − 1:

r(st) = r(st−1) −
N∑

i=1

w
(i)
t ||x

(i)
t − x∗

t || (7)

Deviations from the simulated path result in nega-
tive rewards. As mentioned in the previous section,
each particle stores two weights. For calculating the

weighted average, we use w
(i)
g if the last action taken

was ag and w
(i)
f if af was taken.

The environment for learning consists of building-
like structures with hallways and an outdoor part
that models a set of trees. We recorded a simulated
path and executed 1000 runs of the learning algo-
rithm. During learning, we us an ε-greedy policy. In

6

state s, a greedy policy chooses the action a which
has the highest value Q(s, a). In contrast to this, an
ε-greedy policy allows exploratory actions by choos-
ing a random action with likelihood ε.

More exploration usually facilitates faster learn-
ing so a value of ε = 0.6 was used in our learning
experiments. The learning rate α was set to a fixed
value of 0.001, the discounting factor γ was set to
0.9, which are standard values and led to good re-
sults in our experiments.

This technique results in a policy that tells the
robot when to select the feature-based representa-
tion and when to choose the grid map. Note that our
approach to learn a strategy for making decisions
is independent of the actual feature detector used.
One could even use this approach to choose among
multiple feature detectors.

The overall mapping algorithm is depicted in Al-
gorithm 2.

6. Experiments

Our approach has been evaluated using simulated
and real robot data. The experiments have been de-
signed to verify that our mapping approach is able
to reduce the error compared to the purely feature-
based technique (FastSLAM [15]) and to the purely
grid-based approach [6]. We specifically considered
environments which cannot be mapped accurately
using one single model. In those cases the result is
the same as using the original approach.

6.1. Simulation Experiments

For generating the simulated data, we used the
Carnegie Mellon Robot Navigation Toolkit. The
simulated environment used to test our approach is
shown in Figure 2. It shows two symmetric build-
ings connected by an alley. The environment is
spanning 70 m in total. We simulated a laser range
finder with a maximum range of 4m which is less
than the distance between the trees in the alley
(5m). This limited sensor range is a realistic setting
since it corresponds to the maximum range of small
scale laser scanners such as the Hokuyo URG.

The motivating example in the introduction of
this paper shows example results obtained with the
different approaches. Figure 1 (a) is the result of
the purely feature-based FastSLAM approach. Since
no features are found inside the building structures,
the robot cannot correct its trajectory inside the

Algorithm 2 Our combined approach
Require:

St−1, the sample set of the previous time step
zl,t, the most recent laser scan

zf,t, the most recent feature measurement
ut−1, the most recent odometry measurement

Ensure:

St, the new sample set

maptype = decide(St−1, zl,t, zf,t, ut−1)

St = {}

for all s
(i)
t−1 ∈ St−1 do

< x
(i)
t−1, w

(i)
g,t−1, w

(i)
f,t−1

m
(i)
g,t−1, m

(i)
f,t−1

>= s
(i)
t−1

// compute proposal
if (maptype = grid) then

x
(i)
t ∼ P (xt | x

(i)
t−1, ut−1, zl,t)

else

x
(i)
t ∼ P (xt | x

(i)
t−1, ut−1)

end if

// update importance weights

w
(i)
g,t = updateGridWeight(w

(i)
g,t−1, m

(i)
g,t−1, zl,t)

w
(i)
f,t

= updateFeatureWeight(w
(i)
f,t−1

, m
(i)
f,t−1

, zf,t)

// update maps

m
(i)
g,t = integrateScan(m

(i)
g,t−1, x

(i)
t , zl,t)

m
(i)
f,t

= integrateFeatures(m
(i)
f,t−1

, x
(i)
t , zf,t)

// update sample set

St = St ∪ {< x
(i)
t , w

(i)
g,t, w

(i)
f,t

, m
(i)
g,t, m

(i)
f,t

>}
end for

for i = 1 to N do

if (maptype = grid) then

w(i) = w
(i)
g

else

w(i) = w
(i)
f

end if

end for

Neff = 1∑
N

i=1
(w(i))2

if Neff < T then

St = resample(St, {w(i)})

end if

buildings. In contrast, the trajectory through the
alley is well approximated using this approach.

The purely grid-based approach [6] is able to cor-
rectly map the buildings but introduces large errors
in the alley (see Figure 1 (b)). Due to the limited
range of the sensor, too few obstacles are observed
and therefore no accurate scan registration is pos-
sible and thus the grid-based approach fails to map
the alley appropriately.

7

Figure 2. Simulated environment used to test our approach. Shown are the ground truth map and trajectory of the robot.

 0

 5000

 10000

 15000

 20000

 0 200 400 600 800 1000 1200 1400 1600

cu
m

u
la

ti
v
e

er
ro

r

timestep

FastSLAM (features only)
Grisetti et al. (grid only)

Our approach

Figure 3. Deviation of the weighted mean of the samples from
ground truth using grid- and feature-model on their own and
using the combined approach. The error bars illustrate the
0.05 confidence level.

 0

 1000

 2000

 3000

 4000

 5000

 0 200 400 600 800 1000 1200 1400 1600

cu
m

u
la

ti
v

e
er

ro
r

timestep

likelihood
neff

Our approach (Sarsa)

Figure 4. Deviation of the weighted mean of the samples
from ground truth using the scan-match likelihood heuristic,
the Neff heuristic and our approach.

In contrast to this, our combined approach using
the learned policy is able to correct the trajectory of
the robot all the time by selecting the appropriate
model. It uses the grid maps inside the buildings and
the features outside. The resulting map is shown in
Figure 1 (c).

To evaluate our approach more quantitatively, we
repeated this experiment for 20 times with differ-
ent random seeds. We compared our approach to
the pure feature-based approach and the pure grid-
based approach. The results in Figure 3 show, that
the combined approach is significantly better than
both pure approaches (0.05 significance).

In addition to this, we compared the solution ob-
tained by SARSA with those of the scan-matching
heuristic and the Neff heuristic described above. We
measured the absolute deviation from ground truth
in every time step. Figure 4 illustrates that the av-

Figure 5. Typical mapping results when using the likeli-
hood-heuristic (left) and our SARSA-based approach (right).

erage error of the learned model selection policy is
lower than when using the heuristics. However, we
could not show that this improvement is significant.

One interesting fact can be observed when com-
paring the results of these three technique by man-
ual inspection. Even if the error measured as the
deviation from the ground truth is not significantly
smaller for the learned policy, the maps typically
look nicer. The scan-match heuristic for example re-
lies on a fixed threshold c1. If the threshold is not
optimally tuned, in can happen that the grid ap-
proach is not selected even though it would be the
better model. This leads to walls which are blurred
or slightly misaligned. Figure 5 depicts a magnified
view of two maps illustrating the difference. Unfor-
tunately, it is hard to design a measure that is able
to take this blurriness into account. A similar effect
can be observed when using the Neff criterion.

Figure 6 shows the decisions our algorithm made
while processing the simulated dataset. One can
clearly see that the grid map is used for pose esti-
mation inside the buildings while the feature map
is used outside of the buildings. At a first glance
it looks as if the system used the wrong model
around time-step 1000. Using features here is cor-
rect though since the robot entered the building to
the right only briefly and then moved in the outdoor
part again until approximately time-step 1100.

6.2. Real World Experiments

Two real world data sets used in this experiment
have been recorded at Freiburg University. The ex-
periments have been conducted using an ActivMe-
dia Pioneer 2-AT robot equipped with a SICK LMS
laser range finder.

8

Grid map

Features

 0 200 400 600 800 1000 1200 1400 1600

timestep

left building

outdoor part

right building

Figure 6. Active Representation chosen by our learned ap-
proach.

Figure 7. Test environment with poles.

Figure 8. Grid map of environment and approximated robot
trajectory.

6.2.1. Poles
This experiment has been conducted in an office-

building and on the street in front of the building.
Since the outdoor environment does not contain a
sufficient amount of detectable features, 20 artifi-
cial landmarks (poles) have been placed there. We
used poles with a diameter of 15 cm and a height of
about 100 cm (see Figure 7). The robot was manu-
ally steered through the environment. It started out-
doors in front of the building, went through the land-

marks and then entered the building. After travers-
ing the building the robots returns to the outdoor
area and finishes its trajectory next to the starting
location. To prevent the laser-scanner from detect-
ing neighboring buildings, the sensor-range has been
limited to 5 m. Again, this maximum range is not
artificially bad but corresponds to small scale laser
range scanners.

Since no ground truth was available, we mea-
sured the error against an approximated robot path
which was generated using the grid-based approach
of Grisetti et al. [6] with the full sensor range of
the SICK laser scanner. Due to the 80 m sensing
range, the robot always observed enough obstacles
to build an accurate map. The resulting map and
the obtained trajectory can be seen in Figure 8.

We compared the results from our approach to
those generated by a pure grid- and feature-based
approach. Looking at the exemplary results in Fig-
ure 9 notable differences in the quality of the maps
can be seen. While the grid-based approach per-
forms very well inside of the building it introduces
numerous false matches in the outdoor area. In con-
trast, the feature based approach is able to map the
outdoor part well but is obviously not suited to cor-
rect odometry errors inside the building. Combin-
ing the strengths of both approaches, our combined
method leads to an overall consistent map.

To evaluate our approach quantitatively we re-
peated the mapping process for 20 times. Figure 10
plots the cumulative deviation from the approxi-
mated ground truth trajectory for each of the three
evaluated strategies. The results confirm the results
of the simulated experiment. They show that the
combined approach performs significantly better
than both pure approaches (0.05 significance).

6.2.2. Parking Lot
The Freiburg computer science campus includes a

parking lot of about 50 m by 120 m (see Figure 11).
Lamps are set in two rows at a distance of 16 m
in one direction and 25 m in the other direction.
The second dataset was recorded on this parking lot
at a time when no cars were present and therefore
only the lamps caused reflections of the laser beams.
The robot was steered manually through a building,
around the neighboring parking lot, and back into
the building again. The trajectory is plotted in Fig-
ure 12. To evaluate our approach, again we limited
the maximum laser range of the scanner to a range
which is considerably smaller than the distance be-

9

(a) Feature-based mapping system

(b) Grid-based mapping system

(c) Combined SLAM system using features and grid maps

Figure 9. Examples of resulting maps in the poles experi-

ment. Using only a feature map (a) or a grid map (b) leads

to inconsistent maps in this environment. Combining both

representation yields a consistent map (c).

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600 700 800 900

cu
m

u
la

ti
v

e
er

ro
r

timestep

Grisetti et al. (grid only)
FastSLAM (features only)

Our approach

Figure 10. Results of the poles experiment. Cumulative error
in the pose estimation measured against the approximated
ground truth trajectory. The error bars correspond to the
0.05 confidence level.

tween two lamps.
The approximated ground truth trajectory has

been generated in the same way as we did in the
first experiment. Figure 13 shows the error of the
weighted mean trajectory over time.

In summary, both real robot experiments lead to
similar results as the experiment using simulated
data. The combined approach performed signifi-
cantly better compared to both traditional SLAM
techniques using the limited sensor range.

The computational requirements of the presented
approach are approximatively the sum of the indi-
vidual techniques. On a notebook computer, our im-
plementation runs online.

7. Conclusions

In this paper, we presented an improved approach
to learning models of the environment with a Rao-
Blackwellized particle filter. Our approach main-
tains feature maps as well as grid maps simulta-
neously to represent spatial structures. This allows
the robot to select the model which provides the
best expected estimates online. The model selec-
tion procedure is obtained by a reinforcement learn-
ing approach. The robot considers the previous es-
timate as well as the current observations to chose
the model that will be used in the upcoming correc-
tion step. The process itself is independent of the
actual feature detector. Our approach has been im-
plemented and evaluated on real robot data as well
as in simulation experiments. We showed that the
presented technique allows a robot to more robustly
learn maps of different types of environments. It out-
performs traditional approaches that use only fea-
tures or only grid maps. In real world experiments,
we also showed that our approach is able to map en-
vironments which could not be modeled by either of
the single approaches.

Acknowledgment

This work has partly been supported by the Ger-
man Research Foundation (DFG) under contract
number SFB/TR-8 (A3), and by the EC under con-
tract number FP6-IST-034120-muFly.

References

[1] A. Doucet. On sequential simulation-based methods for
bayesian filtering. Technical report, Signal Processing

10

Figure 11. Parking lot at Freiburg campus.

Figure 12. Grid map of the parking lot and neighboring

building 078 at Freiburg campus. The approximated robot

trajectory is shown in dark gray, the result of our combined

mapping approach is shown in light gray.

 0

 10000

 20000

 30000

 40000

 50000

 0 500 1000 1500 2000

cu
m

u
la

ti
v

e
er

ro
r

timestep

FastSLAM (features only)
Grisetti et al. (grid only)

Our approach

Figure 13. Results of the parking lot experiment. Deviation
of the weighted mean of the samples from the estimated
trajectory (using the 80m range scanner).

Group, Dept. of Engeneering, University of Cambridge,
1998.

[2] A. Doucet, J.F.G. de Freitas, K. Murphy, and

S. Russel. Rao-Blackwellized partcile filtering for
dynamic bayesian networks. In Proc. of the Conf. on
Uncertainty in Artificial Intelligence (UAI), pages 176–

183, Stanford, CA, USA, 2000.

[3] A. Eliazar and R. Parr.

DP-SLAM: Fast, robust simultainous localization and
mapping without predetermined landmarks. In Proc. of
the Int. Joint Conf. on Artificial Intelligence (IJCAI),
pages 1135–1142, Acapulco, Mexico, 2003.

[4] R. Eustice, H. Singh, and J.J. Leonard. Exactly
sparse delayed-state filters. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), pages
2428–2435, Barcelona, Spain, 2005.

[5] U. Frese and G. Hirzinger. Simultaneous localization
and mapping - a discussion. In Proc. of the IJCAI

Workshop on Reasoning with Uncertainty in Robotics,
pages 17–26, Seattle, WA, USA, 2001.

[6] G. Grisetti, C. Stachniss, and W. Burgard. Improved
techniques for grid mapping with rao-blackwellized
particle filters. IEEE Transactions on Robotics,
23(1):34–46, 2007.

[7] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and
D. Nardi. Fast and accurate slam with rao-blackwellized
particle filters. Journal of Robotics & Autonomous
Systems, 55(1):30–38, 2007.

[8] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An

efficient FastSLAM algorithm for generating maps of
large-scale cyclic environments from raw laser range
measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211,
2003.

[9] K.L. Ho and P.M. Newman. Loop closure detection
in slam by combining visual and spatial appearance.
Robotics and Autonomous Systems, 54(9):740–749,

2006.

[10] E.M. Nebot J.I. Nieto, J.E. Guivant. The hybrid

metric maps (HYMMs): A novel map representation for
denseslam. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 2004.

[11] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. A new
approach for filtering nonlinear systems. In Proc. of the

American Control Conference, pages 1628–1632, Seattle,
WA, USA, 1995.

[12] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot
localization by tracking geometric beacons. IEEE
Transactions on Robotics and Automation, 7(4):376–

382, 1991.

[13] A.A. Makarenko, S.B. Williams, F. Bourgoult, and
H.F. Durrant-Whyte. An experiment in integrated
exploration. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Lausanne,

Switzerland, 2002.

[14] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit.
FastSLAM 2.0: An improved particle filtering algorithm
for simultaneous localization and mapping that provably
converges. In Proc. of the Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 1151–1156, 2003.

[15] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
FastSLAM: A factored solution to simultaneous

11

localization and mapping. In Proc. of the National

Conference on Artificial Intelligence (AAAI), pages
593–598, Edmonton, Canada, 2002.

[16] H.P. Moravec and A.E. Elfes. High resolution maps from
wide angle sonar. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 116–121, St.
Louis, MO, USA, 1985.

[17] K. Murphy. Bayesian map learning in dynamic

environments. In Proc. of the Conf. on Neural
Information Processing Systems (NIPS), pages 1015–
1021, Denver, CO, USA, 1999.

[18] J. Neira and J.D. Tardós. Data association in stochastic
mapping using the joint compatibility test. IEEE
Transactions on Robotics and Automation, 17(6):890–
897, 2001.

[19] R. Sim and J.J. Little. Autonomous vision-based
exploration and mapping using hybrid maps and rao-
blackwellised particle filters. Intelligent Robots and

Systems, 2006 IEEE/RSJ International Conference on,
pages 2082–2089, Oct. 2006.

[20] R. Smith, M. Self, and P. Cheeseman. Estimating
uncertain spatial realtionships in robotics. In I. Cox and
G. Wilfong, editors, Autonomous Robot Vehicles, pages
167–193. Springer Verlag, 1990.

[21] C. Stachniss, G. Grisetti, W. Burgard, and N. Roy.

Evaluation of gaussian proposal distributions for
mapping with rao-blackwellized particle filters. In
Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), San Diego, CA,

USA, 2007.

[22] R.S. Sutton and A.G. Barto. Reinforcement Learning:
An Introduction. MIT Press, Cambridge, MA, 1998.

[23] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics, chapter Robot Perception, pages 171–172.
MIT Press, 2005.

[24] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani,
and H.F. Durrant-Whyte. Simultaneous localization and
mapping with sparse extended information filters. J. of
Robotics Research, 23(7/8):693–716, 2004.

[25] J. Uhlmann. Dynamic Map Building and Localization:
New Theoretical Foundations. PhD thesis, University of
Oxford, 1995.

Kai M. Wurm is a research sci-
entist at the University of Freiburg (Germany).
He studied computer science at the University of
Freiburg and received his diploma degree in 2007.
His research interests lie in the fields of SLAM,
multi-robot exploration, and terrain classification.

Cyrill Stachniss studied computer
science at the University of Freiburg and received
his Ph.D. degree in 2006. After his Ph.D., he was a
senior researcher at ETH Zurich. Since 2007, he is
an academic advisor at the University of Freiburg
in the Laboratory for Autonomous Intelligent Sys-
tems. His research interests lie in the areas of robot
navigation, exploration, SLAM, as well as learning
approaches.

Giorgio Grisetti is working as a
Post-doc at the Autonomous Intelligent Systems
Lab of the University of Freiburg. Up to 2006, he
was a PhD student at University of Rome “La
Sapienzia” in the Intelligent Systems Lab. His ad-
visor was Daniele Nardi and he received his PhD
degree in April 2006. His research interests lie in the
areas of mobile robotics. His previous and current
work aims to provide effective solutions to mobile
robot navigation in all its aspects: SLAM, localiza-
tion, and path planning.

12

[J6] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint

network optimization for efficient map learning. IEEE Transactions on

Intelligent Transportation Systems, 2009. In press.

Non-linear Constraint Network Optimization

for Efficient Map Learning
Giorgio Grisetti∗ Cyrill Stachniss Wolfram Burgard

University of Freiburg, Department of Computer Science, 79110 Freiburg, Germany

{grisetti | stachnis | burgard}@informatik.uni-freiburg.de, ∗corresponding author

Abstract— Learning models of the environment is one of the
fundamental tasks of mobile robots since maps are needed for
a wide range of robotic applications, such as navigation and
transportation tasks, service robotic applications, and several
others. In the past, numerous efficient approaches to map
learning have been proposed. Most of them, however, assume
that the robot lives on a plane. In this paper, we present a highly
efficient maximum likelihood approach that is able to solve 3D
as well as 2D problems. Our approach addresses the so-called
graph-based formulation of the simultaneous localization and
mapping (SLAM) and can be seen as an extension of Olson’s
algorithm [27] towards non-flat environments. It applies a novel
parameterization of the nodes of the graph that significantly
improves the performance of the algorithm and can cope with
arbitrary network topologies. The latter allows us to bound the
complexity of the algorithm to the size of the mapped area and
not to the length of the trajectory. Furthermore, our approach is
able to appropriately distribute the roll, pitch and yaw error over
a sequence of poses in 3D mapping problems. We implemented
our technique and compared it to multiple other graph-based
SLAM solutions. As we demonstrate in simulated and in real
world experiments, our method converges faster than the other
approaches and yields accurate maps of the environment.

I. INTRODUCTION

To efficiently solve the majority of robotic applications such

as transportation tasks, search and rescue, or automated vac-

uum cleaning a map of the environment is required. Acquiring

such models has therefore been a major research focus in

the robotics community over the last decades. Learning maps

under pose uncertainty is often referred to as the simultaneous

localization and mapping (SLAM) problem. In the literature,

a large variety of solutions to this problem can be found.

The approaches mainly differ in the underlying estimation

technique such as extended Kalman filters, information filters,

particle filters, smoothing, or least-square error minimization

techniques.

In this paper, we consider the popular and so-called “graph-

based” or “network-based” formulation of the SLAM problem

in which the poses of the robot are modeled by nodes in

a graph [5, 8, 11, 14, 16, 22, 27, 13, 36, 26]. Spatial

constraints between poses that result from observations and

from odometry are encoded in the edges between the nodes.

In the context of graph-based SLAM, one typically con-

siders two different problems. The first one is to identify the

constraints based on sensor data. This so-called data associ-

ation problem is typically hard due to potential ambiguities

or symmetries in the environment. A solution to this problem

is often referred to as the SLAM front-end and it directly

before optimization

after optimization

Fig. 1. Constraint network corresponding to a dataset recorded with an
instrumented car at the EPFL campus in Lausanne before (left) and after
(right) optimization. The corrected network is overlayed with an aerial image.

deals with the sensor data. The second problem is to correct

the poses of the robot to obtain a consistent map of the

environment given the constraints. This part of the approach is

often referred to as the optimizer or the SLAM back-end. To

solve this problem, one seeks for a configuration of the nodes

that maximizes the likelihood of the observations encoded in

the constraints. Often, one refers to the negative observation

likelihood as the error or the energy in the network. An

alternative view to the problem is given by the spring-mass

model in physics. In this view, the nodes are regarded as

masses and the constraints as springs connected to the masses.

The minimal energy configuration of the springs and masses

describes a solution to the mapping problem. As a motivating

example, Figure 1 depicts an uncorrected constraint network

and the corresponding corrected one.

Popular solutions to compute a network configuration that

minimizes the error introduced by the constraints are iterative

approaches. They can be used to either correct all poses

simultaneously [14, 20, 22, 36] or to locally update parts of

the network [5, 11, 13, 16, 26, 27]. Depending on the used

technique, different parts of the network are updated in each

iteration. The strategy for defining and performing these local

updates has a significant impact on the convergence speed.

In this paper, we restrict ourselves to the problem of

finding the most likely configuration of the nodes given the

constraints. To find the constraints from laser range data one

can, for example, apply the front-end of the ATLAS framework

introduced by Bosse et al. [2], hierarchical SLAM [6], or the

work of Nüchter et al. [26]. In the context of visual SLAM,

a potential approach to obtain such constraints has recently

been proposed by Steder et al. [33].

Our approach uses a tree structure to define and efficiently

update local regions in each iteration by applying a variant of

stochastic gradient descent. It extends Olson’s algorithm [27]

and converges significantly faster to highly accurate network

configurations. Compared to other approaches to 3D mapping,

our technique utilizes a more accurate way to distribute

the rotational error over a sequence of poses. Furthermore,

the complexity of our approach scales with the size of the

environment and not with the length of the trajectory as it is

the case for most alternative methods.

The remainder of this paper is organized as follows. In

Section II, we formally introduce the graph-based formulation

of the mapping problem and explain the usage of stochastic

gradient descent to reduce the error of the network configura-

tion. Whereas Section III introduces our tree parameterization,

Section IV describes our approach to distribute the rotational

errors over a sequence of nodes. In Section V we then provide

an upper bound for this error distribution. Section VI, explains

how to obtain a reduced graph representation to limit the

complexity. After describing the experimental results with our

approach in Section VII, we provide a detailed discussion of

related work in Section VIII.

II. MAXIMUM LIKELIHOOD MAPPING

USING A CONSTRAINT NETWORK

Most approaches to network-based or graph-based SLAM

focus on estimating the most-likely configuration of the nodes

and are therefore referred to as maximum-likelihood (ML)

techniques [5, 11, 13, 14, 22, 27, 36]. Such techniques do

not compute the full posterior about the map and the poses of

the robot. The approach presented in this paper also belongs

to this class of methods.

A. Problem Formulation

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. For a more precise formulation consider

the following definitions:

• Let x = (x1 · · · xn)T be a vector of parameters which

describes a configuration of the nodes. Note that the

parameters xi do not need to be the absolute poses of the

nodes. They are arbitrary variables which can be mapped

to the poses of the nodes in real world coordinates.

• Let us furthermore assume that δji describes a constraint

between the nodes j and i. It refers to an observation of

node j seen from node i. These constraints are the edges

in the graph structure.

• The uncertainty in δji is represented by the information

matrix Ωji.

• Finally, fji(x) is a function that computes a zero noise

observation according to the current configuration of the

nodes j and i. It returns an observation of node j seen

from node i.

Figure 2 illustrates an observation between two nodes.

Given a constraint between node j and node i, we can define

the error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

Fig. 2. Example of an observation of the node j seen from i.

as well as the residual rji

rji(x) = −eji(x). (2)

Note that at the equilibrium point, eji is equal to 0 since

fji(x) = δji. In this case, an observation perfectly matches

the current configuration of the nodes. Assuming a Gaussian

observation error, the corresponding negative log likelihood

results in

Fji(x) ∝ (fji(x) − δji)
T

Ωji (fji(x) − δji) (3)

= eji(x)T Ωjieji(x) (4)

= rji(x)T Ωjirji(x). (5)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
∑

〈j,i〉∈C

Fji(x) (6)

∝
∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (7)

Here C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is a set of pairs of indices

for which a constraint δjmim
exists.

The goal of an ML approach is to find the configuration x∗

of the nodes that maximizes the likelihood of the observations.

This can be written as

x∗ = argmin
x

F (x). (8)

There are multiple ways of solving Eq. (8). They range

from approaches applying gradient descent, conjugate gradi-

ents, Gauss Seidel relaxation, multi-level relaxation, or LU-

decomposition. In the following section, we briefly introduce

stochastic gradient descent, which is the technique our ap-

proach is based on.

B. Stochastic Gradient Descent for Maximum Likelihood

Mapping

Olson et al. [27] propose to use a variant of the precondi-

tioned stochastic gradient descent (SGD) to address the SLAM

problem. The approach minimizes Eq. (8) by sequentially

selecting a constraint 〈j, i〉 (without replacement) and by

moving the nodes of the network in order to decrease the

error introduced by the selected constraint. Compared to the

standard formulation of gradient descent, the constraints are

not optimized as a whole but individually. The nodes are

updated according to the following equation:

xt+1 = xt + λ · KJT
jiΩjirji

︸ ︷︷ ︸

∆xji

(9)

Here x is the set of variables describing the locations of the

poses in the network and K is a pre-conditioning matrix. Jji

is the Jacobian of fji, Ωji is the information matrix capturing

the uncertainty of the observation, and rji is the residual.

Reading the term ∆xji of Eq. (9) from right to left gives

an intuition about the iterative procedure:

• The term rji is the residual which corresponds to the

negative error vector. Changing the network configuration

in the direction of the residual rji will decrease the error

eji.

• The term Ωji represents the information matrix of a

constraint. Multiplying it with rji scales the residual

components according to the information encoded in the

constraint.

• The Jacobian JT
ji maps the residual term into a set of

variations in the parameter space.

• The term K is a pre-conditioning matrix. It is used to

scale the variations resulting from the Jacobian depending

on the curvature of the error surface. Approaches such as

Olson’s algorithm [27] or our previous work [13] apply

a diagonal pre-conditioning matrix computed from the

Hessian H as

K = [diag(H)]−1. (10)

• Finally, the quantity λ is a learning rate that decreases with

each iteration of SGD and that ensures the convergence

of the system.

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing each constraint

individually. Thus, a portion of the network, namely the nodes

involved in a constraint, is updated in each step. Obviously,

updating the different constraints one after each other can

have antagonistic effects on a subset of variables. To merge

the contribution of the individual constraints, one uses the

learning rate to reduce the fraction of the residual which is

used for updating the variables. This makes the solutions of the

different sub-problems to asymptotically converge towards an

equilibrium point that is the solution reported by the algorithm.

Whereas this framework allows us to iteratively reduce

the error given the network of constraints, it leaves open

how the nodes are represented or parameterized. However,

the choice of the parameterization has a strong influence on

the performance of the algorithm. The next section addresses

the problem of how to parameterize a graph so that the

optimization can be carried out efficiently.

III. TREE PARAMETERIZATION FOR SGD

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. They can be described by a

vector of parameters x such that a bijective mapping g between

p and x exists.

x = g(p) p = g−1(x) (11)

As explained above, in each iteration SGD decomposes the

problem into a set of subproblems and solves them sequen-

tially, where a subproblem is the optimization of a single

constraint.

The parameterization g defines not only how the variables

of the nodes are described but also the subset of variables

that are modified by a single constraint update. A good

parameterization defines the subproblems in a way that the

combination step leads only to small changes of the individual

solutions.

Olson et al. [27] proposed to use the so-called incremental

pose parameterization for 2D problems. For each node i in

the graph, they store a the parameter xi which is the vector

difference between the poses of the node i and the node i− 1

xi = pi − pi−1. (12)

This parameterization has the advantage of allowing fast

constraint updates. As discussed in [13], updating a constraint

between two nodes i and j requires to update all nodes

k = i + 1, . . . , j. This leads to a low convergence speed if

i ≪ j. Furthermore this parameterization requires that the

nodes are arranged in a sequence given by the trajectory.

As mentioned above, a major contribution of this paper is

an algorithm that preserves the advantages of the incremental

approach but overcomes its drawbacks. The first goal is to

be able to deal with arbitrary network topologies since this

enables us to compress the graph whenever robot revisits a

place. As a result, the size of the network is proportional to the

visited area and not to the length of the trajectory. The second

goal is to make the number of nodes in the graph which are

updated by each constraint mainly dependent on the topology

of the environment and not the trajectory taken by the vehicle.

For example, in the case of a loop-closure a large number of

nodes need to be updated but in all other situations the update

is limited to a small number of nodes to keep the interactions

between constraints small.

Our idea is to define a parameterization based on a tree

structure. To obtain a tree from a given graph, we compute a

spanning tree. Given such a tree, we define the parameteriza-

tion for a node as

xi = pi ⊖ pparent(i), (13)

where pparent(i) refers to the parent of node i in the spanning

tree. The operators ⊕ and ⊖ are the standard pose compound-

ing operators [22]. As defined in Eq. (13), the tree stores the

relative transformations between poses.

Given a root node that represents the origin, such a spanning

tree can be obtained by using Dijkstra’s algorithm. In this

work, we use the uncertainty encoded in the information

matrices of the constraints as costs. In this way, Dijkstra’s

algorithm provides the “lowest uncertainty tree” (shortest path

tree) of the graph.

Note that this tree does not replace the graph as an internal

representation. The tree only defines the parameterization of

the nodes. For illustration, Figure 3 depicts a graph together

with one potential parameterization tree.

According to Eq. (13), one needs to process the tree up

to the root to compute the actual pose of a node in the

global reference frame. However, to obtain only the relative

transformation between two arbitrary nodes, one needs to

traverse the tree from the first node upwards to the first

common ancestor of both nodes and then downwards to the

Fig. 3. Left: Example for a constraint network. Right: A possible tree
parameterization for this graph. For illustration reasons, the off-tree constraints
are also plotted (dashed gray).

second node. The same holds for computing the error of a

constraint. Let the path Pji of a constraint between the nodes i
and j be the sequence of nodes in the tree that need to be

traversed in order to reach the node j staring from node i.

Such a path can be divided into an ascending part P
[−]
ji of the

path starting from node i and a descending part P
[+]
ji to node j.

We refer to the length of path of a constraint on the tree as

|Pji|. We can then compute the residual of the constraint by

rji = (pi ⊕ δji) ⊖ pj (14)

For simplicity of notation, we will refer to the pose vector

of a node as the 6D vector pi = (x y z φ θ ψ)T and

to its associated homogeneous transformation matrix as Pi.

The same holds for the parameters used for describing the

graph. We denote the parameter vector of the pose i as xi

and its transformation matrix Xi. The transformation matrix

corresponding to a constraint δji is referred to as ∆ji.

A transformation matrix Xk consists of a rotational matrix

Rk and a translational component t and it has the following

form

Xi =

(
Rk tk
0 1

)

(15)

with

X−1
i =

(
RT

k −RT
k tk

0 1

)

. (16)

Accordingly, we can compute the residual in the reference

frame of the node j as

rji = P−1
j (Pi∆ji) (17)

=

∏

k[+]∈P
[+]
ji

Xk[+]

−1

∏

k[−]∈P
[−]
ji

Xk[−]∆ji. (18)

At this point one can directly compute the Jacobian from

the residual and apply Eq. (9) to update the constraint. Note

that with this parameterization the Jacobian has exactly |Pji|
non zero blocks, since only the parameters in the path of the

constraint appear in the residual.

IV. UPDATING THE TREE PARAMETERIZATION

So far, we described the prerequisites for applying the

preconditioned stochastic gradient descent to correct the poses

of a network. The goal of the update rule in SGD is to

iteratively update the configuration of a set of nodes in order

to reduce the error introduced by a constraint. In Eq. (9), the

term JT
jiΩji maps the variation of the error to a variation in the

parameter space. This mapping, however, is a linear function.

As illustrated by Frese and Hirzinger [10], the error might

increase when applying such a linear function in case of non-

linear error surfaces. In the three-dimensional space, the three

rotational components often lead to highly non-linear error

surfaces. Therefore, it is problematic to apply SGD as well

as similar minimization techniques directly to large mapping

problems in combination especially when there is high noise

in the observations.

In our approach, we therefore choose a modified update

rule. To overcome the problem explained above, we apply a

non-linear function to describe the variation. As in the linear

case, the goal of this function is to compute a transformation

of the nodes along the path Pji of the tree so that the error

introduced by the corresponding constraint is reduced. The

design of this function is presented in the remainder of this

section. In our experiments, we observed that such an update

typically leads to a smooth deformation of the nodes along

the path when reducing the error. This deformation is done in

two steps. We first update the rotational components Rk of the

variables xk before we update the translational components tk.

A. Update of the Rotational Component

Without loss of generality, we consider the origin pi of

the path Pji to be in the origin of our reference system.

The orientation of pj (in the reference frame of pi) can be

computed by multiplying the rotational matrices along the path

Pji. To increase the readability of the document, we refer

to the individual rotational matrices along this path as Rk

neglecting the indices (compare Eq. (18)). The orientation of

pj is described by

R1:n := R1R2 . . . Rn, (19)

where n is the length of the path Pji.

Distributing a given error over a sequence of 3D rotations,

can be described in the following way: we need to determine

a set of increments in the intermediate rotations of the chain

so that the orientation of the last node (here node j) is R1:nB
where B the matrix that rotates xj to the desired orientation

based on the error/residual. Formulated in a mathematical way,

we need to compute a set of new rotational matrices R′
k to

update the nodes so that

R1:nB =

n∏

k=1

R′
k. (20)

To obtain these R′
k we compute a rotation Q in the global

reference frame such that

AnB = QAn, (21)

where An denotes the rotation of the nth node in the global

reference frame. By multiplying both sides of Eq. (21) with

AT
n from the right hand side we obtain

Q = AnBAT
n . (22)

We now decompose the rotation Q into a set of incremental

rotations

Q1:n := Q = Q1Q2 · · ·Qn (23)

and compute the individual matrices Qk by using the spherical

linear interpolation (slerp) [1].

For this decomposition of Q we use the parameter u ∈ [0, 1]
with slerp(Q, 0) = I and slerp(Q, 1) = Q. Accordingly, the

rotation Qk is

Qk = [slerp(Q, uk−1)]
T

slerp(Q, uk). (24)

Furthermore, the rotation matrix A′
k of the poses P ′

k along the

path is

A′
k = Q1:kAk. (25)

We furthermore compute the new rotational components R′
k

of each node k as

R′
k = [A′

parent(k)]
T A′

k. (26)

In Eq. (27), the learning rate λ is directly incorporated in the

computation of the values uk. In this way, the slerp function

takes care of the appropriate scaling of the rotations.

In addition to that, we consider the pre-conditioning matrix

and the length of the path when computing uk. Similar to

Olson et al. [27], we clamp the product λ|Pji| to lie between

[0, 1] for not overshooting. In our implementation, we compute

these values as:

uk = min (1, λ|Pji|)

∑

m∈Pji∧m≤k

d−1
m

∑

m∈Pji

d−1
m

−1

(27)

Here, dm is defined as the sum of the smallest eigenvalues

of the information matrices of all constraints connecting the

node m:

dm =
∑

〈i,m〉

min [eigen(Ωim)] (28)

This is an approximation which works well in case of roughly

spherical covariances. Note that the eigenvalues need to be

computed only once in the beginning and are then stored in

the tree.

For simplicity of presentation, we demonstrated how to

distribute the rotational error while keeping the node i fixed.

In our implementation, however, we fix the position of the so-

called “top node” in the path which is the node that is closest to

the root of the tree (smallest level in the tree). As a result, the

update of a constraint has less side-effects on other constraints

in the network. Fixing the top node instead of node i can be

obtained by simply saving the pose of the top node before

updating the path. After the update, one transforms all nodes

along path in way that the top node maintains its previous

pose. Furthermore, we used the matrix notation in this paper

to formulate the error distribution since it provides an easier

notation. However, in our implementation we use quaternions

for representing the rotations because they are numerically

more stable. Both formulations are theoretically equivalent.

Note that an open source implementation of our optimizer is

available online [32].

B. Update of the Translational Component

Compared to the update of the rotational component de-

scribed above, the update of the translational component can

be done in a straightforward manner. In our current system,

we distribute the translational error over the nodes along

the path without changing the previously computed rotational

component.

All nodes along the path are translated by a fraction of the

residuals in the x, y, and z components. This fraction depends

on the uncertainty of the individual constraints encoded in

the corresponding covariance matrices and is scaled with the

learning rate, similarly to the case of updating the rotational

component.

V. ANALYSIS OF THE ROTATIONAL RESIDUAL

When distributing an rotational error over a sequence of

nodes i, . . . , j, one may increase the absolute value of the

residual rk,k−1 between consecutive constraints along the path

(and thus the error ek,k−1). For the convergence of SGD,

however, it is important that this error is bounded. Therefore,

in this section we analyze evolution of the rotational residual

after distributing an error according to Section IV-A.

A generic 3D rotation can be described in terms of an

axis and an angle. Given an rotational matrix R we will

refer respectively to its axis of rotation as axisOf(R) and as

angleOf(R). According to [1], the slerp interpolation returns

a set of rotation along the same axis as follows

R′ = slerp(R, u) (29)

axisOf(R′) = axisOf(R) (30)

angleOf(R′) = u · angleOf(R). (31)

When distributing the rotation Q over a sequence of poses

according to Eq. (23), we decompose it into a sequence of

incremental rotations Q = Q1Q2 · · ·Qn. From Eq. (24) we

know that

αk = angleOf(Qk) = (uk − uk−1) · angleOf(Q). (32)

In the following, we show that when distributing the rotational

error along a loop the angle of the residual angleOf(rk,k−1)
between the consecutive poses k−1 and k along the path does

not increase more than αk.

According to Eq. (18), the residual of a constraint between

the nodes k − 1 and k is

rk,k−1 = X−1
k ∆k,k−1. (33)

Since we are focusing only on the rotational component of the

residual, we ignore the translational part:

rk,k−1 = RT
k ∆k,k−1 (34)

RT
k = rk,k−1∆

T
k,k−1. (35)

After updating the rotations A1, . . . , An along the chain

using Eq. (25), we obtain a new set of rotations A′
1, . . . , A

′
n in

the global reference frame. From these rotations, we recover

the updated rotational parameters R′
k, by using Eq. (26):

R′
k

(26)
= A′T

k−1A
′
k (36)

(25)
= [Q1:k−1R1:k−1]

T · [Q1:kR1:k] (37)

= [R1:k−1]
T QkR1:k (38)

= [R1:k−1]
T QkR1:k−1Rk. (39)

We then compute the residual r′k,k−1 after the update as

r′k,k−1

(34)
= R′T

k ∆k,k−1 (40)

(39)
= RT

k [R1:k−1]
T QT

k R1:k−1∆k,k−1 (41)

(35)
= rk,k−1 ∆T

k,k−1[R1:k−1]
T

︸ ︷︷ ︸

=:Y T

QT
k R1:k−1∆k,k−1

︸ ︷︷ ︸

=:Y

= rk,k−1Y
T QT

k Y (42)

In Eq. (42), the term Y T QT
k Y quantifies the increase in the

residual of a constraint between two consecutive nodes after

the update. Since Y and Q are rotation matrices, we obtain

|angleOf(Y T QT
k Y)| = |angleOf(Qk)| = |αk|. (43)

Thus, the change of the new residual is at most αk and

therefore bounded. This is a relevant advantage compared to

the error distribution presented by Grisetti et al. [12] which

was not bounded in such a way.

VI. COMPLEXITY AND GRAPH REDUCTION

Due to the nature of stochastic gradient descent, the com-

plexity of our approach per iteration depends linearly on the

number of constraints since each constraint is selected once

per iteration (in a random order). For each constraint 〈j, i〉,
our approach modifies exactly those nodes which belong to

the path Pji in the tree.

The path of constraint is defined by the tree parameter-

ization. As a result, different paths have different lengths.

Thus, we consider the average path length l to specify the

complexity. It corresponds to average the number of operations

needed to update a single constraint during one iteration. This

results in a complexity of O(M · l), where M is the number

of constraints. In our experiments we found that l typically is

in the order of log N , where N is the number of nodes.

Note that there is further space for optimizations. The

complexity of the approach presented so far depends on the

length of the trajectory and not on the size of the environment.

These two quantities are different if the robot revisits already

known areas. This becomes important whenever the robot is

deployed in a bounded environment for a long time and has

to update its map over time. This is also known as lifelong

map learning. Since our parameterization is not restricted to

a trajectory of sequential poses, we have the possibility of

a further optimization. Whenever the robot revisits a known

place, we do not need to add new nodes to the graph. We

can assign the current pose of the robot to an already existing

node in the graph and update the constraints with respect to

that node.

To avoid adding new constraints to the network, we can

refine an existing constraint between two nodes in case of a

new observation. Let δ
(1)
ji be a constraint already stored in the

graph and let δ
(2)
ji be the new constraint that would result from

the current observation. Both constraints can be combined to

a single constraint which has the following information matrix

and mean:

Ωji = Ω
(1)
ji + Ω

(2)
ji (44)

δji = Ω−1
ji (Ω

(1)
ji · δ

(1)
ji + Ω

(2)
ji · δ

(2)
ji) (45)

This can be seen as an approximation similar to adding a

rigid constraint between nodes. However, if local maps (e.g.,

grid maps) are used as nodes in the network, it makes sense

to use such an approximation since one can localize a robot

in an existing map quite accurately.

As a result, the size of the problem does not increase when

revisiting known locations. The complexity specified above

stays the same but M as well as N refer to as the reduced

quantities. As our experiments illustrate, this node reduction

technique leads to an increased convergence speed since less

nodes and constraints need to be considered.

VII. EXPERIMENTS

This section is designed to evaluate the properties of our ap-

proach described above. We first demonstrate that our method

is well suited to cope with the motion and sensor noise from an

instrumented car equipped with laser range scanners. Second,

we present the results of simulated experiments based on

large 2D and 3D datasets. Finally, we compare our approach

to different other methods including Olson’s algorithm [27],

multi-level relaxation [11], and SAM [4, 19].

A. Mapping with a Car-like Robot

In the first experiment, we applied our method to a real

world three-dimensional dataset recorded with an instrumented

car. Using such cars as robots became popular in the robotics

community [3, 29, 34, 38]. We used a Smart car equipped

with 5 SICK laser range finders and various pose estimation

sensors for data acquisition. Our robot constructs local three-

dimensional maps, so-called multi-level surface maps [36], and

builds a network of constrains where each node represents such

a local map. The localization system of the car is based on

D-GPS (here using only standard GPS) and IMU data. This

information is used to compute the incremental constraints be-

tween subsequent poses. Constraints resulting from revisiting

an already known area are obtained by matching the individual

local maps using ICP. More details on this matching can be

found in our previous work [29].

We recorded a large-scale dataset at the EPFL campus where

the robot moved on a 10 km long trajectory. The dataset in-

cludes multiple levels such as an underground parking garage

and a bridge with an underpass. The motivating example of

this paper (see Figure 1) depicts the input trajectory and an

overlay of the corrected trajectory on an aerial image. As can

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000

er
ro

r/
co

n
st

ra
in

t

time[s]

Triebel et al.
Our approach

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4

er
ro

r/
co

n
st

ra
in

t

time[s]

Triebel et al.
Our approach

Fig. 4. The evolution of the average error per constraint (computed according
to Eq. (7) divided by the number of constraints) of the approach of Triebel et

al. [36] and our approach for the dataset recorded with the autonomous car.
The right image shows a magnified view to the first 400 ms.

be seen, the trajectory actually matches to the streets in the

aerial image (image resolution: 0.5 m per pixel).

We used this dataset to compare our new algorithm to the

approach of Triebel et al. [36] that iteratively applies LU

decomposition. In this experiment, both approaches converge

to more or less the same solution. The time needed to achieve

this correction, however, is by orders of magnitudes smaller

when applying our new technique. Figure 4 plots the average

error per constraint versus the execution time.

B. Quantitative Results and Comparison with SAM in 3D

The second set of experiments is designed to measure the

performance of our approach for correcting 3D constraint

networks and in comparison with the smoothing and mapping

(SAM) approach of Dellaert [4]. In these simulation experi-

ments we moved a virtual robot on the surface of a sphere. An

observation was generated each time the current position of the

robot was close to a previously visited location. We corrupted

the observations with a variable amount of Gaussian noise to

investigate the robustness of the algorithms.

Figure 5 depicts a series of graphs obtained by our algorithm

using three datasets generated with different noise levels. The

observation and motion noise was set to σ = 0.05/0.1/0.2 in

each translational component (in m) and rotational component

(in radians).

As can be seen, our approach converges to a configuration

with a low error. Especially for the last dataset, the rotational

noise with a standard deviation of 0.2 (radians) for each

movement and observation is high. After around 250 iterations,

the system converged. Each iteration took 200 ms for this

dataset with around 85,000 constraints.

We furthermore compared our approach to the smoothing

and mapping approach of Dellaert [4]. The SAM algorithm can

operate in two modes: as a batch process which optimizes the

entire network at once or in an incremental mode. The latter

one only performs an optimization after a fixed number of

nodes has been added. This way of incrementally optimizing

the network is more robust since the initial guess for the

network configurations is computed based on the result of the

previous optimization. As a result, the risk of getting stuck in

a local minima is typically reduced. However, this procedure

leads to a significant computational overhead. Table I sum-

marizes the results obtained with the SAM algorithm. As can

be seen, the batch variant of the SAM algorithm got stuck in

TABLE I

COMPARISON TO SAM

noise level SAM
(batch)

SAM
(incremental)

Our method
(batch)

σ = 0.05 119 s not tested
(see batch)

20 s
(100 iterations)

σ = 0.1 diverged 270 s (optimized
each 100 nodes)

40 s
(200 iterations)

σ = 0.2 diverged 510 s (optimized
each 50 nodes)

50 s
(250 iterations)

Fig. 7. The result of MLR strongly depends on the initial configuration of
the network. Left: small initial pose error, right: large initial pose error.

local minima for the sphere datasets with medium and large

noise. The incremental version, in contrast,always converged

but still required substantially more computation time than our

current implementation of our approach.

C. Comparison to MLR and Olson’s Algorithm in 2D

In this third experiment, we compare our technique to two

current state-of-the-art SLAM approaches that aim to correct

constraint networks, namely multi-level relaxation proposed

by Frese et al. [11] and Olson’s algorithm [27]. Since both

techniques are designed for 2D scenarios, we also used the 2D

version of our system, which is identical to the 3D version

except that the three additional dimensions (z, roll, pitch) are

not considered.

We furthermore tested two variants of our method: one that

uses the node reduction technique described in Section VI and

one that maintains all the nodes in the graph.

In these simulation experiments we moved a virtual robot

on a grid world. Again, we corrupted the observations with

a variable amount of noise for testing the robustness of the

algorithms. We simulated different datasets resulting in graphs

which consisted of 4,000 and 2,000,000 constraints.

Figure 6 depicts the actual graphs obtained by Olson’s

algorithm and our approach for different time steps. As

can be seen, our approach converges faster. Asymptotically,

both approaches converge to a similar solution. In all our

experiments, the results of MLR strongly depend on the initial

positions of the nodes. We found that in case of a good starting

configuration of the network, MLR converges to a highly

accurate solution similar to our approach (see left image of

Figure 7). Otherwise, it is likely to diverge (right). Olson’s

approach as well as our technique are more or less independent

of the initial poses of the nodes.

To quantitatively evaluate our technique we measured the

error in the network after each iteration. The left image of

initialization 10 iterations 50 iterations 300 iterations

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

er
ro

r/
co

n
st

ra
in

t

interation

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300

er
ro

r/
co

n
st

ra
in

t

interation

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300

er
ro

r/
co

n
st

ra
in

t

interation

Fig. 5. Results obtained by our approach using a virtual robot moving on a sphere with three different noise realizations in motion and observations (row 1:
σ = 0.05, row 2: σ = 0.1, row 3: σ = 0.2). Each network consists of around 85k constraints. The error is computed according to Eq. (7) divided by the
number of constraints.

Fig. 6. Results obtained with Olson’s algorithm (first row) and our approach (second row) after 1, 10, 50, 100, and 300 iterations for a network with 64,000
constraints. The black areas in the images result from constraints between nodes which are not perfectly corrected after the corresponding iteration (for timings
see Figure 8).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

er
ro

r
p
er

 c
o
n
st

ra
in

t

iteration

Olson’s approach
Tree approach + node reduction

Tree approach

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000

er
ro

r
p
er

 c
o
n
st

ra
in

t

iteration

Olson’s approach (big noise)
Tree approach (big noise)

Olson’s approach (small noise)
Tree approach (small noise)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

1.9M720k360k64k30k3.7k

ex
ec

u
ti

o
n
 t

im
e

p
er

 i
te

ra
ti

o
n
 [

s]

number of constraints

Olson’s algorithm
Olson’s algorithm, spheric covariances

MLR
Our approach

Our approach with node reduction

Fig. 8. The left image shows the error of our and Olson’s approach in a statistical experiment (σ = 0.05 confidence). The image in the middle shows
that both techniques converge asymptotically to the same error. The right image shows the average execution time per iteration for different networks. For
the network consisting of 1,900,000 constraints, the executing of MLR required too much resources. The result is therefore omitted. The error is computed
according to Eq. (7) divided by the number of constraints.

Figure 8 depicts a statistical experiments over 10 networks

with the same topology but different noise realizations. As

can be seen, our approach converges significantly faster than

the approach of Olson et al. For medium size networks, both

approaches converge asymptotically to approximatively the

same error value (see middle image). For large networks,

the high number of iterations needed for Olson’s approach

prevented us from experimentally analyzing the convergence.

For the sake of brevity, we omitted comparisons to EKF and

Gauss Seidel relaxation because Olson et al. already showed

that their approach outperforms those techniques.

Additionally, we evaluated the average computation time

per iteration of the different approaches (see right image of

Figure 8) and analyzed a variant of Olson’s approach which

is restricted to spherical covariances. The latter approach

yields execution times per iteration similar to our algorithm.

However, this variant has still the same convergence speed

with respect to the number of iterations as Olson’s original

technique. As can be seen from the right image of Figure 8,

our node reduction technique speeds up the computations up

to a factor of 20.

We also applied our 3D optimizer to such 2D problems and

compared its performance to our 2D version. Both techniques

lead to more or less the same results. The 2D version, however,

is around three times faster that the 3D version. This results

from removing the irrelevant components from the state space

and thus avoids the corresponding trigonometric operations.

D. Error Distribution in 3D

We furthermore compared our technique to distribute a ro-

tational error in 3D with our previously proposed method [12].

Compared to this method, our new distribution limits the

fraction of the error that is added to the intermediate nodes

– a bound that is not available in [12]. Without this bound,

it can happen that the error of the overall network drastically

increases because a high error is introduced in the intermediate

nodes. Note that even if this effect occurs rarely in real

datasets, it can lead to divergence. Figure 9 illustrates such

an example recorded with a car in a parking lot with three

floors.

While the previous method diverges after a few iterations,

our new algorithm leads to a limited and balanced distribution

of the error. This results in a more stable algorithm, which

successfully solved all tested datasets.

E. Constraint Sampling

Stochastic gradient descent selects in each iteration a ran-

dom order in which the constraints are updated. In our previous

work [13], we neglected this randomization and selected a

fixed order based on the level of a constraint in the tree. This

was needed to perform efficient updates given our previously

presented parameterization of the nodes.

With the parameterization presented in this paper, we are

free to choose an arbitrary order. We therefore compared

two different sampling techniques: random sampling and a

variant in which we sample a constraint without replacement

with a probability inversely proportional to the path-length.

Fig. 9. Network obtained from a car driving multiple times through a
parking lot with three floors. Different error distribution techniques result in
different networks. The inconsistencies are marked by the arrows. First row:
previous method [12], Second row: our approach, both after 3 iterations of
the optimizer. Third row: a multi-level surface map created from the corrected
constraint network. Fourth row: Aerial image of the parking lot.

We figured out that in situations with nested loops, it is

advantageous to process first the constraints which have a

shorter path length (and thus correspond to the smaller loops).

This is due to angular “wraparounds” that are more likely to

occur when first correcting a large loop starting with a poor

initial guess. A wraparound is an error in the initial guess

of a relative configuration between two nodes that is bigger

than 180 degrees. Such wraparounds cause the algorithm to

converge to a local minimum.

This effect can be observed in Figure 10. It illustrates a

statistical experiment carried out using the sphere dataset (ten

runs per strategy). As can be seen, sampling the constraints

in each iteration inversely proportional to the length of their

path in the tree gives the best results. In contrast to this, getting

stuck in local minima is more likely when performing random

sampling. Note that this effect occurs only for large networks

or high noise in the rotational components. Otherwise, both

 1

 10

 100

 1000

 0 200 400 600 800

er
ro

r/
co

n
st

ra
in

t

interation

randomized sampling
sample according to length

Fig. 10. The evolution of the error per constraint in a statistical experiment
using different strategies to sample the constraint that is be updated next. The
error is computed according to Eq. (7) divided by the number of constraints.

strategies provide comparable results. As a result, we sample

without replacement the constraints in each iteration inverse-

proportional to the length of the their path in the parameteri-

zation tree.

VIII. RELATED WORK

Mapping techniques for mobile robots can be classified

according to the underlying estimation technique. The most

popular approaches are extended Kalman filters (EKFs) [21,

31], sparse extended information filters [7, 35], particle fil-

ters [23], and least square error minimization approaches [22,

11, 14]. For some applications, it might be even be sufficient

to learn local maps only [15, 34, 39].

The effectiveness of the EKF approaches comes from the

fact that they estimate a fully correlated posterior about

landmark maps and robot poses [21, 31]. Their weakness lies

in the strong assumptions that have to be made on both, the

robot motion model and the sensor noise. If these assumptions

are violated the filter is likely to diverge [18, 37].

Thrun et al. [35] proposed a method to correct the poses

of a robot based on the inverse of the covariance matrix.

The advantage of sparse extended information filters (SEIFs)

is that they make use of the approximative sparsity of the

information matrix. Eustice et al. [7] presented a technique

that more accurately computes the error-bounds within the

SEIF framework and therefore reduces the risk of becoming

overly confident.

Recently, Dellaert and colleagues proposed a smoothing

method called square root smoothing and mapping (SAM) [4,

19, 30]. It has several advantages compared to EKF-based

solutions since it better covers the non-linearities and is faster

to compute. In contrast to SEIFs, it furthermore provides

an exactly sparse factorization of the information matrix.

In addition to that, SAM can be applied in an incremental

way [19] and is able to learn maps in 2D and 3D. Paskin [28]

presented a solution to the SLAM problem using thin junction

trees. In this way, he is able to reduce the complexity compared

to the EKF approaches since thin junction trees provide a

linear time filtering operation.

Frese’s TreeMap algorithm [9] can be applied to compute

nonlinear map estimates. It relies on a strong topological

assumption on the map to perform sparsification of the in-

formation matrix. This approximation ignores small entries in

the information matrix. In this way, Frese is able to perform

an update in O(log n) where n is the number of features.

An alternative approach to find maximum likelihood maps

is the application of least square error minimization. The idea

is to compute a network of relations given the sequence of

sensor readings. These relations represent the spatial con-

straints between the poses of the robot. In this paper, we also

follow this way of formulating the SLAM problem. Lu and

Milios [22] first applied this approach in robotics to address

the SLAM problem using a kind of brute force method.

Their approach seeks to optimize the whole network at once.

Gutmann and Konolige [14] proposed an effective way for

constructing such a network and for detecting loop closures

while running an incremental estimation algorithm. Howard

et al. [16] apply relaxation to localize the robot and build

a map. Duckett et al. [5] propose the usage of Gauss-Seidel

relaxation to minimize the error in the network of constraints.

To make the problem linear, they assume knowledge about the

orientation of the robot. Frese et al. [11] propose a variant of

Gauss-Seidel relaxation called multi-level relaxation (MLR).

It applies relaxation at different resolutions. MLR is reported

to provide very good results in flat environments especially if

the error in the initial guess is limited.

Note that techniques such as Olson’s algorithm, MLR, or

our method focus on computing the best map and assume

that the constraints are given. The ATLAS framework [2],

hierarchical SLAM [6], or the work of Nüchter et al. [26],

for example, can be used to obtain the data associations (con-

straints). They also apply a global optimization procedure to

compute a consistent map. One can replace their optimization

procedures by our algorithm and in this way make them more

efficient.

A technique that combines 2D pose estimates with 3D data

has been proposed by Howard et al. [17] to build maps of

urban environments. They avoid the problem of distributing the

error in all three dimensions by correcting only the orientation

in the x, y-plane of the vehicle. The roll and pitch is assumed

to be measured accurately enough by an IMU.

In the context of three-dimensional maximum likelihood

mapping, only a few approaches have been presented so

far [24, 25, 26, 36]. The approach of Nüchter et al. [26]

describes a mobile robot that builds accurate three-dimensional

models. In their approach, loop closing is achieved by uni-

formly distributing the error resulting from odometry over the

poses in a loop. This technique provides good estimates but

can not deal with multiple/nested loops.

Montemerlo and Thrun [24] proposed to utilize the con-

jugate gradients to efficiently invert the sparse information

matrix of the system. Their approach was used to learn large

campus maps using a Segway robot. Recently, Triebel et

al. [36] described an approach that aims to globally correct the

poses given the network of constraints in all six dimensions.

At each iteration the problem is linearized and solved using

LU decomposition. This yields accurate results for small and

medium size networks especially when the error in the rota-

tional component is small. As illustrated in our experimental

section, this approach is orders of magnitudes slower than our

method and is thus not suited to learn maps of large scenes.

The approach closest to the work presented here is the work

of Olson et al. [27]. They apply stochastic gradient descent to

reduce the error in the network. In contrast to their technique,

our approach uses a different parameterization of the nodes

in the network that better takes into account the topology

of the environment. This results in a faster convergence.

Furthermore, our approach allows us to avoid adding new

nodes and constraints to the graph when revisiting already

mapped areas. As a result, the complexity of our algorithm

depends only on the size of the environment and not on

the length of the trajectory traveled by the robot. This is an

advantage compared to approaches such as MLR or Olson’s

algorithm since it allows for life-long map learning.

The work presented in this paper furthermore extends two

previous conference publications [13, 12]. The first one [13]

is only applicable to 2D scenarios and uses a different pa-

rameterization of the nodes. The second one is an extension

to 3D [12]. It allows a robot to distribute a rotational error

over a sequence of poses. This distribution, however, was not

bounded as the one presented in this work. As demonstrated

in the experimental section, the previous error distribution

approach more often leads to divergence.

IX. CONCLUSION

In this paper, we presented a highly efficient solution to

the problem of learning 2D and 3D maximum likelihood

maps for mobile robots. Our technique is based on the graph-

formulation of the simultaneous localization and mapping

problem and applies a variant of stochastic gradient descent.

Our approach extends an existing algorithm by introducing a

tree-based parameterization for the nodes in the graph. This

has a significant influence on the convergence speed and

execution time of the method. Furthermore, it enables us to

correct arbitrary graphs and not only a list of sequential poses.

In this way, the complexity of our method depends on the

size of the environment and not directly on the length of the

input trajectory. This is an important precondition for lifelong

map learning. Additionally, we presented a way to accurately

distribute a 3D rotational error over a sequence of poses which

increases the robustness over previous approaches.

Our method has been implemented and exhaustively tested

in simulation experiments as well as on real robot data. We

furthermore compared our method to three existing, state-

of-the-art algorithms. The experiments demonstrates that our

method converges faster and yields more accurate maps than

the other approaches.

ACKNOWLEDGMENT

The authors would like to gratefully thank Udo Frese for

his insightful comments and for providing us with his MLR

implementation for comparisons. Further thanks go to Edwin

Olson for fruitful discussions and to Michael Kaess and

Frank Dellaert for carrying out the experiments with their

SAM/iSAM implementation. Further thanks go to Slawomir

Grzonka for his valuable input on the slerp interpolation

used in this work as well as for his support while carrying

out experiments. Additionally, we would like to thank Dirk

Hähnel and Rainer Kümmerle for providing us with the

parking lot dataset recorded with Stanford’s autonomous car

Junior. Further thanks go to Roland Siegwart and his lab

at EPFL and ETH Zürich for the financial and technical

support while working with the Smart car. This work has partly

been supported by the DFG under contract number SFB/TR-

8 (A3) and by the EC under contract number FP6-2005-IST-5-

muFly, FP6-2005-IST-6-RAWSEEDS, and FP7-ICT-231888-

EUROPA.

REFERENCES

[1] T. Barrera, A. Hast, and E. Bengtsson. Incremental spherical linear
interpolation. In SIGRAD, volume 13, pages 7–13, 2004.

[2] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An ALTAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 1899–1906, Taipei, Taiwan, 2003.

[3] D. Braid, A. Broggi, and G. Schmiedel. The terramax autonomous
vehicle. Journal on Field Robotics, 23(9):693–708, 2006.

[4] F. Dellaert. Square Root SAM. In Proc. of Robotics: Science and

Systems (RSS), pages 177–184, Cambridge, MA, USA, 2005.

[5] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally
consistent maps. Journal of Autonomous Robots, 12(3):287 – 300, 2002.

[6] C. Estrada, J. Neira, and J.D. Tardós. Hierachical slam: Real-time ac-
curate mapping of large environments. IEEE Transactions on Robotics,
21(4):588–596, 2005.

[7] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 2428–2435, Barcelona, Spain, 2005.

[8] J. Folkesson and H. Christensen. Graphical slam - a self-correcting
map. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
Orlando, FL, USA, 2004.

[9] U. Frese. Treemap: An o(logn) algorithm for indoor simultaneous
localization and mapping. Journal of Autonomous Robots, 21(2):103–
122, 2006.

[10] U. Frese and G. Hirzinger. Simultaneous localization and mapping
- a discussion. In Proc. of the IJCAI Workshop on Reasoning with

Uncertainty in Robotics, pages 17–26, Seattle, WA, USA, 2001.

[11] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.

[12] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient
estimation of accurate maximum likelihood maps in 3d. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), San
Diego, CA, USA, 2007.

[13] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree param-
eterization for efficiently computing maximum likelihood maps using
gradient descent. In Proc. of Robotics: Science and Systems (RSS),
Atlanta, GA, USA, 2007.

[14] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), pages 318–325, Mon-
terey, CA, USA, 1999.

[15] J. Hermosillo, C. Pradalier, S. Sekhavat, C. Laugier, and G. Baille.
Towards motion autonomy of a bi-steerable car: Experimental issues
from map-building to trajectory execution. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2003.

[16] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:
a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), pages 1055–1060,
2001.

[17] A. Howard, D.F. Wolf, and G.S. Sukhatme. Towards 3d mapping in large
urban environments. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), pages 419–424, 2004.

[18] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for fil-
tering nonlinear systems. In Proc. of the American Control Conference,
pages 1628–1632, Seattle, WA, USA, 1995.

[19] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental
smoothing and mapping with efficient data association. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), Rome, Italy, 2007.

[20] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical,
decision-theoretic approach to multi-robot mapping and exploration. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), pages 3232–3238, Las Vegas, NV, USA, 2003.

[21] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4):376–382, 1991.

[22] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Journal of Autonomous Robots, 4:333–349, 1997.

[23] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, Acapulco, Mexico,
2003.

[24] M. Montemerlo and S. Thrun. Large-scale robotic 3-d mapping of urban
structures. In Proc. of the Int. Symposium on Experimental Robotics

(ISER), 2004.

[25] P. Newman, D. Cole, and K. Ho. Outdoor slam using visual appearance
and laser ranging. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Orlando, FL, USA, 2006.

[26] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM
with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.

[27] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.

[28] M.A. Paskin. Thin junction tree filters for simultaneous localization and
mapping. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI),
pages 1157–1164, Acapulco, Mexico, 2003.

[29] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Siegwart.
Towards mapping of cities. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), Rome, Italy, 2007. Under Review.

[30] A. Ranganathan, M. Kaess, and F. Dellaert. Loopy sam. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), 2007.

[31] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[32] C. Stachniss and G. Grisetti. TORO project at OpenSLAM.org.
http://openslam.org/toro.html, 2007.

[33] B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, A. Rottmann, and
W. Burgard. Learning maps in 3d using attitude and noisy vision sensors.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), San Diego, CA, USA, 2007.

[34] S. Thrun and colleagues. Winning the darpa grand challenge. Journal

on Field Robotics, 2006.

[35] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23(7/8):693–716,
2004.

[36] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[37] J. Uhlmann. Dynamic Map Building and Localization: New Theoretical

Foundations. PhD thesis, University of Oxford, 1995.

[38] C. Urmson. Navigation Regimes for Off-Road Autonomy. PhD thesis,
Robotics Institute, Carnegie Mellon University, 2005.

[39] M. Yguel, C.T.M. Keat, C. Braillon, C. Laugier, and O. Aycard. Dense
mapping for range sensors: Efficient algorithms and sparse representa-
tions. In Proc. of Robotics: Science and Systems (RSS), Atlanta, GA,
USA, 2007.

Giorgio Grisetti is working as a postdoctoral researcher in the

Autonomous Intelligent Systems Lab at Freiburg University.

He was a Ph.D. student at University of Rome ”La Sapienza”

in the Intelligent Systems Lab headed by Daniele Nardi where

he received his Ph.D. degree in April 2006. His research

interests lie in the areas of mobile robotics. His previous and

current contributions in robotics aims to provide effective so-

lutions to various mobile robot navigation problems including

SLAM, localization, and path planning.

Cyrill Stachniss studied computer science at the University

of Freiburg and received his Ph.D. degree in 2006. After his

Ph.D., he was a senior researcher at ETH Zurich. Since 2007,

he is now an academic advisor at the University of Freiburg

in the Laboratory for Autonomous Intelligent Systems. His

research interests lie in the areas of robot navigation, explo-

ration, SLAM, as well as learning approaches.

Wolfram Burgard is a professor for computer science at the

University of Freiburg where he heads of the Laboratory for

Autonomous Intelligent Systems. He received his Ph.D. degree

in Computer Science from the University of Bonn in 1991.

His areas of interest lie in artificial intelligence and mobile

robots. In the past, Wolfram Burgard and his group developed

several innovative probabilistic techniques for robot navigation

and control. They cover different aspects such as localization,

map-building, path-planning, and exploration. For his work,

Wolfram Burgard received several best paper awards from

outstanding national and international conferences. In 2008,

Wolfram Burgard became Fellow of the European Coordinat-

ing Committee for Artificial Intelligence.

[J7] B. Steder, G. Grisetti, C. Stachniss, and W. Burgard. Visual slam for

flying vehicles. IEEE Transactions on Robotics, 24(8):1088–1093, 2008.

Visual SLAM for Flying Vehicles
Bastian Steder Giorgio Grisetti Cyrill Stachniss Wolfram Burgard

Abstract— The ability to learn a map of the environment is important

for numerous types of robotic vehicles. In this paper, we address the

problem of learning a visual map of the ground using flying vehicles.

We assume that the vehicles are equipped with one or two cheap down-

looking cameras in combination with an attitude sensor. Our approach is

able to construct a visual map that can later on be used for navigation.

Key advantages of our approach are that it is comparably easy to

implement, that it can robustly deal with noisy camera images, and that it

can operate either with a monocular camera or a stereo camera system.

Our technique uses visual features and estimates the correspondences

between features using a variant of the PROSAC algorithm. This allows

our approach to extract spatial constraints between camera poses which

can then be used to address the SLAM problem by applying graph

methods. Furthermore, we address the problem of efficiently identifying

loop closures. We performed several experiments with flying vehicles

which demonstrate that our method is able to construct maps of large

outdoor and indoor environments.

Index Terms— SLAM, vision, flying vehicles, attitude sensor

I. INTRODUCTION

The problem of learning maps with mobile robots is a large and

active research field in the robotic community. Traditional solutions

to the simultaneous localization and mapping (SLAM) problem focus

on learning 2D maps of large-scale environments [20]. Also different

systems for building 3D maps have been proposed [7, 15, 22].

However, most of these approaches rely on bulky sensors having

a high range and accuracy (e.g., SICK laser range finders) which

cannot be used on robots such as small flying vehicles. As a result,

several researchers focused on utilizing vision sensors instead of laser

range finders. Cameras are an attractive alternative due to their limited

weight and low power consumption. Existing approaches that address

the vision-based SLAM problem mainly focus on scenarios in which

a robot repeatedly observes a set of features [6, 14] and they have

been shown to learn accurate feature maps.

This paper presents a system that allows aerial vehicles to acquire

visual maps of large environments using an attitude sensor and low

quality cameras pointing downwards. Such a setup can be found on

different air vehicles such as blimps or helicopters. Our system deals

with cameras that provide comparably low quality images which are

also affected by significant motion blur. Furthermore, it can operate in

two different configurations: with a stereo as well as with a monocular

camera. If a stereo setup is available, our approach is able to learn

visual elevation maps of the ground. If, however, only one camera

is carried by the vehicle, our system can be applied by making a

flat ground assumption providing a visual map without elevation

information. To simplify the problem, we used an attitude (roll and

pitch) sensor. In our system, we used an XSens MTi IMU, which has

an error below 0.5 degrees. The advantages of our approach is that

it is easy to implement, provides robust pose and map estimates, and

that is suitable for small flying vehicles. Figure 1 depicts our blimp

and helicopter used to evaluate this work as well as an example

camera image obtained with our light-weight camera.

II. RELATED WORK

Building maps with robots equipped with perspective cameras has

received increasing attention in the last decade. Davison et al. [6]

All authors are members of the University of Freiburg, Department of
Computer Science, D-79110 Freiburg, Germany

Fig. 1. Two aerial vehicles used to evaluate our mapping approach as well
as an example image recorded from an on-board camera.

proposed a single camera SLAM algorithm based on a Kalman filter.

The features are initialized by using a particle filter which estimates

their depth. Montiel et al. [14] extended this framework by proposing

an inverse depth parameterization of the landmarks. Since this pa-

rameterization can be better approximated by a Gaussian, the particle

filter can be avoided in the initialization of the features. Subsequently,

Clemente et. al [5] integrated this technique in a hierarchical SLAM

framework which has been reported to successfully build large scale

maps with comparably poor sensors.

Chekhlov et al. [3] proposed an online visual SLAM framework

which uses a SIFT-like feature descriptors and track the 3D motion of

a single camera by using an unscented Kalman filter. The computation

of the features is speeded up by utilizing the estimated camera

position to guess the scale. Jensfelt et al. [10] proposed an effective

way for online mapping applications by combining a SIFT feature

extractor and an interest points tracker. While the feature extraction

can be performed at low frequency, the movement of the robot is

constantly estimated by tracking the interest points at high frequency.

Other approaches utilize a combination of inertial sensors and

cameras. For example, Eustice et. al [7] rely on a combination of

highly accurate gyroscopes, magnetometers, and pressure sensors to

obtain a good estimate for the orientation and altitude of an under-

water vehicle. Based on these estimates, they construct an accurate

global map using an information filter based on high resolution stereo

images. Piniés et al. [17] implemented a SLAM system for hand-held

monocular cameras and employ an IMU to improve the estimated

trajectories. Andreasson et al. [1] presented a technique that is based

on a local similarity measure for images. They store reference images

at different locations and use these references as a map. In this

way, their approach is reported to scale well with the size of the

environment.

Recently, Konolige and Agrawal [12] presented a technique in-

spired by scan-matching with laser range finders. These poses of

the camera are connected by synthetic measurements obtained from

incremental bundle adjustment performed on the images acquired

at these poses, and an optimization procedure is used to find the

configuration of camera poses which is maximally consistent with

the measurement. Our approach uses a similar SLAM formulation

but it computes the synthetic measurements between poses based on

an efficient pairwise frame alignment technique.

Jung et al. [11] proposed a technique which is close to our

approach. They use a high resolution stereo camera for building

elevation maps with a blimp. The map consists of 3D landmarks

extracted from interest points in the stereo image obtained by a Harris

corner detector and the map is estimated using an Extended Kalman

filter. Due to the wide field of view and the high quality of the images,

Visual SLAM system
sensor data

constraints

optimized configuration (updated poses)

poses Optimizer

Fig. 2. System overview. This paper describes the visual SLAM system
represented by the grayish box.

the non-linearities in the process were adequately solved by the EKF.

In contrast to this, our approach is able to deal with low-resolution

and low-quality images. It is suitable for mapping indoor and outdoor

environments and for operating on small-size flying vehicles. We

furthermore apply a more efficient error minimization approach [8]

than the Kalman filter which is an extension of the work of Olson et

al. [16].

Our previous work [19] focused more on the optimization approach

and neglected the uncertainty of the vehicle when seeking for

loop-closures. In the approach presented in this paper, we consider

this uncertainty and provide a significantly improved experimental

evaluation using real air vehicles.

III. GRAPH-BASED SLAM

In this paper, we address the SLAM problem by using its graph-

based formulation. In this framework, the poses of the robot are de-

scribed by the nodes of a graph. Edges between these nodes represent

spatial constrains between them. They are typically constructed from

observations or from odometry. Under this formulation, a solution to

the SLAM problem is a configuration of the nodes which minimizes

the error introduced by the constraints.

We apply an online variant of the 3D optimization technique

recently presented by Grisetti et al. [8] to compute the maximum

likely configuration of the nodes. Online performance is achieved by

optimizing only the portions of the graph that require updates after

introducing new constraints. Additional speedups result from reusing

previously computed solutions to obtain the current one, as explained

in [9]. Our system can be used as a black box to which one provides

an initial guess of the position of the nodes as well as the edges and

it computes the new configuration of the network (see Figure 2). The

computed solution minimizes the error introduced by contradicting

constraints.

In our approach, each node xi models a 6DoF camera pose. The

spatial constraints between two poses are computed from the camera

images and the attitude measurements. An edge between two nodes

i and j is represented by the tuple 〈δji, Ωji〉, where δji and Ωji

are the mean and the information matrix of the measurement. Let

eji(x) be the error introduced by the constraint 〈j, i〉. Assuming the

independence of the constraints, a solution to the SLAM problem is

given by

x
∗ = argmin

x

X

〈j,i〉

eji(x)T Ωjieji(x). (1)

Our approach relies on visual features extracted from the images

obtained from two down-looking cameras. We use SURF features [2]

which are invariant with respect to rotation and scale. Each feature is

represented by a descriptor vector and the position, orientation, and

scale in the image. By matching features between different images,

one can estimate the relative motion of the camera and thus construct

the graph which serves as input to the optimizer. In addition to that,

the attitude sensor provides the roll and pitch angle of the camera. In

our experiments, we found that the roll and the pitch measurements

are comparably accurate even for low-cost sensors and can be directly

integrated into the estimate. This reduces the dimensionality of each

pose that needs to be estimated from R
6 to R

4.

In this context, the main challenge is to compute the constraints

between the nodes (here camera poses) based on the data from the

camera and the attitude sensor. Given these constraints, the optimizer

processes the incrementally constructed graph to obtain estimates of

the most likely configuration on-the-fly.

IV. SPATIAL RELATION BETWEEN CAMERA POSES

The input to the optimization approach mentioned in the previous

section is a set of poses and constraints between them. In this section,

we describe how to determine such constraints.

As a map, we directly use the graph structure of the optimizer.

Thus, each camera pose corresponds to one node. Additionally, we

store for each node the observed features as well as their 3D positions

relative to the node. The constraints between nodes are computed

from the features associated with the nodes. In general, at least

three pairs of correspondences between image points and their 3D

positions in the map are necessary to compute the camera position

and orientation [18]. However, in our setting we need only two such

pairs since the attitude of the camera is known from the IMU.

In practice, we can distinguish two different situations when

extracting constraints: visual odometry and place revisiting. Odom-

etry describes the relative motion between subsequent poses. To

obtain an odometry estimate, we match the features in the current

image to the ones stored in the previous n nodes. This situation

is easier than place revisiting because the set of potential features

correspondences is relatively small. In case of place revisiting, we

compare the current features with all the features acquired from robot

poses which lie within the 3σ confidence interval given by the pose

uncertainty. This interval is computed with the approach of Tipaldi

et. al [21] and applies covariance intersection on a spanning tree to

obtain conservative estimates of the covariances. Since the number of

features found during place revisiting can be quite high, we introduce

a further approximation in the search procedure. First, we use only

a small number of features from the current image when looking for

potential correspondences. These features are the one which were

better matched when computing visual odometry (which have the

lowest descriptor distance). Second, we apply a kd-tree to efficiently

query for similar features and we use the best-bins-first technique

proposed by Lowe [13].

Every time a new image is acquired, we compute the current pose

of the camera based on both visual odometry and place revisiting

and augment the graph accordingly. The optimization of the graph is

performed only if the computed poses are contradictory.

In the remainder of this section, we first describe how to compute

a camera pose given a pair of known correspondences, and sub-

sequently we describe our PROSAC-like procedure for determining

the best transformation given a set of correspondences between the

features in the current image and another set of features computed

either via visual odometry or place revisiting.

A. Computing a Transformation from Feature Correspondences

In this section, we explain how to compute the transformation of

the camera if we know the 3D position of two features f1 and f2

in the map and their projections i1 and i2 on the current image.

Assuming known camera calibration parameters, we can compute the

projections of the points on the normalized image plane. By using the

attitude measurements from the IMU, we can compute the positions

of these points as they would have been captured from a perfectly

downwards facing camera. Let these transformed positions be i′1, i
′
2.

Subsequently, we compute the altitude of the camera according to

the procedure illustrated in Figure 3, by exploiting the similarity of

triangles. Once the altitude is known, we can compute the yaw of the

camera by projecting the map features f1 and f2 into the same plane

Fig. 3. This figure illustrates how to compute the height of the camera,
given two corresponding features, under known attitude. cam is the camera
position, i′1, i′2 are the projections of the features f1 and f2 on the normalized
image plane, already rotated according to the attitude measured by the IMU.
pp is the principle point of the camera (vertically downwards from the camera)
on the projection plane. pp′ and f ′

1 are the projections of pp and f1 at the
altitude of f2. h is the altitude difference between the camera and f2, and
it can be determined by exploiting the similarity of the triangles {i′1, i′2, pp}
and {f ′

1, f2, pp′}.

as i′1, i
′
2 and then the yaw is the angle between the two resulting lines

on this plane.

Finally, we determine x and y as the difference between the

positions of the map features and the projections of the corresponding

image points, by reprojecting the image features into the map

according to the known altitude and yaw angle.

B. Computing the Best Camera Transformation Based on a set of

Feature Correspondences

In the previous section, we described how to compute the camera

pose given only two correspondences. However, both visual odometry

and place revisiting return a set of correspondences. In the following,

we describe our procedure to efficiently select from the input set

the pair of correspondences for computing the most likely camera

transformation.

We first order these correspondences according to the Euclidean

distance of their descriptor vectors. Let this ordered set be C =
{c1, ..., cn}. Then we select pairs of correspondences in the order

defined by the following predicate:

〈ca1
, cb1〉 < 〈ca2

, cb2〉 ⇔ (b1 < b2 ∨ (b1 = b2 ∧ a1 < a2))

∧ a1 < b1 ∧ a2 < b2. (2)

In this way, the best correspondences (according to the descrip-

tor distance) are used first but the search procedure will not get

stuck for a long time in case of false matches with low descriptor

distances. This is illustrated in the following example: assume that

the first correspondence c1 is a false match. Our selection strategy

generates the sequence 〈c1, c2〉 , 〈c1, c3〉 , 〈c2, c3〉 , 〈c1, c4〉 , 〈c2, c4〉 ,

〈c3, c4〉 A pair without the false match 〈c2, c3〉 will be selected

in the third step. A more naive selection strategy will try first all pairs

of correspondences 〈c1, cx〉 with c1 in the first position, and results

in a less efficient search.

Only pairs that involve different features are used. The corre-

sponding transformation Tca,cb
is then determined for the current

pair (see section IV-A). This transformation is then evaluated based

on the other features in both sets using a score function, which is

presented in the next subsection. The process can be stopped, when a

transformation with a satisfying score is found or when a timeout is

reached. The solution with the highest score is returned as the current

assumption for the transformation.

C. Evaluating a Camera Transformation

In the previous sections, we explained how to compute a camera

transformation based on two pairs of corresponding features, and

how to select those pairs from two input sets of features. By using

different pairs, we can compute a set of candidate transformations.

In this section, we explain how to evaluate them and how to choose

the best one among them.

To select the best transformation, we rank them according to a

score function. The score is computed by projecting the features in

the map into the current camera image and by then comparing the

distance between the feature positions in the image. The score is

given by

score(Tca,cb
) =

X

{i | i/∈{a,b}}

v(ci). (3)

In this equation, the function v(ci) is defined as the weighted sum of

the relative displacement of the corresponding features in the current

image and the Euclidean distance of their feature descriptors:

v(ci) = 1 −

»

α
ddesc(ci)

ddesc
max

+ (1 − α)
dimg(ci)

d
img
max

–

(4)

In the sum of Eq. (3), we consider only those feature correspondences

ci whose distances dimg(ci) in the image and distances ddesc(ci) in

the descriptor space are smaller than the thresholds dimg
max and ddesc

max

introduced in Eq. (4). This prevents single outliers from leading to

overly bad scores.

More in detail, dimg
max is the maximum distance in pixels between the

original and the re-projected feature. In our experiments this value

was set to 2 pixels for images of 320×240 pixels. The higher the

motion blur in the image the larger this value should be set. The

minimum value depends on the accuracy of the feature extractor.

Increasing this threshold also allows the matching procedure to return

less accurate solutions for the position estimation. The blending

factor α mixes the contribution of the descriptor distance and the re-

projection error. The more distinct the features, are the higher alpha

can be chosen. In all our experiments, we set α = 0.5. The value

ddesc
max has been manually tuned. When using 64-dimensional SURF

descriptors we had good results by setting this threshold to values

around 0.3. The lower the quality of the image, the higher ddesc
max

should be chosen.

Note that the technique to identify the correspondences between

images is similar to the PROSAC [4] algorithm which is a variant

of RANSAC. PROSAC takes into account a quality measure of the

correspondences while sampling, conversely RANSAC draws the

samples uniformly. We use the distance between feature descriptors as

a quality measure. In our variant of PROSAC, the correspondences

are selected deterministically. Since we only need two correspon-

dences to compute the camera transformation, the chances that the

algorithm gets stuck due to wrong correspondences are very small.

After identifying the transformation between the current pose of

the camera and a node in the map, we can directly add a constraint to

the graph. In the subsequent iteration of the optimizer, the constraint

is thus taken into account when computing the updated positions of

the nodes.

V. EXPERIMENTS

In this section, we present the experiments carried out to evaluate

our approach. We used only real world data which we partially

recorded with a sensor platform carried in the hand of a person

as well as with a real blimp and a helicopter (see Figure 1).

In all experiments our system was running at 5 to 15 hertz on

a 2.4 GHz Dual-core. Videos of the experiments can be down-

loaded at http://www.informatik.uni-freiburg.de/

˜steder/homepage/videos.

10m 10m

Fig. 4. The left image shows the path of the camera in black and the
matching constraints in gray. The right image shows the corrected trajectory
after applying the optimization technique.

Fig. 5. The left image shows a perspective view of the map of the outdoor
experiment together with two camera images recorded at the corresponding
locations. The right one shows a person with the sensor platform mounted on
a rod to simulate a freely floating vehicle.

A. Outdoor Environments

In the first experiment, we measured the performance of our

algorithm using data recorded in outdoor environments. Since even

calm winds outside buildings prevent us from making outdoor ex-

periments with our blimp or our small size helicopter, we mounted

a sensor platform on the tip of a rod and carried this by hand to

simulate a freely floating vehicle. This sensor platform is equipped

with two standard Web cams (Logitech Communicate STX). The

person carried the platform along a long path around a building over

different types of ground like grass and pavement. The trajectory has

a length of about 190 m. The final graph contains approximately 1400

nodes and 1600 constraints. The trajectory resulting from the visual

odometry is illustrated in the left image of Figure 4. Our system

autonomously extracted data association hypotheses and constructed

the graph. These matching constraints are colored light blue/gray

in the same image. After applying our optimization technique, we

obtained a map in which the loop has been closed successfully.

The corrected trajectory is shown in the right image of Figure 4.

A perspective view, which also shows the elevations, is depicted in

Figure 5.

This experiment illustrates that our approach is able to build maps

of comparably large environments and that it is able to find the correct

correspondences between observations. Note that this result has been

achieved without any odometry information and despite the fact that

the cameras are of low quality and that the images are blurry due to

the motion and mostly show grass and concrete.

B. Statistical Experiments

The second experiment evaluates the performance of our approach

quantitatively in an indoor environment. The data was acquired with

the same sensor setup as in the previous experiment. We moved

in the corridor of our building which has a wooden floor. For a

statistical evaluation of the accuracy of our approach, we placed

artifical objects on the ground at known locations. We measured

their locations manually with a measuring tape (up to an accuracy

of approximately 3 cm). The distance in the x coordinate between

neighboring landmarks is 5 m and 1.5 m in the y direction. The six

Fig. 6. Top view of the map of the indoor experiment. The image shows
the map after least square error minimization. The labels A to F present six
landmarks for which we determined the ground truth location manually to
evaluate the accuracy of our approach.

TABLE I

ACCURACY OF THE RELATIVE POSE ESTIMATE BETWEEN LANDMARKS

landmarks A-B B-C C-D D-E E-F F-A loop

mean error [m] 0.18 0.26 0.11 0.20 0.21 0.12 1.10
sigma [m] 0.21 0.32 0.12 0.39 0.3 0.15 1.25
error [%] 3.6 5.2 7.3 4.0 4.2 8.0 4.8

landmarks are labeled A to F in Figure 6. We used these six known

locations as ground truth, which allowed us to measure the accuracy

of our mapping technique. Figure 6 depicts a resulting map after

applying the least square error minimization approach. We repeated

the experiment 10 times and measured the relative distance between

them.

Table I summarizes this experiment. As can be seen, the error of

the relative pose estimates is always below 8% and typically around

5% compared to the true difference. This results mainly from the

error in our self-made and comparably low quality stereo setup. To

our opinion, this is an accurate estimate for a system consisting of

two cheap cameras and an IMU, lacking sonar, laser range data, and

real odometry information.

C. Experiments with a Blimp

The third experiment is also a statistical analysis carried out with

our blimp. The blimp has only one camera looking downwards.

Instead of the stereo setup, we mounted a sonar sensor to measure

its altitude. Furthermore, no attitude sensor was available and we

therefore assumed the roll and pitch angle to be zero (which is an

acceptable approximation given the smooth motion of a blimp). We

placed two landmarks on the ground with a distance of 5 m and flew

10 times over the scene. The mean estimated distance between the

two landmarks was 4.91 m with a standard deviation of 0.11 m. Thus,

the real position was within the 1σ interval.

The next experiment in this paper is designed to illustrate that such

a visual map can be used for navigation. We constructed the map

shown in Figure 7 with our blimp. During this task, the blimp was

instructed to return always to the same location and was repeatedly

pushed away several meters. The blimp was always able to register its

current camera image against the map constructed so far and in this

way kept track of its location relative to the map. This enabled the

controller of the blimp to steer the air vehicle to the desired location.

The experiment lasted 18 min and the blimp recorded during that time

around 10,800 images. The robot processed around 500,000 features

and the map was constructed online.

D. Experiments with a Light-weight Helicopter

We finally mounted an analog RF-camera on our light-weight

helicopter depicted in Figure 1. This helicopter is not equipped with

an attitude sensor nor with a sonar sensor to measure its altitude.

Since neither stereo information nor the elevation of the helicopter

is known, the scale of the visual map was determined by a known

size of one landmark (a book lying on the ground). Furthermore, the

attitude was assumed to be zero which is a quite rough approximation

5m

Fig. 7. Map constructed by the blimp. The ground truth distance between
both landmarks is 5 m and the estimated distance was 4.91 m with 0.11 m
standard deviation (10 runs). The map was used to autonomously steer the
blimp to user specified locations.

Fig. 8. A person pushes the blimp away. The blimp is able to localize itself
and navigate back using the map shown in Figure 7 (see video material).

Fig. 9. Visual map build with a helicopter overlayed on a 2D grid map
constructed from laser range finder data recorded with a wheeled robot.

for a helicopter. We recorded a dataset by flying the helicopter and

overlayed the resulting map with an occupancy grid map recorded

from laser range data with a wheeled robot. Figure 9 depicts the

result. The red and green crosses indicate the same locations in the

occupancy grid map and the visual map. Even under the hard sensory

limitations, our approach was able to estimate its position in a quite

accurate manner. The helicopter flew a distance of around 35 m and

the map has an error in the landmark locations that varies between

20 cm and 60 cm.

VI. CONCLUSIONS

In this paper, we presented a robust and practical approach to

learn visual maps based on down looking cameras and an attitude

sensor. Our approach applies a robust feature matching technique

based on a variant of the PROSAC algorithm in combination with

SURF features. The main advantages of the proposed methods are

that it can operate with monocular or with a stereo camera system,

that it is easy to implement, and that it is robust to noise in the camera

images.

We presented a series of real world experiments carried out with

a small-size helicopter, a blimp, and by manually carrying a sensor

platform. Different statistical evaluations of our approach show its

ability to learn consistent maps of comparably large indoor and

outdoor environments. We furthermore illustrated that such maps can

be used for navigation tasks of air vehicles.

ACKNOWLEDGMENT

This work has partly been supported by the DFG under contract

number SFB/TR-8 and by the EC under contract numbers FP6-2005-

IST-6-RAWSEEDS and FP6-IST-34120-muFly.

REFERENCES

[1] H. Andreasson, T. Duckett, and A. Lilienthal. Mini-SLAM: Minimalistic
visual SLAM in large-scale environments based on a new interpretation
of image similarity. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Rome, Italy, 2007.
[2] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.

In Proc. of the European Conf. on Computer Vision (ECCV), 2006.
[3] D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and Calway A. Robust

real-time visual slam using scale prediction and exemplar based feature
description. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), Minneapolis, usa, 2007.
[4] O. Chum and J. Matas. Matching with PROSAC - progressive sample

consensus. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), Los Alamitos, USA, 2005.
[5] L.A. Clemente, A. Davison, I. Reid, J. Neira, and J.D. Tardós. Mapping

large loops with a single hand-held camera. In Proc. of Robotics: Science

and Systems (RSS), Atlanta, GA, USA, 2007.
[6] A. Davison, I. Reid, , N. Molton, and O. Stasse. MonoSLAM:real

time single camera SLAM. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(6), 2007.
[7] R.M. Eustice, H. Singh, J.J. Leonard, and M.R. Walter. Visually

mapping the RMS Titanic: conservative covariance estimates for SLAM
information filters. Int. Journal of Robotics Research, 25(12), 2006.

[8] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient
estimation of accurate maximum likelihood maps in 3D. In Proc. of the

Int. Conf. on Intelligent Robots and Systems (IROS), San Diego, CA,
USA, 2007.

[9] G. Grisetti, D. Lodi Rizzini, C. Stachniss, E. Olson, and W Burgard.
Online constraint network optimization for efficient maximum likelihood
map learning. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), Pasadena, CA, USA, 2008.
[10] P. Jensfelt, D. Kragic, J. Folkesson, and M. Björkman. A framework for

vision based bearing only 3D SLAM. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Orlando, CA, 2006.
[11] I. Jung and S. Lacroix. High resolution terrain mapping using low

altitude stereo imagery. In Proc. of the Int. Conf. on Computer Vision

(ICCV), Nice, France, 2003.
[12] K. Konolige and M. Agrawal. Frame-frame matching for realtime

consistent visual mapping. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), Rome, Italy, 2007.
[13] D.G. Lowe. Object recognition from local scale-invariant features. In

Proc. of the Int. Conf. on Computer Vision (ICCV), Krekyra, Greece,
1999.

[14] J.M. Montiel, J. Civera, and A.J. Davison. Unified inverse depth
parameterization for monocular SLAM. In Proc. of Robotics: Science

and Systems (RSS), Cambridge, MA, USA, 2006.
[15] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM

with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[16] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.
[17] P. Piniés, T. Lupton, S. Sukkarieh, and J. D. Tardós. Inertial aiding of

inverse depth slam using a monocular camera. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 2797–2802, Rome,
Italy, 2007.

[18] L. Quan and Z.-D. Lan. Linear N-Point camera pose determina-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(8):774–780, 1999.

[19] B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, A. Rottmann, and
W. Burgard. Learning maps in 3D using attitude and noisy vision
sensors. In Proc. of the Int. Conf. on Intelligent Robots and Systems

(IROS), San Diego, CA, USA, 2007.
[20] S. Thrun. An online mapping algorithm for teams of mobile robots.

Int. Journal of Robotics Research, 20(5):335–363, 2001.
[21] G.D. Tipaldi, G. Grisetti, and W. Burgard. Approximate covariance es-

timation in graphical approaches to SLAM. In Proc. of the Int. Conf. on

Intelligent Robots and Systems (IROS), San Diego, CA, USA, 2007.
[22] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the Int. Conf. on

Intelligent Robots and Systems (IROS), Beijing, China, 2006.

[J8] C. Stachniss, G. Grisetti, O. Martı́nez-Mozos, and W. Burgard. Ef-

ficiently learning metric and topological maps with autonomous service

robots. it – Information Technology, 49(4):232–238, 2007. Extended ver-

sion.

1

Efficiently Learning Metric and Topological Maps

with Autonomous Service Robots

Cyrill Stachniss Giorgio Grisetti Óscar Martı́nez Mozos Wolfram Burgard

University of Freiburg, Dept. of Computer Science, Georges-Köhler-Allee 79, 79110 Freiburg, Germany

Abstract— Models of the environment are needed for a wide
range of robotic applications, from search and rescue to au-
tomated vacuum cleaning. Learning maps has therefore been
a major research focus in the robotics community over the
last decades. In general, one distinguishes between metric and
topological maps. Metric maps model the environment based
on grids or geometric representations whereas topological maps
model the structure of the environment using a graph.

The contribution of this paper is an approach that learns
a metric as well as a topological map based on laser range
data obtained with a mobile robot. Our approach consists of
two steps. First, the robots solves the simultaneous localization
and mapping problem using an efficient probabilistic filtering
technique. In a second step, it acquires semantic information
about the environment using machine learning techniques. This
semantic information allows the robot to distinguish between
different types of places like, e.g., corridors or rooms. This enables
the robot to construct annotated metric as well as topological
maps of the environment. All techniques have been implemented
and thoroughly tested using real mobile robot in a variety of
environments.

I. I

The problem of learning maps is one of the fundamental

problems in mobile robotics. Models are needed for a series of

applications like transportation, cleaning, rescue, localization,

and various other service tasks. Learning maps has therefore

been a major research issue in the robotics community over

the last decades.

Typically, one distinguishes between the type of model the

mapping approach learns: metric or topological maps. Metric

maps like, for example, occupancy, feature, or geometric maps

model the objects observed by the sensor. These maps are often

used to explicitely represent obstacles and driveable areas.

Typically, the resulting model strongly depends on the sensors

used by the robot to perceive its environment. Metric maps

often bear resemblance to floor plans used in architecture.

For different robotic tasks, however, the robot can improve

its capabilities or performance when sematic or topological

information is available. In contrast to metric maps, topo-

logical maps model the structure of the environment using a

graph. The different places in the environment are represented

by nodes in that graph. Topological maps are quite popular

in the robotics community because they are believed to be

cognitively more adequate. Compared to metric maps, they

can be stored in a compact manner and can facilitate the

communication with the users.

While most other mapping approaches address metric or

topological map learning, we focus in this paper on construct-

ing a metric as well as a topological model of the environment.

This enables a mobile robot to use the best suited model

for the task it performs. Our approach consists of two steps.

In the first one, we apply a highly efficient particle filter

to solve the simultaneous localization and mapping (SLAM)

problem. This step is based on grid maps and eliminates

the pose uncertainty of the robot. In the second step, we

use the grid resulting from the first step in order to learn

the topology. Our technique estimates semantic information

about local areas using the AdaBoost algorithm. It furthermore

applies probabilistic relaxation labeling to smooth the semantic

labels and then identifies distinct places based on that data.

Finally, this allows a mobile robot to learn accurate metric

models of the environment while at the same time constructing

a consistent topological map.

The reminder of this paper is organized as follows. We

describe the two steps of our algorithm in the next sections.

Section II presents the first step in which a Rao-Blackwellized

particle filter is applied to eliminate the pose uncertainty and

to construct a metric grid map. Based on this result, Section III

describes the second step of our technique which is the

extraction of the topological information. Section IV presents

results obtained by our approach and finally, we discuss related

work in Section V.

II. S 1: EMM

This section describes the first step of our mapping ap-

proach. The goal is to eliminate the pose uncertainty and to

obtain a consistent grid representation. According to Mur-

phy [24], the key idea of the Rao-Blackwellized particle

filter for SLAM is to estimate the joint posterior p(x1:t,m |

z1:t, u1:t−1) about the map m and the trajectory x1:t = x1, . . . , xt

of the robot. This estimation is performed given the ob-

servations z1:t = z1, . . . , zt and the odometry measurements

u1:t−1 = u1, . . . , ut−1 obtained by the mobile robot. The Rao-

Blackwellized particle filter for SLAM makes use of the

following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1). (1)

This factorization allows us to first estimate only the trajectory

of the robot and then to compute the map given that trajectory.

Since the map strongly depends on the pose estimate of the

robot, this factorized posterior can be computed efficiently.

This technique is often referred to as Rao-Blackwellization.

The posterior over maps p(m | x1:t, z1:t) in Eq. (1) can be

computed analytically using “mapping with known poses” [23]

2

since x1:t and z1:t are known. To estimate the posterior p(x1:t |

z1:t, u1:t−1) over the potential trajectories, one can apply a

particle filter. Each particle represents a potential trajectory of

the robot. Furthermore, an individual map is associated with

each sample. The maps are built from the observations and

the trajectory represented by the corresponding particle.

One of the most common particle filtering algorithms is

the sampling importance resampling (SIR) filter. A Rao-

Blackwellized SIR filter for mapping can be summarized by

the following four steps:

1) Sampling: The next generation of particles {x
(i)
t } is

obtained from the generation {x
(i)

t−1
} by sampling from the

so-called proposal distribution π. Often, a probabilistic

odometry motion model is used as the proposal distri-

bution.

2) Importance Weighting: An individual importance weight

w
(i)
t is assigned to each particle according to the impor-

tance sampling principle

w
(i)
t =

p(x
(i)

1:t
| z1:t, u1:t−1)

π(x
(i)

1:t
| z1:t, u1:t−1)

. (2)

The weights account for the fact that the proposal distri-

bution π is in general not equal to the target distribution

of successor states.

3) Resampling: Particles are drawn with replacement pro-

portional to their importance weight. This step is nec-

essary since only a finite number of particles is used to

approximate a continuous distribution. Furthermore, re-

sampling allows us to apply a particle filter in situations

in which the target distribution differs from the proposal.

After resampling, all the particles have the same weight.

4) Map Estimation: For each particle, the corresponding

map estimate p(m(i) | x
(i)

1:t
, z1:t) is computed based on

the trajectory x
(i)

1:t
of that sample and the history of

observations z1:t.

A. Computing an Improved Proposal Distribution

The general framework for mapping with Rao-

Blackwellized particle filters leaves open how the proposal

distribution is computed. In general, the filter produces

more accurate results the closer the proposal approximates

the target distribution. The target distribution, however, is

typically not available in a closed form solution suitable for

sampling. In our case, the target distribution is given by

p(x1:t | z1:t, u1:t−1) = η · p(zt | m
(i)

t−1
, xt) · p(xt | xt−1, ut−1)

·p(x1:t−1 | z1:t−1, u1:t−2), (3)

where η is a normalizing constant resulting from Bayes’ rule.

Our approach uses the laser range observations of the robot

in order to approximate the target as close as possible while

being able to efficiently sample from that distribution. The

advantage of this approach lies in the fact that the laser range

observations are typically affected by significantly less noise

compared to the odometry of the robot (which is used as

the proposal in classical particle filter applications). This fact

is illustrated in Figure 1. Since the resulting distribution is

li
k
el

ih
o
o
d

 robot position

p(z|x)
p(x|x’,u)

︸︷︷︸

L(i)

Fig. 1. The two components of the target distribution. Within the interval
L(i) the product of both functions is dominated by the observation likelihood.
The observation likelihood is therefore well-suited to focus the proposal to
the interval L(i).

given by the product of the motion and the observation model,

one can restrict the search to areas of high likelihood (called

meaningful area L(i), see Figure 1). In the reminder of this

section, we derive our proposal distribution. According to

Doucet [4], the distribution

p(xt | m
(i)

t−1
, x

(i)

t−1
, zt, ut−1) =

p(zt | m
(i)

t−1
, xt)p(xt | x

(i)

t−1
, ut−1)

p(zt | m
(i)

t−1
, x

(i)

t−1
, ut−1)

(4)

is the optimal proposal distribution with respect to the variance

of the particle weights. When modeling the environment

with grid maps, a closed form approximation of an informed

proposal is also not directly available due to the unpredictable

shape of the observation likelihood function.

One of our observations is that in the majority of cases the

target distribution has only a limited number of maxima and it

mostly has only a single one. This allows the robot to sample

positions x j covering only the area surrounding this maximum.

Ignoring the less meaningful regions of the distribution saves a

significant amount of computational resources since it requires

less samples.

In our current approach, we consider both components of

the proposal, the observation likelihood and the motion model

within the meaningful interval L(i). We locally approximate the

posterior p(xt | m
(i)

t−1
, x

(i)

t−1
, zt, ut−1) around the maximum of the

likelihood function reported by a scan registration procedure.

To efficiently draw the next generation of samples, we

compute a Gaussian approximation based on that data. The

main difference to previous approaches is that we first use a

scan-matcher to determine the meaningful area of the obser-

vation likelihood function. We then sample in that meaningful

area and evaluate the sampled points based on the target

distribution. For each particle i, the parameters µ
(i)
t and Σ

(i)
t

are determined individually for K sampled points {x j} in the

interval L(i). We furthermore take into account the odometry

information when computing the mean µ(i) and the variance

Σ(i). We estimate the Gaussian parameters as

µ
(i)
t =

1

η(i)
·

K∑

j=1

x j · p(zt | m
(i)

t−1
, x j) · p(x j | x

(i)

t−1
, ut−1) (5)

Σ
(i)
t =

1

η(i)
·

K∑

j=1

p(zt | m
(i)

t−1
, x j)

·p(x j | x
(i)

t−1
, ut−1) · (x j − µ

(i)
t)(x j − µ

(i)
t)T (6)

3

with the normalization factor

η(i) =

K∑

j=1

p(zt | m
(i)

t−1
, x j) · p(x j | x

(i)

t−1
, ut−1). (7)

In this way, we obtain a closed form approximation of the op-

timal proposal which enables the robot to efficiently obtain the

next generation of particles. Using this proposal distribution,

the weights can be computed as

w
(i)
t = w

(i)

t−1

ξ · p(zt | m
(i)

t−1
, x

(i)
t)p(x

(i)
t | x

(i)

t−1
, ut−1)

p(xt | m
(i)

t−1
, x

(i)

t−1
, zt, ut−1)

(8)

∝ w
(i)

t−1

p(zt | m
(i)

t−1
, x

(i)
t)p(x

(i)
t | x

(i)

t−1
, ut−1)

p(zt |m
(i)

t−1
,xt)p(xt |x

(i)

t−1
,ut−1)

p(zt |m
(i)

t−1
,x

(i)

t−1
,ut−1)

(9)

= w
(i)

t−1
· p(zt | m

(i)

t−1
, x

(i)

t−1
, ut−1) (10)

= w
(i)

t−1
·

∫

p(zt | x
′)p(x′ | x

(i)

t−1
, ut−1) dx′ (11)

≃ w
(i)

t−1
·

K∑

j=1

p(zt | m
(i)

t−1
, x j) · p(x j | x

(i)

t−1
, ut−1) (12)

= w
(i)

t−1
· η(i). (13)

Note that η(i) is the same normalization factor that is used in

the computation of the Gaussian approximation of the proposal

in Eq. (7) and ξ is a normalizer resulting from Bayes’ rule.

The computations presented in this section enable us to

determine the parameters of a Gaussian proposal distribution

for each particle individually. The proposal takes into account

the most recent odometry reading and laser observation while

at the same time allowing us efficient sampling. The resulting

densities have a much lower uncertainty compared to situations

in which the odometry motion model is used.

As explained above, we use a scan-matcher to determine

the mode of the meaningful area of the observation likelihood

function. In this way, we focus the sampling on the important

regions. Most existing scan-matching algorithms maximize the

observation likelihood given a map and an initial guess of the

robot’s pose. When the likelihood function is multi-modal,

which can occur when, e.g., closing a loop, the scan-matcher

returns for each particle the maximum which is closest to the

initial guess. In general, it can happen that additional maxima

in the likelihood function are missed since only a single mode

is reported. However, since we perform frequent filter updates

(after each movement of 0.5 m or a rotation of 25◦) and limit

the search area of the scan-matcher, we consider that the

distribution has only a single mode when sampling data points

to compute the Gaussian proposal. Note that in situations like a

loop closure, the filter is still able to keep multiple hypotheses

because the initial guess for the starting position of the scan-

matcher when reentering a loop is different for each particle.

During filtering, it can happen that the scan-matching

process fails because of poor observations or a too small

overlapping area between the current scan and the previously

computed map. In our system, this is detected by monitoring

the observation likelihood in the matching process and by

applying a threshold criterion. In this case, the raw motion

model of the robot is used as a proposal. Note that such

situations occur rarely in real datasets.

When modeling a mobile robot equipped with an accurate

sensor like, a laser range finder, it is convenient to use such an

improved proposal since the accuracy of the laser range finder

leads to extremely peaked likelihood functions. In the context

of landmark-based SLAM, Montemerlo et al. [20] presented a

Rao-Blackwellized particle filter that uses a Gaussian approx-

imation of the improved proposal. This Gaussian is computed

for each particle using a Kalman filter that estimates the pose

of the robot. This approach can be used when the map is

represented by a set of features and if the error affecting the

feature detection is assumed to be Gaussian. In this work,

we transfer the idea of computing an improved proposal to

the situation in which dense grid maps are used instead of

landmark-based representations.

B. Adaptive Resampling

A further aspect that has a major influence on the per-

formance of a particle filter is the resampling step. During

resampling, particles with a low importance weight w(i) are

typically replaced by samples with a high weight. On the one

hand, resampling is necessary since only a finite number of

particles are used to approximate the target distribution. On

the other hand, the resampling step can remove good samples

from the filter which can lead to particle impoverishment.

Accordingly, it is important to find a criterion for deciding

when to perform the resampling step. Liu [17] introduced the

so-called effective sample size to estimate how well the current

particle set represents the target posterior. In this work, we

compute this quantity according to the formulation of Doucet

et al. [6] as

Neff =
1

∑N
i=1

(

w̃(i)
)2
, (14)

where w̃(i) refers to the normalized weight of particle i.

The intuition behind Neff is as follows. If the samples were

drawn from the target distribution, their importance weights

would be equal to each other due to the importance sampling

principle. The worse the approximation of the target distri-

bution, the higher is the variance of the importance weights.

Since Neff can be regarded as a measure of the dispersion

of the importance weights, it is a useful measure to evaluate

how well the particle set approximates the target posterior.

Our algorithm follows the approach proposed by Doucet et

al. [6] to determine whether or not the resampling step should

be carried out. We resample each time Neff drops below the

threshold of N/2 where N is the number of particles. In

extensive experiments, we found that this approach drastically

reduces the risk of replacing good particles, because the

number of resampling operations is reduced and they are only

performed when needed.

III. S 2: E T

In the previous section, we presented a way for learning

accurate metric maps of the environment. The results of this

first step are now used to build a topological representation

4

Corridor

Room 4

Room 2Room 1 Room 3

Door 2 Door 3

Door 5

Door 4

Door 1

Room 4

Door 6

corridor room doorway

Fig. 2. The left image shows a geometric map of a typical indoor environment
with rooms, doorways, and a corridor depicted in colors/grey levels. The
middle images show two simulated range scans in the geometric map. The
right image depicts the corresponding semantic-topological map.

of the environment. The approach is based on the assumption

that indoor environments can typically be decomposed into

areas with different functionalities such as rooms, corridors,

and doorways. From these areas, we create the node of the

topological graph. The edges between the nodes are then given

by the neighborhood relation of the regions in the occupancy

map. For example, a doorway is typically connected to two

rooms, two corridors, or to a room and a corridor.

To obtain such a topology, our approach determines the

semantic class for each unoccupied cell of the grid. This is

achieved by simulating a range scan given the sensor is located

in that particular cell and then classifying this scan into one

of the semantic classes. Examples for typical simulated range

scans obtained in an office environment are shown in the

middle images of Figure 2. The classification is then done

using a sequence of classifiers learned with the AdaBoost

algorithm [27]. These classifiers are learned in a supervised

fashion from simple geometric features that are extracted from

range scans simulated in different, previously labeled maps

of standard environment. To remove noise and clutter from

the resulting classifications, we apply an approach denoted

as probabilistic relaxation labeling [25]. From the resulting

labeling, we construct a graph whose nodes correspond to

the regions of identically labeled poses and whose edges

represent the connections between them. Additionally, each

node contains geometrical information about the region it

represents, like the area, the centroid and the orientation. A

typical topological map obtained with our approach is shown

in the right image of Figure 2.

A. Semantic Classification of Locations

Boosting is a general method for creating an accurate strong

classifier by combining a set of weak classifiers. The require-

ment to each weak classifier is that its accuracy is better than

a random guessing. AdaBoost selects and arranges the best

weak classifiers h j and combines them to a strong classifier

by weighted majority voting. In this work, we will use the

boosting algorithm AdaBoost in its generalized form presented

by Schapire and Singer [27]. The input to the algorithm is a

set of labeled training examples (en, yn), n = 1, . . . ,N, where

each en is an example and each yn ∈ {+1,−1} is a value

indicating whether en is positive or negative respectively. In

our case, the training examples are composed by simulated

laser observations.

Throughout this work, we will use the approach by Viola

and Jones [32] in which each weak classifier h j depends on a

single-valued feature f j ∈ �

h j(e) =

{

+1 if p j f j(e) < p jθ j

−1 otherwise,
(15)

where θ j is a threshold and p j is either −1 or +1 and thus

represents the direction of the inequality. The parameters θ j

and p j are determined during the training process of AdaBoost.

The generalized AdaBoost is only able to predict the label of

an example as positive or negative. To additionally estimate the

probability of a particular label, we use the method suggested

by Friedman et al. [8]. It uses the output of AdaBoost

to determine a confidence value C ∈ [0, 1] for a positive

classification of an example C = P(y = +1 | e).

AdaBoost distinguishes between two classes only. In prac-

tical applications, however, one often needs to distinguish be-

tween more than two classes. To create a multi-class classifier,

we create a sequential multi-class classifier by using K − 1

binary classifiers, where K is the number of classes we want

to recognize (see [18] for further details). Additionally, we use

the method by Stachniss et al. [30], in which the classification

output of the decision list is represented by a histogram z.

These histograms can be seen as high level observations. Each

bin of z stores the probability that the classified example

belongs to the k-th class according to the sequence

z[k] = Ck

k−1∏

j=1

(1 −C j), (16)

where Ck = Pk(y = +1 | e) according to the approach of

Friedman et al. [8].

In order to build such a classifier, one needs to extract

features f j which are used in the weak classifiers. In this work,

we use geometric, single-valued features computed based on

the laser range observation. These features are rotationally

invariant and frequently used in shape analysis. Examples are

the area covered by the scan or the average beam length. A

full list of features can be found in [18].

B. Probabilistic Relaxation Labeling

One of the key problems that needs to be solved in order

to learn accurate topological maps, in which the nodes corre-

spond to the individual parts in the environment, is to eliminate

classification errors. In this section, we describe probabilistic

relaxation labeling [25] to smooth the AdaBoost classifications

based on neighborhood relations.

Probabilistic relaxation labeling is defined as follows. Let

G = (V,E) be a graph consisting of nodes V = {v1, . . . , vN}

and edges E ⊆ V × V. Let furthermore L = {l1, . . . , lL} be a

set of labels. We assume that every node vi stores a probability

distribution about its label which is represented by a histogram

Pi. Each bin pi(l) of that histogram stores the probability that

the node vi has the label l. Thus,
∑L

l=1 pi(l) = 1.

For each node vi, N(vi) ⊂ V denotes its neighborhood

which consists of the nodes v j , vi that are connected to

vi. Each neighborhood relation is represented by two values.

Whereas the first one describes the compatibility between the

labels of two nodes, the second one represents the influence

between the two nodes. The term R = {ri j(l, l
′) | v j ∈ N(vi)}

5

defines the compatibility coefficients between the label l of

node vi and the label l′ of v j. And C = {ci j | v j ∈ N(vi)} is the

set of weights indicating the influence of node v j on node vi.

Given an initial estimation for the probability distribution

over labels p
(0)

i
(l) for the node vi, the probabilistic relaxation

method iteratively computes estimates p
(r)

i
(l), r = 1, 2, . . . ,

based on the initial probabilities p
(0)

i
(l), the compatibility

coefficients R, and the weights C in the form

p
(r+1)

i
(l) =

p
(r)

i
(l)
[

1 + q
(r)

i
(l)
]

∑L
l′=1 p

(r)

i
(l′)
[

1 + q
(r)

i
(l′)
] , (17)

where

q
(r)

i
(l) =

M∑

j=1

ci j

L∑

l′=1

ri j(l, l
′)p

(r)

j
(l′)

 . (18)

Note that the compatibility coefficients ri j(l, l
′) ∈ [−1, 1] do

not need to be symmetric. A value ri j(l, l
′) close to −1 indicates

that label l′ is unlikely at node v j when label l occurs at node

vi whereas values close to 1 indicate the opposite. A value

of exactly −1 indicates that the relation is not possible and a

value of exactly 1 means that the relation always occurs.

Probabilistic relaxation provides a framework for smoothing

but does not specify how the compatibility coefficients are

computed. We use the coefficients proposed by Yamamoto [33]

ri j(l, l
′) =

1
1−pi(l)

(

1 −
pi(l)

pi j(l|l′)

)

if pi(l) < pi j(l | l
′)

pi j(l|l
′)

pi(l)
− 1 otherwise,

(19)

where pi j(l | l′) is the conditional probability that node vi

has label l given that node v j ∈ N(vi) has label l′. Each of

the values pi(l) and pi j(l | l
′) are pre-calculated only once and

remain the same during the iterations of the relaxation process.

Thus, the coefficients R remain the same as well.

So far, we described the general method for relaxation

labeling. It remains to describe how we apply this method

for spatial smoothing of the classifications obtained by our

AdaBoost classifier. To learn a topological map, we assume a

given two-dimensional occupancy grid map in which each cell

m(x,y) stores the probability that it is occupied. We furthermore

consider the eight-connected graph induced by such a grid.

Let vi = v(x,y) be a node corresponding to a cell m(x,y) from

the map. Then we define a neighborhood N8(v(x,y)) using the

8-connected cells to v(x,y) as described in [9].

For the initial probabilities p
(0)

(x,y)
(l), we use the output z of

the classifier as described in the beginning of this section.

Our set of labels is L = {corridor, room, doorway,wall}. For

each node v(x,y) in the free space of the occupancy grid map,

we calculate the expected laser scan by ray-casting in the

map. We then classify the observation and obtain a probability

distribution z over all the possible places according to Eq. (16).

The classification output z for each pose (x, y) is used to

initialize the probability distribution P
(0)

(x,y)
of node v(x,y). For

the nodes lying in the free space, the probability p
(0)

(x,y)
(wall)

of being a wall is initialized with 0. Accordingly, the nodes

corresponding to occupied cells in the map are initialized with

p
(0)

(x,y)
(wall) = 1.

Each of the weights ci j ∈ C is initialized with the value 1
8
,

indicating that all the eight neighbors v j of node vi are equally

important. The compatibility coefficients are calculated using

Eq. (19). The values pi(l) and pi j(l | l′) are obtained from

statistics in the training data.

C. Region Extraction and Topological Mapping

We define a region λl on a adjacency graph A as a set

of 8-connected nodes with the same label l. For each label

l ∈ {corridor, room, doorway}, regions are extracted from

the adjacency graph using the algorithm by Rosenfeld and

Pfaltz [26]. Each region λl is assigned a different identifier. The

connections between regions are extracted in a similar way [9].

Finally, a topological graph T = (VT ,ET) is constructed in

which each node vi ∈ VT represents a region and each edge

∈ ET represents a connection. Additionally, we add to each

node vi information about the properties of the region λl which

are the area, the centroid, and the major and minor axis of the

ellipse approximation of λl. The major and minor axis are

vectors which represent the elongation of the region and its

orientation. The graph form the final topological map together

with the region properties attached to the nodes. We finally

apply a heuristic region correction to the topological map to

increase the classification rate:

1) We mark each region corresponding to a room or a

corridor whose size does not exceed a given threshold of

1m2 compared to the training set as classification error

and assign the label of one of its connected regions.

2) We mark each region labeled as doorway whose size

does not exceed a given threshold of 0.1m2 square

meters or that is connected to only one region as false

classification and assign the label of one of its connected

regions.

IV. E

The approach described above has been implemented and

tested using real robots and datasets gathered with real robots.

We first present the results of our SLAM approach and then

illustrate how to extract the topology of the environment.

A. Mapping with Rao-Blackwellized Particle Filters

Our SLAM approach has been implemented and runs online

on standard laptop computers. The first set of experiments is

designed to show the accuracy of our solution to the SLAM

problem. Most of the maps generated by our approach can

be magnified up to a resolution of 1 cm, without observing

considerable inconsistencies. Even in big real world datasets

covering an area of approximately 250 m by 250 m, our ap-

proach never required more than 80 particles to build accurate

maps. Highly accurate grid maps have been generated with our

approach from several datasets. These maps, raw data files,

and an efficient implementation of our mapping system are

available on the web [29].

A map of the Intel Research Lab is depicted in the left

image of Figure 3 and has a size of 28 m by 28 m. The dataset

has been recorded with a Pioneer II robot equipped with a

6

Fig. 3. The Intel Research Lab. The robot starts in the upper part of the
circular corridor, and runs several times around the loop, before entering the
rooms. The left image depicts the resulting map generated with 15 particles.
The right image shows a cut-out with 1 cm grid resolution to illustrate the
accuracy of the map in the loop closure point.

TABLE I

T

 Ḧ et al. [11].

Proposal Distribution Intel MIT Freiburg Campus

our approach 8 60 20

approach of [11] 40 400 400

SICK laser range finder. To successfully correct this dataset,

our algorithm needed only 15 particles. As can be seen in the

right image of Figure 3, the quality of the final map is so high

that the map can be magnified up to 1 cm of resolution without

showing any significant errors.

In order to measure the improvement in terms of the number

of particles, we compared the performance of our system using

the informed proposal distribution to the approach done by

Hähnel et al. [11]. Table I summarizes the number of particles

needed by a RBPF for providing a topologically correct map

in at least 60% of all applications of our algorithm. In addition

to the Intel dataset, we also corrected two other dataset which

are not depicted for the sake of brevity. The corrected images

of the MIT Killian Court dataset and the Freiburg Campus can

be found on the web [29].

It turns out that in all of the cases, the number of particles

required by our approach was approximately one order of

magnitude smaller than the one required by the other ap-

proach. Moreover, the resulting maps are better due to our

improved sampling process that takes the last reading into

account. A more detailed discussion on the results of this Rao-

Blackwellized approach to mapping can be found in [10].

B. Extraction of the Topology

The goal of this second set of experiments is to demonstrate

that we can construct a topological maps based on grid

map obtained with our SLAM approach. We also show that

our method can be used to create a topological map of an

environment for which no training data is available.

The environment depicted in Figure 4 is an office environ-

ment at the university of Freiburg. It contains rooms, doorways

and a corridor. Our classifier correctly classifies 97.27% of

the test examples. The classification is depicted as colors/grey

levels in Figure 4(a). After the sequential classification, the

(a) Sequential classification (b) Incorrect regions

Door 1

Corridor

Room 4

Door 2 Door 3

Room 2Room 1

Door 4 Door 5 Door 6

Room 3 Room 5

(c) Resulting topological map

corridor room doorway

Fig. 4. This figure shows a map of the building 79 at the University of
Freiburg. (a) depicts the result of applying the sequential AdaBoost with a
classification rate of 97.27%, (b) the result of applying relaxation and the
detection of incorrect labeled regions (marked with circles), and (c) the final
topological map with the corresponding regions.

probabilistic relaxation method explained in Section III-B is

applied. This method generates more compact regions and

eliminates noise. The result is illustrated in the Figure 4(b).

Finally, the topological map is created using the connections

between regions. As can be seen in Figure 4(b), some regions

detected as doorways (marked with circles) do not correspond

to real doorways. After applying the steps described in Sec-

tion III-C on the corresponding topological map, these false

doorways are eliminated. Furthermore, the two left rooms

situated above the corridor are detected as only one region.

That is due to the fact that the doorway in between was not

completely detected. Thus, the two rooms remain connected

and are classified as only one region. The final topological

map, depicted in Figure 4(c), has a final classification rate of

98.95% of the data points.

C. Application to a New and Unknown Indoor Environment

In general, the result of the semantic classification depends

on the data used to train the classifier. In case the data used

for training the classifier is significantly different from the

environment used for mapping, the quality of the classification

decreases. This experiment analyzes whether our approach can

be used to create a topological map of a new environment

which is significantly different from the ones used for training.

To carry out the experiment, we used the classifier from the

environment shown in Figure 2 and 4. In order to obtain a

classifier with a better generalization, we used it at different

scales. The resulting classifier was then evaluated using the

SDR dataset, recorded in an empty building in Virginia, USA.

The process for obtaining the topological map is illustrated in

Figure 5. As can be seen, some rooms are originally classified

as parts of the corridor. The corridor is detected as only one

7

R 7 R 8 R 9 R 10 R 11 R 12 R 13 R 14 R 15 R 16

R 29

R 36

R 38

CORRIDOR

R 6R 1 R 2 R 5R 4R 3

R 39 R 40 R 42 R 43 R 44 R 45R 41

CORRIDOR

CORRIDOR

CORRIDOR

R 21 R 22 R 23 R 24 R 25R 17 R 18 R 19 R 20

R 31 R 32 R 33 R 34 R 35R 26 R 27 R 28
R 30

R 37

R 46

Fig. 5. This figure shows the original map of the building in the top left
image and the results of applying the sequential AdaBoost classifier in the
top right one. The lower left image depicts the resulting classification after
the relaxation an region correction, and lower right one the final topological
map with semantic information.

region, although humans potentially would prefer to separate

it into six different corridors: four horizontal and two vertical

ones.

We also analyzed the results obtained without applying

the relaxation process. This had several effects. First, omit-

ting the relaxation procedure reduces the classification rate.

Furthermore, the finally obtained regions typically are more

sparse and do not represent the original ones as well as with

relaxation. Finally, omitting the relaxation procedure increases

the number of errors in the resulting topological map. For

example, the map for the building in Virginia contained four

incorrect nodes without relaxation, whereas there were only

two incorrect nodes when we used the probabilistic relaxation.

Similar results can be obtained for the Intel dataset. Based

on the results of the Rao-Blackwellized particle filter shown

in Figure 3, we can construct the topological map. Note that

this environment has significantly different structures like, for

example, the round corridor and is therefore hard to classify.

However, as depicted in Figure 6, the resulting topology

represents the environment in a good way. The main error

in the topology are missing doorways, since the doors in this

environment look different to the environment in which the

classifiers have been learned (Figure 2 and 4).

V. RW

Mapping techniques for mobile robots can be roughly clas-

sified according to the map representation and the underlying

estimation technique. One popular map representation is the

occupancy grid [23]. Whereas such grid-based approaches

are computationally expensive and require a huge amount of

memory, they are able to represent arbitrary objects. Feature-

based representations are attractive because of their compact-

ness. However, they rely on predefined feature extractors,

which assumes that some structures in the environments are

corridor room doorway

Fig. 6. The topological map learned from the Intel Research Lab.

known in advance. Topological maps are typically the most

compact model of the environment neglecting most of the

metric information.

The work of Thrun [31] is closely related to our approach.

He also learns a metric and a topological map of the en-

vironment. The metric map is build using an incremental

scan-matching approach. This allows the robot to compensate

for odometry errors and results in accurate maps learned

from small-scale environments. Thrun furthermore constructs

a Voronoi diagram to define interest points. In his approach,

he selects voronoi points as topological nodes that describe

a local minima in the obstacle clearance. In this way, he is

able to separate, for example, two rooms that are connected

by a doorway. In contrast to that, our approach first generates

accurate maps from small- and large-scale environments by

solving the simultaneous localization and mapping problem

with a particle filter. Furthermore, we identify different areas

according to their semantic information learned from previ-

ously seen environments. This allows us to distinguish, for

example, between rooms and corridors and enables us to

identify the boundaries of the area defining the topology.

In a work by Murphy, Doucet, and colleagues [5, 24], Rao-

Blackwellized particle filters (RBPF) have been introduced

as an effective means to solve the SLAM problem. Each

particle in a RBPF represents a possible robot trajectory

and a map. The framework has been subsequently extended

by Montemerlo et al. [21, 22] for approaching the SLAM

problem with landmark maps. To learn accurate grid maps,

RBPFs have been used by Eliazar and Parr [7] and Hähnel

et al. [11]. Whereas the first work describes an efficient map

representation, the second presents an improved motion model

that reduces the number of required particles.

The SLAM technique described in Section II is an improve-

ment of the algorithm proposed by Hähnel et al. [11]. Instead

of using a fixed proposal distribution, our algorithm computes

an improved proposal distribution on a per-particle basis on

the fly. This allows us to directly use the information obtained

from the sensors while evolving the particles. The computation

of the proposal distribution is done in a similar way as in

8

FastSLAM-2 presented by Montemerlo et al. [20]. In contrast

to FastSLAM-2, our approach does not rely on predefined

landmarks and uses raw laser range finder data to acquire

accurate grid maps. The advantage of our approach is twofold.

Firstly, our algorithm draws the particles in a more effective

way. Secondly, the highly accurate proposal distribution allows

us to utilize the effective sample size as a robust indicator to

decide whether or not a resampling has to be carried out. This

further reduces the risk of particle depletion.

Bosse et al. [2] describe a generic framework for SLAM in

large-scale environments. They use a graph structure of local

maps with relative coordinate frames and always represent the

uncertainty with respect to a local frame. In this way, they are

able to reduce the complexity of the overall problem.

In the past, different algorithms for creating topological

maps have been proposed. Kuipers and Byun [15] extract

distinctive points in the map, which are defined as the local

maximum of some measure of distinctiveness. Kortenkamp

and Weymouth [13] fuse the information obtained with vision

and ultrasound sensors to determine topologically relevant

places. Shatkey and Kaelbling [28] apply a HMM learning

approach to learn topological maps in which the nodes repre-

sent points in the plane. Additionally, Kuipers and Beeson [14]

apply different learning algorithms to calculate topological

maps of environments. These approaches only identify points

in the map that have special properties but they do not include

any means for extracting the types of places or even regions.

In contrast to this, our approach presented in this paper is

able to identify complete regions in the map like corridors,

rooms or doorways, which have a direct relation with a human

understanding of the environment.

In the context of learning topological map from noisy data,

Modayil et al. [19] presented a technique which combines

metrical SLAM with topological SLAM. The topology is

utilized to solve the loop-closing problem, whereas metric

information is used to build up local structures. Similar ideas

have been realized by Lisien et al. [16], which introduce a

hierarchical map in the context of SLAM.

Additionally, several authors considered the problem of

identifying certain types of places. For example, Buschka and

Saffiotti [3] describe a virtual sensor that is able to identify

rooms from range data. Also Koenig and Simmons [12] use a

pre-programmed routine to detect doorways from range data.

Althaus and Christensen [1] use sonar data to detect corridors

and doorways.

With respect to place classification, our approach is an

extention of our previous work [18]. We additionally use a

probabilistic variant of the classifier and apply a probabilistic

relaxation labeling to incorporate similarity constraints be-

tween neighboring points and to eliminate false classifications.

The overall approach presented in this paper allows a mobile

robot to learn a highly accurate metric occupancy grid map

as well as a consistent topological model of the environment

using noisy input data. The pose correction is done by applying

a Rao-Blackwellized particle filter with an informed proposal

distribution and adaptive resampling. The topological model is

extracted based on the result of the filter and different learning

algorithms. AdaBoost is used to estimate semantic labels of

places and probabilistic relaxation labeling is applied smooth

the results. Finally, the topology can be extracted and modeled

in a graph structure.

VI. C

In this paper, we presented a method to learn accurate

metric as well as topological maps under uncertainty. We

described our algorithm that consists of two consecutive steps.

First, it applies a Rao-Blackwellized particle filter to solve the

SLAM problem and to create metric occupancy grid maps. We

compute a highly accurate proposal distribution based on the

observation likelihood of the most recent sensor information,

the odometry, and a scan-matching process. This allows us

to draw particles in a more accurate manner which seriously

reduces the number of required samples and the quality of

the resulting map. In the second step, we extract semantic

place labels from the metric model for categorizing places into

semantic classes such as rooms, doorways, and corridors. We

apply a probabilistic relaxation process to reduce classification

errors. We then extract regions and their connections which

results in a topological representation of the environment. One

advantage of this approach is that the nodes of the resulting

graph correspond to the individual semantic regions. This links

the metric and the topological representations. As a result, we

obtained an accurate grid map modeling the metric information

as well as a topological map representing the structure of the

environment.

Our approach has been implemented and evaluated using

real robots equipped with a laser range finder. Tests performed

with our algorithm in different large-scale environments have

demonstrated its robustness and the ability of generating

high quality maps. The approach is well-suited to extract the

topology from indoor environments even without training the

classifier for each environment individually.

A

This work has partly been supported by the German Re-

search Foundation (DFG) under contract number SFB/TR-8,

and by the EC under contract number FP6-004250-CoSy, FP6-

IST-027140-BACS, and FP6-2005-IST-5-muFly. The authors

would like to acknowledge Andrew Howard for providing us

the SDR dataset and Dirk Hähnel for the Intel Research Lab

and the Belgioioso dataset.

R

[1] P. Althaus and H.I. Christensen. Behaviour coordination in structured
environments. Advanced Robotics, 17(7):657–674, 2003.

[2] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An ALTAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 1899–1906, Taipei, Taiwan, 2003.
[3] P. Buschka and A. Saffiotti. A virtual sensor for room detection. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), pages 637–642, Lausanne, Switzerland, 2002.
[4] A. Doucet. On sequential simulation-based methods for bayesian filter-

ing. Technical report, Signal Processing Group, Dept. of Engeneering,
University of Cambridge, 1998.

[5] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Black-
wellized partcile filtering for dynamic bayesian networks. In Proc. of

the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 176–183,
Stanford, CA, USA, 2000.

9

[6] A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-

Carlo Methods in Practice. Springer Verlag, 2001.
[7] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous local-

ization and mapping without predetermined landmarks. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), pages 1135–1142, Acapulco,
Mexico, 2003.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a
statistical view of boosting. Annals of Statistics, 28(2):337–407, 2000.

[9] R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley
Publishing Inc., 1987.

[10] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on

Robotics, 23(1):34–46, 2007.
[11] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM

algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211, Las Vegas, NV,
USA, 2003.

[12] S. Koenig and R. Simmons. Xavier: A robot navigation architecture
based on partially observable markov decision process models. In D. Ko-
rtenkamp, R. Bonasso, and R. Murphy, editors, Artificial Intelligence

Based Mobile Robotics: Case Studies of Successful Robot Systems, pages
91–122. MIT Press, 1998.

[13] D. Kortenkamp and T. Weymouth. Topological mapping for mobile
robots using a combination of sonar and vision sensing. In Proc. of the

Twelfth National Conference on Artificial Intelligence, pages 979–984,
1994.

[14] B. Kuipers and P. Beeson. Bootstrap learning for place recognition.
In Proc. of the National Conference on Artificial Intelligence (AAAI),
Edmonton, Canada, 2002.

[15] B. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. Journal of

Robotics & Autonomous Systems, 8:47–63, 1991.
[16] B. Lisien, D. Silver D. Morales, G. Kantor, I.M. Rekleitis, and H. Choset.

Hierarchical simultaneous localization and mapping. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages
448–453, Las Vegas, NV, USA, 2003.

[17] J.S. Liu. Metropolized independent sampling with comparisons to
rejection sampling and importance sampling. Statist. Comput., 6:113–
119, 1996.

[18] O. Martı́nez-Mozos, C. Stachniss, and W. Burgard. Supervised learn-
ing of places from range data using adaboost. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), pages 1742–1747,
Barcelona, Spain, 2005.

[19] J. Modayil, P. Beeson, and B. Kuipers. Using the topological skeleton
for scalable global metrical map-building. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), pages 1530–1536,
Sendai, Japan, 2004.

[20] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, Acapulco, Mexico,
2003.

[21] M. Montemerlo and S. Thrun. Simultaneous localization and mapping
with unknown data association using FastSLAM. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 1985–1991, Taipei,
Taiwan, 2003.

[22] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping. In Proc. of

the National Conference on Artificial Intelligence (AAAI), pages 593–
598, Edmonton, Canada, 2002.

[23] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AI

Magazine, pages 61–74, Summer 1988.
[24] K. Murphy. Bayesian map learning in dynamic environments. In

Proc. of the Conf. on Neural Information Processing Systems (NIPS),
pages 1015–1021, Denver, CO, USA, 1999.

[25] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by
relaxation operations. IEEE Trans. Systems. Man. Cybernet, 6(6):420–
433, 1976.

[26] A. Rosenfeld and J. L. Pfaltz. Sequential operations in digital picture
processing. Journal of the Association for Computing Machinery,
13(4):471–494, 1966.

[27] R.E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Mach. Learn., 37(3):297–336, 1999.

[28] H. Shatkey and L.P. Kaelbling. Learning topological maps with weak
local odometric information. In Proc. of the Int. Conf. on Artificial

Intelligence (IJCAI), 1997.

[29] C. Stachniss and G. Grisetti. Mapping results obtained with
Rao-Blackwellized particle filters. http://www.informatik.uni-
freiburg.de/∼stachnis/research/rbpfmapper/, 2004.

[30] C. Stachniss, O. Martı́nez-Mozos, A. Rottmann, and W. Burgard. Se-
mantic labeling of places. In Proc. of the Int. Symposium of Robotics

Research (ISRR), San Francisco, CA, USA, 2005.
[31] S. Thrun. Learning metric-topological maps for indoor mobile robot

navigation. Artificial Intelligence, 99(1):21–71, 1998.
[32] P. Viola and M.J. Jones. Robust real-time object detection. In

Proc. of IEEE Workshop on Statistical and Theories of Computer Vision,
Vancouver, Canada, 2001.

[33] H. Yamamoto. A method of deriving compatibility coefficents for
relaxation operators. Compt. Graph. Image Processing, 10:256–271,
1979.

[J9] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi.

Fast and accurate slam with rao-blackwellized particle filters. Robots and

Autonomous Systems, 55(1):30–38, 2007.

Fast and Accurate SLAM

with Rao-Blackwellized Particle Filters

Giorgio Grisetti a,b Gian Diego Tipaldi b Cyrill Stachniss c,a

Wolfram Burgard a Daniele Nardi b

aUniversity of Freiburg, Department of Computer Science, D-79110 Freiburg, Germany

bDipartimento Informatica e Sistemistica, Universitá “La Sapienza”, I-00198 Rome, Italy

cSwiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland

Abstract

Rao-Blackwellized particle filters have become a popular tool to solve the simultaneous

localization and mapping problem. This technique applies a particle filter in which each

particle carries an individual map of the environment. Accordingly, a key issue is to re-

duce the number of particles and/or to make use of compact map representations. This

paper presents an approximative but highly efficient approach to mapping with Rao-Black-

wellized particle filters. Moreover, it provides a compact map model. A key advantage is

that the individual particles can share large parts of the model of the environment. Further-

more, they are able to reuse an already computed proposal distribution. Both techniques

substantially speed-up the overall filtering process and reduce the memory requirements.

Experimental results obtained with mobile robots in large-scale indoor environments and

based on published standard datasets illustrate the advantages of our methods over previous

mapping approaches using Rao-Blackwellized particle filters.

Key words: SLAM, Rao-Blackwellized particle filter, grid map, informed proposal

PACS:

1 Introduction

Learning maps is a fundamental task of mobile robots and a lot of researchers

focused on this problem. In the literature, the mobile robot mapping problem is

often referred to as the simultaneous localization and mapping (SLAM) problem [1,

2, 3, 4, 5, 6, 7, 8]. In general, SLAM is a complex problem because for learning

a map the robot requires a good pose estimate while at the same time a consistent

map is needed to localize the robot. This dependency between the pose and the map

estimate makes the SLAM problem hard and requires to search for a solution in a

high-dimensional space.

Preprint submitted to Elsevier Science October 10, 2006

Murphy, Doucet, and colleagues [7, 9] introduced Rao-Blackwellized particle fil-

ters (RBPFs) as an effective means to solve the SLAM problem. The main problem

of Rao-Blackwellized particle filters lies in their complexity, measured in terms of

the number of particles required to learn an accurate map. Reducing this quantity

is one of the major challenges for this family of algorithms.

The contribution of this paper is a technique that reduces the computational and the

memory requirements in the context of mapping with Rao-Blackwellized particle

filters. In this way, it becomes feasible to maintain a comparably large set of par-

ticles online. This is achieved by enabling a subset of samples to share large parts

of the map and to use the same proposal distribution. Our system allows a standard

laptop computer to perform all computations necessary to learn accurate maps with

more than one thousand samples online.

This paper is organized as follows. After the discussion of related work, we briefly

introduce mapping with RBPFs. We then describe our technique for efficiently

drawing particles from a proposal distribution. After this, we present our map rep-

resentation and the concept of particle clusters. Finally, we show experiments illus-

trating the improvements of our approach to map learning with RBPFs.

2 Related Work

The estimation techniques for the SLAM problem can be classified according to

their underlying basic principle. The most popular approaches are extended Kalman

filters (EKFs), maximum likelihood techniques, sparse extended information filters

(SEIFs), and Rao Blackwellized particle filters (RBPFs). The effectiveness of the

EKF approaches comes from the fact that they estimate a fully correlated posterior

over landmark maps and robot poses [10, 11]. Their weakness lies in the strong

assumptions that have to be made on the robot motion model and the sensor noise.

Moreover, in the basic framework the landmarks are assumed to be uniquely iden-

tifiable. There exist techniques [12] to deal with unknown data association in the

SLAM context, however, if certain assumptions are violated, the filter is likely to

diverge [13].

Thrun et al. [8] proposed a SEIF method which is based on the inverse of the co-

variance matrix. In this way, measurements can be integrated efficiently. Eustice et

al. [14] presented an improved technique to accurately compute the error-bounds

within the SEIF framework and thus reduces the risk of becoming overly confident.

Paskin [15] presented a solution to the SLAM problem using thin junction trees.

This reduces the complexity compared to EKF-based approaches since thinned

junction trees provide a linear-time filtering operation.

An alternative approach is to use a maximum likelihood algorithm that computes

a map by constructing a network of relations. The relations represent the spatial

2

constraints between the poses of the robot [3, 16]. The main difference to RBPFs

is that the maximum likelihood approach can only track a single mode of the dis-

tribution about the trajectory of the robot. It computes the solution by minimizing

the least square error introduced by the constraints.

Lisien et al. [17] realized an hierarchical map model in the context of SLAM and

reported that this improves loop-closing. Bosse et al. [18] describe a generic frame-

work for SLAM in large-scale environments. They use a graph structure of local

maps with relative coordinate frames similar to the work described in [19]. This

approach is able to reduce the complexity of the overall problem and it better deals

with the linearizations in the context of EKF-SLAM. Our approach is related to this

framework since we also use local maps attached to a graph structure to model the

environment. However, our motivation to use such a map representation is to allow

multiple particles to share local maps and to compute the proposal distributions in

an efficient way.

Murphy [7] introduced Rao-Blackwellized particle filters as an effective means to

solve the SLAM problem. Each particle in a RBPF represents a potential trajectory

of the robot and a map of the environment. The framework has been subsequently

extended by Montemerlo et al. [5, 6] for approaching the SLAM problem with

landmarks. To learn accurate grid maps, Hähnel et al. [4] presented an improved

motion model that reduces the number of required particles. A combination of the

approach of Hähnel et al. and Montemerlo et al. as been presented by Grisetti et

al. [2], which extends the ideas of FastSLAM-2 [5] to the grid map case. We present

in this paper an approximative solution to RBPF-based mapping which describes

how to draw particles and how to represent the maps of the particles so that the

system can be executed significantly faster and needs less memory resources.

There exist other approaches to mapping with RBPFs like DP-SLAM [1] that pro-

vide a compact map representation. This approach stores an ancestry tree of parti-

cles. Furthermore, each cell of their grid map maintains a tree of poses from which

that cell has been observed. This allows the system to store the map hypotheses

in an compact manner. Additionally, the resampling can be carried out more ef-

ficiently. In contrast to that, our map representation enables us to reuse already

computed proposal distributions for multiple samples. This is done by carrying out

a coordinate transformation between the reference frames stored in our graph struc-

ture.

The contribution of this paper is a computational and memory efficient Rao-Black-

wellized particle filter for SLAM. Our approach allows the robot to efficiently de-

termine the proposal distributions to sample the next generation of particles in an

approximative manner. Additionally, we present a compact map model in which

multiple particles share local maps. This enables us to maintain substantially more

samples with less memory and computational requirements compared to state-of-

the-art mapping approach using Rao-Blackwellized particle filters.

3

3 Learning Maps with Rao-Blackwellized Particle Filters

The key idea of the Rao-Blackwellized particle filter for SLAM is to estimate the

joint posterior p(x1:t, m | z1:t, u1:t−1) about the trajectory x1:t = x1, . . . , xt of the

robot and the map m of the environment given the observations z1:t = z1, . . . , zt and

odometry measurements u1:t−1 = u1, . . . , ut−1. It does so by using the following

factorization:

p(x1:t, m | z1:t, u1:t−1) = p(x1:t | z1:t, u1:t−1)p(m | x1:t, z1:t) (1)

In this equation, the posterior p(x1:t | z1:t, u1:t−1) is similar to the localization prob-

lem, since only the trajectory of the vehicle needs to be estimated. This estimation

is performed using a particle filter which incrementally processes the observations

and the odometry readings as they are available. The second term p(m | x1:t, z1:t)
can be computed efficiently since the poses x1:t of the robot are known when esti-

mating the map m. Therefore, a Rao-Blackwellized particle filter for SLAM main-

tains an individual map for each sample and updates this map based on the trajec-

tory estimate of the sample upon “mapping with known poses”.

A mapping system that applies a RBPF requires a proposal distribution in order to

draw the next generation of samples. The general framework leaves open which

proposal should be used and how it should be computed. A proposal distribu-

tion typically used in the context of Monte-Carlo localization is the motion model

p(xt | xt−1, ut−1). This proposal, however, is sub-optimal since it does not consider

the observations of the robot to predict its motion. As pointed out by several au-

thors [20, 5], problem-specific proposal distributions are needed in order to build an

efficient mapping system. The approach presented in this paper, makes use of our

previously defined [2] proposal distribution. It transfers the ideas of FastSLAM-

2 [5] to the grid map case. Under the Markov assumption, the optimal proposal

distribution [20] is

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) =

p(zt | m
(i)
t−1, xt)p(xt | x

(i)
t−1, ut−1)

∫

p(zt | m
(i)
t−1, x

′)p(x′ | x
(i)
t−1, ut−1) dx′

. (2)

Whenever a laser range finder is used, one can observe that the observation likeli-

hood p(zt | mt−1, xt) is much more peaked than the motion model p(xt | xt−1, ut−1).
The observation likelihood dominates the product in Eq. (2) in the meaningful area

of the distribution. Therefore, we approximate p(xt | xt−1, ut−1) by a constant k

within this meaningful area L(i). Under this approximation, the proposal turns into

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) ≃ p(zt | m

(i)
t−1, xt) ·

[∫

x′∈L(i)
p(zt | m

(i)
t−1, x

′) dx′

]
−1

.

(3)

Eq. (3) can be computed by evaluating p(zt | m
(i)
t−1, xt) on a grid which is bounded

by the maximum odometry error. Alternatively, one can use a set of sampled points

4

{xj} and then evaluate point-wise the observation likelihood. In order to efficiently

sample the next generation of particles, one can approximate this distribution by

a Gaussian. For each particle i, the parameters µ
(i)
t and Σ

(i)
t of the Gaussian are

computed as

µ
(i)
t =

1

η(i)

K∑

j=1

xj · p(zt | m
(i)
t−1, xj) (4)

Σ
(i)
t =

1

η(i)

K∑

j=1

p(zt | m
(i)
t−1, xj) · (xj − µ

(i)
t)(xj − µ

(i)
t)T . (5)

Here η =
∑K

j=1 p(zt | m
(i)
t−1, xj) is a normalizer. Note that µ

(i)
t and Σ

(i)
t are calcu-

lated for each particle individually which is computationally expensive but leads

to an informed proposal distribution. This allows us to draw particles in an more

accurate manner which seriously reduces the number of required samples.

4 Speeding Up the Computation of the Proposal

The problem of the method presented above is the computational complexity of the

informed proposal distribution since it has to be done for each sample individually.

As a result, such a mapping system runs online only for small particle sets. Fur-

thermore, each particle maintains a full grid map which requires to store large grid

structures in the memory. To overcome this limitation, we present a way to utilize

intermediate results in order to efficiently determine the proposal for the individual

samples. Our implementation extends the open-source implementation [21] of the

mapping system of Grisetti et al. [2] which originally makes use of the proposal

distribution presented in the previous section.

The proposal distribution is needed to model the relative movement of the vehi-

cle under uncertainty. In most situations, this uncertainty is similar for all samples

within one movement. It therefore makes sense to use the same uncertainty to prop-

agate the particles. We derive a way to sample multiple particles from the same

proposal. As a result, the time consuming computation of the proposal distribution

can be carried out for a few particles that are representatives for groups of similar

samples.

Furthermore, we observed that local maps which are represented in a particle-

centered coordinate frame look similar for many samples. We therefore present a

compact map model in which multiple particles can share their local maps. Instead

of storing a full grid map, each sample maintains only a set of reference frames for

the different local maps. This substantially reduces the memory requirements of the

mapping algorithm.

5

4.1 Different Situations During Mapping

Before we derive our new proposal distributions, we start with a brief analysis of the

behavior of a RBPF. One can distinguish three different types of situations during

mapping:

• The robot is moving through unknown areas,

• is moving through known areas, or

• is closing a loop. Here, closing a loop means that the robot first moves through

unknown areas and then reenters known terrain. It can be seen as moving along a

so far non traversed shortcut from current pose of the robot to an already known

area (see also [22]).

In each of those situations, the filter behaves differently. Whenever the robot is

moving through unknown terrain, the uncertainty about the pose of the robot grows.

This is due to the fact that the errors are accumulated along the trajectory. The

resulting uncertainty can only be bounded by observations which cover a (partially)

known region.

In the second case, a map of the surroundings of the robot is known and in this

way the SLAM problem turns into a localization problem which is typically easier

to handle. Whenever the robot is closing a loop, the particle cloud is often widely

spread. By reentering known areas, the filter can typically determine which parti-

cles are consistent with their own map and which are not. As a result, such a situ-

ation leads to an unbalanced distribution of particle weights. The next resampling

action then eliminates a series of unlikely hypotheses and the uncertainty decreases.

For each of these three situations, we will present a proposal distribution that needs

to be computed only for a small set of representatives rather than for all particles.

Throughout this paper, we make the following three assumptions.

Assumption 1 The current situation is known, which means that the robot can

determine whether it is moving through unknown terrain, within a known area,

or is closing a loop.

Assumption 2 The corresponding local maps of two samples are similar if con-

sidered in a particle-centered reference frame. In the following, we refer to this

property as local similarity of the maps.

Assumption 3 An accurate algorithm for pose tracking is used and the observa-

tions are affected by a limited sensor noise.

4.2 Computing the Proposal for Unknown Terrain

For proximity sensors like laser range finders, the observations of the robot cover

only a local area around the robot. As a result, we only need to consider the sur-

6

(d)(a) (b) (c)

Figure 1. Image (a) depicts the pose of a particle, its local map, and the computed proposal

which represented by the blue/dashed ellipse. Image (b) illustrates the proposal distribution

represented in the ego-centric reference frame of that sample. Image (c) shows a second

particle and its map. By carrying out a coordinate transform, the proposal of the first particle

can be used by the second particle as long as their maps are (locally) similar (d).

roundings of the robot when computing the proposal distribution. Let m̃
(i)
t−1 refer to

the local map of particle i around its previous pose x
(i)
t−1. In the surroundings of the

robot, we can approximate

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) ≃ p(xt | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (6)

Let ⊕ and ⊖ be the standard pose compounding operators (see [16]): a ⊖ b is an

operator that translates all the points in the domain of the function a so that the

new origin of the domain of a is b and ⊕ is its inverse. The local similarity between

maps (Assumption 2) allows us to write m̃
(i)
t−1 ⊖ x

(i)
t−1 ≃ m̃

(j)
t−1 ⊖ x

(j)
t−1. In this case,

the proposal distribution for different particles are similar if transformed to an ego-

centric reference frame

p(xt ⊖ x
(j)
t−1 | m̃

(j)
t−1, x

(j)
t−1, zt, ut−1)≃ p(xt ⊖ x

(i)
t−1 | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (7)

As a result, we can determine the proposal for a particle j by computing the pro-

posal in the reference frame of particle i and then translating it to the reference

frame of particle j

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1)≃ p(x

(j)
t−1 ⊕ (xt ⊖ x

(i)
t−1) | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (8)

This computation is illustrated in Figure 1. It shows how to transform a proposal

between particles. The complex proposal computation needs to be performed only

once and can then be translated to the reference frame of the other particles.

4.3 Computing the Proposal for Already Visited Areas

Whenever the robot moves through known areas, each particle stays localized in

its own map according to Assumption 3. To update the new pose of each particle

while the robot moves, we choose the pose xt that maximizes the likelihood of the

observation around the pose predicted by odometry

x
(i)
t = argmax

xt

p(xt | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1). (9)

7

Analog to Eq. (6)-(8), we can express the proposal of particle j using the one of

particle i. The only difference is that we do not apply the ⊕ and ⊖ operators based

on the poses of the samples. Instead, the operators are applied based on the particle

dependent reference frames l(i) and l(j) of the local maps. These reference frames

were established whenever the robot visits the corresponding area for the first time.

This results in

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1)≃ p(l(j) ⊕ (xt ⊖ l(i)) | m̃

(i)
t−1, x

(i)
t−1, zt, ut−1). (10)

Combining Eq. (9) and Eq. (10) leads to

x
(j)
t = argmax

xt

p(xt | m̃
(j)
t−1, x

(j)
t−1, zt, ut−1) (11)

≃ argmax
xt

p(l(j) ⊕ (xt ⊖ l(i)) | m̃
(i)
t−1, x

(i)
t−1, zt, ut−1) = l(j) ⊕ (x

(i)
t ⊖ l(i)).(12)

Under the Assumptions 2 and 3, we can estimate the poses of all samples according

to Eq. (12) (while moving through known areas). In this way, the complex compu-

tation of an informed proposal needs to be done only once.

4.4 Computing the Proposal When Closing a Loop

In contrast to the two situations described before, the computation of the proposal

is more complex in case of a loop-closure. This is due to the fact that Assump-

tion 2 (local similarity) is typically violated even for subsets of particles. Let us

assume that the particle cloud is widely spread when the loop is closed. Typically,

the individual samples reenter the previously mapped terrain at different locations.

This results in different hypotheses about the topology of the environment and

definitively violates Assumption 2. Dealing with such a situation, requires addi-

tional effort in the estimation process.

Whenever a particle i closes a loop, we consider that the map m̃
(i)
t−1 of its surround-

ings consists of two components. Let m
(i)
loop refer to the map of the area, the robot

seeks to reenter. Then, m
(i)
local is the map constructed from the most recent measure-

ments without the part of the map that overlaps with m
(i)
loop. Since those two maps

are disjoint and under the assumption that the individual grid cells are independent,

we can use a factorized form for our likelihood function

p(zt | xt, m
(i)
local, m

(i)
loop)∝ p(zt | xt, m

(i)
local) · p(zt | xt, m

(i)
loop). (13)

For efficiency reasons, we use only the local map m
(i)
local to compute the proposal

and do not consider m
(i)
loop. This procedure is valid but requires to adapt the weight

computation. According to the importance sampling principle, this leads to

8

w
(i)
t = w

(i)
t−1 ·

p(x
(i)
t | zt, x

(i)
t−1, m

(i)
local, m

(i)
loop, ut−1)

p(x
(i)
t | zt, x

(i)
t−1, m

(i)
local, ut−1)

(14)

= w
(i)
t−1 ·

η
(i)
1 p(zt | x

(i)
t , m

(i)
local)p(zt | x

(i)
t , m

(i)
loop)

η
(i)
2 p(zt | x

(i)
t , m

(i)
local)

(15)

= w
(i)
t−1 · p(zt | x

(i)
t , m

(i)
loop)

η
(i)
1

η
(i)
2

, (16)

where η1 and η2 are normalization factors resulting from Bayes’ rule.

Note that the computation of the proposal in case of a loop-closure is more ex-

pensive than in the two other situations. Fortunately, loop-closing situations occur

rarely. The robot has to travel through unknown and eventually known terrain for a

comparably long period of time before a loop-closure can occur.

4.5 Approximative Importance Weight Computation

We observed in practical experiments that the normalizing factors η1 and η2 in

Eq. (16) have only a minor influence on the overall weight. In order to speed up the

computation of the importance weights, we approximate Eq. (16) by

w
(i)
t ≃ w

(i)
t−1 · p(zt|x

(i), m
(i)
loop) (17)

in which the normalizing factors are neglected. This is significantly faster to com-

pute and as we will demonstrate in the experiments leads to almost identical impor-

tance weights.

5 Achieving Situation Estimation, Local Similarity, and Pose Tracking

All of the derivations made in the previous section require that the robot knows

whether it is moving through unknown terrain, through a previously mapped area,

or is currently closing a loop (Assumption 1). Here, we describe how to distinguish

the different cases. Detecting the first two situations can be done in a straight-

forward way by comparing the area covered by the current observation given the

particle pose and the map constructed so far.

In general, it is more difficult to decide whether or not the robot is closing a loop. To

detect loop closures, we apply the approach proposed by Stachniss et al. [22]. We

use a dual representation consisting of a topologic map that models the trajectory

of the vehicle and a grid map. By comparing both representations, one is able to

accurately determine whether or not a robot is closing a loop.

Assumption 2 (local similarity) typically holds only up to the first loop closure but

is then violated. By explicitly modeling the different topological hypotheses, it is

9

robot

newly created particle clustersoriginal cluster

uncertainty

Figure 2. The left image depicts a cluster while the robot is approaching a loop-closure.

The shown particle cluster splits up into three different clusters (topology hypotheses) as

depicted in the right image.

still possible to represent the posterior in an appropriate way. To achieve local sim-

ilarity, we introduce the notion of a particle cluster which describes a subset of

particles for which the assumption of local similarity between maps holds. Ambi-

guities in the posterior can then be modeled using multiple particle clusters.

In the beginning of the mapping process, we start with a single cluster, but af-

ter closing a loop, multiple topology hypotheses typically occur. In this situation,

the cluster needs to be split up. Therefore, we determine which particle belongs

to which topological hypothesis in order to form new clusters. In our current im-

plementation, we group the samples according to their Euclidian distance to the

different nodes in their own graph structure of reference frames. For each particle,

we first determine the list of nodes in the field of view of that sample. We order this

list according to the Euclidian distance from the pose represented by the sample

to the corresponding node. Then, a cluster is given by the samples which have the

same list of nodes. An example which illustrates how new clusters arise in case of

a loop-closure is depicted in Figure 2. Note that we currently do not merge clus-

ters. Throughout our experiments, we observed that multiple particle clusters are

created when closing a loop. The actual number ranges up to 50. However, after a

few iterations only a small number of clusters (typically up to five) survive.

In our current implementation, we represent a map as a set of local maps also

called patches. A global map for a given particle can be obtained by specifying the

location of each patch within a global reference frame. Each sample therefore has

to store only a list of reference frames l(i)n for the patches. In this way, the individual

patches P1, . . . ,PN need to be stored only once per cluster. The map of particle i

can be computed by m(i) =
⋃

n l(i)n ⊕ Pn.

Within one particle cluster, the local maps of each particle fulfills the assumption

of local similarity. Therefore, they can share their patches. This results in a more

compact representation compared to storing individual grid maps. In our current

mapping system, we used a graph structure where each node is a reference to the

corresponding patch. Furthermore, the state vector s
(i)
t and the clusters Ck are rep-

10

Figure 3. Learned map of the MIT Killian Court, the Intel Research lab, and the ACES

dataset using our approach.

resented as

s
(i)
t =

〈

x
(i)
t

︸︷︷︸

robot pose

, k
︸︷︷︸

cluster ID

, l
(i)
1 , . . . , l

(i)
Nk

︸ ︷︷ ︸

patch locations

〉

Ck =

〈

P1, . . . ,PNk
︸ ︷︷ ︸

pointers to patches

, {el,m}
︸ ︷︷ ︸

graph edges

〉

.

(18)

Note that the number Nk of patches does not grow with the length of the trajectory

traveled by the robot. It grows with the number of relevant patches which is related

to the size of the environment.

To fulfill Assumption 3, we apply an incremental scan alignment technique based

on laser range finder data. The experiments presented in this paper indicate that

this setup/implementation is sufficient to satisfy the three assumptions. As a result,

we obtain a mapping system which provides highly accurate maps in a fast and

memory efficient manner.

6 Experiments

In this section, we present experiments performed on real robot datasets which are

commonly used within the robotics community. In the first experiment, we cor-

rected several log files using our approach. The left image of Figure 3 depicts the

resulting map of the MIT Killian Court. This is a challenging dataset, since the en-

vironment is large (it took 2.5h to record this log file) and contains several nested

loops which can rise the problem of particle depletion. As shown in the figure, the

map does not contain any inconsistencies like for example double walls. Compara-

ble results have been obtained using the Intel Research, the Austin ACES dataset,

shown in the same figure.

11

Table 1

Comparison of memory and computational resources for the MIT dataset using a PC with

a 1.3 GHz CPU.

#particles execution time max. memory

our approach 2,000 51 min 210 MB

our approach 1,000 41 min 180 MB

our approach 500 30 min 165 MB

RBPF of [21] 150 (memory swapping) 2.9 GB

RBPF of [21] 80 300 min 1.5 GB

RBPF of [21] 50 190 min 1 GB

The second experiment is designed to show the advantages of our approach com-

pared to a RBPF-based mapper without our optimizations. For this comparison,

we used the open-source mapper provided in [21]. We compared the overall time,

needed to correct the MIT Killian Court dataset and the memory used to store the

maps. This was done using a (comparably slow) PC with a 1.3 GHz CPU and 1.5

GB RAM. The results of both mapping approaches are summarized in Table 1. In

our current implementation, the filter update for each cluster takes in average 20 ms

when moving through known terrain and 200 ms when moving through unknown

terrain. When actually closing a loop, each particle requires approximatively 2 ms

of execution time while the check for the closure takes around 0.3 ms per sample.

Since the approximated proposal is not as accurate as the original one, we need

more particles to achieve the same robustness in filter convergence and quality of

the resulting maps. However, we can maintain more than one order of magnitude

more particles while requiring less runtime and memory. In all our experiments,

this sufficiently accounted for the less accurately drawn samples.

The savings on runtime are mainly caused by transforming an already computed

proposal distribution so that it can be used for several particles instead of computing

it from scratch each time. The memory savings are due to the fact that all particles

within a cluster can share a their local grid maps. Furthermore, the memory usage

and runtime of our approach grows comparably slow when increasing the number

of particles. The reason is that the complexity of our filter grows mainly with the

number of topological hypotheses (particle clusters) which need to be maintained

and only indirectly with the number of samples. Note that the maximum memory

required by our approach is considerably higher than the amount of memory typi-

cally used. There exist a few peaks in the memory usage which arise from a loop

closure where several clusters are temporarily created but deleted after a few steps

(compare Figure 4). The typical memory usage is around 20% of the maximum

usage.

12

 0

 100

 200

 300

 400

 500

 0

 10

 20

 30

 40

 50

n
u
m

b
er

 o
f

p
at

ch
es

n
u
m

b
er

 o
f

cl
u
st

er
s

time

patches
clusters

Figure 4. This plot depicts the number of patches in the memory and the number of clusters

over time for the MIT dataset using 1.500 particles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

im
p

o
rt

an
ce

 w
ei

g
h

t

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

time

approximated
exact

Figure 5. Difference in the particle weights caused the approximative computation for three

different samples during a loop-closure. The left and middle image show typical results, the

right one depicts the one of the worst results during our experiments.

Figure 4 depicts the number of patches that need to be stored and the number of

clusters during the estimation process of the MIT dataset with 1,500 particles. As

can be seen, the number of clusters is typically small until a loop closure occurs. At

this point, the number of clusters increases. However, after a short period of time

most of the clusters vanish.

The last experiment evaluates the error introduced by our approximative impor-

tance weight computation when closing a loop. As presented in Eq. (17), we ig-

nore the normalization factors to achieve a faster estimation. We analyzed the loop-

closing actions and in most situations the approximation error was small. Figure 5

depicts the differences between the sound computation and our approximation for

three different particles during a loop closure. For a more quantitative evaluation

between both methods, we computed the KL-divergence (KLD) between the distri-

bution of the importance weights in both cases. It turned out, that the average KLD

was only 0.02 (a KLD of 0 means that the distributions are equal and the higher the

value the more different are the distributions). Substantiated by the good approxi-

mation quality, we ignore the evaluation of η1 and η2 when computing the particle

importance weight.

7 Conclusion

In this paper, we presented efficient optimizations for Rao-Blackwellized particle

filters applied to solve the SLAM problem on grid maps. We are able to update

the complex posterior requiring substantially less computational and memory re-

13

sources. This is achieved by performing the computations only for a set of repre-

sentatives instead of for all particles. We extended a state-of-the-art mapping sys-

tem in a way that the computation of the proposal distribution is significantly faster

and needs only a fraction of the memory resources. The key idea is that clusters of

particles can share large parts of their map model as well as an informed proposal

distribution used to draw the next generation of particles.

With our optimizations, we are able to maintain more than one order of magni-

tude more samples and at the same time require less memory and computational

resources compared to other state-of-the-art mapping techniques using Rao-Black-

wellized particle filters. With this comparably high number of particles that we

are able to maintain, we can compensate for the errors introduced by our approxi-

mations. Our approach has been implemented, tested, and evaluated based on real

robots and standard log files used within the SLAM community to demonstrate the

accuracy and benefits of our system.

Acknowledgment

This work has partly been supported by the German Research Foundation (DFG)

under contract number SFB/TR-8 (A3), and by the EC under contract number FP6-

004250-CoSy and FP6-IST-027140-BACS. The authors would like to acknowledge

Mike Bosse and John Leonard for providing us the dataset of the MIT Killian Court,

Patrick Beeson for the ACES dataset, and Dirk Hähnel for the Intel Research Lab.

References

[1] A. Eliazar, R. Parr, DP-SLAM: Fast, robust simultainous localization and mapping

without predetermined landmarks, in: Proc. of the Int. Conf. on Artificial Intelligence

(IJCAI), Acapulco, Mexico, 2003, pp. 1135–1142.

[2] G. Grisetti, C. Stachniss, W. Burgard, Improving grid-based slam with Rao-

Blackwellized particle filters by adaptive proposals and selective resampling, in:

Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Barcelona, Spain,

2005, pp. 2443–2448.

[3] J.-S. Gutmann, K. Konolige, Incremental mapping of large cyclic environments, in:

Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and

Automation (CIRA), Monterey, CA, USA, 1999, pp. 318–325.

[4] D. Hähnel, W. Burgard, D. Fox, S. Thrun, An efficient FastSLAM algorithm

for generating maps of large-scale cyclic environments from raw laser range

measurements, in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), Las Vegas, NV, USA, 2003, pp. 206–211.

14

[5] M. Montemerlo, S. T. D. Koller, B. Wegbreit, FastSLAM 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges,

in: Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003,

pp. 1151–1156.

[6] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, FastSLAM: A factored solution

to simultaneous localization and mapping, in: Proc. of the National Conference on

Artificial Intelligence (AAAI), Edmonton, Canada, 2002, pp. 593–598.

[7] K. Murphy, Bayesian map learning in dynamic environments, in: Proc. of the Conf. on

Neural Information Processing Systems (NIPS), Denver, CO, USA, 1999, pp. 1015–

1021.

[8] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, H. Durrant-Whyte, Simultaneous

localization and mapping with sparse extended information filters, Int. Journal of

Robotics Research 23 (7/8).

[9] A. Doucet, J. de Freitas, K. Murphy, S. Russel, Rao-Blackwellized partcile filtering

for dynamic bayesian networks, in: Proc. of the Conf. on Uncertainty in Artificial

Intelligence (UAI), Stanford, CA, USA, 2000, pp. 176–183.

[10] J. Leonard, H. Durrant-Whyte, Mobile robot localization by tracking geometric

beacons, IEEE Transactions on Robotics and Automation 7 (4) (1991) 376–382.

[11] R. Smith, M. Self, P. Cheeseman, Estimating uncertain spatial realtionships in

robotics, in: I. Cox, G. Wilfong (Eds.), Autonomous Robot Vehicles, Springer Verlag,

1990, pp. 167–193.

[12] J. Neira, J. Tardós, Data association in stochastic mapping using the joint compatibility

test, IEEE Transactions on Robotics and Automation 17 (6) (2001) 890–897.

[13] U. Frese, G. Hirzinger, Simultaneous localization and mapping - a discussion, in:

Proc. of the IJCAI Workshop on Reasoning with Uncertainty in Robotics, Seattle,

WA, USA, 2001, pp. 17–26.

[14] R. Eustice, M. Walter, J. Leonard, Sparse extended information filters: Insights into

sparsification, in: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), Edmonton, Cananda, 2005, pp. 641–648.

[15] M. Paskin, Thin junction tree filters for simultaneous localization and mapping, in:

Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003, pp.

1157–1164.

[16] F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping,

Journal of Autonomous Robots 4 (1997) 333–349.

[17] B. Lisien, D. S. D. Morales, G. Kantor, I. Rekleitis, H. Choset, Hierarchical

simultaneous localization and mapping, in: Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2003, pp. 448–453.

[18] M. Bosse, P. Newman, J. Leonard, S. Teller, An ALTAS framework for scalable

mapping, in: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Taipei,

Taiwan, 2003, pp. 1899–1906.

15

[19] C. Estrada, J. Neira, J. Tardós, Hierachical slam: Real-time accurate mapping of large

environments, IEEE Transactions on Robotics 21 (4) (2005) 588–596.

[20] A. Doucet, On sequential simulation-based methods for bayesian filtering, Tech. rep.,

Signal Processing Group, Dept. of Engeneering, University of Cambridge (1998).

[21] C. Stachniss, G. Grisetti, Mapping results obtained with Rao-Blackwellized particle

filters, http://www.informatik.uni-freiburg.de/∼stachnis/research/rbpfmapper/ (2004).

[22] C. Stachniss, D. Hähnel, W. Burgard, G. Grisetti, On actively closing loops in grid-

based fastslam, Advanced Robotics 19 (10) (2005) 1059–1080.

16

[C1] J. Sturm, V. Predeap, C. Stachniss, C. Plagemann, K. Konolige, and

W. Burgard. Learning kinematic models for articulated objects. In Proc. of

the Int. Conf. on Artificial Intelligence (IJCAI), Pasadena, CA, USA, 2009.

Learning Kinematic Models for Articulated Objects

Jürgen Sturm1 Vijay Pradeep2 Cyrill Stachniss1

Christian Plagemann3 Kurt Konolige2 Wolfram Burgard1

1Univ. of Freiburg, Dept. of Computer Science, D-79110 Freiburg, Germany
2Willow Garage, Inc., 68 Willow Road, Menlo Park, CA 94025

3Stanford University, CS Dept., 353 Serra Mall, Stanford, CA 94305-9010 ∗

Abstract

Robots operating in home environments must be
able to interact with articulated objects such as
doors or drawers. Ideally, robots are able to au-
tonomously infer articulation models by observa-
tion. In this paper, we present an approach to learn
kinematic models by inferring the connectivity of
rigid parts and the articulation models for the cor-
responding links. Our method uses a mixture of pa-
rameterized and parameter-free (Gaussian process)
representations and finds low-dimensional mani-
folds that provide the best explanation of the given
observations. Our approach has been implemented
and evaluated using real data obtained in various
realistic home environment settings.

1 Introduction

Home environments are envisioned as one of the key applica-
tion areas for service robots. Robots operating in such envi-
ronments are typically faced with a variety objects they have
to deal with or to manipulate to fulfill a given task. Fur-
thermore, many objects are not rigid since they have mov-
ing parts such as drawers or doors. Understanding the spatial
movements of parts of such objects is essential for service
robots to allow them to plan relevant actions such as door-
opening trajectories. In this paper, we investigate the problem
of learning kinematic models of articulated objects from ob-
servations. As an illustrating example, consider Fig. 1 which
depicts two examples for observations of the door of a mi-
crowave oven and a learned, one-dimensional description of
the door motion.

Our problem can be formulated as follows: Given a se-
quence of locations from observed objects parts, learn a com-
pact kinematic model describing the whole articulated object.
This kinematic model has to define (i) the connectivity be-
tween the parts, (ii) the dimensionality of the latent (not ob-
served) actuation space of the object, and (iii) a kinematic
function between different body parts in a generative way al-
lowing a robot to reason also about unseen configurations.

∗This work has partly been supported by the DFG under contract
number SFB/TR-8 and the EU under FP6-IST-045388 (INDIGO).

Figure 1: Left and middle: examples for observations of a
moving door of a microwave oven. Right: visualization of
the kinematic model of the door learned by our approach.

The contribution of this paper is a novel approach for learn-
ing such models based only on observations. Our method is
able to robustly detect the connectivity of the rigid parts of
the object and to estimate accurate articulation models from
a candidate set. It allows for selecting the best model among
parametric, expert-designed transformation templates (rota-
tional and prismatic models), and non-parametric transforma-
tions that are learned from scratch requiring minimal prior as-
sumptions. To obtain a parameter-free description, we apply
Gaussian processes (GPs) [Rasmussen and Williams, 2006]

as a non-parametric regression technique to learn flexible and
accurate models. To find the low-dimensional description of
the moving parts, we furthermore apply a local linear embed-
ding (LLE) [Roweis and Saul, 2000], which is a non-linear
dimensionality reduction technique. As the experiments de-
scribed in this paper demonstrate, our technique allows to
learn accurate models for different articulated objects from
real data. We regard this as an important step towards au-
tonomous robots understanding and actively handling objects
in their environment.

Throughout this paper, we consider objects that are a col-
lection of rigid bodies denoted as “object parts” in the 3D
space and that they are articulated, which means that the con-
figuration of their parts can be described by a finite set of
parameters. The only required input are potentially noisy ob-
servations of the poses of object parts.

2 Related Work

Learning the kinematics of robots that can actively move their
own body parts has been intensively investigated in the past:
Dearden and Demiris [2005] learn a Bayesian network for
a 1-DOF robot. Sturm et al. [2008a; 2008b] proposed an ap-
proach to infer probabilistic kinematic models by learning the
conditional density functions of the individual joints and by

subsequently selecting the most likely topology. Their ap-
proach requires knowledge about the actions carried out by
the robot or by the observed object—information which is
not available when learning the models of arbitrary, artic-
ulated objects from observations only. Similarly, Taycher
et al. [2002] address the task of estimating the underlying
topology of an observed articulated body. Their focus lies
on recovering the topology of the object rather than on learn-
ing a generative model with explicit action variables. Also,
compared to their work, our approach can handle higher-
dimensional transformations between object parts. Kirk et
al. [2004] extract human skeletal topologies using 3D mark-
ers from a motion capture system. However, they assume that
all joints are rotational.

Yan and Pollefeys [2006] present an approach for learning
the structure of an articulated object from feature trajectories
under affine projections. They first segment the feature tra-
jectories by local sampling and spectral clustering and then
build the kinematic chain as a minimum spanning tree of a
graph constructed from the segmented motion subspaces.

Other researchers have addressed the problem of identify-
ing different object parts from image data. Ross et al. [2008]

use multi-body structure from motion to extract links from
an image sequence and then fit an articulated model to these
links using maximum likelihood learning. There also ex-
ist approaches for identifying humans that assume a known
topology of the body parts. Ramanan [2006] perform pose es-
timation of articulated objects from images using an iterative
parsing approach. They seek to improve the feature selection
to better fit the model to the image.

There exist several approaches where tracking articulated
objects is the key motivation and often an a-priori model is as-
sumed. Comport et al. [2004], for example, describe a frame-
work for visual tracking of parametric non-rigid multi-body
objects based on an a-priori model of the object including a
general mechanical link description. Chu et al. [2003] present
an approach for model-free and marker-less model and mo-
tion capture from visual input. Based on volume sequences
obtained from image data from calibrated cameras, they de-
rive a kinematic model and the joint angle motion of humans
with tree-structured kinematics.

Similar to our approach for identifying low-dimensional
articulation actions, Tsoli and Jenkins [2009] presented an
Isomap-based technique that finds a low-dimensional repre-
sentation of complex grasp actions. This allows human oper-
ators to easily carry out remote grasping tasks.

Katz et al. [2008] learn planar kinematic models for artic-
ulated objects such as 1-DOF scissors or a 3-DOF snake-like
toy. They extract features from a series of camera images, that
they group together to coherently moving clusters as nodes in
a graph. Two nodes are connected in the graph when they are
rigid. Subsequently, rotational and prismatic joints are identi-
fied by searching for rotation centers or shifting movements.
In contrast to their work, we use 3D information and are not
restricted to prismatic and rotation joints. We additionally can
model arbitrary movements including those of garage doors
which are 1-DOF actions that cannot be described by a pris-
matic or rotational joint. The approach of Katz et al. [2008]

is furthermore focused on manipulation actions whereas our

approach is passive and only based on observations.

3 Learning Models of Actuated Objects

In this work, we consider articulated objects consisting of
n rigid object parts, which are linked mechanically as an
open kinematic chain. We assume that a robot, external to the
object, observes the individual parts and that it has no prior
knowledge about their connectivity.

To describe the kinematics of such an articulated object, we
need to reason about (i) the connections of the object parts
(the topology) and (ii) the kinematic nature of the connec-
tions. Our approach seeks to find the topology and the lo-
cal models that best explain the observations. We begin with
a discussion of how to model the relationship of two object
parts. The extension towards an entire graph of parts and re-
lations is then given in Section 3.3.

3.1 Modeling the Interaction between Two Parts

The state of an object part i can be described by a vector
xt

i ∈ R
6 representing the position and orientation of the part

i ∈ 1, . . . , n at time t = 1, . . . , T . We assume that only their
relative transformation ∆ij = xi ⊖ xj is relevant for estimat-
ing the model, where ⊕ and ⊖ are the motion composition
operator and its inverse.

If the two object parts are not rigidly connected, we as-
sume that the articulation can be described by a latent (not ob-
served) action variable. Examples for a latent action variable
are the rotation angle of a door or the translation of a drawer.
The goal is now to describe the relative transformation be-
tween the object parts using such a latent variable aij ∈ R

d,
where d represents the intrinsic DOF of the connection be-
tween i and j.

Since we have no prior information about the nature of the
connection, we do not aim to fit a single model but instead
aim to fit a set of candidate template models representing dif-
ferent kinds of joints. This candidate set consists of param-
eterized models that occur in various objects including a ro-
tational joint (Mrotational), a prismatic joint (Mprismatic), and a
rigid transformation (Mrigid). Additionally, there may be ar-
ticulations that do not correspond to these standard motions,
for which we consider parameter-free models (MLLE/GP).
These are computed by using a combination of the local linear
embedding (LLE) dimensionality reduction technique and a
Gaussian process. A more detailed description of these mod-
els is given in Section 3.4

We use a sequence of T noisy observations z1:T
ij =

z1

ij , . . . , z
T
ij of ∆ij for fitting the candidate models and for

evaluating which model appears to be the best one. This is
done by performing 2-fold cross-validation. In the remain-
der of this paper, we refer to Dij as the training data selected

from the observations, where Dij ⊂ z1:T
ij , and to Dtest

ij as the
(disjoint) set of test data.

3.2 Evaluating a Model

Let Mij be an articulation model p(∆ij | a) describing the
connection between the part i and j and learned from the
training data Dij . To actually evaluate how well an obser-
vation zij can be explained by a model, we have to determine

p(zij | Mij) which corresponds to

p(zij | Mij) =

∫

a

p(zij | a,Mij) p(a | Mij) d a. (1)

The variable a is the latent action variable of the model that,
for example, describes the opening angle of a door.

We assume that during the observations, there is no latent
action state a that is more likely than another one, i.e., that
p(a | Mij) is a uniform distribution. Note that this is an
approximation since in our door example, one might argue
that doors are more likely to be closed or completely opened
compared to other states. This assumption simplifies Eq. 1 to

p(zij | Mij) =

∫

a

p(zij | a,Mij) d a. (2)

To evaluate p(zij | a,Mij), that is, a measure for how well
model Mij parameterized by the action variable a explains
the observation zij of the part transformation ∆ij , we first
compute the expected transform

∆̂ij = EMij
[∆ij | a] = fMij

(a) (3)

using a model-specific transformation function fMij
(a). In

Section 3.4, we will specify this transformation function for
all model templates. Note that we reason about the relative
configuration between object parts here and compare the re-
sult to the observed transformation under a Gaussian error
assumption with variance σ2:

p(zij | a,Mij) ∝ exp
(

−||∆̂ij − zij ||
2/σ2

)

(4)

To actually compute p(zij | Mij) using Eq. 2, we need to
compute the integral over the latent action variable a. In this
paper, we solve this by performing Monte-Carlo integration
by sampling multiple instances of the latent variable.

Since this procedure can be rather time-consuming, we also
tested an alternative strategy to approximate the integral. If
we assume that p(zij | a,Mij) is unimodal, we can think of
evaluating it only at the most likely latent action variable and
approximate Eq. 2 by

p(zij | Mij) = max
a

p(zij | a,Mij). (5)

Depending on the realization of the model Mij , we can carry
out the maximization step to compute p(zij | Mij) effi-
ciently.

Finally, we can compute the data likelihood for the test data
set

p(Dtest
ij | Mij) =

∏

zij∈Dtest
ij

p(zij | Mij). (6)

3.3 Finding the Connectivity

So far, we ignored the question of connectivity and described
how to evaluate a model Mij representing a connection be-
tween the parts i and j. If we consider the individual object
parts as nodes in a graph and the connections as edges be-
tween nodes, then the set of possible acyclic object structures
that connect all parts is given by all spanning trees of this
graph. The endeavor of explicitly computing, evaluating, and

reasoning with all possible topologies, however, results in an
intractable complexity. We therefore seek to find the span-
ning tree M that results in a combined model for all object
parts that both maximizes the expected data likelihood of a
new observation, i.e.,

p(Dtest | M) =
∏

Mij∈M

p(Dtest
ij | Mij), (7)

while at the same time minimizing the overall complexity of
the combined model. The latter is calculated in a fashion sim-
ilar as with the Bayesian information criterion. In our case,
we measure the model complexity by the dimensionality of
the latent action space.

To find this topology (that is, the spanning tree of the local
models), we fit for all tuples of rigid parts all models from
the candidate template model set and add for each model a
link to the graph. We then assign to each edge in the graph

the cost of model Mtype
ij that is equal to the negative expected

data log-likelihood plus a complexity penalty of the model:

cost
M

type

ij
= −

1

‖Dtest‖
log p(Dtest | Mtype

ij) + C(Mtype
ij) (8)

Then, the task of finding the topology of local models which
minimize this cost function is equivalent to finding the min-
imal spanning tree in this graph which can be done rather
efficiently.

Please note that the resulting kinematic tree can be trans-
formed into a Bayes net (BN) by replacing the edges by con-
nected nodes representing local models M and latent action
variables a and by adding nodes for (absolute) object part
observations and relative observations z. The resulting BN
naturally encodes all independence assumptions made in our
work. Such a BN, however, is complex and hard to visualize.
We therefore stick at this point to a graph-like visualization
as shown in the left image of Fig. 2. Bold arrows indicate the
selected models form the spanning tree structure. The plot
in the middle illustrates the prediction error of all considered
models during learning. The right image depicts the proba-
bility density function of the model MLLE/GP.

3.4 Model Templates

This section explains the instances of the set of candidate
model templates.

Rigid Transformation Model

The simplest connection between two parts is a rigid transfor-
mation without any latent action variable. The model-specific
transformation function of Eq. 3 for the rigid transform model
Mrigid from training data D then reduces to the estimating the
mean, i.e.,

f
M

rigid

ij

=
1

‖Dij‖

∑

zij∈Dij

zij . (9)

Prismatic Joint Model

For modeling prismatic joints that can be, for example, found
in a drawer, we assume a 1-DOF latent action variable that de-
scribes the motion between the object parts. Prismatic joints

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16 18 20

e
rr

o
r

[m
m

]

training samples [#count]

 rigid
 rotational
 prismatic

LLE/GP−1D

−1000

−500

 0

 500

 1000

 1500

−300 −200 −100 0 100 200 300

tr
a

n
s
la

ti
o

n
 [

m
m

]

latent action a

X
Y
Z

Figure 2: Learning the kinematic model for a garage door. Left: The fully connected graph contains instantiations of all possible
template models and the selected models are indicated by bold arrows. Middle: evolution of the data likelihood of different
models. Right: transformation function learned by the LLE/GP model.

move along a single axis, that can for example be found us-
ing principle component analysis. Internally, we model the
action at

ij as the relative movement with respect to the first

observation z1 in D (therefore a1

ij = 0) along its principal
axis e of unit length. Let trans be the function that removes
all rotational components, we obtain:

ât
ij = e · trans(∆t

ij − ∆1

ij) (10)

The model-specific transformation function for the prismatic
model Mprismatic then becomes

f
M

prismatic

ij

(a) = ae + ∆1. (11)

Rotational Joint Model

In the case of a rotational joint, we compute the latent 1-DOF
action variable from Eq. 5 by taking the first observation as a
reference (similar as in the prismatic joint model). The rota-
tional components describe a line, whose direction e can be
found by principle component analysis. We computing the
angular difference of all observations relative to the first one

ât
ij = e · angle(∆t

ij − ∆1

ij). (12)

Here, angle is a function that removes all non-rotational com-
ponents.

Since our model assumes a 1-DOF latent action variable,
the positions of the observed parts describe a circular arc or a
single point in case the observed object part lies on the axis of
rotation. By standard geometric operations, we estimate the
axis of rotation n ∈ R

3, the rotational center c ∈ R
3, and the

rigid transform r ∈ R
6 carried out after the rotation. Then,

the model-specific transformation function for the rotational
model Mrotational becomes

fMrotational
ij

(a) = [c;n]T ⊕ rotZ(a) ⊕ r, (13)

where rotZ(a) describes a rotation about the Z axis by a and
⊕ is the motion composition operator.

LLE/GP Joint Model

Although rigid transformations in combination with rota-
tional and prismatic joints might seem at the first glance to
be sufficient for a huge class of kinematic objects, it turns
out that many real-world objects lack a clear shifting or ro-
tation axis. One example for such objects is a garage door.
Therefore, our candidate model template set contains one

non-parametric model that is able to describe general trans-
formations. This model is based on non-linear dimensional-
ity reduction via local linear embedding for discovering the
latent action manifold and a Gaussian process regression to
learn a generative model.

Consider the manifold that is described by the observations
of object poses in Dij = ∆1

ij , . . . ,∆
T
ij for the link between

rigid part i and j. Depending on the DOF d of this particular
link, all data samples will lie on or close to a d-dimensional
manifold with 1 ≤ d ≤ 6 being non-linearly embedded in R

6.
There are many dimensionality reduction techniques such as
PCA for linear manifolds or Isomap [Tenenbaum et al., 2000]

and LLE [Roweis and Saul, 2000] for non-linear manifolds.
Our current implementation applies LLE but is not restricted
to this method. LLE first expresses each data point as a linear
combination of its neighbors, here in R

6, and then computes a
low-dimensional representation in R

d satisfying the identical
linear relationships.

In more detail, LLE first finds the k-nearest neighbors of
each data sample ∆t in D (we neglect the indices i and j for
a better readability here). For each data sample, LLE then
computes a vector of weights that best reconstructs the data
sample ∆t from its neighbors. Let W be the weight matrix for
all samples. LLE seeks for the weight matrix that minimizes
the reconstruction error ε given by

ε(W) =
∑

t

‖∆t −
∑

t′

Wtt′∆
t′‖2. (14)

By normalization, we require that the reconstruction weights
for each data sample t to sum to one over its neighbors, i.e.,
∑

t′ Wtt′ = 1. Minimizing Eq. 14 can be achieved via La-
grange minimization in closed form.

After determining the reconstruction weight matrix, LLE
seeks for a point-wise mapping of each data sample ∆t to
a local coordinate at on the d-dimensional manifold. This
mapping has to ensure that the weight matrix W reconstructs
also the local coordinates of the data samples on the manifold.
This is done by searching for the local coordinates a1, . . . , aT

for ∆1, . . . ,∆T so that the reconstruction error Ψ

Ψ(a1, . . . , aT) =
∑

t

‖at −
∑

t′

Wtt′a
t′‖2, (15)

on the manifold is minimized.
With a few additional constraints, the minimization of

Eq. 15 can be solved as a sparse T × T eigenvector problem.

The local coordinates are then computed based on the eigen-
vectors. For further detail, we refer the reader to Roweis and
Saul [2000].

The reconstructed latent action values can now be used for
learning p(z | a,M) from the training data D. In our work,
we employ Gaussian process regression, which is a powerful
and flexible framework for non-parametric regression. For
the sake of brevity, we refer the interested reader to Ras-
mussen and Williams [2006] for details about GP regression.

4 Experiments

To evaluate our approach, we recorded observations from two
typical household objects, a microwave door and a cabinet
with two drawers. To track the poses and orientations of the
parts, we placed the objects in a PhaseSpace motion capture
studio. For each object, we recorded 200 data samples while
manually articulating the object. Additionally, we simulated a
garage door as a typical object that cannot be described using
a prismatic or rotational joint. We also estimated the model
of a table moved on the ground plane to give an example of
latent action variables with more than one dimension.

Our experiments are designed so that we can recover accu-
rate transformation models for each link between parts along
with the kinematic structure. In addition, we show that the
range of the latent action space can be estimated and config-
urations of this range can be generated for visual inspection.

Model Selection

We evaluated the prediction accuracy and the expected data
likelihood for each of the microwave, the drawer, and the
garage door dataset for all models of out candidate set. For
the evaluation, we carried out 10 runs and in each run, 40 ob-
servations were drawn independently and randomly from the
data set, 20 of them were used for learning and 20 for test-
ing. The quantitative results showing the prediction error of
the models are depicted in Tab. 1. As can be seen, the flexible
LLE/GP model can fit all objects well.

As can be seen from the table, the rotational model predicts
best the opening movement of the microwave door while the
prismatic model predicts best the motion of the drawer which
is the expected result. It should be noted that the LLE/GP
model is only slightly worse than the parametric models and
is able to robustly predict the poses of the door and the drawer
(1.1mm vs. 1.5mm for the microwave, and 0.7mm vs. 3.6mm
for the drawer).

In the case of the garage door, however, all parametric
models fail whereas the LLE/GP model, designed to describe
general transformations, provides accurate estimates. Here
we evaluated different levels of noise, and found that the
LLE/GP model to be quite robust. Fig. 3 illustrates the motion
of the garage door estimated by the non-parametric model.
Note that our models also encode the range of the latent ac-
tion variable a learned from observations.

This experiment shows that our system takes advantage
of the expert-designed parametric models when appropriate
while keeping the flexibility to also learn accurate models for
unforeseen mechanical constructions.

Table 1: Average prediction error and standard deviation of
local models on test data over all runs. Gaussian noise with
σ = (10mm, 1◦) was added to the garage door data.

Structure Discovery
A typical articulated object consisting of multiple parts is a
cabinet with drawers as illustrated in the left image of Fig. 4.
In the experiment, we obtain pose observations of three rigid
parts x1, x2, and x3. First, we opened and closed only the
lower drawer. Accordingly, a prismatic joint model is learned
for link ∆13 (see top left image of Fig. 4). When also the
upper drawer gets opened and closed, the rigid transform at
∆12 is replaced by a second prismatic joint model Mprismatic,
resulting in a kinematic tree. As a second multi-part object
we present a yard stick, consisting of four consecutive ele-
ments with three rotational links, as depicted in Fig. 5. These
experiments demonstrate that by using the data likelihood for
selecting the minimum spanning tree we are able to infer the
correct kinematic structure.

Multi-dimensional Latent Action Spaces
To illustrate that our approach is also able to find the models
with a higher-dimensional latent action variable, we let the
robot monitor a table that was moved on the ground plane.
The robot is equipped with a monocular camera tracking a
marker attached to the table. In this experiment, the table was
only moved and was never turned, lifted, or tilted and there-
fore the action variable will have 2-DOF. Fig. 6 shows four
snapshots during learning. Initially, the table is perfectly ex-
plained as a rigid part of the room (top left). Then, a prismatic
joint model best explains the data since the table was moved
in one direction only (top right). After moving sideways, the
best model is a 1-DOF LLE/GP that follows a simple curved
trajectory (bottom left). Finally full planar movement is ex-
plained by a 2-DOF LLE/GP model (bottom right).

Simplified Likelihood Computation
To evaluate the likelihood of a model one has to integrate over
the latent variable a (see Eq. 2) which is done via Monte-
Carlo integration. If we instead use the approximation shown
in Eq. 5, we only need to evaluate one single action variable.
In our current implementation, this speeds up the required
computation time by a factor of 100 while both approaches
select the same model. Even though the actual values for the
likelihood differ slightly, we were unable to produce a dataset
in which both strategies select different models.

5 Conclusions

In this paper, we presented a novel approach for learning
kinematic models of articulated objects. Our approach in-
fers the connectivity of rigid parts that constitute the object

including the articulation models of the individual links. To
model the links, our approach considers both, parameterized
as well as parameter-free representations. It combines non-
linear dimensionality reduction and Gaussian process regres-
sion to find low-dimensional manifolds that best explain the
observations. Our approach has been implemented and tested
using real data. In practical experiments, we demonstrated
that our approach enables a robot to infer accurate articula-
tion models for different everyday objects.

References

[Chu et al., 2003] C.-W. Chu, O.C. Jenkins, and M.J.
Matarić. Markerless kinematic model and motion capture
from volume sequences. In CVPR, 2003.

[Comport et al., 2004] A.I. Comport, E. Marchand, and
F. Chaumette. Object-based visual 3d tracking of artic-
ulated objects via kinematic sets. In Workshop on Articu-
lated and Non-Rigid Motion, 2004.

[Dearden and Demiris, 2005] A. Dearden and Y. Demiris.
Learning forward models for robots. In IJCAI, 2005.

[Katz et al., 2008] D. Katz, Y. Pyuro, and O. Brock. Learn-
ing to manipulate articulated objects in unstructured envi-
ronments using a grounded relational representation. In
Robotics: Science and Systems, 2008.

[Kirk et al., 2004] Adam Kirk, James F. O’Brien, and
David A. Forsyth. Skeletal parameter estimation from op-
tical motion capture data. In SIGGRAPH, 2004.

[Ramanan, 2006] D. Ramanan. Learning to parse images of
articulated bodies. In NIPS, 2006.

[Rasmussen and Williams, 2006] C.E. Rasmussen and
C.K.I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, Cambridge, MA, 2006.

[Ross et al., 2008] David A. Ross, Daniel Tarlow, and
Richard S. Zemel. Unsupervised learning of skeletons
from motion. In ECCV ’08, 2008.

[Roweis and Saul, 2000] S.T. Roweis and L.K. Saul. Nonlin-
ear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

[Sturm et al., 2008a] J. Sturm, C. Plagemann, and W. Bur-
gard. Adaptive body scheme models for robust robotic
manipulation. In Robotics: Science and Systems, 2008.

[Sturm et al., 2008b] J. Sturm, C. Plagemann, and W. Bur-
gard. Unsupervised body scheme learning through self-
perception. In ICRA, 2008.

[Taycher et al., 2002] L. Taycher, J.W. Fisher III, and T. Dar-
rell. Recovering articulated model topology from observed
rigid motion. In NIPS, 2002.

[Tenenbaum et al., 2000] J.B. Tenenbaum, V. de Silva, and
J.C. Langford. A global geometric framework for nonlin-
ear dimensionality reduction. Science, 290(5500):2319–
2323, 2000.

[Tsoli and Jenkins, 2009] A. Tsoli and O.C. Jenkins. Neigh-
borhood denoising for learning high-dimensional grasping
manifolds. In IROS, 2009.

[Yan and Pollefeys, 2006] J. Yan and M. Pollefeys. Auto-
matic kinematic chain building from feature trajectories of
articulated objects. In CVPR, 2006.

Figure 3: Motion of a garage door predicted by our non-
parametric model. Left: Model after the first few observa-
tions. Right: after processing all observations.

Figure 4: Estimating a model of two drawers of a cabinet.
Top: initially, only the lower drawer is opened and closed and
the corresponding kinematic structure is inferred. Bottom:
both drawers are opened and closed independently.

Figure 5: simulated yard stick consisting of 4 consecutive ele-
ments. Model selection correctly reveals the sequential chain.

Figure 6: Learning a model for a table moving on the ground
plane. Arrows indicate the dimensions of the latent action.

[C2] F. Enders, C. Plagemann, C. Stachniss, and W. Burgard. Scene

analysis using latent dirichlet allocation. In Proc. of Robotics: Science and

Systems (RSS), Seattle, WA, USA, 2009.

Unsupervised Discovery of Object Classes

from Range Data using Latent Dirichlet Allocation

Felix Endres Christian Plagemann Cyrill Stachniss Wolfram Burgard

Abstract— Truly versatile robots operating in the real world
have to be able to learn about objects and their properties
autonomously, that is, without being provided with carefully
engineered training data. This paper presents an approach that
allows a robot to discover object classes in three-dimensional
range data in an unsupervised fashion and without a-priori
knowledge about the observed objects. Our approach builds on
Latent Dirichlet Allocation (LDA), a recently proposed prob-
abilistic method for discovering topics in text documents. We
discuss feature extraction, hypothesis generation, and statistical
modeling of objects in 3D range data as well as the novel
application of LDA to this domain. Our approach has been
implemented and evaluated on real data of complex objects.
Practical experiments demonstrate, that our approach is able
to learn object class models autonomously that are consistent
with the true classifications provided by a human. It furthermore
outperforms unsupervised method such as hierarchical clustering
that operate on a distance metric.

I. INTRODUCTION

Home environments, which are envisioned as one of the

key application areas for service robots, typically contain a

variety of different objects. The ability to distinguish objects

based on observations and to relate them to known classes of

objects therefore is important for autonomous service robots.

The identification of objects and their classes based on sensor

data is a hard problem due to the varying appearances of the

objects belonging to specific classes. In this paper, we consider

a robot that can observe a scene with a 3D laser range scanner.

The goal is to perform

• unsupervised learning of a model for object classes,

• consistent classification of the observed objects, and

• correct classification of unseen objects belonging to one

of the known object classes.

Figure 1 depicts a typical point cloud of a scene considered in

this paper. It contains four people, a box, and a balloon-like

object. The individual colors of the 3D data points illustrate

the corresponding object classes that we want our algorithm

to infer.

An important distinction between different approaches to

object detection and recognition is the way the objects or

classes are modeled. Models can be engineered manually,

learned from a set of labeled training data (supervised learn-

ing) or learned from unlabeled data (unsupervised learning).

While the former two categories have the advantage that

detailed prior knowledge about the objects can be included

easily, the effort for manually building the model or labeling

F. Endres, C. Stachniss, and W. Burgard are with the University of Freiburg,
Germany. C. Plagemann is with Stanford University, CA, USA.

class 1 (human)

class 3 (box)
class 2 (balloon)

Fig. 1: Example of a scene observed with a laser range scanner
mounted on a pan-tilt unit. Points with the same color resemble
objects belonging to the same class (best viewed in color).

a significant amount of training data becomes infeasible with

increasing model complexity and larger sets of objects to

identify. Furthermore, in applications where the objects to

distinguish are not known beforehand, a robot needs to build

its own model, which can then be used to classify the data.

The contribution of this paper is a novel approach for

discovering object classes from range data in an unsupervised

fashion and for classifying observed objects in new scans

according to these classes. Thereby, the robot has no a-

priori knowledge about the objects it observes. Our approach

operates on a 3D point cloud recorded with a laser range

scanner. We apply Latent Dirichlet Allocation (LDA) [2], a

method that has recently been introduced to seek for topics in

text documents [9]. The approach models a distribution over

feature distributions that characterize the classes of objects.

Compared to most popular unsupervised clustering methods

such as k-means or hierarchical clustering, no explicit distance

metric is required. To describe the characteristics of surfaces

belonging to objects, we utilize spin-images as local features

that serve as input to the LDA. We show in practical experi-

ments on real data that a mobile robot following our approach

is able to identify similar objects in different scenes while at

the same time labeling dissimilar objects differently.

II. RELATED WORK

The problem of classifying objects and their classes in 3D

range data has been studied intensively in the past. Several

authors introduced features for 3D range data. One popular

free-form surface descriptor are spin-images, which have been

applied successfully to object recognition problems [13; 12;

14; 15]. In this paper, we propose a variant of spin-images

that—instead of storing point distributions of the surface—

stores the angles between the surface normals of points,

which we found to yield better results in our experiments.

An alternative shape descriptor has been introduced by [18].

It relies on symbolic labels that are assigned to regions. The

symbolic values, however, have to be learned from a labeled

training set beforehand. Stein and Medioni [19] present a point

descriptor that, similar to our approach, also relies on surface

orientations. However, it focuses on the surface normals in

a specific distance to the described point and models their

change with respect to the angle in the tangent plane of the

query point. Additional 3D shape descriptors are described

in [5] and [6].

A large amount of work has focused on supervised al-

gorithms that are trained to distinguish objects or object

classes based on a labeled set of training data. For example,

Anguelov et al. [1] and Triebel et al. [20] use supervised

learning to classify objects and associative Markov networks to

improve the results of the clustering by explicitly considering

relations between the class predictions. In a different approach,

Triebel et al. [21] use spin-images as surface descriptors

and combine nearest neighbor classification with associative

Markov networks to overcome limitations of the individual

methods. Another approach using probabilistic techniques and

histogram matching has been presented by Hetzel et al. [10].

It requires a complete model of the object to be recognized,

which is an assumption typically not fulfilled when working on

3D scans recorded with a laser range finder. Ruhnke et al. [17]

proposed an approach to reconstructing full 3D models of

objects by registering several partial views. The work operates

on range images from which small patches are selected based

on a region of interest detector.

In addition to the methods that operate on 3D data, much

research has also focused on image data as input. A common

approach to locate objects in images is the sliding window

method [4; 7]. Lampert et al. [16] proposed a new framework

that allows to efficiently find the optimal bounding box without

applying the classification algorithm explicitly to all possible

boxes. Another prominent supervised detector is the face

detector presented by Viola and Jones [22]. It computes Haar-

like features and applies AdaBoost to learn a classifier.

In the domain of unsupervised classification of text doc-

uments, several models that greatly surpass mere counting

of words have been proposed. These include probabilistic

latent semantic indexing (PLSI) [11] and Latent Dirichlet

Allocation [2], which both use the co-occurrence of words

in a probabilistic framework to group words into topics. In

the past, LDA has also been applied successfully to image

data. In contrast to text documents [9], images often contain

data of many different categories. Wang and Grimson [23],

therefore, first perform a segmentation before applying LDA.

Bosch et al. [3] used PLSI for unsupervised discovery of

object distributions in image data. As shown in [8], LDA

supersedes PLSI and it has been argued that the latter can

be seen as a special case of LDA, using a uniform prior and

maximum a posteriori estimation for topic selection. Fritz and

Schiele [7] propose the sliding window approach on a grid of

edge orientations to evaluate topic probabilities on subsets of

the whole image. While the general approach of these papers

Fig. 2: Variant of spin-images used to compute a surface signature:
the 3D object structure (yellow circle) is rotated around the surface
normal of a query point (large red point) and a grid model accumu-
lates the average angular distances between the surface normal at the
query point and those of the points falling into the grid cells (small
red points).

is related to ours, to the best of our knowledge the algorithm

described in this paper is the first to apply LDA on laser range

data and which addresses the specific requirements of this

domain.

III. DATA PRE-PROCESSING AND LOCAL SHAPE FEATURES

As most approaches to object detection, identification, and

clustering, we operate on local features computed from the

input data. Our primary focus lies on the description of shape

as this is the predominant feature captured in 3D range data.

However, real-world objects belonging to the same class do not

necessarily have the same shape and vice versa. Humans, for

example, have a significant variability in shape. To deal with

this problem, we model classes of objects as distributions of

local shape features.

In the next sections, we first describe our local feature used

to represent the characteristics of surfaces and after than, we

address the unsupervised learning problem to estimate the

distributions over local features.

A. Representation and Data Pre-processing

Throughout this work, we assume our input data to be a

point cloud of 3D points. Such a point cloud can be obtained

with a 2D laser range finder mounted on a pan-tilt unit, a

standard setting in robotics to acquire 3D range data. An

example point cloud recorded with this setup is shown in the

motivating example in Figure 1 on the first page of this paper.

As in nearly all real world settings, the acquired data is

affected by noise and it is incomplete due to perspective

occlusions. The segmentation of range scans into a set of

objects and background structure is not the key focus of

this work. We therefore assume a ground plane as well as

walls that can be easily extracted and assume the objects to

be spatially disconnected. This allows us to apply a spatial

clustering algorithm to create segments containing only one

object.

B. Local Shape Descriptors

For characterizing the local shape of an object at a query

point, we propose to use a novel variant of spin-images [12].

Spin-images can be seen as small raster images that are aligned

to a point such that the upwards pointing vector of the raster

image is the surface normal of the point. The image is then

virtually rotated around the surface normal, “collecting” the

neighboring points it intersects. To account for the differences

in data density caused by the distance between sensor and

object, the spin-images are normalized.

To actually compute a normal for each data point, we

compute a PCA using all neighboring points in a local region

of 10cm. Then, the direction of the eigenvector corresponding

to the smallest eigenvalue provides a comparably stable but

smoothed estimate of the surface normal.

We have developed a variant of spin-images that does not

count the points “collected” by the pixels of the raster image.

Instead, we compute the average angle between the normal of

the query point for which the spin-image is created and the

normals of all collected points. See Figure 2 for an illustration.

The average between the normals is then discretized to obtain

a discrete feature space, as required in the LDA approach. As

we will show in our experiments, this variant of spin-images

provides better results, since they contain more information

about the shape of the object.

IV. PROBABILISTIC TOPIC MODELS FOR OBJECT SHAPE

After segmenting the scene into a finite set of scan segments

and transforming the raw 3D input data to the discrete feature

space, the task is to group similar segments to classes and

to learn a model for these classes. Moreover, we aim at

solving the clustering and modeling problems simultaneously

to achieve a better overall model. Inspired by previous work on

topic modeling in text documents, we build on Latent Dirichlet

Allocation for the unsupervised discovery of object classes

from feature statistics.

Following this model, a multinomial distribution is used

to model the distribution of discrete features in an object

class. Analogously, another multinomial distribution is used

to model the mixture of object classes which contribute to a

scan segment. In other words, we assume a generative model,

in which (i) segments generate mixtures of classes and (ii)

classes generate distributions of features.

Starting from a prior distribution about these latent (i.e.,

hidden) mixtures, we update our belief according to the

observed features. To do this efficiently, we express our prior

P(θ) as a distribution that is conjugate to the observation

likelihood P(y | θ). P(θ) being a conjugate distribution to

P(y | θ) means that

P(θ | y) =
P(y | θ)P(θ)

∫
P(y | θ)P(θ) dθ

(1)

is in the same family as P(θ) itself. For multinomial distribu-

tions, the conjugate prior is the Dirichlet distribution, which

we explain in the following.

A. The Dirichlet Distribution

The Dirichlet distribution is a distribution over multivariate

probability distributions, i.e., a distribution assigning a prob-

ability density to every possible multivariate distribution. For

the multinomial variable x = {x1, . . . ,xK} with K exclusive

states xi, the Dirichlet distribution is parameterized by a vector

α = {α1, . . . ,αK}. If αi = 1 for all i, the Dirichlet distribution

Fig. 3: Three Dirichlet distributions. On the left for the parameter
vector α = {2,2,2}, in the middle for α = {3,6,3} and on the right
for α = {0.1,0.1,0.1}.

is uniform. One can think of (αi − 1) for αi ∈ N
>0 as the

number of observations of the state i. The Dirichlet distribution

can be calculated as

f (x) =
Γ
(

∑K
i=1 αi

)

∏K
i=1 Γ(αi)

︸ ︷︷ ︸

Normalization

K

∏
i=1

x
αi−1
i , (2)

where Γ(·) is the Gamma function and where the elements of

x have to be positive and sum up to one.

Consider the following example: let there be three object

classes “human”, “box”, and “chair” with a Dirichlet prior

parameterized by α = {2,2,2}. This prior assigns the same

probability to all classes and hence results in a symmetric

Dirichlet distribution. A 3D Dirichlet distribution Dir(α) can

be visualized by projecting the the manifold where ∑αi = 1 to

the 2D plane, as depicted in the left plot of Figure 3. Here the

third variable is given implicitly by α3 = 1−α1 −α2. Every

corner of the depicted triangle represents the distributions

where only the respective class occurs and the center point

represents the uniform distribution over all classes. Now

consider an observation of one human, four boxes, and a chair.

By adding the observation counts to the elements of α , the

posterior distribution becomes Dir({5,8,5}) which is shown

in the middle plot in Figure 3. The same result would of course

occur when calculating the posterior using Eq. (1).

However choosing the values of αi larger than 1 favors

distributions that represent mixtures of classes, i.e. we expect

the classes to occur together. To express a prior belief that

either one or the other dominates we need to choose values

smaller than 1 for all αi. The shape of the distribution then

changes in a way that it has a “valley” in the middle of the

simplex and peaks at the corners. This is depicted in the right

plot in Figure 3. In our setting, where a Dirichlet distribution

is used to model the distribution of object classes, such a prior

would correspond to the proposition that objects are typically

assigned to one (or only a few) classes.

The calculation of the expected probability distribution over

the states and can be performed easily based on α . The

expected probability for xi is given by

E[xi] =
αi

∑i′ αi′
. (3)

B. Latent Dirichlet Allocation

Latent Dirichlet allocation is a fully generative probabilistic

model for semantic clustering of discrete data, which was

developed by Blei et al. [2]. In LDA, the input data is assumed

to be organized in a number of discrete data sets—these

correspond to scan segments in our application. The scan

segments contain a set of discretized features (a spin image

for every 3D point). Obviously, a feature can have multiple

occurrences since different 3D data points might have the

same spin image. Often, the full set of data (from multiple

scans) is referred to as “corpus”. A key feature of LDA is that

it does not require a distance metric between features as most

approaches to unsupervised clustering do. Instead, LDA uses

the co-occurrence of features in scan segments to assign them

probabilistically to classes—called topics in this context.

Being a generative probabilistic model, the basic assumption

made in LDA is that the scan segments are generated by ran-

dom processes. Each random process represents an individual

topic. In this work, we distinguish topics using the index j and

scan segments are indexed by d. A random process generates

the features in the segments by sampling them from its own

specific discrete probability distribution φ (j) over the features.

A segment can be created by one or more topics, each topic

having associated a distinct probability distribution over the

features.

To represent the mixture of topics in a segment d, a

multinomial distribution θ (d) is used. For each feature in

the segment, the generating topic is selected by sampling

from θ (d). The topic mixture θ (d) itself is drawn from a

Dirichlet distribution once for every segment in the corpus.

The Dirichlet distribution represents the prior belief about

the topic mixtures that occur in the corpus, i.e., whether the

segments are generated by single topics or from a mixture of

many topics. We express the prior belief with respect to the

topic distribution using the Dirichlet parameter vector α .

Griffiths and Steyvers [9] extended LDA by additionally

specifying a Dirichlet prior Dir(β) on the conditional dis-

tributions φ (j) over the features. This prior is useful in our

application since it enables us to model a preference for

selecting few characteristic features of a topic.

C. Learning the Model

In this section, we describe how to find the assignments

of topics to 3D data points in range scans following the

derivation of Griffiths and Steyvers [9]. Given the corpus

w = {w1,w2, ...wn} as the set of all feature occurrences, where

each occurrence wi belongs to exactly one scan segment.

We are then looking for the most likely topic assignment

vector z = {z1,z2, ...zn} for our data w. Here, each zi is an

index referring to topic j that generated wi. Hence, we seek

to estimate the probability distribution P(z | w). Based on

P(z | w), we can then obtain the most likely topic assignment

for each 3D data point. Using Bayes rule, we know that

P(z | w) =
P(w | z)P(z)

P(w)
. (4)

Unfortunately, the partition function P(w) is not known and

cannot be computed directly because it involves T N terms,

where T is the number of topics and N is the number of

feature occurrences.

A common approach to approximate a probability distri-

bution, for which the partition function P(w) is unknown,

is Markov chain Monte Carlo (MCMC) sampling. MCMC

approximates the target distribution P(z | w) by randomly

initializing the states of the variables—here the topic assign-

ments. Subsequently, it samples new states using a Monte

Carlo transition function leading to the target distribution.

Therefore, the target distribution has to be the equilibrium

distribution of the transition function. The transition function

obeys the Markov property, i.e., it is independent of all states

but the last. In our approach, we use Gibbs sampling as the

transition function where the new state (the topic assignment)

for each feature occurrence is sampled successively.

Gibbs sampling requires a proposal distribution to generate

new states. Therefore, the next section describes how to obtain

an appropriate proposal distribution for our problem.

D. Computing the Proposal Distribution for Gibbs Sampling

The proposal probability distribution over the possible topic

assignments of a feature occurrence is calculated conditioned

on the current assignments of the other feature occurrences.

A new topic assignment is then sampled from this proposal

distribution.

For estimating P(z | w), we successively sample from the

distribution in the numerator on the right hand side of Eq. (4)

the topic assignment zi for each feature occurrence wi given

the topics of all other features. The distribution over the topics

for sampling zi is given by

P(zi = j | z−i,w) =

likelihood of wi
︷ ︸︸ ︷

P(wi|zi = j,z−i,w−i)

prior of zi
︷ ︸︸ ︷

P(zi = j|z−i)

∑T
j=1 P(wi|zi = j,z−i,w−i)P(zi|z−i)

. (5)

In Eq. (5), w−i denotes the set w without wi and z−i the cor-

responding assignment vector. We can express the conditional

distributions in the nominator of Eq. (5) by integrating over φ
and θ , where φ denotes the feature distribution of all topics

and θ denotes the topic distribution for each scan segment.

The likelihood of wi in Eq. (5) depends on the probability

of the distribution of topic j over features, so we need to

integrate over all these distributions φ (j):

P(wi = w | zi = j,z−i,w−i) =
∫

P(wi = w | zi = j,φ (j))
︸ ︷︷ ︸

φ
(j)
w

P(φ (j) | z−i,w−i)
︸ ︷︷ ︸

posterior of φ (j)

dφ (j) (6)

Since the Dirichlet distribution is conjugate to the multi-

nomials (to which φ (j) belongs to), this posterior can be

computed easily from the prior and the observations by adding

the observations to the respective elements of the parameter

vector β of the prior (see also Section IV-A). As a result, we

obtain a Dirichlet posterior with parameter vector β + n
(w)
−i, j

where the elements of n
(w)
−i, j are the number of occurrences of

feature w assigned to topic j by the assignment vector z−i.

The first term on the right hand side of Eq. (6) is the proba-

bility for feature w under the multinomial φ (j) and the second

term denotes the probability of that multinomial. Therefore,

solving this integral results in computing the expectation of

φ
(j)
w which is the probability of w under φ (j). According

to Eq. (3), this expectation can be easily computed. The

probability that an occurrence wi is feature w is

P(wi = w | zi = j,z−i,w−i) = E(φ
(j)
w) =

n
(w)
−i, j +βw

∑w′ n
(w′)
−i, j +βw′

. (7)

In the same way, we integrate over the multinomial distribu-

tions over topics θ , to find the prior of zi from Eq. (5). With di

being the index of the scan segment to which wi belongs, we

can compute the probability of a topic assignment for feature

occurrence wi as:

P(zi = j | z−i) =
∫

P(zi = j | θ (di))
︸ ︷︷ ︸

θ
(di)
j

P(θ (di) | z−i
︸ ︷︷ ︸

posterior of θ (di)

) dθ (di) (8)

Let n
(di)
−i, j be the number of features in the scan segment di

that are assigned to topic j. Then, analogous to Eq. (7), the

expected value of θ
(di)
j can be calculated by adding n

(di)
−i, j to

the elements of the parameter vector α of the prior:

P(zi = j | z−i) = E(θ
(di)
j) =

n
(di)
−i, j +α j

∑ j′ n
(di)
−i, j′

+α j′

(9)

Combining the results of Eq. (7) and (9) in Eq. (5), we

obtain the proposal distribution for the sampling of zi as

P(zi = j | z−i,w) ∝
n

(w)
−i, j +βw

∑w′ n
(w′)
−i, j +βw′

n
(di)
−i, j +α j

∑ j′ n
(di)
−i, j′

+α j′

.(10)

Eq. (10) is the proposal distribution used in Gibbs sampling

to obtain next generation of assignments.

After a random initialization of the Markov chain, a new

state is generated by drawing the topic for each feature

occurrence successively from the proposal distribution. From

these samples, the distributions θ and φ can be estimated by

using the sampled topic assignments z.

Note that in our work, we restrict the Dirichlet priors to be

symmetric. This implies that all topics and all features have the

same initial prior occurrence probability. As a result, we only

have to specify only value for the elements of the parameter

vectors α and β which we denote by α̂ and β̂ . This leads to:

φ
(w)
j ∼

n
(w)
j + β̂

(

∑w′ n
(w′)
j

)

+W β̂
θ

(d)
j ∼

n
(d)
j + α̂

(

∑ j′ n
(d)
j′

)

+T α̂
(11)

where T is the number of topics and W the number of features.

To summarize, we explained how to compute the proposal

distribution in Eq. (10) used in Gibbs sampling during MCMC.

The obtained samples can then be used to estimate the

distributions φ and θ . Due to our restriction to symmetric

priors, only two parameters (α̂, β̂ ∈ R) have to be specified.

E. Unsupervised Topic Discovery and Classification of Newly

Observed Objects

This section briefly summarizes how the components pre-

sented so far are integrated to perform the unsupervised

discovery of object classes and the classification when new

observations are made.

First of all, we preprocess the data according to Section III-

A to extract the scan segments which correspond to objects in

the scene and for which we aim to learn a topic model. For

each data point in a scan segment, we compute our feature,

a variant of the spin-image, according to Section III-B to

describe the surfaces characteristics.

For the discovery of topics, we then compute the feature

distributions φ of the object classes as well as the topic

mixtures θ for the scan segments using MCMC as described

in the previous section. The learned distributions θ denote a

probabilistic assignment of objects to topics.

Class inference, that is, the classification of objects con-

tained in new scenes can be achieved using the feature

distribution φ . In this case, φ and θ can be used to compute

the proposal distribution directly and are not updated.

Note that the approach presented here does not automati-

cally determine the number of object classes. This is similar

to other unsupervised techniques such as k-means clustering

or EM-based Gaussian mixture models in which the number

of object classes is assumed to be known. We experimentally

evaluated settings in which the number of topics was higher or

lower than the number of manually assigned classes in the data

set. Our observation was that a higher number of topics leads

to the detection of shape classes such as “corner”, “edge”, or

“flat surface” and that the objects are modeled as mixtures of

those.

F. The Influence of the Dirichlet Priors α̂ and β̂

Two hyperparameters α̂ ∈R and β̂ ∈R need to be provided

as the input to the presented approach. They define the prior

distributions for the mixture of object classes in a data set and

for the mixture of features in an object class respectively.

As briefly discussed in Section IV-A, choosing α̂ larger than

one favors the occurrence of many topics in each scan segment,

while lower values result in less topics per scan segment.

Similarly, the lower the hyperparameter β̂ for the Dirichlet

distribution over the features, the stronger the preference for

fewer features per topic and unambiguous ones. Due to the

segmentation in the preprocessing step, we assume that there

are only few topics per scan segment and thus a low value for

the hyperparameter is favored in this setting. For β̂ holds: On

the one hand different objects can yield the same individual

features (yet in distinct distributions). On the other hand, we

expect features to be related to specific topics.

From this intuitions about the Dirichlet parameters, a high

performance can be expected if both parameters are selected

between zero and one. This could be confirmed experimentally

and the results are given in Section V-D, where we analyze

the influence of the hyperparameters on manually labeled data

sets.

Fig. 4: Example point cloud segments of Corpus-A (box, balloon)
and Corpus-B (box, balloon, human, swivel chair, chair)

V. EXPERIMENTAL EVALUATION

In this section, we present experiments carried out to

evaluate our approach on recorded data. All results are based

on scans of real scenes acquired with an ActivMedia pioneer

robot equipped with a SICK LMS range finder mounted on

a Schunk pant-tilt unit. No simulator was involved in the

evaluation.

The goal of the evaluation is to answer the following

questions: (i) Are the proposed local shape features in con-

junction with the topic model approach expressive enough

to represent real-world objects? (ii) Is the approach able

to discover object classes from unlabeled point clouds and

are these classifications consistent with human-provided class

labels? (iii) How does our LDA-based approach compare to

conceptually simpler approaches for unsupervised clustering?

(iv) How sensitive is the proposed algorithm w.r.t to the choice

of parameters for the feature extraction step as well as of the

Dirichlet priors?

A. Test Data

For the experimental evaluation, we prepared and re-

arranged indoor scenes containing five different object types:

balloons, boxes, humans, and two types of chairs. In total,

we recorded 51 full laser-range scans containing 121 object

instances. The first part of this data set is termed Corpus-A.

It contains 31 object instances of low geometric complexity

(different boxes and balloons). The second and larger part

comprising of 82 object instances, Corpus-B, additionally

contains complex and variable shapes of chairs and humans.

See Figure 4 for examples of such object segments represented

as 3D point clouds.

The data was acquired and pre-processed as described in

Section III-A. Some difficulties, inherent in 3D data recorded

in this way, should be pointed out: Only one side of an object

can be recorded and non-convex objects typically occlude

themselves partially. Objects were scanned from different view

points and thus different parts are observed. Different objects

of the same class were scanned (different humans, different

chairs, etc.). Metal parts, such as the legs of chairs, reflect the

laser beams and, thus, are invisible to the sensor. Finally, local

shape features extracted from the scans of humans are highly

diverse compared to the simpler objects.

Figure 5 shows typical classification results achieved by

our algorithm when applied to entire scans in three example

Fig. 7: Visualization of the confusion matrix of classification based
on matching spin-image histograms.

scenes. Here, the points are color-coded according to their

class assignments (elements of Corpus-A on the left and

Corpus-B in the middle and on the right). The labels assigned

to the individual points are taken from a sample of the pos-

terior distribution P(z | w) as generated during the clustering

process. It can be seen that the point labels are almost perfectly

consistent within each object segment and, thus, the maximum

likelihood class assignment per segment is unambiguous.

In addition to that, Figure 6 gives a visual impression of

the topics assigned by our approach to the 82 scan segments

of Corpus-B. The labels in this diagram show the true object

class. Each color in the diagram denotes one topic and the

ratios of colors denote for each object segment the class

assignment weight. As the diagram shows, except of one chair,

all objects are grouped correctly when using the maximum

likelihood assignment.

We furthermore analyzed the runtime requirements of our

approach, disregarding the time for pre-processing and the

computation of the spin images. In Corpus-B (82 objects from

39 different 3D scans, 300 000 spin image in total), it took

less than 20 s to learn the topic distributions via MCMC and

to classify the objects. Thus, the computation time per 3D

scan is around 500 ms which is faster than the time needed to

record a 3D scan.

B. Clustering by Matching Shape Histograms

In order to compare our LDA-based approach to an un-

supervised clustering technique, we implemented hierarchical

clustering (HC) using the similarity between spin-image his-

tograms as the distance metric. In this implementation, we

build a feature histogram for each object segment by counting

the occurrences of the individual spin-images from the (finite)

spin-image dictionary (see. Section III-B). To compare two

scan segments, we first normalize their histograms to sum

up to one over all bins. Among the popular measures for

comparing histograms, namely histogram intersection [10],

χ2 distance, and the Kullback Leibler divergence (KL-D),

histogram intersection appeared to provide the best results

in our domain. This is due to the fact that the χ2 distance

and the KL-D are heavily influenced by features with few

or no occurrences—an effect that can be observed frequently

in our data sets. The quantitative results comparing LDA to

Fig. 5: Example classification results on test scans from Corpus-A (left) and Corpus-B (middle and right). The detected object classes are
colored according to the LDA-assigned shape model.

Fig. 6: Resulting topic mixtures θ for 82 segments of Corpus-B computed via LDA (the labels were not provided to the system).

HC are given in Table I. As can be seen for the simpler

setting of Corpus-A, HC gives acceptable results but is still

outperformed by LDA. In the more complex setting of Corpus-

B, however, HC was not able to find a good clustering of the

scene. In multiple runs using different setups, we found that

the difference is statistically significant.

Figure 7 visualizes the similarity matrix between scan

segments obtained using histogram intersection. Due to their

rather uniform shape, balloons can be well distinguished from

other objects. Objects with a more complex shape, however,

are confused easily. This indicates that approaches working

only based on such a distance metric are likely operate less

accurately in more complex scenes. In contrast to that, LDA

considers distributions of features and their dependencies and

therefore perform substantially better.

C. Parameters of the Spin-Image Features

In this experiment, we analyzed the difference of the cluster-

ing performance when the regular spin-images (referred to as

“Type 1”) and our variant (referred to as “Type 2”) is used. We

also investigated the influence of the parameters used to create

the features. These parameters are (i) the support distance, i.e.,

the size of the spinning image, (ii) the grid resolution, and (iii)

the discretization of the stored values.

To compare the two alternative types of spin images, we

collected statistics measuring the LDA clustering performance

on a labeled test set, integrating over the three feature pa-

rameters. That way, we analyzed 10 780 different parameter

settings—each for regular spin-images and for our variant.

Figure 8 shows the results of this experiment as a histogram.

The higher the bars on the right hand side of the histogram, the

better the results. As can be seen, our approach outperforms

TABLE I: Summary of the classification results on the test data sets.
The percentages give the average correct classifications achieved by
hierarchical clustering (HC) and the proposed model based on LDA.

Data set No. of scenes No. of segments HC LDA

Corpus-A 12 31 94.84% 99.89%
Corpus-B 39 82 71.19% 90.38%

Fig. 8: Classification using standard spin-image features (“Type 1”
shown in blue) generally labels less documents correctly than classi-
fication upon the features we proposed (“Type 2”, yellow).

HC

LDA

Fig. 9: Classification accuracy on Corpus-B for different discretiza-
tion resolutions and respect to support distances for HC (top) and
LDA (bottom).

regular spin-images.

In addition to that, we computed the clustering performance

of our approach and HC for a wide variety of feature param-

eters using Corpus-B. Figure 9 shows the results for HC and

LDA. Again, our approach clearly outperforms HC. The broad

spread of high classification rates over the range of parameters

demonstrates that the results presented in the previous section

were not caused by selecting feature parameters that were

suboptimal for HC.

We observe that for smaller support distances, a higher dis-

Fig. 10: Evaluation of classification accuracy for various values of
alpha and beta.

cretization resolutions work well and vice versa. The intuition

for this finding is that feature distributions with a large support

and a very accurate discretization have overly detailed features,

that do not match the distributions of other segments well.

The best results in our setting are obtained for features with

a discretization resolution between 5 and 27 and a rather short

support distance. In conclusion we see, that choosing such

parameters for the feature generation, we can achieve over

90 % correct classifications (compare lower plot in Figure 9).

D. Sensitivity of the Dirichlet Priors

We furthermore evaluated how sensitive our approach is

with respect to the choice of the parameters α̂ and β̂ for the

Dirichlet priors. Figure 10 depicts the average classification

rates for varying parameters. In this plot, we integrate over the

three feature parameters in a local region around the values

determined in the previous experiment to illustrate how robust

LDA performs. As can be seen from Figure 10, determining

the hyperparameters is not a critical task since the performance

stays more or less constant when varying them. Good values

for α̂ lie between 0.1 and 0.8 and between 0.1 and 0.3

for β̂ . In these ranges, we always achieved close-to-optimal

classification accuracies on labeled test sets.

VI. CONCLUSION

In this paper, we presented a novel approach for discovering

object classes from laser range data in an unsupervised fashion.

We use a feature-based approach that applies a novel variant of

spin-images as surfaces representations but is not restricted to

this kind of features. We model object classes as distributions

over features and use Latent Dirichlet Allocation to learn

clusters of 3D objects according to similarity in shape. The

learned feature distributions can subsequently be used as

models for the classification of unseen data. An important

property of our approach is that it is unsupervised and does

not need labeled training data to learn the partitioning.

We carried out experiments using 3D laser range data

acquired with a mobile robot. Even for datasets containing

complex objects with varying appearance such as humans,

we achieve a robust performance with over 90% correctly

grouped objects. We furthermore demonstrate that our ap-

proach clearly outperforms unsupervised clustering approaches

such as hierarchical clustering. Not only does LDA achieve

higher classification accuracy throughout the entire parameter

range, it is also less sensitive to the choice of parameters.

REFERENCES

[1] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,
and A. Ng. Discriminative learning of markov random fields for
segmentation of 3d scan data. In Proc. of the Conf. on Comp. Vision

and Pattern Recognition (CVPR), pages 169–176, 2005.
[2] D.M. Blei, A.Y. Ng, M.I. Jordan, and J. Lafferty. Latent dirichlet

allocation. Journal of Machine Learning Research, 3, 2003.
[3] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via plsa.

In In Proc. ECCV, pages 517–530, 2006.
[4] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a

spatial pyramid kernel. In Proc. of the ACM Int. Conf. on Image and

Video Retrieval, pages 401–408, 2007.
[5] B. Bustos, D.A. Keim, D. Saupe, T. Schreck, and D.V. Vranić. Feature-

based similarity search in 3d object databases. ACM Comput. Surv.,
37(4):345–387, 2005.

[6] R.J. Campbell and P.J. Flynn. A survey of free-form object rep-
resentation and recognition techniques. Computer Vision and Image

Understanding, 81(2):166–210, 2001.
[7] M. Fritz and B. Schiele. Decomposition, discovery and detection of

visual categories using topic models. In Proc. of the Conf. on Comp.

Vision and Pattern Recognition (CVPR), pages 1–8, 2008.
[8] M. Girolami and A. Kabán. On an equivalence between PLSI and LDA.

In Proc. of the Int. ACM SIGIR Conf. on Research and Development in

Information Retrieval, pages 433–434, 2003.
[9] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proc Natl

Acad Sci U S A, 101 Suppl 1:5228–5235, 2004.
[10] G. Hetzel, B. Leibe, P. Levi, and B. Schiele. 3d object recognition from

range images using local feature histograms. In Proc. of the Conf. on

Comp. Vision and Pattern Recognition (CVPR), pages 394–399, 2001.
[11] T. Hofmann. Probabilistic latent semantic indexing. In Proc. of the

Int. ACM SIGIR Conf. on Research and Development in Information

Retrieval, pages 50–57, 1999.
[12] A. Johnson. Spin-Images: A Representation for 3-D Surface Matching.

PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1997.
[13] A. Johnson and M. Hebert. Recognizing objects by matching ori-

ented points. Technical Report CMU-RI-TR-96-04, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, May 1996.

[14] A.E. Johnson and M. Hebert. Surface matching for object recognition
in complex three-dimensional scenes. Image and Vision Computing,
16:635–651, 1998.

[15] A.E. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21:433–449, 1999.
[16] C.H. Lampert, M.B. Blaschko, and T. Hofmann. Beyond sliding

windows: Object localization by efficient subwindow search. In Proc. of

the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 1–8, 2008.

[17] M. Ruhnke, B. Steder, G. Grisetti, and W Burgard. Unsupervised
learning of 3d object models from partial views. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2009. To appear.
[18] S. Ruiz-Correa, L.G. Shapiro, and M. Meila. A new paradigm for

recognizing 3-d object shapes from range data. Computer Vision, IEEE

International Conference on, 2:1126, 2003.
[19] F. Stein and G. Medioni. Structural indexing: Efficient 3-d object

recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(2):125–145, 1992.
[20] R. Triebel, K. Kersting, and W. Burgard. Robust 3d scan point

classification using associative markov networks. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2006.
[21] R. Triebel, R. Schmidt, O. Martinez Mozos, and W. Burgard. Instace-

based amn classification for improved object recognition in 2d and 3d
laser range data. In Proc. of IJCAI, pages 2225–2230, 2007.

[22] P. Viola and M.J. Jones. Robust real-time object detection. In Proc. of

IEEE Workshop on Statistical and Theories of Computer Vision, 2001.
[23] X. Wang and E. Grimson. Spatial latent dirichlet allocation. In Advances

in Neural Information Processing Systems, volume 20, 2007.

[C3] K.M. Wurm, R. Kuemmerle, C. Stachniss, and W. Burgard. Im-

proving robot navigation in structured outdoor environments by identifying

vegetation from laser data. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), St. Louis, MO, USA, 2009.

Improving Robot Navigation in Structured Outdoor

Environments by Identifying Vegetation from Laser Data

Kai M. Wurm Rainer Kümmerle Cyrill Stachniss Wolfram Burgard

Abstract— This paper addresses the problem of vegetation
detection from laser measurements. The ability to detect veg-
etation is important for robots operating outdoors, since it
enables a robot to navigate more efficiently and safely in such
environments. In this paper, we propose a novel approach for
detecting low, grass-like vegetation using laser remission values.
In our algorithm, the laser remission is modeled as a function
of distance, incidence angle, and material. We classify surface
terrain based on 3D scans of the surroundings of the robot.
The model is learned in a self-supervised way using vibration-
based terrain classification. In all real world experiments we
carried out, our approach yields a classification accuracy of
over 99%. We furthermore illustrate how the learned classifier
can improve the autonomous navigation capabilities of mobile
robots.

I. INTRODUCTION

Autonomous outdoor navigation is an active research field

in robotics. In most of the outdoor navigation scenarios in-

cluding autonomous cars, autonomous wheelchairs, surveil-

lance robots, or transportation vehicles, the classification of

the terrain plays an important role as most of the robots have

been designed for navigation on streets or paved paths rather

than on natural surfaces covered by grass or vegetation. The

navigation outside of paved paths might be uncomfortable

for passengers and might even introduce the risk of the robot

getting stuck. Furthermore, driving on grass will in general

increase wheel slippage and in this way increase potential

errors in the odometry. Accordingly, the robust detection of

vegetated areas is an important requirement for robots in any

of the above-mentioned situations.

In this paper, we propose a novel laser-based classification

approach that is especially suited for detecting low vegetation

typically found in structured outdoor environments such as

parks or campus sites. We classify surface terrain based on

3D scans of the surrounding of the robot in order to allow

the robot to take the classification result into account during

trajectory planning. It exploits an effect that is well known

from satellite image analysis: Chlorophyll which is found

in living plants strongly reflects near-IR light [13]. Often

used laser scanners such as the SICK LMS 291-S05 scanner

emit near-IR light and return the reflectivity of the object

they hit. Our approach models this remission value of the

laser scanner as a function of terrain class, incidence angle,

and measured distance. Classification is done using a support

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8 (A3) and by the EC under contract
number FP7-231888-EUROPA.

Fig. 1. Picture of a street and vegetation (top) and typical classification
results obtained based on range differences (middle) and remission values
(bottom). Shown is a bird’s eye view of a 3D scan of the area depicted at the
top with a maximum range of 5 m. Whereas points classified as street are
depicted in blue, points corresponding to vegetation are colored in green.

vector machine. To integrate classification results, we apply

a probabilistic mapping method similar to occupancy grid

mapping [12]. The model is learned in a self-supervised

way using a vibration-based classification approach to label

training data. In our experiments, we demonstrate that our

approach can be used to accurately map vegetated areas and

do so with a higher accuracy than standard techniques that

are solely based on range values (see Fig. 1). We furthermore

present an application to autonomous navigation in structured

outdoor environments in which a robot benefits from the

knowledge about the vegetation in its surroundings.

This paper is organized as follows. After discussing related

work, we will briefly describe Support Vector machines

which are employed for classification in our approach.

Sec. IV then discusses the properties of the remission values.

In Sec. V we then present our approach for self-supervised

learning of the terrain classification. Finally, in Sec. VI we

describe the experimental results obtained with real data and

with real robots navigating through our university campus.

II. RELATED WORK

There exist several approaches for detecting vegetation

using laser measurements. Wolf et al. [23] use hidden

Markov models to classify scans from a tilted laser scanner

into navigable (e.g., street) and non-navigable (e.g., grass)

regions. The main feature for classification is the variance

in height measurements relative to the robot height. Other

approaches analyze the distribution of 3D endpoints in a

sequence of scans [8], [9], [10]. However, flat vegetation

such as a freshly mowed lawn can not be reliably detected

using this feature alone.

A combination of camera and laser measurements has

been used to detect vegetation in several approaches [2],

[6], [11], [22]. In a combined system, Wellington et al. [22]

use the remission value of a laser scanner in addition

to density features and camera images as a classification

feature. However, they do not model the dependency between

remission, measured range, and incidence angle. Probably

due to this fact, they found the feature to be only ”moderately

informative”.

The approach that is closest to our approach has been

proposed by Bradley et al. [2]. Chlorophyll-rich vegetation

is detected using a combination of laser range measurements,

regular and near-infrared cameras. Vegetation is recognized

by comparing measurements from the different types of

cameras. 3D laser measurements of the environment are

projected into the camera images. A classifier is then trained

using the vegetation feature and features from the distribution

of 3D endpoints. According to the authors the approach

yields a classification accuracy of up to 95% but requires

sophisticated camera equipment.

In contrast to those combined systems, our approach uses

a laser scanner as its sole sensor. It is thus independent of

lighting conditions and can be used on a variety of existing

robot systems. Additionally, hand-labeling of training data is

not required in our approach.

Terrain types have also been classified using vibration

sensors on a robot [3], [7], [15], [21]. In these approaches,

the robot traverses the terrain and the induced vibration

is measured using accelerometers. The measurements are

usually analyzed in the Fourier domain. Sadhukhan et al. [15]

presented an approach based on neural networks. A similar

approach is presented by DuPont et al. [7]. Brooks and

Iagenemma [3] use a combination of principal component

analysis and linear discriminant analysis to classify terrain.

More recently, SVMs have been used by Weiss et al. [20],

[21].

Self-supervised learning has previously been used by

Dahlkamp et al. [5] in a vision-based road detection sys-

tem. Here, laser measurements are used to identify nearby

traversable surfaces. This information is then used to label

camera image patches in order to train a classifier that is able

to predict traversability in the far range. In our approach, we

adopt the idea of self-supervision to generate labeled training

data. We apply a vibration-based classifier to label laser

measurements recorded by the robot. This labeled dataset

is then used to train a laser-based vegetation classifier. Both

classifiers used in our approach have been implemented using

support vector machines which will be introduced in the

following.

III. SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are a kernel-based learn-

ing method which is widely used for classification and

regression [16]. A SVM is essentially a hyperplane learning

algorithm. Two classes of data points are separated by a

hyperplane so that the margin between training points and

the plane is maximized:

max
w∈H,b∈R

min{||x − xi|| | x ∈ H, 〈w, x〉 + b = 0}, (1)

where H is some dot product space, xi are training points,

and w is a weighting vector. The following decision function

is used to determine the class label y:

f(x) = 〈w, x〉 + b (2)

y = sgn(f(x)) (3)

The hyperplane can be constructed efficiently by solving

a quadratic programming problem. To separate non-linear

classes, the so-called kernel trick is applied. The training

data is first mapped into a higher-dimensional feature space

using a kernel function. A separating hyperplane is then

constructed in this features space which yields a nonlinear

decision boundary in the input space. In practice, the Gaus-

sian Radial Basis Function (RBF) is often used as a kernel

function given by

k(x, x′) = e
−(x−x

′)2

2l2 , (4)

with the so-called length-scale parameter l.

There exist derivatives of the basic SVM-formulation

which allow for training errors. Among those, C-SVM is a

popular method. An addition parameter commonly denoted

as C has to be optimized which adjusts the trade-off between

maximizing the margin and minimizing the training error.

Throughout this work, we use the SVM implementation

of LibSVM [4].

IV. USING REMISSION VALUES FOR

TERRAIN CLASSIFICATION

The goal of our terrain classification algorithm is to pre-

cisely classify the area containing vegetation. This classifica-

tion has to be made early enough for the robot’s planner to

take the classification into account. For this reason, we focus

on classifying three-dimensional scans of the environment

surrounding the robot.

We are interested in distinguishing flat vegetation such as

grass from drivable surfaces such as streets or paved paths.

For sake of brevity, we will call those classes of materials

”street” and ”vegetation” in the following.

Compared to an approach based purely on the scan point

distribution (see experiment in Sec. VI-A) a far better

classification accuracy can be achieved when the remission

value of laser measurements is used to classify endpoints.

Fig. 2. Left: typical remission measurements of a SICK LMS 291-S05 for
street (blue) and vegetation class (green). Right: mean remission values for
both classes.

Fig. 3. Classification of the scene depicted in Fig. 1 using the mean
remission value (see Fig. 2, right) to distinguish both classes.

The SICK LMS laser scanner uses light at a wavelength of

905 nm which is within the near-infrared range. Chlorophyll

which is found in living plants strongly reflects near-IR

light [13]. The remission values returned by the scanner

depends on the material of the measured surface, on the

distance at which it is hit, and on the angle of incidence [1].

Unfortunately, this relation is non-linear as the example of

measurements in Fig. 2 shows. It is essential to take the

measured range as well as the angle of the measurement into

account. Averaging the remission value over all measured

ranges and angles will lead to wrong classification results

especially in the near range of up to three meters. This can

be seen in Fig. 3. Here, the scene from Fig. 1 was classified

using the mean remission value for both classes (see Fig. 2)

ignoring the range and incidence angle.

In our approach, we apply a C-SVM to classify laser

beams depending on the measured range, incidence angle,

and remission using a RBF-kernel. Other classification meth-

ods might certainly be used instead of a SVM as long as

they are able to classify data which is only separable in

a non-linear way. The input to the learning algorithm is a

labeled set of laser measurements. Each data point consists

of a range measurement, incidence angle, and a remission

value. By determining the separating hyperplane between

both data sets, we implicitly model the remission functions

for the street and vegetation class.

V. SELF-SUPERVISED LEARNING FOR

ROBUST TERRAIN CLASSIFICATION

To avoid tedious hand-labeling of dense three-dimensional

training data our algorithm uses a self-supervised training

method [5]. While the robot is moving it generates a 3D

model of the environment using the method described in

Sec. V-B. Incidence angles are estimated using the surface

normal in the 3D model as well as the angle of the laser

beam relative to the robot.

For each measured scan point the remission value, inci-

dence angle, and distance are stored. As the robot moves

through the environment it traverses previously scanned

surface patches. Those patches are labeled using the vibration

classifier described below and are then fed to the SVM as

training data. The training is done offline. To optimize the

length-scale parameter l of the kernel as well as the soft-

margin parameter C, we perform a systematic grid search

on the grid log
2
l ∈ {−15, ..., 3} and log

2
C ∈ {−5, ..., 15}.

The optimal parameters are determined using 5-fold cross

validation.

Once the classifier has been trained, the model can be

used on any robot which is using the same sensor in a

similar configuration. More specifically, the laser should be

mounted so that the laser is measuring the surface at angles

and distances similar to those observed during the training

phase.

A. Terrain Classification based on the Vibration of the

Vehicle

We use a vibration-based classifier to label training data.

Different types of terrain induce vibrations of a different

characteristic to the robot. These vibrations can be measured

by an inertial measurement unit (IMU) and can be used

to classify the terrain the robot traverses. Note that such

classifiers do not allow the prediction of terrain classes in

areas which have not been traversed yet. In our system,

we only need to differentiate between vegetation and streets

(non-vegetation) to generate training data for the SVM.

In our experiments, we use a XSens MTi to measure the

acceleration along the z-axis. We apply the Fourier transform

to the raw acceleration data. In our algorithm, a 128-point

FFT is used to capture the frequency spectrum of up to 25 Hz.

The frequency spectrum also depends on the speed of the

robot. To account for this dependency, it has been suggested

to train several classifiers at different speeds [20]. In our

system, however, we decided to treat the forward velocity

as a training feature instead. In addition to this, we also use

the rotational velocity as a feature to account for vibrations

which result from the skid-steering of our robot.

To classify the acceleration and velocity data, we again use

a C-SVM with a RBF-kernel. Our feature vector x consists

of the first 32 Fourier magnitudes |Fm|, the mean forward

velocity v̄t and the mean rotational velocity v̄r of the robot

over the sample period

|Fm| =
√

(Re Fm)2 + (Im Fm)2,m∈{0,...,31} (5)

x = {|F0|, ..., |F31|, v̄t, r̄t}, (6)

where Fm denotes the m-th Fourier component. The classi-

fier was trained by recording short tracks of about 50 m at

varying speeds both on a street and on vegetation. Parameter

optimization was done using grid search and 5-fold cross

validation.

In our experiments, we achieved a high classification

accuracy and thus this data is well suited to label the training

data for the laser-based classification.

B. Mapping of Vegetation

We use multi-level surface maps [18] to model the envi-

ronment. This representation uses a 2D grid and stores in

each cell a set of patches representing individual surfaces

at different heights. In our approach, we additionally store

the probability of each surface patch to contain vegetation.

Let P (vi) denote this probability of patch i. In general,

surface patches will be observed multiple times. Therefore,

we need to probabilistically combine results from several

measurements. In this way, the uncertainty in classification

is explicitly taken into account.

Let zt be a laser measurement at time t. Analogous to

Moravec [12], we obtain an update rule for P (vi | z1:t).
First we apply Bayes’ rule and obtain

P (vi | z1:t) =
P (zt | vi, z1:t−1)P (vi | z1:t−1)

P (zt | z1:t−1)
. (7)

We then compute the ratio

P (vi | z1:t)

P (¬vi | z1:t)
=

P (zt | vi, z1:t−1)

P (zt | ¬vi, z1:t−1)

P (vi | z1:t−1)

P (¬vi | z1:t−1)
. (8)

Similarly, we obtain

P (vi | zt)

P (¬vi | zt)
=

P (zt | vi)

P (zt | ¬vi)

P (vi)

P (¬vi)
,

which can be transformed to

P (zt | vi)

P (zt | ¬vi)
=

P (vi | zt)

P (¬vi | zt)

P (¬vi)

P (vi)
. (9)

If we apply the Markov assumption that the current observa-

tion is independent of previous observations given we know

that a patch contains vegetation

P (zt | vi, z1:t−1) = P (zt | vi) (10)

and utilize the fact that P (¬vi) = 1 − P (vi), we obtain

P (vi | z1:t)

1 − P (vi | z1:t)
=

P (vi | zt)

1 − P (vi | zt)

P (vi | z1:t−1)

1 − P (vi | z1:t−1)

1 − P (vi)

P (vi)
. (11)

This equation can be transformed into the following update

formula:

P (vi | z1:t) =
[

1 +
1 − P (vi | zt)

P (vi | zt)

1 − P (vi | z1:t−1)

P (vi | z1:t−1)

P (vi)

1 − P (vi)

]−1

(12)

To perform the update step, we need an inverse sensor model

P (vi | z). In our system, this sensor model is based on the

remission value of the laser. The SVM-classifier is used to

model the measurement probabilities as described in the next

section. Here, the prior probability of P (vi) was set to 0.5.

Fig. 4. Robots used in our experiments.

C. Class Probabilities

The decision function of Support Vector Machines (see

Eq. 3) produces a class label y which is not a probability (y

is either 1 or -1).

Several methods have been proposed to map the output

of SVMs to posterior class probabilities [14], [19]. Among

those a popular approach is Platt’s method [14]. It uses a

parametric model to fit the posterior given by

P (y = 1 | f) = (1 + exp(Af + B))−1. (13)

The parameters A and B are determined using maximum

likelihood estimation from a training set (fi, yi), where fi

are the outputs of the function given in Eq. 2 and yi are the

corresponding class labels. For details of the optimization

step see [14]. In our approach, this method is used to obtain

the inverse sensor model P (vi | z).

VI. EXPERIMENTS

Our approach has been implemented and evaluated in

several experiments. The experiments are designed to demon-

strate that our approach is suitable to allow robots to reliably

detect vegetation and thus improves robust navigation in

structured outdoor environments.

We used two different robot systems (see Fig. 4). The self-

supervised learning approach is evaluated using an ActivMe-

dia Pioneer 2 AT, which is able to traverse low vegetation.

For mapping large environments and for an autonomous

driving experiment, we use an ActivMedia Powerbot plat-

form. This robot cannot safely traverse grass since its castor

wheels will block the robot due to its weight. Both robots

are equipped with SICK LMS S291-S05 laser scanners on

pan-tilt units. In addition to that, the Pioneer robot carries an

XSens MTi IMU to measure vibrations. Three-dimensional

scans are gathered by tilting the laser scanner from 50

degrees upwards to 30 degrees downwards. We use the raw

(unnormalized) remission values provided by the scanner.

We limit the classification to scans with a range smaller

than 5.0 meters. The approach itself is not limited in range.

However, at a laser resolution of one degree and a low height

of the sensor relative to the ground (approx. 0.5 m), long

range data will be too sparse both to gather training data

and to reliably detect drivable surfaces and obstacles.

A. Vegetation detection using range differences

In a first experiment, we implemented a vegetation de-

tection algorithm based purely on the range differences of

Fig. 5. Self-supervised learning. Left: the data set which is used to train
the classifier. Right: test set recorded at a different location.

neighboring laser measurements similar to the one proposed

by Wolf et al. [23]. This method is only used for a com-

parison with our proposed classification approach. Three-

dimensional data is acquired by gathering a sweep of 2D

scans. For each 2D scan the 2D endpoints pi = 〈xi, yi〉 are

computed from the range and angle measurements 〈ri, αi〉.
A local feature di is then determined for every scan point

di = xi − xi−1. (14)

This feature captures the local roughness of the terrain. To

cope with flat but tilted surfaces we classify scans based

on the absolute difference in di between neighboring range

measurements as suggested in [11]. Furthermore, we also use

the measured range as a training feature to account for the

varying data density from near to far scans. A SVM is used

to train a classifier based on these features.

In our experiments, we achieve a classification accuracy

of about 75% using the described method. An example of

the classification results can be seen in Fig. 1. Similar results

have been reported by other researchers [2].

B. Self-supervised Learning

To train our remission-based classifier, we manually

steered the Pioneer AT robot through an outdoor environment

consisting of a street and an area covered with grass. We

acquired 3D scans approximately every 4 m. While the robot

was driving the IMU measured the vibration induced to

the robot. To correct odometry errors of the robot, we em-

ployed a state-of-the-art SLAM approach [17] and 3D scan-

matching. We trained our classifier using the self-supervised

approach described in Sec. V. The training set is visualized in

Fig. 5a. The data recorded at the border region between street

and vegetation were ignored since the precise location of the

border cannot be determined using the vibration sensor. The

model for the laser-based classifier was trained using 19,989

vegetation and 11,248 street samples.

To further evaluate the precision of the classifier, we

recorded separate test data at a different location (see Fig. 5b

and Fig. 6). The test set contains 36,304 vegetation and

28,883 street measurements. Again, the labeling of the data

was carried out using the vibration-based classifier. The

previously trained classifier reached a precision of 99.9 % on

the test data; the recall is 99.6 %. The confusion matrix is

given in Table I. Note that such accurate classification results

are not due to overfitting. Fig. 2 illustrates that a non-linear

function (as learned by the SVM in our approach) can clearly

separate the classes.

TABLE I

CONFUSION MATRIX FOR EXP. VI-B (NUMBER OF DATA POINTS)

vegetation street

vegetation 36,300 138

street 4 28,745

Fig. 6. Aerial view of the computer science campus in Freiburg. Approxi-
mated robot trajectories are shown for the training (top, yellow) and the test
set (bottom, red). Courtesy of Google Maps, Copyright 2008, DigitalGlobe.

C. 3D Mapping

In this experiment, the Powerbot robot was steered across

the computer science campus at the University of Freiburg.

The scanning laser of the robot was tilted to a fixed angle

of 20 degrees downwards. In this way, a fairly large area

could be mapped in less than 15 minutes. The length of

the trajectory is 490 m. The vegetation classifier was used

to map vegetation in the three-dimensional model of the

environment. To properly integrate multiple measurements,

we used the mapping approach described in Sec. V-B with

a cell size of 0.1 m.

Due to a significantly different hardware setup than on the

Pioneer AT, we were not able to use the model generated in

Sec. VI-B. Instead, we recorded a training set of 12,153 grass

and 10,448 street samples by placing the robot in front of flat

areas containing only street and only vegetation. This method

is only applicable if such example data can be gathered

and thus should be considered inferior to the self-supervised

approach described in Sec. V.

Fig. 7. Mapping of a large outdoor environment. The laser was tilted at a
fixed angle of 20 degrees while the robot was moving. The figure shows a
2D projection of the 3D map.

Fig. 8. Autonomous navigation experiment. Although the shortest obstacle-
free path from the start to the goal position led over grass, the robot could
reliably avoid the vegetated areas by using our vegetation classifier and
traveled over the paved streets to reach its goal.

Compared to the aerial image of the campus site in Fig. 6,

the mapping result shown in Fig. 7 is highly accurate. Even

small amounts of vegetation, for example between tiles on a

path, can be identified. To evaluate the accuracy of the map

created during this experiment, we manually marked wrongly

classified cells. Of a total of 271,638 cells (75,622 vegetation,

196,016 street), we found 547 false positives and 194 false

negatives. This corresponds to a precision of 99.23 % and a

recall of 99.74 %.

D. Autonomous Navigation

As mentioned above, the Powerbot cannot safely traverse

vegetated areas. In the experiment depicted in Fig. 8 (see

also our video attachment), the robot was told to navigate

to a goal position 80 m in front while avoiding vegetation.

Since the robot did not have a map, it explored the envi-

ronment in the process of reducing its distance to the goal

location. Thereby, it used the vegetation classifier to detect

vegetation. The environment was represented as described in

Sec. V-B. Without knowledge about the specific terrain, the

shortest obstacle-free path would have led the robot across a

large area containing grass. By considering the classification

results in the path costs, however, the planner chose a safe

trajectory over the street.

VII. CONCLUSION

In this paper, we proposed a new approach to vegetation

detection using the remission values of a laser scanner.

By predicting vegetation in the surrounding of a robot,

our approach improves robot navigation in structured out-

door environments. The laser classifier is learned in a self-

supervised fashion by means of a support vector machine

using a vibration-based terrain classifier to gather training

data. The approach has been implemented and evaluated

in several real-world experiments. The experiments show

that our approach is able to accurately detect low, grass-

like vegetation with an accuracy of more than 99%. We also

demonstrated that the terrain classification can be used to

improve the navigation behavior of a robot.

Our current approach is limited to detecting flat vegetation

due to the self-supervised training method. In future work,

we will investigate whether the described approach can also

be applied to classify tall vegetation such as trees or bushes.

We will also look into using remission values provided by

the recently introduced Hokuyo UTM-30LX. With a weight

of 370 g this sensor could allow vegetation detection on an

even broader range of robots including humanoids and small

scale robots.

REFERENCES

[1] R. Baribeau, M. Rioux, and G. Godin. Color reflectance modeling
using a polychromatic laser range sensor. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 14(2):263–269, 1992.
[2] D. Bradley, R. Unnikrishnan, and J. Bagnell. Vegetation detection for

driving in complex environments. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2007.
[3] C.A. Brooks, K. Iagnemma, and S. Dubowsky. Vibration-based terrain

analysis for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), pages 3415–3420, 2005.
[4] C-C. Chang and C-J. Lin. LIBSVM: a library for support vector

machines. http://www.csie.ntu.edu.tw/c̃jlin/libsvm, 2001.
[5] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-

supervised monocular road detection in desert terrain. In Proc. of

Robotics: Science and Systems (RSS), Philadelphia, USA, 2006.
[6] B. Douillard, D. Fox, and F. Ramos. Laser and vision based outdoor

object mapping. In Proceedings of Robotics: Science and Systems IV,
Zurich, Switzerland, 2008.

[7] E.M. DuPont, R.G. Roberts, C.A. Moore, M.F. Selekwa, and E.G.
Collins. Online terrain classification for mobile robots. In Proc. of

the Int. Mechanical Engineering Congress and Exposition Conference

(IMECE), Orlando, USA, 2005.
[8] M. Hebert and N. Vandapel. Terrain classification techniques from

ladar data for autonomous navigation. In Proc. of the Collaborative

Technology Alliances conference, College Park, MD., 2003.
[9] J-F. Lalonde, N. Vandapel, D. Huber, and M. Hebert. Natural terrain

classification using three-dimensional ladar data for ground robot
mobility. Journal of Field Robotics, 23(10):839 – 861, 2006.

[10] J. Macedo, R. Manduchi, and L. Matthies. Ladar-based discrimination
of grass from obstacles for autonomous navigation. In ISER 2000:

Experimental Robotics VII, London, UK, 2001.
[11] R. Manduchi, A. Castano, A. Talukder, and L.Matthies. Obstacle

detection and terrain classification for autonomous off-road navigation.
Autonomous Robots, 18, pages 81–102, 2003.

[12] H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AI

Magazine, pages 61–74, 1988.
[13] R.B. Myneni, F.G. Hall, P.J. Sellers, and A.L. Marshak. The interpreta-

tion of spectral vegetation indexes. IEEE Transactions on Geoscience

and Remote Sensing, 33(2):481–486, 1995.
[14] J.C. Platt. Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. In Advances in Large

Margin Classifiers, pages 61–74, 1999.
[15] D. Sadhukhan, C. Moore, and E. Collins. Terrain estimation using

internal sensors. In Proc. of the IASTED Int. Conf. on Robotics and

Applications, Honolulu, Hawaii, USA, 2004.
[16] B Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.
[17] C. Stachniss and G. Grisetti. GMapping project at OpenSLAM.org.

http://openslam.org, 2007.
[18] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[19] V.N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.
[20] C. Weiss, N. Fechner, M. Stark, and A. Zell. Comparison of different

approaches to vibration-based terrain classification. In Proc. of the

European Conf. on Mobile Robots (ECMR), Freiburg, Germany, 2007.
[21] C. Weiss, H. Frohlich, and A. Zell. Vibration-based terrain classi-

fication using support vector machines. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[22] C. Wellington, A. Courville, and A. Stentz. A generative model of

terrain for autonomous navigation in vegetation. International Journal

of Robotics Research, 25(12):1287 – 1304, 2006.
[23] D.F. Wolf, G. Sukhatme, D. Fox, and W. Burgard. Autonomous terrain

mapping and classification using hidden markov models. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[C4] W. Burgard, B. Steder, R. Kuemmerle, M. Ruhnke, G. Grisetti,

C. Stachniss, C. Dornhege, A. Kleiner, and Juan D. Tardos. How to com-

pare the results of slam algorithms. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), St. Louis, MO, USA, 2009.

A Comparison of SLAM Algorithms Based on a Graph of Relations

Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Bastian Steder

Rainer Kümmerle Christian Dornhege Michael Ruhnke Alexander Kleiner Juan D. Tardós

Abstract— In this paper, we address the problem of creating
an objective benchmark for comparing SLAM approaches.
We propose a framework for analyzing the results of SLAM
approaches based on a metric for measuring the error of the
corrected trajectory. The metric uses only relative relations
between poses and does not rely on a global reference frame.
The idea is related to graph-based SLAM approaches in
the sense that it considers the energy needed to deform the
trajectory estimated by a SLAM approach to the ground
truth trajectory. Our method enables us to compare SLAM
approaches that use different estimation techniques or different
sensor modalities since all computations are made based on the
corrected trajectory of the robot. We provide sets of relative
relations needed to compute our metric for an extensive set
of datasets frequently used in the SLAM community. The
relations have been obtained by manually matching laser-range
observations. We believe that our benchmarking framework
allows the user an easy analysis and objective comparisons
between different SLAM approaches.

I. INTRODUCTION

Models of the environment are needed for a wide range of

robotic applications including transportation tasks, guidance,

and search and rescue. Learning maps has therefore been a

major research focus in the robotics community over the

last decades. In the literature, the mobile robot mapping

problem under pose uncertainty is often referred to as the

simultaneous localization and mapping (SLAM) or concur-

rent mapping and localization (CML) problem [26]. SLAM

is considered to be a complex problem because to localize

itself a robot needs a consistent map and for acquiring the

map the robot requires a good estimate of its location.

Whereas dozens of different techniques to tackle the

SLAM problem have been proposed, there is no gold stan-

dard for comparing the results of different SLAM algorithms.

In the community of feature-based estimation techniques,

researchers often measure the Euclidean or Mahalanobis

distance between the estimated landmark location and the

true location (if this information is available). As we will

illustrate in this paper, comparing results based on an ab-

solute reference frame can have shortcomings. In the area

of grid-based estimation techniques, people often use visual

All authors are with the University of Freiburg, Dept. of Computer
Science, Georges Koehler Allee 79, 79110 Freiburg, Germany except of
Juan D. Tardós who is with the Instituto de Investigación en Ingenierı́a
de Aragón (I3A), Universidad de Zaragoza, Marı́a de Luna 1, E-50018,
Zaragoza, Spain.

The authors gratefully thank Mike Bosse, Patrick Beeson, and Dirk
Haehnel for providing the MIT Killian Court, the ACES, and the Intel
Research Lab datasets. This work has partly been supported by the DFG
under contract number SFB/TR-8 and the European Commission under
contract numbers FP6-2005-IST-6-RAWSEEDS, FP6-IST-045388-INDIGO,
and FP7-231888-EUROPA.

inspection to compare maps or overlays with blueprints

of buildings. This kind of evaluation becomes more and

more difficult as new SLAM approaches show increasing

capabilities and thus large scale environments are needed

for evaluation. Therefore, there is a strong need for methods

allowing meaningful comparisons of different approaches.

Ideally, such a method is capable of performing comparisons

between mapping systems that apply different estimation

techniques and operate on different sensing modalities. We

argue that meaningful comparisons between different SLAM

approaches require to have a common performance metric.

This metric should allow to compare the outcome of differ-

ent mapping approaches when applying them on the same

dataset.

In this paper, we propose a novel technique for comparing

the output of SLAM algorithms. It is based on an idea

that is actually similar to the concept of the graph-based

SLAM approaches [19], [12], [22]. It uses the energy that

is (virtually) needed to deform the trajectory estimated by a

SLAM approach into the ground truth trajectory as a quality

measure.

Our metric that operates only on relative geometric rela-

tions between poses along the trajectory of the robot. This is

inspired by the fact used in most Rao-Blackwellized particle

filter approaches, namely that estimating the map becomes

trivial given the robot’s trajectory [10], [20], [25]. Our metric

enables a user to establish a benchmark for objectively

comparing the performance of a mapping system to existing

approaches. Our approach allows for making (approximative)

comparisons between algorithms even if a perfect ground

truth information is not available. This enables us to present

benchmarks based on frequently used datasets in the robotics

community such as the MIT Killian Court, or the Intel

Research Lab dataset. The disadvantage of our method is

that it requires manual work to be carried out by a human

that knows the topology of the environment. The manual

work, however, has to be done only once for a dataset

and then allows other researchers to evaluate their methods

with low effort. Together with this paper, we provide a

web page that hosts such manually matched relations for

existing log files [17]. We furthermore provide evaluations

for the results of three different mapping techniques, namely

scan-matching, SLAM using Rao-Blackwellized particle fil-

ter [10], and a maximum likelihood SLAM approach based

on the graph formulation [11], [21].

II. RELATED WORK

Learning maps is a frequently studied problem in the

robotics literature. SLAM techniques for mobile robots can

be classified according to the underlying estimation tech-

nique. The most popular approaches are extended Kalman

filters (EKFs) [18], [23] and its variants [15], sparse extended

information filters [8], [28], particle filters [20], [10], least

square error minimization approaches [19], [12], [22] and

several others including also techniques for learning local

maps only [13], [27], [30].

The approach of finding maximum likelihood maps using

a graph or network of constraints is strongly related to

our approach for evaluating SLAM methods presented in

this paper. Lu and Milios [19] introduced the concept of

graph-based or network-based SLAM using a kind of brute

force method for optimization. Gutmann and Konolige [12]

proposed an effective way for constructing such a network

and for detecting loop closures while running an incremental

estimation algorithm. Olson et al. [22] presented an opti-

mization approach that applies stochastic gradient descent

for resolving relations in a network efficiently.

Activities related to performance metrics for SLAM meth-

ods, as the work described in this paper, can roughly be

divided into three major categories: First, competitions where

robot systems are competing within a defined problem sce-

nario (such as playing soccer), second, collections of publicly

available datasets that are provided for comparing algorithms

on specific problem, and third, related publications that

introduce methodologies and scoring metrics for comparing

different methods.

To perform comparisons between robots, numerous robot

competitions have been initiated in the past, evaluating the

performance of cleaning robots [6], robots in simulated

Mars environments at the ESA Lunar Robot Challenge[7],

robots playing soccer or rescuing victims after a disaster

at RoboCup, and cars driving autonomously at the DARPA

Urban Challenge. However, competition settings are likely

to generate additional noise due to differing hardware and

software settings. Depending on the competition, approaches

are often tuned to the settings addressed in the competitions.

In the robotics community, there exist some well-known

web sites providing datasets such as Radish [14] or [3] and

algorithms [24] for mapping. However, they neither provide

ground truth data nor recommendations on how to compare

different maps in a meaningful way. Whereas Zivkovic et

al. [31] provide a labeled dataset containing information

useful for human-robot interaction, Frese [9] generated a

dataset of the DLR building with manually obtained ground

truth data associations.

Some steps towards benchmarking navigation solutions

have been presented in the past. Amigoni et al. [1] presented

a general methodology for performing experimental activities

in the area of robotic mapping. They suggested a number of

issues that should be addressed when experimentally validat-

ing a mapping method. If ground truth data is available, they

suggest to utilize the Hausdorff metric for map comparison.

Wolf et al. [29] proposed the idea of using manually

supervised Monte Carlo Localization (MCL) for matching

3D scans against a reference map. They suggested to generate

the reference maps from independently created CAD data,

which can be obtained from the land registry office. The

comparison between the generated map and the ground truth

has been carried out by computing the Euclidean distance and

angle difference of each scan, and plotting these over time.

We argue here that comparing the absolute error between

two tracks might not yield a meaningful assertion.

Balaguer et al. [2] utilize the USARSim robot simulator

and a real robot platform for comparing different open source

SLAM approaches and they propose that the simulator en-

gine could be used for systematically benchmarking different

approaches of SLAM. However, it has also been shown

that noise is often but not always Gaussian in the SLAM

context [25]. Gaussian noise, however, is typically used in

most simulation systems. In addition to that, Balaguer et al.

do not provide a quantitative metric for comparing generated

maps with ground truth. As many other approaches, their

comparisons were carried out by visual inspection.

III. METRIC FOR BENCHMARKING SLAM ALGORITHMS

We propose a metric for measuring the performance of

a SLAM algorithm not by comparing the map itself but by

considering the poses of the robot during data acquisition. In

this way, we gain two important properties: First, it allows

us to compare the result of algorithms that generate different

types of metric map representations, such as feature-maps

or occupancy grid maps. Second, the method is invariant to

the sensor setup of the robot. Thus, a result of a graph-

based SLAM approach working on laser range data can

be compared, for example, with the result of vision-based

FastSLAM. The only property we require is that the SLAM

algorithm estimates the trajectory of the robot given by a set

of poses. All benchmark computations will be performed on

this set.

A. The Metric

Let x1:T be the poses of the robot estimated by a SLAM

algorithm from time step 1 to T , xt ∈ SE(2) or SE(3). Let

x∗1:T be the reference poses of the robot during mapping,

ideally the true poses. A straightforward error metric could

be defined as

ε(x1:T) =
T

∑
t=1

(xt ⊖ x∗t)
2
, (1)

where ⊕ is the standard motion composition operator and ⊖

its inverse as defined by Lu and Milios [19] or its analogous

definition for SE(3), respectively. Thus, δi, j = x j ⊖ xi is the

relative transformation that moves the node xi onto x j. Let

δ ∗
i, j be the transformation based on x∗i and x∗j accordingly.

Eq. 1 can be rewritten as

ε(x1:T) =
T

∑
t=1

(

(x1 ⊕δ1,2 ⊕ . . .⊕δt−1,t)

⊖(x∗1 ⊕δ ∗
1,2 ⊕ . . .⊕δ ∗

t−1,t)
)2

. (2)

We claim that this metric is suboptimal for comparing

the result of a SLAM algorithm. To illustrate this, consider

Figure 1. Here, a robot travels along a straight line. Let the

robot make perfect pose estimates in general but a rotational

submap 1 submap 2

Fig. 1. This figure illustrates a simple example where the metric in Eq. 1
is suboptimal. The robot moves along a straight line and after n poses, it
makes a small angular error (bold arrow) but then continues without any
further error. Both parts (labeled submap 1 and submap 2) are perfectly
mapped and only the connection between both submaps contains an error.
According to Eq. 1, the error of this estimates increases with every node
added to submap 2 although the submap itself is perfectly estimated. Thus,
the error depends on the point in time where the robot made an estimation
error without considering that it might not introduce any (further) error.

error somewhere along the line, let us say in the middle.

Both submaps (before and after the estimation error) are

perfectly mapped. According to Eq. 1, the error of this

estimate increases with every node that is added to submap 2

although the submap itself is perfectly estimated. Thus, the

error depends on the point in time where the robot made

an estimation error without considering that it might not

introduce any (further) error. The reason for this is the fact

that the metric in Eq. 1 operates on global coordinates and

considers the trajectory and thus the map as a rigid body that

has to be aligned with the ground truth.

In this paper, we propose to use a metric that considers

the deformation energy that is needed to transfer the estimate

into the ground truth. This can be done – similar to the ideas

of the graph mapping introduced by Lu and Milios [19] –

by considering the poses as masses and connections between

them as springs. Thus, our metric is based on the relative

displacement between poses. Instead of comparing x to x∗

(in the global reference frame), we do the operation based

on δ and δ ∗ as

ε(δ) =
1

N
∑
i, j

(δi, j ⊖δ ∗
i, j)

2 (3)

=
1

N
∑
i, j

trans(δi, j ⊖δ ∗
i, j)

2 + rot(δi, j ⊖δ ∗
i, j)

2
, (4)

where N is the number of relative relations and trans(·) and

rot(·) are used to separate the translational and rotational

components. We suggest to provide both quantities individu-

ally. In this case, the error (or transformation energy) in the

above-mentioned example will be consistently estimated as

the single rotational error no matter where the error occurs

in the space or in which order the data is processed. Note

that this score is a metric since it satisfies the four properties

of non-negativity, identity of indiscernibles, symmetry, and

triangle inequality.

Our error metric, however, leaves open which relative

displacements δi, j are included in the summation in Eq. 4.

Evaluating two approaches based on a different set of relative

pose displacements will obviously result in two different

scores. As we will show in the remainder of this section,

the set δ (and thus δ ∗) can be defined to highlight certain

properties of an algorithm.

Note that some researchers prefer the absolute error (ab-

solute value, not squared) instead of the squared one. We

prefer the squared one since it comes from the motivation

that the metric measures the energy needed to transform the

estimated trajectory into ground truth. However, one can also

use the metric based on the non-squared error instead of

the squared one. In the experimental evaluation, we actually

provide both values.

It should be noted that the metric presented here also has

drawbacks. First, the metric, as we defined it, only evaluates

the mean estimate of the SLAM algorithm and does not

consider its estimate of the uncertainty. Second, it misses a

probabilistic interpretation as the Fisher information would

realize, see, for example, Censi’s work [4] on the achievable

accuracy for range finder-based localization.

B. Selecting Relative Displacements for Evaluation

Benchmarks are designed to compare different algorithms.

In the case of SLAM systems, however, the task the robot

finally has to solve should define the required accuracy and

this information should be considered in the benchmark.

For example, a robot generating blueprints of buildings

should reflect the geometry of a building as accurately as

possible. In contrast to that, a robot performing navigation

tasks requires a map that can be used to robustly localize

itself and to compute valid trajectories to a goal location. To

carry out this task, it is sufficient in most cases, that the map

is topologically consistent and that its observations can be

locally matched to the map. A map having these properties

is often referred to as locally consistent.

By selecting the relative displacements δi, j used in Eq. 4

for a given dataset, the user can highlight certain properties

and thus design a benchmark for evaluating an approach

given the application in mind.

For example, by adding only known relative displacements

between nearby poses based on visibility, a local consistency

is highlighted. In contrast to that, by adding known relative

displacements of far away poses, for example, provided by

an accurate external measurement device or by background

knowledge, the accuracy of the overall geometry of the

mapped environment is enforced. In this way, one can incor-

porate the knowledge into the benchmark that, for example,

a corridor has a certain length and is straight.

IV. OBTAINING REFERENCE RELATIONS

In practice, the key question regarding Eq. 4 is how to

determine the true relative displacements between poses.

Obviously, the true values are available only in simulation. If

ground truth information is available, it is trivial to derive the

exact relations. However, we can also determine close-to-true

values by using the information recorded by the mobile robot

and the background knowledge of the human recording the

datasets. This, of course, involves manual work, but from our

perspective it is the best method for obtaining such relations

if no ground truth is available.

Please note, that the metric proposed above is independent

of the actual sensor used. In the remainder of this paper,

however, we will concentrate on laser range finders which are

highly popular sensors in robotics at the moment. To evaluate

an approach operating on a different sensor modality, one has

two possibilities. Either one temporarily mounts a laser range

finder on the robot (if this is possible) or has to provide a

method for accurately determining the relative displacement

between two poses from which an observation has been taken

that observes the same part of the space.

A. Initial Guess

In our work, we propose the following strategy. First, one

seeks for an initial guess about the relative displacement

between poses. Based on the knowledge of the human, a

wrong initial guess can be easily discarded since the human

“knows” the structure of the environment. In a second step,

a refinement is proposed based on manual interaction.

In most cases, researchers in robotics will have SLAM

algorithms at hand that can be used to compute such an initial

guess. By manually inspecting the estimates of the algorithm,

a human can accept or discard a match. It is important to

note that the output is not more than an initial guess and it

is used to estimate the visibility constraints which will be

used in the next step.

B. Manual Matching Refinement and Scan Rejection

Based on the initial guess about the pose of the robot

for a given time step, it is possible to determine which

observations in the dataset should have covered the same part

of the space or the same objects. For a laser range finder, this

can easily be achieved. Between each visible pair of poses,

one adds a relative displacement into a candidate set.

In the next step, a human processes the candidate set to

eliminate wrong hypotheses by visualizing the observation in

a common reference frame. This requires manual interaction

but allows for eliminating wrong matches and outliers with

high precision. Since we aim to find the best possible relative

displacement, we perform a pair-wise registration procedure

to refine the estimates of the observation registration method.

It furthermore allows the user to manually adjust the relative

offset between poses so that the pairs of observations fit

perfectly. Alternatively, the pair can be discarded.

This approach might sound work-intensive but with an

appropriate user interface, this task can be carried out within

a reasonable amount of time. For example, for a standard

dataset with 1700 relations, it took an unexperienced user

approximately four hours to extract the relative translations

needed to serve as the input to the error calculation.

C. Adding Additional Relations

In addition to the relative transformations added upon

visibility and matching of observations, one can directly

incorporate additional relations resulting from other sources

of information, for example, given the knowledge about the

length of a corridor in an environment. By adding a relation

between two poses – each at one side of the corridor – one

can easily incorporate knowledge about the global geometry

of an environment if available. An alternative approach, for

example, is to use aerial imagery [16].

V. BENCHMARKING OF ALGORITHMS

WITHOUT TRAJECTORY ESTIMATES

A series of SLAM approaches estimate the trajectory of

the robot as well as a map. However, in the context of

the EKF, researchers often exclude an estimate of the full

trajectory to lower the computational load.

We see two solutions to overcome this problem: First,

depending on the capabilities of the sensor, one can recover

the trajectory as a post processing step given the feature

locations and the data association estimated by the approach.

This procedure could be quite easily realized by a localiza-

tion run in the built map with given data association (the

data association of the SLAM algorithm). Second, in some

settings this strategy can be difficult and one might argue

that a comparison based on the landmark locations is more

desirable. In this case, one can apply our metric as well by

operating on the landmark locations instead of on the poses

of the robot. The relations δ ∗
i, j can then be determined by

measuring the relative distances between landmarks using,

for example, a highly accurate measurement device and a

triangulation based on the landmark location.

The disadvantage of this approach is that the data asso-

ciation between estimated landmarks and ground truth land-

marks is not given. Depending on the kind of observations, a

human can manually determine the data association for each

observation of an evaluation dataset as done by Frese [9].

This, however, might get intractable for SIFT-like features

obtained with high frame rate cameras. Note that all metrics

measuring an error based on landmark locations require

such a data association as given. Furthermore, it becomes

impossible to compare significantly different SLAM systems

using different sensing modalities. Therefore, we recommend

the first option to evaluate techniques such as the EKF.

VI. DATASETS FOR BENCHMARKING

To validate the metric, we selected a set of datasets

representative for different kinds of environments from the

publicly available datasets. We extracted relative relations

between robot poses using the methods described in the

previous sections by manually validating every single ob-

servation between pairs of poses.

As a challenging indoor corridor-environment with a non-

trivial topology including nested loops, we selected the

MIT Killian Court dataset and the dataset of the ACES

building at the University of Texas, Austin. As a typical

office environment with a significant level of clutter, we

selected the dataset of building 079 at the University of

Freiburg, the Intel Research Lab dataset, and a dataset

acquired at the CSAIL at MIT. To give a visual impression

of the corresponding environments, Figure 2 illustrates maps

obtained by executing state-of-the-art SLAM algorithms. All

datasets, the manually verified relations, and map images are

available online [17].

VII. EXPERIMENTAL EVALUATION

This evaluation is designed to illustrate the properties of

our method. We selected three popular mapping techniques

Fig. 2. Maps obtained by the reference datasets used to validate our metric. From left to right: MIT Killian Court, ACES Building at the University of
Texas, Intel Research Lab Seattle, MIT CSAIL Building, and building 079 University of Freiburg.

and processed the datasets discussed in the previous section.

We provide the obtained scores from the metric for all

combinations of SLAM approach and dataset. This will allow

other researchers to compare their own SLAM approaches

against our methods using the provided benchmark datasets.

A. Evaluation of Existing Approaches

In this evaluation, we considered the following mapping

approaches and present results obtained with these tech-

niques using the datasets briefly described in the previous

section.

First, we applied incremental scan matching as a kind of

baseline approach. Scan matching, here using the approach of

Censi [5], incrementally computes an open loop maximum

likelihood trajectory of the robot by matching consecutive

scans.

Second, we used GMapping which is a mapping system

based on a Rao-Blackwellized Particle Filter (RBPF) for

learning grid maps. We used the RBPF implementation

described in [10] and available online [24]. It estimates the

posterior over maps and trajectories by means of a particle

filter. Each particle carries its own map and a hypothesis of

the robot pose within that map.

Third, we selected an approach that addresses the SLAM

problem by graph optimization. The idea is to construct a

graph out of the sequence of measurements. Every node of

the graph is labeled with a robot pose and the measurement

taken at that pose. Then, a least square error minimization

approach is applied to obtain the most likely configuration

of the graph. The approach described by Olson [21] is used

to determine constraints and the optimizer TORO available

online [24] and described in [11] is applied.

For our evaluation, we manually extracted the relations

for all datasets mentioned in the previous section (the data

is available online). We then carried out the mapping ap-

proaches and used the corrected trajectory to compute the

error according to our metric. Note, that the error computed

according to our metric (as well as for most other metrics

too) can be separated into two components: a translational

error and a rotational error. Often, a “weighting-factor” is

used to combine both error terms into a single number. In our

evaluation here, however, we provide both terms separately

for a better transparency of the results.

We processed all benchmark datasets mentioned in Sec-

tion VI using the algorithms listed above. A condensed view

of each algorithm’s performance is given by the averaged

TABLE I

QUANTITATIVE RESULTS OF DIFFERENT APPROACHES/DATASETS.

1
SCAN MATCHING HAS BEEN APPLIED AS A PREPROCESSING STEP.

Trans. error Scan Matching RBPF (50 part.) Graph Mapping

m / m2

Aces (abs) 0.173 ± 0.614 0.060 ± 0.049 0.044 ± 0.044
Aces (sqr) 0.407 ± 2.726 0.006 ± 0.011 0.004 ± 0.009

Intel (abs) 0.220 ± 0.296 0.070 ± 0.083 0.031 ± 0.026
Intel (sqr) 0.136 ± 0.277 0.011 ± 0.034 0.002 ± 0.004

MIT (abs) 1.651 ± 4.138 0.122 ± 0.3861 0.050 ± 0.056

MIT (sqr) 19.85 ± 59.84 0.164 ± 0.8141 0.006 ± 0.029

CSAIL (abs) 0.106 ± 0.325 0.049 ± 0.0491 0.004 ± 0.009

CSAIL (sqr) 0.117 ± 0.728 0.005 ± 0.0131 0.0001 ± 0.0005

FR 79 (abs) 0.258 ± 0.427 0.061 ± 0.0441 0.056 ± 0.042

FR 79 (sqr) 0.249 ± 0.687 0.006 ± 0.020 1 0.005 ± 0.011

Rot. error Scan Matching RBPF (50 part.) Graph Mapping

deg / deg2

Aces (abs) 1.2 ± 1.5 1.2 ± 1.3 0.4 ± 0.4
Aces (swr) 3.7 ± 10.7 3.1 ± 7.0 0.3 ± 0.8

Intel (abs) 1.7 ± 4.8 3.0 ± 5.3 1.3 ± 4.7
Intel (sqr) 25.8 ± 170.9 36.7 ± 187.7 24.0 ± 166.1

MIT (abs) 2.3 ± 4.5 0.8 ± 0.81 0.5 ± 0.5

MIT (sqr) 25.4 ± 65.0 0.9 ± 1.71 0.9 ± 0.9

CSAIL (abs) 1.4 ± 4.5 0.6 ± 1.21 0.05 ± 0.08

CSAIL (sqr) 22.3± 111.3 1.9 ± 17.31 0.01 ± 0.04

FR 79 (abs) 1.7 ± 2.1 0.6 ± 0.61 0.6 ± 0.6

FR 79 (sqr) 7.3 ± 14.5 0.7 ± 2.01 0.7 ± 1.7

error over all relations. In Table I (top) we give an overview

on the translational error of the various algorithms, while

Table I (bottom) shows the rotational error. As expected,

it can be seen that the more advanced algorithms (Rao-

Blackwellized particle filter and graph mapping) usually

outperform scan matching. This is mainly caused by the

fact that scan matching only optimizes the result locally

and will introduce topological errors in the maps, especially

when large loops have to be closed. A distinction between

RBPF and graph mapping seems difficult as both algorithms

perform well in general. On average, graph mapping seems

to be slightly better than a RBPF for mapping.

To visualize the results and to provide more insights about

the metric, we do not provide the scores only but also plots

showing the error of each relation. In case of high errors

in a block of relations, we label the relations in the maps.

This enables us to see not only where an algorithm fails,

but might also provide insights why it fails. Inspecting those

situations in correlation with the map helps to understand the

properties of an algorithm and gives valuable insights on its

capabilities. For two datasets, a detailed analysis using these

plots is presented in the following sections.

B. MIT Killian Court

In the MIT Killian Court dataset (also called the infinite

corridor dataset), the robot mainly observed corridors with

only few structures that support accurate pose correction. The

robot traversed multiple nested loops – a challenge especially

for the RBPF-based technique. We extracted close to 5,000

relations between nearby poses that are used for evaluation.

Figure 3 shows three different results and the corresponding

error distributions to illustrate the capabilities of our method.

Regions in the map with high inconsistencies correspond

to relations having a high error. The absence of significant

structure along the corridors results in a small or medium re-

localization error of the robot in all compared approaches.

In sum, we can say the graph-based approach outperforms

the other methods and that the score of our metric reflects

the impression of a human about map quality obtained by

visually inspecting the mapping results (the vertical corridors

in the upper part are supposed to be parallel).

C. Freiburg Indoor Building 079

The building 079 of the University of Freiburg is an

example for a typical office environment. The building

consists of one corridor which connects the individual rooms.

Figure 4 depicts the results of the individual algorithms (scan

matching, RBPF, graph-based). In the first row of Figure 4,

the relations having a translational error greater than 0.15 m

are highlighted in dark blue.

In the left plot showing the scan matching result, the

relations plotted in blue are generated when the robot revisits

an already known region. These relations are visible in the

corresponding error plots (Figure 4 first column, second and

third row). As can be seen from the error plots, these relations

with a number greater than 1,000 have a larger error than

the rest of the dataset. The fact that the pose estimate of the

robot is sub-optimal and that the error accumulates can also

be seen by the rather blurry map and by double-occurrences

of some walls. In contrast to that, the more sophisticated

algorithms, namely RBPF and graph mapping, are able to

produce consistent and accurate maps in this environment.

Only very few relations show an increased error (illustrated

by dark blue relations).

D. Summary of the Experiments

Our evaluation illustrates that the proposed metric provides

a ranking of the results of mapping algorithms that is likely to

be compatible with a ranking made by humans. Inconsisten-

cies yield increased error scores since in the wrongly mapped

areas the relations obtained from manual matching are not

met. By visualizing the error of each constraint as done in

the plots in this section, one can identify regions in which

algorithms fail and we believe that this helps to understand

where and why different approaches have problems to build

accurate maps.

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500tr
a
n
s
la

ti
o
n
a
l
e
rr

o
r

[m
]

relation #

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500tr
a
n
s
la

ti
o
n
a
l
e
rr

o
r

[m
]

relation #

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500tr
a
n
s
la

ti
o
n
a
l
e
rr

o
r

[m
]

relation #

 0

 2

 4

 6

 8

 10

 0 500 1000 1500

a
n
g
u
la

r
e
rr

o
r

[d
e
g
]

relation #

 0

 2

 4

 6

 8

 10

 0 500 1000 1500

a
n
g
u
la

r
e
rr

o
r

[d
e
g
]

relation #

 0

 2

 4

 6

 8

 10

 0 500 1000 1500

a
n
g
u
la

r
e
rr

o
r

[d
e
g
]

relation #

Fig. 4. This figure shows the Freiburg Indoor Building 079 dataset. Each
column reports the results of one approach. Left: scan-matching, middle:
RBPF and right a graph based algorithm. Within each column, the top image
shows the map, the middle plot is the translational error and the bottom one
is the rotational error.

VIII. CONCLUSION

In this paper, we presented a framework for comparing

the results of SLAM approaches with the goal to create

objective benchmarks. We proposed a metric for measuring

the error of a SLAM system based on the corrected trajectory.

Our metric uses only relative relations between poses and is

motivated by the energy needed to transform an estimate

into ground truth. This overcomes serious shortcomings of

approaches using a global reference frame to compute the

error. Our metric even allows the comparison of SLAM

approaches that use different estimation techniques or dif-

ferent sensor modalities. In addition to the proposed metric,

we provide robotic datasets together with relative relations

between poses for benchmarking. These relations have been

obtained by manually matching observations and yield a high

matching accuracy. Finally, we provide an error analysis for

three mapping systems using the metric and datasets. We

believe that our results are a valuable benchmark for SLAM

researchers since we provide a framework that allows for

an objective and comparably easy analysis of the results of

SLAM systems.

REFERENCES

[1] F. Amigoni, S. Gasparini, and M. Gini. Good experimental method-
ologies for robotic mapping: A proposal. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2007.
[2] B. Balaguer, S. Carpin, and S. Balakirsky. Towards quantitative com-

parisons of robot algorithms: Experiences with SLAM in simulation
and real world systems. In IROS 2007 Workshop, 2007.

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

tr
an

sl
at

io
n

al
 e

rr
o

r
[m

]

relation #

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000

tr
an

sl
at

io
n

al
 e

rr
o

r
[m

]

relation #

 0

 1

 2

 3

 0 1000 2000 3000 4000 5000

tr
an

sl
at

io
n

al
 e

rr
o

r
[m

]

relation #

3

2

1

2

1

3

Fig. 3. The MIT Killian Court dataset. The reference relations are depicted in light yellow. The left column shows the results of scan-matching, the
middle column the result of a GMapping using 50 samples, and the right column shows the result of a graph-based approach. The regions marked in the
map (boxes and dark blue relations) correspond to regions in the error plots having high error. The rotational error is not plotted due to space reasons.

[3] A. Bonarini, W. Burgard, G. Fontana, M. Matteucci, D. G. Sorrenti,
and J. D. Tardos. Rawseeds a project on SLAM benchmarking. In
Proc. of the IROS WS on Benchmarks in Robotics Research, 2006.

[4] A. Censi. The achievable accuracy for range finder localization. IEEE

Transactions on Robotics. Under review.

[5] A. Censi. Scan matching in a probabilistic framework. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2291–2296,
2006.

[6] EPFL and IROS. Cleaning Robot Contest, 2002.
http://robotika.cz/competitions/cleaning2002/en.

[7] ESA. Lunar robotics challenge, 2008.
http://www.esa.int/esaCP/SEM4GKRTKMF index 0.html.

[8] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 2428–2435, 2005.

[9] U. Frese. Dlr spatial cognition data set. http://www.informatik.uni-
bremen.de/agebv/en/DlrSpatialCognitionDataSet, 2008.

[10] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transac-

tions on Robotics, 23:34–46, 2007.

[11] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proc. of Robotics: Science and Systems

(RSS), 2007.

[12] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), 1999.

[13] J. Hermosillo, C. Pradalier, S. Sekhavat, C. Laugier, and G. Baille.
Towards motion autonomy of a bi-steerable car: Experimental issues
from map-building to trajectory execution. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2003.

[14] A. Howard and N. Roy. Radish: The robotics data set
repository, standard data sets for the robotics community, 2003.
http://radish.sourceforge.net/.

[15] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach
for filtering nonlinear systems. In Proc. of the American Control

Conference, pages 1628–1632, 1995.

[16] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner. On measuring the accuracy of SLAM
algorithms. Autonomous Robots, 2009. Condtionally accepted for
publication.

[17] R. Kümmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,

C. Stachniss, and A. Kleiner. Slam benchmarking webpage.
http://ais.informatik.uni-freiburg.de/slamevaluation, 2009.

[18] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4):376–382, 1991.
[19] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.
[20] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, 2003.
[21] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA, 2008.
[22] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.
[23] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial re-

altionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.
[24] C. Stachniss, U. Frese, and G. Grisetti. OpenSLAM.org – give your

algorithm to the community. http://www.openslam.org, 2007.
[25] C. Stachniss, G. Grisetti, N. Roy, and W. Burgard. Evaluation of

gaussian proposal distributions for mapping with rao-blackwellized
particle filters. In Proc. of the Int. Conf. on Intelligent Robots and

Systems (IROS), 2007.
[26] S. Thrun. An online mapping algorithm for teams of mobile robots.

Int. Journal of Robotics Research, 20(5):335–363, 2001.
[27] S. Thrun and colleagues. Winning the darpa grand challenge. Journal

on Field Robotics, 2006.
[28] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-

Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23(7/8):693–
716, 2004.

[29] O. Wulf, A. Nüchter, J. Hertzberg, and B. Wagner. Benchmarking
urban six-degree-of-freedom simultaneous localization and mapping.
Journal of Field Robotics, 25(3):148–163, 2008.

[30] M. Yguel, C.T.M. Keat, C. Braillon, C. Laugier, and O. Aycard.
Dense mapping for range sensors: Efficient algorithms and sparse
representations. In Proc. of Robotics: Science and Systems (RSS),
2007.

[31] Z. Zivkovic, O. Booij, B. Krose, E.A. Topp, and H.I. Christensen.
From sensors to human spatial concepts: An annotated data set. IEEE

Transactions on Robotics, 24(2):501–505, 2008.

[C5] A. Schneider, J. Sturm C. Stachniss, M. Reisert, H. Burkhardt, and

W. Burgard. Object identification with tactile sensors using bag-of-features.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

St. Louis, MO, USA, 2009.

Object Identification with Tactile Sensors using Bag-of-Features

Alexander Schneider Jürgen Sturm Cyrill Stachniss

Marco Reisert Hans Burkhardt Wolfram Burgard

Abstract— In this paper, we present a novel approach for
identifying objects using touch sensors installed in the finger
tips of a manipulation robot. Our approach operates on
low-resolution intensity images that are obtained when the
robot grasps an object. We apply a bag-of-words approach
for object identification. By means of unsupervised clustering
on training data, our approach learns a vocabulary from
tactile observations which is used to generate a histogram
codebook. The histogram codebook models distributions over
the vocabulary and is the core identification mechanism. As
the objects are larger than the sensor, the robot typically needs
multiple grasp actions at different positions to uniquely identify
an object. To reduce the number of required grasp actions,
we apply a decision-theoretic framework that minimizes the
entropy of the probabilistic belief about the type of the object.
In our experiments carried out with various industrial and
household objects, we demonstrate that our approach is able
to discriminate between a large set of objects. We furthermore
show that using our approach, a robot is able to distinguish
visually similar objects that have different elasticity properties
by using only the information from the touch sensor.

I. INTRODUCTION

Touch is one of the five traditional senses that were

already described by Aristotele. Humans use and rely on

the sensor information from the skin while manipulating

objects for a variety of sub-tasks, such as object localization,

identification, and grip estimation. Additionally, there are

many everyday objects that appear visually similar but can be

easily distinguished using tactile sensing such as ripe versus

unripe fruits. Also blind people heavily rely on their touch

sense, using it to read and manipulate objects.

Accordingly, it seems very desirable to also have robots

equipped with tactile sensors. Over the past years, several

promising approaches have been developed on the tech-

nological or sensor side. Artificial skins that measure or-

thogonal pressure at comparably high spatial and temporal

resolutions are typically composed of elastic, conductive, or

resistive polymers, which change their electrical properties

depending on the applied pressure. They can, in principle,

be manufactured to cover larger parts of a robot at relatively

low cost. Several research groups reported [9], [10], [11] to

have successfully wrapped substantial parts of the surface of

their robots using such sensors, for example, to ease human-

machine interaction or to improve the robustness of object

manipulation tasks.

In this paper, we show how a robotic manipulator can

identify various industrial and household objects purely

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany
{schneida, sturm, stachnis, reisert, hans.burkhardt,
burgard}@informatik.uni-freiburg.de

Fig. 1: Left: A manipulation robot with touch-sensitive

finger tips learns to distinguish a large set of objects (here:

a coffee mug) solely by using its touch sense. In the image,

both the cup and (at the bottom end) the two fingers of

the robot’s gripper are visible. Right: Tactile images of the

sensor array in the left and the right finger. The robot is

perceiving the handle of the cup.

from the observations of its touch-sensitive fingers. Given

low-resolution intensity images recorded with the artificial

skin, we apply k-means as unsupervised clustering on the

training dataset to create a vocabulary for our bag-of-features

classifier. Based on the vocabulary, we learn a codebook his-

togram. This histogram is a distribution over the occurrence

of cluster centroids in the observed dataset. The robot is

then able to use these distributions for robustly recogniz-

ing a large set of different objects requiring only a small

number of grasp actions carried out at different positions.

We also present an approach based on a decision-theoretic

framework to minimize the number of required grasp actions.

In particular, our approach efficiently estimates the expected

information gain of potential future grasp actions based on

the observations made during training. Experiments carried

out with a large set of different objects demonstrate that our

approach is able to reliably discriminate between objects.

It is even possible to differentiate objects that are visually

similar.

II. RELATED WORK

Tactile sensors [12], [19] are commonly defined as “a

device that can measure a given property of an object or

contact event through physical contact between sensor and

object” that is able to sense one or more of the following

modalities: pressure, normal and sheer forces, torques, slip,

vibrations, or temperature. Important properties of a sensor

are its spatial and temporal resolution, noise, hysteresis,

creep, and aging. Different mechatronic principles have been

explored in the past, such as pressure-sensitive conduc-

tive polymers [20], piezo-resistive sensors [7], piezo-electric

vibration sensors [13], and capacitive sensors which can

additionally measure the sheer forces [4] or temperature [3].

Tactile sensors have been used in the past to explore the

3D shape of objects [2]. Others have used tactile sensors to

detect ridges and bumps in the material [14] by sliding the

robotic finger over an object. Sensors based on piezo-electric

vibration have been used to determine the hardness/softness

of probed (biological) objects [15]. Force-sensitive fingers

have been used to control the robot’s position [6], i.e.,

to continuously keep the finger in physical contact while

moving the object. It has also been shown that tactile

sensors can be used to estimate the 3D pose of objects with

known shapes [16]. Notably, little information is recovered

from the tactile sensor in this work, resulting in multi-

modal distributions due to ambiguities during the first grasps,

which is a problem we are also dealing with in our work.

A work relatively close to ours is that of Russel et. al.,

who used tactile sensors for object classification [17]. Their

approach extracts geometric features like point, line, or area

contacts and integrates them time to classify the objects into

generic classes such as boxes, spheres, cylinders etc. Later,

Russel [18] showed that a similar approach can also be used

for object classification using an 8-whisker tactile sensor on

a robotic gripper. In contrast to their work, our method is

not restricted to pre-defined geometric shapes. Rather, our

method is able to recognize typical real-world objects with

arbitrary shapes.

III. TOUCH SENSOR OBSERVATIONS

A. Sensor principle

The robot used for gathering the data and carrying out the

experiments is a RWI B21r robot equipped with a 7-DOF

manipulator. The robot’s end-effector is a 1-DOF gripper

consisting of two fingers which both are equipped with a

Weiss Robotics sensor DSA 9205 for gathering tactile im-

ages [20]. Each tactile sensor array contains 84 sensor cells

arranged in 6 columns and 14 rows with a size of 24 mm by

51 mm. The maximum scanning rate for the sensor is 240 fps.

Each sensor cell measures the conductivity of an elastic

rubber foam above it. When a force is applied to the rubber

foam, the binding polymer gets compressed thus lowering

the electrical resistance of the material. The calibration of

the sensor array turned out to be difficult in consequence of

the sensor principle. For example, due to memory effects of

the rubber foam, we took a reference measurement before

the experiments were started (with no pressure on all cells).

Furthermore, we normalized all measurements to the sensor’s

maximum response, such that we obtained for each finger a

measurement Z ∈ [0, 1]6×14.

B. Notation

In the remainder of this paper, we use the following

notation for a single touch observation z as

z =< Zleft, Zright, h, w >,

Fig. 2: Experimental setup. The robot grasps an object o
at different positions. Each tactile observation zi is then

stored together with the object label in the database D =
{< z1, o1 >, . . . , < zN , oN >}.

where Zleft, Zright ∈ [0, 1]6×14 are the observations of the

sensor matrix of the left and right finger, while h ∈ R refers

to the current height of the gripper and w ∈ R refers to the

current opening width of the fingers.

C. Data Acquisition

To acquire the training data, we present a set of n different

objects denoted by O = {1, . . . , n} to the robot, including

industrial objects like metal cuboids or cylinders and house-

hold objects like a cup, a toy, and a bottle. The robot grasps

each object m times at different heights. This results in a

set of N = nm observations D = {< zi, oi >}Ni=1. From

this set, we sample training sets Dtraining for our experiments,

including the true object labels, and a disjoint test sets Dtest

without the object labels for evaluation.

D. Distance Metric for Tactile Observations

Two images R,S (here R,S ∈ [0, 1]6×14) can be com-

pared by computing the Euclidean distance pixel by pixel:

d(R,S) =
∑

x

∑

y

|rxy − sxy|. (1)

To allow for small translations of the object in the robot’s

fingers, we do not discount vertical shifts, i.e.,

dist(R,S) = min
τ=1,...,k

(d(R, shift(S, τ)). (2)

From there, we can define a distance function for the

difference between observations z1, z2 as

dist(z1, z2) = α
(

dist(Z left
1 , Z left

2) + dist(Z right
1 , Z right

2)
)

+ (1− α)|w1 − w2|, (3)

where α ∈ [0, 1] is a weighting factor determining the

influence of differences in touch and finger distance. In order

to circumvent scaling issues between both distance measures,

we normalized both of them to have unit variance on our

training dataset.

IV. THE BAG-OF-FEATURES APPROACH

As the finger of the robot is much smaller than all of

our objects, the tactile observations the robot perceives of

these objects are generally only partial views. To perform the

classification based on these local image patches, we apply

a variant of the so-called bag-of-features approaches [21],

Fig. 3: Application of the bag-of-features approach with 3

objects described using 5 features. The objects are: bottle,

beer glass, and coffee mug. The features in the vocabulary

are thick, medium, thin vertical, thin horizontal, and thin

diagonal feature. The robot grasps each object multiple

times at different positions, indicated by the highlighted

rectangles. This results in a characteristic histogram per

object, containing the occurrence frequency of each feature

in the object.

[5], [1] which have been successfully applied in the area of

computer vision. Bag-of-features techniques are appealing

because of both, their simplicity and power. The key idea of

the bag-of-features approach is to describe the observations

with a common vocabulary of features. For tactile perception,

the vocabulary might include features such as “straight”,

“round”, and “thin” observations. Given that the feature

vocabulary is rich enough, the resulting feature histograms

are well suited for object classification. For this purpose,

a so-called codebook needs to be learned that contains the

feature histograms of the trained objects. Figure 3 graphi-

cally illustrates the process of the codebook generation over

objects given a vocabulary.

A. Unsupervised Creation of the Tactile Vocabulary

In practice, the appropriate vocabulary strongly depends

on the objects that the robot is supposed to grasp so that pre-

defined vocabularies will not suffice in general. Therefore,

our approach is to learn a set of characteristic features

automatically from the observed training data. To achieve

this, our approach applies the k-means clustering algorithm

directly on the observed training data z ∈ Dtraining. This re-

sults in k cluster centers (or centroids) c1, . . . , ck, computed

according to Alg. 1. The centroids are the individual words

of our vocabulary. During k-means clustering, we use the

distance function as defined in Eq. 3, thereby allowing the

tactile images to have small vertical displacements by Eq. 2.

In the remainder of this paper, we consider the set of

clusters/centroids as the vocabulary that we use to describe

the tactile observations.

B. Codebook Generation

As already mentioned above, the vocabulary described

in the previous section is used to generate a codebook. A

codebook entry h
o for an object o describes the distribution

over centroids calculated from the training data. Each h
o is

a histogram with k bins, h
o ∈ R

k. The overall set of such

histograms for the codebook is denoted by H .

To build up a codebook, we initialize h
o = 0 and update

each bin ho
i of h

o according to the observations z of object o

Initialize ci, i = 1, . . . , k to k random zt ∈ D
repeat

forall zt ∈ D do

bt
i ←

{

1 if dist(zt, ci) = minj dist(zt, zj)
0 otherwise

end

forall ci, i = 1, . . . , k do

ci ←
∑

t bt
iz

t/
∑

t bt
i

end
until ci converge ;

Algorithm 1: The k-means clustering algorithm is used to

generate a vocabulary for the bag-of-features approach.

in Dtraining by

ho
i ← ho

i + exp(−dist(ci, z)/l), (4)

where l is the length scale parameter in the observation dis-

tance space. After processing all observations, the individual

h
o must be normalized.

The key idea of the codebook is to have a compact

representation of the objects that allows us to efficiently

compute the likelihood that a new observation (in Dtest) is

generated by touching a specific object o. In the next section,

we explain how to compute this likelihood.

C. Observation Model

To compute the distribution over potential object classes

based on an observation, we proceed as follows. By applying

Bayes rule, we can write

p(o | z) = ηp(z | o)p(o), (5)

where η is a normalizing constant ensuring that the left-

hand side sums up to one over all o. The term p(o) is the

prior over the objects. In practice, this can be estimated from

the training data or alternatively assumed to be uniformly

distributed.

To compute the observation model p(z | o), we generate a

histogram h
z of a single observation z according to Eq. 4. As

a result, we have two distributions over feature occurrences,

and thus, we can express p(z | o) by computing the similarity

between the feature histogram of current observation and the

histogram stored in the codebook.

In the literature, there exist multiple ways for computing

the similarity between histograms. Among the popular mea-

sures for comparing histograms [8] are the histogram inter-

section, the χ2 distance, and the Kullback Leibler divergence

(KLD). In our experiments, the histogram intersection turned

out to yield the best results. This is probably due to the fact

that the χ2 distance and the KLD are heavily influenced by

features with low support – an effect that can be observed

frequently in our dataset. Thus, the observation model, which

is based on the histogram intersection, is given by

p(z | o) ∝
k

∑

i=1

min(hz
i ,h

o
i). (6)

Fig. 4: Various objects used for the experiments. Top row: Visual image of each object Bottom row: Tactile images of

left and right finger of each object From left to right: cuboid, triangle, t-object, handle, cylinder, door key, large cup,

small cup, goofy, tiger, figure, mobile, bottle, kaleidoscope, tennis ball, and soft ball.

Fig. 5: Vocabulary c1, . . . , ck created using unsupervised clustering from the training data with k = 50 clusters. For

visualization purposes, only the centroid corresponding to the tactile image of the left finger is depicted.

V. SELECTING OBSERVATION ACTIONS

To identify an object, the robot has to carry out multiple

grasping actions at different height levels. Intuitively, it

seems that an uninformed grasping strategy is not optimal.

For example, a large number of grasps might be needed

to distinguish kitchen utensils that have similar shafts. We

therefore propose an informed technique based on concepts

from information theory. Our approach seeks to determine

the action which will provide the highest expected informa-

tion gain, that is, the highest reduction of uncertainty in the

posterior about potential object identity. Here, the expected

information gain is the expected change of entropy in the

posterior p(o) of the identity o of a grasped object. The

entropy is defined as

H(p(o)) =

∫

o

p(o) log p(o) do. (7)

Let a1:t be the actions carried out until the current time

step t and let z1:t be the corresponding observations. The

robot then has to select the action at+1 that provides the

highest expected reduction in entropy. Let â be an action

under consideration and ẑ be the corresponding observation

that is obtained when carrying out â.

Then, the information gain is given by

I(ẑ, â) = H(p(o | z1:t))−H(o | z1:t, ẑ)). (8)

In general, we do not know which measurements the robot

will obtain while executing action â. Therefore, we have to

integrate over all possible measurements ẑ to compute the

expected information gain

E[I(â)] =

∫

ẑ

p(ẑ | â, z1:t)I(ẑ, â) dẑ. (9)

Unfortunately, reasoning about all potential observations is

intractable for real world applications since the number of

potential measurements grows exponentially in the dimen-

sion of the measurement space. A practical approximation,

however, is to sum over observations stored in the training

set instead of integrating over the whole observation space:

E[I(â)] ≈
∑

ẑ∈Dtraining

p(ẑ | â, z1:t)I(ẑ, â) dẑ (10)

Depending on the size of the training database, this sum

might still be expensive to compute. To further reduce the

complexity, one can easily down-sample the training set.

This approach allows us to approximate the posterior

efficiently since we can directly utilize the discrete posterior

about the identity of an object. The approximations substan-

tially reduce the number of potential observations that have

to be estimated by simulation compared to the number of

possible measurements the sensor can generate. The ability

to carry out such computations efficiently is an important

prerequisite for informed action selection.

After having computed the expected information gain for

each action under consideration, we select the action at+1

with the highest expected utility

at+1 = argmax
â

E[I(â)]. (11)

Every time the robot has to make the decision of where

to grasp next, it uses Eq. 11 to determine the action at+1

with the highest expected information gain and executes it.

As soon as no action provides an expected reduction of

uncertainty or the robot reached a given level of certainty,

the identification task is completed.

In addition to the expected reduction of the entropy, one

typically has to consider a second quantity when selecting

the next action. This quantity is the actual cost of carrying

out an action, which needs to be traded off with the expected

information gain. In our setting, however, the cost measured

k 10 20 30 40 50

% correct 58.2% 72.8% 71.7% 84.4% 83.0%

TABLE I: Parameter study on the number of clusters k.

α 0.00 0.25 0.50 0.75 1.00

% correct 66.9% 84.3% 81.0% 78.3% 76.0%

TABLE II: Parameter study on the weight α between (nor-

malized) image distance and (normalized) gripper distance.

in terms of time needed to carry out an action can be

assumed to be identical for all actions since the movements

of the manipulator are carried out quickly without major

differences in the time. Thus, we ignore the time needed by

the manipulator for changing the height. Considering such a

cost, however, can be done in a straightforward manner by

adding a cost term to Eq. 11.

VI. EXPERIMENTAL RESULTS

A. Raw Data from the Touch Sensor

For testing our approach, we recorded tactile data for 16

different objects as shown in Fig. 4. The first 5 objects are

industrial parts with a relatively similar shape (like a metal

cube, a cylinder, and a triangle), while the latter 13 objects

were household objects such as cups, toys, and bottles. We

created a database of tactile observations by grasping each

object on a pre-defined path (from bottom to top). Some

objects were included twice in the dataset, both under 0◦,

and 90◦ rotation. We obtained a set of |D| = 830 tactile

observations for 21 object labels. All experiments were then

carried out on this dataset using randomized, 2-fold cross

validation, resulting in two disjoint sets Dtraining ⊂ D and

Dtest ⊂ D of |Dtraining| = |Dtest| = 415 samples for each run.

B. Vocabulary Creation

Before each run of our experiments, a vocabulary was

created from the training data Dtraining by running the k-

means algorithm. An example of the resulting centroids is

given in Fig. 5. We tried different choices for k empirically,

and found by evaluating the resulting recognition rates that

k = 50 was a reasonable choice for the number of clusters

(see Tab. I). Alternatively, one could try to find k automati-

cally, for example, by using the Bayes information criterion

(BIC). Further, we studied the influence of the weighting

factor α in the distance metric of Eq. 3 (see Tab. II). For all

subsequent experiments, we chose α = 0.5 such that both

the tactile images and the finger distance were considered

being equally important.

C. Recognition Rates

For measuring the recognition rate, we chose an object o
at random, and selected T = 10 random grasp observations

z1:T of that object from Dtest. Starting from a uniform prior

p(o) over all object classes, we computed the posterior p(o |
z1:T) according to Eq. 5 and Eq. 6. From this posterior, we

then selected the maximum-a-posteriori (MAP) object class

ô = argmax
o

p(o | z1:T) (12)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

re
c
o

g
n

it
io

n
 r

a
te

number of grasps

informed
uninformed

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

re
c
o

g
n

it
io

n
 r

a
te

number of grasps

informed
uninformed

Fig. 6: Comparison of the uninformed and the informed

grasping strategy depending on the number of grasp actions.

Left: household and industrial objects (full dataset). Right:

industrial objects only.

and compared it to the true object class o. In this way, we

obtained a recognition rate of 84.6% over all 21 objects.

In particular, we found that the household objects among

each other were hardly ever confused (96.2%), in contrast

to the industry objects (58.0%), that look very similar.

The confusion matrices of these experiments are depicted

in Fig. 7.

In our dataset, we also have a tennis ball and a soft ball,

two objects that appear visually almost completely similar. In

our experiments, we measured that these two objects could

be separated from each other very well, with a recognition

rate of 93.8%.

D. Active perception

We also measured whether objects can be recognized with

fewer grasps when the robot selects the grasping height

based on the expected information gain. We evaluated the

recognition rates after each test grasp in 10 independent

runs using both the uninformed and the informed grasping

strategy. The results are summarized in Fig. 6. On our full

dataset (household and industrial objects), using the infor-

mation gain strategy performs on average 5.0% better than

random grasping. In particular, one would expect that a better

grasping strategy improves the recognition rates on the more

difficult dataset of industrial objects. Indeed, we measured

a performance gain of 18.9% of the informed strategy over

the random one, raising the average recognition rate from

58.0% to 67.5%. In both experiments, a paired t-test showed

significantly improved recognition rates when choosing the

position that maximizes the expected information gain.

VII. CONCLUSION

In this paper, we presented a novel approach for object

recognition using tactile observations obtained from the

touch-sensitive fingers of a manipulation robot. Our work

belongs to the class of bag-of-features techniques and main-

tains a probabilistic belief about the object that is currently

grasped. We create a feature vocabulary for the tactile

observations using k-means clustering. To recognize objects,

we learn distributions over the feature vocabulary and use

this to create a codebook. Furthermore, we implemented a

decision-theoretic approach to active grasping that considers

the expected information gain of future actions which signif-

icantly improved the recognition performance. We validated

(a) (b) (c) (d)

Fig. 7: Confusion matrices of object recognition after 500 object recognition trials with 10 test grasps each on different

subsets of objects. (a) household & industrial objects, recognition rate: 84.6% (b) household objects only, recognition rate:

96.2% (c) industrial objects only, recognition rate: 58.0% (d) tennis ball vs. soft ball, recognition rate: 93.8%

our approach in experiments with a large range of real-world

objects and obtained highly accurate recognition results.

Despite the encouraging results there are several warrants

for future research. Instead of using the entire tactile images,

we want to explore the possibility of using local features that

are invariant to translations and orientations of the object.

Additionally, we want to look at estimating the pose of

the gripped object which could be beneficial during object

manipulation. Also, we want to look at the time profiles of

the tactile observations, for example to recognize whether

and how objects are deformable.

ACKNOWLEDGMENT

This work has partly been supported by the German

Research Foundation (DFG) under contract number SFB/TR-

8 as well as by the EC under contract number FP6-IST-

045388-INDIGO.

REFERENCES

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in
images via a sparse, part-based representation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(11):1475–1490, 2004.

[2] P. K. Allen. Integrating Vision and Touch for Object Recognition
Tasks. The International Journal of Robotics Research, 7:15–33, 1988.

[3] F. Castelli. An integrated tactile-thermal robot sensor with capacitive
tactile array. IEEE Transactions on Industry Applications, 38, 2002.

[4] C. Chuang and R. Chen. 3D capacitive tactile sensor using DRIE
micromachining. In C. Cane, J.-C. Chiao, and F. Vidal Verdu,
editors, Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, volume 5836, pages 719–726, July 2005.

[5] G. Csurka, L. Dance, J. Willamowski, and C. Bray. Visual catego-
rization with bags of keypoints. In Proceedings of the 8th European

Conference on Computer Vision, Wokshop on Statistical Learning in

Computer Vision, ECCV 2004, pages 59–74, 2004.

[6] Z. Doulgeri and S Arimoto. Force position control for a robot finger
with a soft tip and kinematic uncertainties. Robotics and Autonomous

Systems, 55(4):328 – 336, 2007.

[7] Y. Hasegawa, M. Shikida, T. Shimizu, T. Miyaji, H. Sasaki, K. Sato,
and K. Itoigawa. Micromachined active tactile sensor for hardness
detection. Sensors and Actuators A: Physical, 114(2-3):141 – 146,
2004.

[8] G. Hetzel, B. Leibe, P. Levi, and B. Schiele. 3D object recognition
from range images using local feature histograms. In Proc. of the

Conf. on Comp. Vision and Pattern Recognition (CVPR), pages 394–
399, 2001.

[9] T. Hoshi and H. Shinoda. Robot skin based on touch-area-sensitive
tactile element. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), pages 3463–3468, 2006.
[10] R. Kageyama, S. Kagami, M. Inaba, and H. Inoue. Development of

soft and distributed tactile sensors and the application to a humanoid
robot. In IEEE International Conference on Systems, Man, and

Cybernetics 1999 (IEEE SMC 99), volume 2, pages 981 – 986, 1999.
[11] O. Kerpa, K. Weiß, and H. Wörn. Development of a flexible tactile

sensor system for a humanoid robot. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), volume 1, 2003.
[12] M. H. Lee and H. R. Nicholls. Review article tactile sensing for

mechatronics–a state of the art survey. Mechatronics, 9(1):1 – 31,
1999.

[13] K. Motoo, T. Fukuda, F. Arai, and T. Matsuno. Piezoelectric vibration-
type tactile sensor with wide measurement range using elasticity and
viscosity change. Advanced Robotics, 24(3), 2006.

[14] A.M. Okamura and M. R. Cutkosky. Haptik exploration of fine surface
features. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 1999.
[15] S. Omata, Y. Murayama, and C. E. Constantinou. Real time robotic

tactile sensor system for the determination of the physical properties
of biomaterials. Sensors and Actuators, 112(2-3):278 – 285, 2004.

[16] A. Petrovskaya, O. Khatib, S. Thrun, and A. Y. Ng. Bayesian estima-
tion for autonomous object manipulation based on tactile sensors. In
ICRA 2006, pages 707–714, 2006.

[17] R.A. Russell. Object recognition by a ’smart’ tactile sensor. In Pro-

ceedings of the Australian Conference on Robotics and Automation,
Melbourne, Australia, 2000.

[18] R.A. Russell and J.A. Wijaya. Object location and recognition using
whisker sensors. In Proceedings of the Australian Conference on

Robotics and Automation 2003, 2003.
[19] J. Tegin and J. Wikander. Tactile sensing in intelligent robotic

manipulation - a review. Industrial Robot: An International Journal,
32, 2005.

[20] K. Weiss and H. Wörn. The Working Principle of Resistive Tactile
Sensor Cells. IEEE International Conference on Mechatronics &

Automation, 2005.
[21] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features

and kernels for classification of texture and object categories: A
comprehensive study. In Proc. of the Conference on Computer Vision

and Pattern Recognition Workshop, Washington, DC, USA, 2006.

[C6] H. Strasdat, C. Stachniss, and W. Burgard. Which landmark is

useful? learning selection policies for navigation in unknown environments.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Kobe,

Japan, 2009.

Which Landmark is Useful?

Learning Selection Policies for Navigation in Unknown Environments

Hauke Strasdat Cyrill Stachniss Wolfram Burgard

Abstract— In general, a mobile robot that operates in un-
known environments has to maintain a map and has to
determine its own location given the map. This introduces
significant computational and memory constraints for most
autonomous systems, especially for lightweight robots such
as humanoids or flying vehicles. In this paper, we present a
novel approach for learning a landmark selection policy that
allows a robot to discard landmarks that are not valuable for
its current navigation task. This enables the robot to reduce
the computational burden and to carry out its task more
efficiently by maintaining only the important landmarks. Our
approach applies an unscented Kalman filter for addressing
the simultaneous localization and mapping problems and uses
Monte-Carlo reinforcement learning to obtain the selection
policy. Based on real world and simulation experiments, we
show that the learned policies allow for efficient robot naviga-
tion and outperform handcrafted strategies. We furthermore
demonstrate that the learned policies are not only usable
in a specific scenario but can also be generalized towards
environments with varying properties.

I. INTRODUCTION

In recent years, there has been a trend towards embedded

systems in robotics. A series of such approaches deal with

autonomous cars, helicopters, blimps, underwater vehicles,

and wheeled or humanoid robots. As embedded systems

typically have much higher limitations with respect to the

computational power and memory capacity, it is important

in the context of embedded systems to develop efficient

algorithms that scale with the computational constraints of

the underlying hardware.

In robotics, one of the core capabilities needed for the

majority of applications is autonomous navigation. For truly

autonomous navigation in initially unknown environments,

the robot has to solve the so-called simultaneous localization

and mapping (SLAM) problem [2, 12, 19]. Solving the

SLAM problem, however, is computationally demanding

and the memory requirements increase with the number

of landmarks that need to be maintained by the robot. In

practice, there are many scenarios in which the number of

visible landmarks during a navigation task is significantly

larger than the number of landmarks which can be processed

efficiently using an embedded device. This leads to the

question which landmark should be stored and maintained by

the robot to optimally solve the navigation task. A landmark

is only useful if it contributes to keep an accurate pose

This work has partly been supported by the DFG within the Research
Training Group 1103 and under SFB/TR-8 as well as by the European
Commission under FP6-IST-34120-muFly and FP7-231888-EUROPA.

H. Strasdat, C. Stachniss, and W. Burgard are with Dep. of Computer
Science, University of Freiburg, Germany. H. Strasdat is also with the
Dep. of Computing, Imperial College London, UK.

estimate of the robot at the right time and in such a way that it

is valuable for the navigation task. In this paper, we present

an approach for learning a landmark selection policy that

optimizes the navigation task carried out by the robot given

its computational or memory constraints. It is obvious that

the utility of a landmarks depends on the type of navigation

task. We analyze two types of navigation tasks: A single-

goal navigation task and a round-trip navigation task where

subgoals are visited more then once. One major advantage

of our approach is that the policies are not limited to the

environment they have been learned in. Rather, they can

also be applied successfully in environments with different

properties of the underlying landmark distribution.

This paper is organized as follows. After a discussion of

related work, Section III briefly introduces the unscented

Kalman filter and its application to SLAM as well as re-

inforcement learning. Section IV then describes the different

navigation tasks considered in this paper. After that, we in-

troduce our approach to learn the optimal landmark selection

policy. Finally, we present experimental results carried out

in simulation as well as on a real wheeled robot.

II. RELATED WORK

The standard method for SLAM relies on the extended

Kalman filter (EKF) [11] or its variants such as the unscented

Kalman filter (UKF) [7]. Using these approaches, the com-

putational requirement and memory demand increase with

the number of landmarks since the full correlation between

the position all landmarks is taken into account. There are

many approximative filtering techniques for SLAM [12,

19]. These methods do not incorporate the full correlation

between the landmarks, so that the computational constraints

are less restrictive. However, their memory demand increases

at least linearly with the number of landmarks used.

Recently, Sala et al. [15] presented a graph-theoretic

formulation for the selection problem of visual features to

perform navigation in known environments. The optimal

set of features is defined as the minimal set with which

navigation is possible. Zhang et al. [20] proposed an entropy-

based landmark selection method for SLAM. This method

specifies a measure about which visible landmark is best in

the sense of entropy reduction. However, it only provides a

vague guideline for how many features should be selected

at a given point in time. Furthermore, Lerner et al. [9]

presented another quality measure for landmark selection

in known environments which is based on the comparison

of pose uncertainties. Dissanayake et al. [6] suggested a

map management which ensures a uniform distribution of

landmarks over the traversed area. Apart from landmark

selection, other active methods were presented such as max-

imizing the SLAM estimate by intelligent path planning [10]

or increasing the performance of a soccer playing robot by

active sensing [5].

In this paper, we present a new and universal approach

for landmark selection in unknown environments. The value

of a landmark is measured in terms of how well it improves

the navigation/localization capabilities of the robot given the

targeted navigation task. This is especially important for

robots with restricted resources. We learn a landmark selec-

tion policy using Monte-Carlo reinforcement learning [3, 17,

18] and k-nearest neighbor regression [16]. We show in real

world and simulation experiments that this technique allows

for more efficient robot navigation.

III. PRELIMINARIES

A. Unscented Kalman Filter

The unscented Kalman filter (UKF) is a recursive Bayes’

filter that estimates the state x of an dynamical system in

discrete time steps given a sequence of actions u and observa-

tions z. The n-dimensional state vector x is represented by a

multivariate Normal distribution with mean µ and covariance

matrix Σ(n×n). The dynamics of the system are described by

a state transition function g plus Gaussian noise ǫg,t:

xt = g(ut, xt−1) + ǫg,t (1)

Measurements are integrated using the observation function:

ẑt = h(xt) + ǫh,t (2)

Again, Gaussian noise ǫh,t is added. Since Kalman filtering

is an approach for systems governed by a linear difference

equation, special efforts have to be taken to take the non-

linearities in g and h into account.

The key idea of the unscented Kalman filter, which has

been introduced by Julier and Uhlmann [7], is to apply

a deterministic sampling technique that is known as the

unscented transform to select a small set of so-called sigma

points around the mean. Then, the sigma points are propa-

gated through the non-linear functions. Afterwards, mean and

covariance estimates are computed based on the transformed

points. The advantage of this technique is that the filter can

much better deal with non-linearities and thus lead to a more

robust technique than the EKF.

B. Simultaneous Localization and Mapping

In the context of the SLAM problem, one seeks to simulta-

neously determine the map of the environment and the pose

of the robot. Probabilistic methods seek to estimate the joint

probability distribution

p(pt, l1, ..., lM |u1, ..., ut, z1, ..., zt) (3)

about the pose pt of the robot at time t and the position of

the landmarks l1, ..., lM given all previous motions u1, ..., ut

and observations z1, ..., zt. Various approaches to estimate

this posterior have been presented in the literature.

In this paper, we address the SLAM problem using the

UKF by representing the joint state (pT
t , lT1 , ..., lTM)T with

〈µ,Σ〉. This is a standard approach which has shown to

operate successfully in the past. For convenience, we abbre-

viate the mean of the robot pose (µ1, µ2, µ3)
T as (x, y, θ)T .

The mean of the jth landmark location (µ2j+2, µ2j+3)
T is

denoted by
(

l
[j]
x , l

[j]
y

)T

. Furthermore, we interpret the state

transition function h as the robots motion model. In addition,

we assume that range and bearing observations (ρ, φ)T are

given so that we can define a corresponding observation

model g. In our work, we initialize new landmarks in a single

step following the approach of Bailey [2].

Note that our approach is not limited to UKF or Kalman

filter-based approaches and any other method can be applied

for addressing the SLAM problem.

C. Monte-Carlo Reinforcement Learning

The basic idea of reinforcement learning [18] is to learn

by the interaction with the environment. We consider a

dynamical system consisting of an agent and its environment

at discrete time steps τ . At each point in time τ , the world

is in state sτ ∈ S and the agent chooses an action a ∈ A.

Then, the world transform into a new state sτ+1 and the agent

receives an reward rτ+1 ∈ R. The goal is to maximize the

return

Rτ =

T
∑

k=τ+1

rk, (4)

whereas T is the total number of time steps of one learning

episode. The agent is following a policy

π(s, a) := p(a|s) ∀s ∈ S (5)

which represents the probability of choosing action a under

the assumption of being in state s. Each policy π has a

corresponding Q-function

Qπ(s, a) := Eπ{Rτ |sτ = s, aτ = a} (6)

which specifies the expected return R from choosing action

a in state s. During the learning process, we would like

to approximate the optimal policy π∗(s, a) that maximizes

the expected return. Therefore, we have to approximate the

corresponding Q-function simultaneously.

One way of solving the reinforcement learning problem is

based on Monte Carlo methods [3, 17]. Here, we estimate

the Q-function as the average return over sample episodes.

Initially, the Q-function is initialized with an arbitrary prior.

During the training, a soft policy should be used. Thus, it

should hold that π(s, a) > 0 for all possible state-action

pairs in order to assure that each state is reachable during

the training process. One common soft policy is ǫ-greedy

which selects with the high probability of 1 − ǫ the action

a∗ = arg maxQ(s, a) (7)

that maximizes the expected return and a random action

otherwise.

Note that the time index t used in the SLAM setting is

not necessarily identical with the discrete time at which the

Fig. 1. Illustration of the single-goal navigation task.

reinforcement learning framework has to make decisions.

Therefore, we introduced a second time index τ to distin-

guish both in a sound way.

IV. NAVIGATION TASKS

A. Single-goal Task

Let us consider the following most basic navigation task

(see Fig. 1). The robot is located at position A. It is supposed

to drive from there to the goal position B. In this example,

the robot’s motion is affected by a drift. In addition, N

landmarks are distributed randomly over the environment.

When the robot perceives a new landmark, it has to decide

whether it should integrate this landmark in the UKF or not.

The UKF has a landmark capacity of M landmarks with

M << N . The goal is to choose the landmarks in a way such

that the distance of the final position of the robot (xT , yT)T
true

and the target position B is minimized. Hence, we define the

reward

rτ =

{

−
∣

∣B − (xT , yT)T
true

∣

∣ if τ = T

0 else,
(8)

as the negative Euclidean distance of the robot’s true position

to the goal B if the training episode reaches the terminal state

sT ; intermediate rewards r1,...,rτ−1 are set to zero.

B. Round-trip Task

In the round-trip task, the robot is supposed to reach

several subgoals. First, it starts at A and it is supposed to

drive to B, then back to A. Afterwards, it should target B

again and, finally, it should return to A. In this task, a new

subgoal is selected as soon as the position estimate of the

robot (xt, yt)
T is close to it – independent of the robot’s

true position (xt, yt)
T
true. In this task, the error in the pose

estimate should be minimized over the whole trajectory. For

convenience, we specify the return directly as the negative

average localization error over the remaining trajectory,

Rτ = −
1

|T − t(τ)|

T
∑

t′=t(τ)

∣

∣

∣

∣

(

xt′

yt′

)

true

−

(

xt′

yt′

)∣

∣

∣

∣

, (9)

whereas t(τ) specifies the time when the τ th decision is

made and T is the time when the robot reaches its final

destination. To simplify things for the second task, landmark

selection is only allowed while the robot moves from A to

B the first time. The round-trip task is more complex than

the previous one. However, it is worth considering since it

focuses on the loop-closing problem of SLAM and has a

higher a practical relevance than the single-goal task.

V. NAVIGATION AND LANDMARK SELECTION

A. Motion Control

The robot is steered towards the subgoals using a straight-

forward controller. An appropriate translational acceleration

ω̇t and rotational acceleration υ̇t is selected based on the

current estimate of the robot pose pt, the translational

velocity ωt and rotational velocity υt.

B. Learning Landmark Selection Policies

In order to learn landmark selection policies with Monte

Carlo reinforcement learning, we need to define the state

space S and the action space A. In addition to that, we need

to find an appropriate representation for the continuous Q-

function.

1) State Space: The available state information consists

of the UKF state 〈µ,Σ〉 and the current range and bearing

observation (ρ, φ)T . This full information would lead to an

high-dimensional state space so that a successful learning is

impractical. It is therefore desirable to reduce the space while

preserving as much as possible of the relevant information.

This can be achieved by defining features that summarize

the essential information. One of the features is the position

of the potentially new landmark,
(

l
[new]
x

l
[new]
y

)

=

(

xt + ρ cos(φ + θt)
yt + ρ sin(φ + θt)

)

, (10)

according to the current range and bearing observation

(ρ, φ)T and the robot’s pose estimate (xt, yt, θt)
T . Addition-

ally, we define the following five features:

1. Estimated distance to subgoal B,

dest =
∣

∣B − (xt, yt)
T
∣

∣ , (11)

2. Number of landmarks integrated in the UKF,

m = |{j ∈ M : Σ2j+2 < ∞∧ Σ2j+3 < ∞}| , (12)

where Σ2j+2 and Σ2j+3 are the variances of the jth

landmark in the x and y direction.

3. Yaw angle to potential new landmarks φ,

4. Distance of the potentially new landmark to the closest

landmark already integrated,

dl = min
j ∈ L

with Σ2j+2 < ∞

∧Σ2j+3 < ∞

∣

∣

∣

∣

∣

(

l
[j]
x

l
[j]
y

)

−

(

l
[new]
x

l
[new]
y

)∣

∣

∣

∣

∣

, (13)

5. Uncertainty of the robot pose Σ3×3 in terms of its

entropy,

H = ln(
√

(2πe)3|Σ3×3|). (14)

The first of these features summarizes the robot position

(xt, yt). The landmark positions l1, ..., lM are summarized

by the fourth feature while the new observation (ρ, φ)T is

represented by the third feature as well as fourth one. The

covariance Σt is comprised by the second feature and the

fifth one.

In the following, we will consider three different variants

of the learning approaches. The first approach only relies on

a two dimensional state space (first and second feature), the

second one uses an four dimensional feature space (first to

fourth feature) and the third one uses five dimensions (all

five features).

2) Function Approximation: Since the state space of the

features is continuous (with the exception of the second

dimension), we need to estimate the Q-function with some

function approximator. In our current implementation, we use

k-nearest neighbor (k-NN) regression [16]. Training points

– i.e. state/action values (s, a) which are each labeled with

a return R – are efficiently stored in set of kd-trees [4,

1]. The jth kd-tree represents the returns from choosing

an action aj in a given state s. If a query (s′, a′) is

performed, the k nearest data points to the query point s′

(w.r.t. Euclidean distance) are selected from the appropriate

kd-tree. The return is estimated as unweighted average over

the corresponding R-values. If less then kmin data points can

be found within a fixed radius around the query point, some

prior Rprior is returned. In our current implementation, we set

k = 50 to reflect the high amount of noise in our training

data; kmin is set to 10. The k-NN regression approach has

the advantage over the common grid-based discretization

methods that it has a high degree of generalization in areas

where the density is low and it is precise in regions where

the data points are dense. In contrast to non-linear models

such as neural networks [14], no over-fitting occurs. As

opposed to other regression techniques, in which the model

is also expressed directly in terms of their training data such

as Gaussian Processes [13], k-NN regression is very fast.

Even with hundred thousands of data points, a query can

be performed in a few milliseconds. An efficient evaluation

is essential for learning in practice, since the regression

has to be carried out frequently. In various tests, we could

not reveal a significant benefit from using Gaussian process

regression over k-NN regression for reinforcement learning

in our domain. Due to space restrictions, these experiments

are omitted in the experimental section.

3) Action Selection: In our learning problem, the action

is a binary decision:

A = {areject, aaccept} (15)

This means that either the potential new landmark is chosen

or not. In order to boost the training, a variant of ǫ-greedy

is used:

π(s) =

arg max Q(s, a) if Q(s, areject) 6= Q(s, aaccept)

and χ1 < 1 − ǫ

aaccept if [Q(s, areject) = Q(s, aaccept)

or χ1 ≤ ǫ] and χ2 < M
Nvisible

areject else
(16)

Here, χ1 and χ2 are uniform random samples between

zero and one; Nvisible is the expected number of visible

landmarks in one training episode. Thus, in the beginning

of the training – when Q(s, areject) = Q(s, aaccept) = Rprior

in most cases – it is ensured that landmarks are selected

over the whole trajectory. Neither landmarks in the beginning

of the episode nor landmarks in the end are preferred. If

standard ǫ-greedy is used, aaccept and areject would be chosen

with a probability of 0.5 each. Thus, depending on the

values for the landmark capacity M and expected number

of visible landmarks Nvisible it could happen that either all

landmarks are selected in the beginning of the episode or that

considerably fewer landmarks than M are selected. Either

would lead to a slow convergence rate.

To sum up, we use a learning approach for landmark

selection based on Monte-Carlo reinforcement learning and

k-NN regression. The state space is compactly represented

by five features and the action is a binary decision.

C. Generalization

Until now, we considered an approach to learn a selection

policy in unknown environments, but for a specific scenario.

However, it is desirable to train a policy in one scenario

and then apply this policy in another setting. Important

parameters of a training scenario are the number N of

landmarks in the environment and the landmark capacity M

of the UKF. To generalize, it is important to have a scenario-

independent state space representation. For instance, instead

of the number of landmark integrated in the UKF m, we

need to speak about the percentage of landmarks m
M

.

D. Deletion of Landmarks

In the Kalman filter framework, it is possible to delete

already integrated landmarks. This can be done without

affecting the statistical consistency by removing the appropri-

ate value from the mean vector and the corresponding rows

and columns from the covariance matrix [6]. If we want

to allow deletion, we must extend our action set A. Since

deletion is only useful if we replace the deleted landmark

with a new one, we propose the following action set

A = {areject, areplace1
, ..., areplaceM

}. (17)

The deletion of landmarks might be particular interesting in

connection with the round-trip task where those landmarks

should not be replaced which facilitate loop closure.

VI. EXPERIMENTS

A. Single-goal Task in Simulation

We evaluate the performance of our learning procedure

for the single-goal task in a simulated environment. We

choose an environment where N landmarks are randomly

distributed in a 30m × 60m area. The distance between the

start position A and the goal B is set to 44m. We train

our policy for 2,000 episodes. In each episode, landmarks

are randomly re-distributed. We compare the trained policies

with two heuristics. The first one is the M -first heuristic

which simply integrates the M first landmarks that are

observed. An apparently better policy is the equidistant

heuristic. With this heuristic, the robot only integrates a new

landmark after it has driven a certain distance so that the

Test scenario Policy trained in scenario equidistant

M / N 5 / 100 5 / 50 10 / 100 10 / 50 15 / 100 15 / 50 heuristic

5 / 100 11.5± 0.64 12.2± 0.68 14.9± 1.19 15.6± 1.36 16.6± 1.05 17.4± 0.99 13.2

5 / 50 10.7± 0.42 10.5± 0.49 11.6± 0.50 12.2± 0.52 12.7± 0.49 13.5± 0.62 13.6

10 / 100 6.9± 0.54 6.3± 0.47 6.8± 0.39 7.6± 0.61 8.4± 0.6 9.7± 0.97 8.5

10 / 50 8.2± 1.05 7.2± 0.48 7.1± 0.45 6.8± 0.26 7.1± 0.47 7.2± 0.35 9.6

15 / 100 5.9± 0.87 5.1± 0.36 4.9± 0.35 5.1± 0.24 5.1± 0.22 6.0± 0.46 6.6

15 / 50 8.0± 1.24 6.9± 0.71 6.5± 0.76 5.9± 0.41 6.0± 0.22 5.6± 0.28 7.5

TABLE I

HIGH DEGREE OF GENERALIZATION IN THE SINGLE-GOAL TASK. THE MEAN ERROR OVER TEN TRAINING RUNS AND THE CORRESPONDING

STANDARD DERIVATION IS SHOWN. ALL POLICIES MARKED BOLD ARE SIGNIFICANTLY BETTER THAN THE EQUIDISTANT HEURISTIC (α = 0.05).

 4

 6

 8

 10

 12

 14

 500 1000 1500 2000

e
rr

o
r

in
 m

e
te

r

number of training episodes

k-NN regression / 2D state space
k-NN regression / 4D state space

M-first heuristic
equidistant heuristic

Optimum: all available landmarks

Fig. 2. Evolution of the error during training using k-NN regression.
The mean errors over 10 training runs as well as the corresponding 95%-
confidence intervals are plotted in the graph. In addition to that, the average
performance of two different heuristics over 2000 episodes is shown.
Furthermore, the figure shows the average performance of navigation under
optimal conditions where all visible landmark are integrated in the UKF.

 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

p
o

lic
ie

s
 /

 h
e

u
ri
s
ti
c
s

error in meter

k-NN regression / 2D state space
k-NN regression / 4D state space
k-NN regression / 5D state space

grid-based discretization / 4D state space
equidistant heuristic

M-first heuristic

Fig. 3. Average performance of the trained policies and heuristics w.r.t.
1000 test episodes. For the trained policies, the mean over the ten training
runs as well as the corresponding 95%-confidence interval is shown.

landmarks are approximately uniformly distributed over the

whole trajectory (similar to [6]).

For the learning, we use k-NN regression with a two-, a

four-, and a five-dimensional state space (see Section V-B).

For comparison, a learning approach using a grid-based dis-

cretization is performed. At first, we consider an UKF with

a landmark capacity of M = 10 and an environment with

N = 50 landmarks. Fig. 2 shows the evolution of the error of

different learning approaches using k-NN regression during

the training. The error is defined by the Euclidean distance

of the robot to the goal B. For each learning approach, ten

training runs are performed. Each trained policy and heuristic

is evaluated in 1,000 different environments (see Fig. 3).

The one-sample t-test with a significance level of α = 0.05
shows that all four learning approaches are significantly

better than the equidistant heuristic. Furthermore, it is shown

using a two-sample t-test that k-NN regression with a four

Fig. 4. Pioneer 2-DX8 robot with upward-looking camera and SICK laser
range scanner (left) and detected visual landmarks on the ceiling (right).

dimensional state space leads to a significant smaller error

than grid-based discretization with four dimensions as well

as k-NN with two dimensions. Thus, the third feature, which

is the distance dl of a new landmark to landmarks already

integrated, and the fourth one, which is the angle φ to the

new landmark, seem to include relevant information which

are not encoded in the first two dimension of the state space.

Further experiments revealed that indeed both features are

essential. However, we were not able to show that there is

any benefit from including the fifth feature, the entropy H of

the robot’s pose. Even with a significance level of α = 0.25,

the t-test did not reveal a difference between the learning

approach using the four dimensional state space and the

one using five dimensions. A qualitative comparison in an

example environment between the learned policy and the

heuristics is shown in the first half of the accompanying

video submission.

In order to evaluate how good the trained policies gener-

alize, we trained and tested a policy in environments with

N = 50 as well as N = 100 landmarks. In addition, we

use UKFs with a capacity M of five, ten, and 15 landmarks.

Tab. I illustrates the high degree of generalization of our

learning approach. For instance, if we perform a training in

a setting with N = 50 and M = 5, we see that the trained

policy leads to significantly better results than the equidistant

heuristic in all six test scenarios. This indicates that our

approach generalized over different landmark densities which

is similar to environments of different scale and sensor range.

B. Single-goal Task Performed in a Real World Experiment

Furthermore, we evaluated our learning approach in a

laboratory environment. Visual markers [8] have been ran-

domly attached to the ceiling in a 2.5m × 5m area. Our

used robot, a Pioneer 2DX-8, is equipped with a upward-

looking camera and a SICK laser range scanner (see Fig. 4).

The camera is used for the experiments observing landmarks

at the ceiling whereas the laser is used for (near) ground

truth evaluation. Since the odometry of the robot was too

accurate in the limited space in which we carried out the

experiment, we added a rotational bias of 0.1 rad per meter.

It is impractical to train the policy in the real-world because

this would not only require to perform hundreds of training

episodes but also to install different landmark distributions

for each training episode. Thus, we trained the policy in

simulation and tested it in the real-world setting. We also

compared the trained policy to the equidistant heuristic. Both,

the trained policy as well as the equidistant heuristic were

tested ten times. The trained policy results in an error of

0.50±0.08 whereas the equidistant heuristic leads to an error

of 0.66±0.07. Hence, the trained policy is significantly better

than the equidistant heuristic (w.r.t. a t-test with α = 0.05).

C. Round-trip Task

The performance of our learning procedure for the round-

trip task is evaluated in a simulated environment with N =
50 landmarks. It was trained using k-NN regression with a

four dimensional state space over ten training runs. Here,

the error is defined as the average localization error over

the whole trajectory. Again, we compare our learning with

the equidistant heuristic. Tab. II shows that the learned

policy is significantly better than the heuristic. Furthermore,

it is shown that we were able to generalize over the UKF

capacity M . In the second half of the accompanying video,

a qualitative evaluation is given.

D. Round-trip Task with Landmark Deletion

Finally, we analyzed a variant of the round-trip task

that, compared to the previous experiments, also allows the

deletion of landmarks. It should be noted that this scenario

is significantly more complex compared to the previous

tasks. For instance, the state space must be extended in

order to represent the already integrated landmarks. In initial

experiments, we figured out that good strategies keep a

set of landmarks fixed for re-localization and perform an

incremental pose correction with set of frequently replaced

landmarks. Further investigations are currently ongoing.

VII. CONCLUSION

In this paper, we presented an novel approach for landmark

selection in unknown environments using reinforcement

learning. The ability of a mobile robot to incorporate a land-

mark into its belief or to discard it allows for efficient robot

navigation under computational constraints. The presented

method is able to determine which landmark is valuable for

the robot to efficiently solve its current navigation task. This

is especially important for robots with restricted resources.

We demonstrated by a series of real world and simulation

experiments that the learned policies outperform handcrafted

heuristics. Furthermore, we showed that a learned policy has

a high degree of generalization since it can be applied in

different environments with changed underlying parameters.

Despite these encouraging results, there is space for further

optimizations. One interesting aspect is the possibility to

Test Policy trained in scenario equidistant

M 5 10 15 heuristic

5 3.28± 0.15 4.44± 0.41 5.06± 0.37 3.86

10 2.38± 0.09 2.37± 0.09 2.43± 0.06 2.85
15 2.30± 0.13 2.24± 0.17 2.23± 0.06 2.55

TABLE II

ROUND-TRIP TASK. ALL POLICIES MARKED BOLD ARE SIGNIFICANTLY

BETTER THAN THE EQUIDISTANT HEURISTIC (α = 0.05).

delete an already incorporated landmark. First experiments

indicate that improvements can be made although the prob-

lem is substantially more complex.

REFERENCES

[1] S. Arya and D.M. Mount. Algorithms for fast vector quantization.
In Proc. of the IEEE Data Compression Conference (DDC’93), pages
381–390, 1993.

[2] T. Bailey. Mobile Robot Localisation and Mapping in Extensive

Outdoor Environments. PhD thesis, University of Sydney, 2002.
pages 22–23.

[3] A. Barto and M. Duff. Monte Carlo matrix inversion and reinforcement
learning. In Advances in Neural Information Processing Systems,
pages 687–694, 1994.

[4] J.L. Bentley. K-d trees for semidynamic point sets. In Proc. of the 6th

ACM Symposium on Computational Geometry, pages 187–197, 1990.
[5] Kwok C. and Fox D. Reinforcement learning for sensing strategies.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS’04), Sendai, Japan, 2004.
[6] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally

efficient solution to the simultaneous localisation and map building
(SLAM) problem. In Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA’00), pages 1009–1014, 2000.
[7] S.J. Julier and J.K. Uhlmann. A new extension of the Kalman

filter to nonlinear systems. In Proceedings of the Int. Symp. on

Aerospace/Defense Sensing, Simulation and Controls, 1997.
[8] H. Kato and M. Billinghurst. Marker tracking and HMD calibration

for a video-based augmented reality conferencing system. In Proc. of

the Int. Workshop on Augmented Reality (IWAR’99), 1999.
[9] R. Lerner, E. Rivlin, and I. Shimshoni. Landmark selection for task-

oriented navigation. IEEE Transaction on Robotics, 23(3), 2007.
[10] Bryson M. and Sukkarieh S. Active airborne localisation and explo-

ration in unknown environments using inertial SLAM. In Proc. of the

IEEE Aerospace Conference, 2006.
[11] P.S. Maybeck. The Kalman filter: An introduction to concepts. In

Autonomous Robot Vehicle. Springer Press, 1990.
[12] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM:

A factored solution to the simulaneous localization and mapping
problem. In Proc. of the National Conf. on Artificial Intelligence

(AAAI’02), pages 593 – 598, 2002.
[13] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine

Learning. MIT Press, Cambridge, MA, USA, 2006.
[14] R. Rojas. Neural Networks: A Systematic Introduction. Springer Press,

1996.
[15] P. Sala, R. Sim, A. Shokoufandeh, and S. Dickinson. Landmark

selection for vision-based navigation. IEEE Transaction on Robotics,
22(2), 2006.

[16] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods

in Learning and Vision: Theory and Practice. MIT Press, Cambridge,
MA, USA, 2006.

[17] S.P. Singh, R.S. Sutton, and P. Kaelbling. Reinforcement learning with
replacing eligibility traces. In Machine Learning, volume 22, pages
123–158, 1996.

[18] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction.
MIT Press, Cambridge, MA, USA, 1998.

[19] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23, 2004.

[20] S. Zhang, L. Xie, and M.D. Adams. Entropy based feature selection
scheme for real time simultaneous localization and map building. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS’05), 2005.

[C7] B. Frank, C. Stachniss, R. Schmedding, W. Burgard, and M. Teschner.

Real-world robot navigation amongst deformable obstacles. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), Kobe, Japan, 2009.

Real-world Robot Navigation amongst Deformable Obstacles

Barbara Frank Cyrill Stachniss Rüdiger Schmedding Matthias Teschner Wolfram Burgard

Abstract— In this paper, we consider the problem of mo-
bile robots navigating in environments with non-rigid objects.
Whereas robots can plan their paths more effectively when
they utilize the information about the deformability of objects,
they also need to consider the influence of the interaction
with the deformable objects on their measurements during the
execution of their navigation task. In this paper, we present a
probabilistic approach to identify the measurements influenced
by the deformable objects. Based on a learned statistics about
the influence of the deformable objects on the measurements,
the robot is able to perform a sensor-based collision avoidance
of unforeseen objects. We present experiments carried out with
a real robot that illustrate the practicability of our approach.

I. INTRODUCTION

The ability to safely navigate in their environment is one

of the fundamental tasks of mobile robots. Accordingly,

the problem of safe navigation has received considerable

attention in the past. The majority of approaches for nav-

igation, however, has been developed for environments with

rigid obstacles [17, 13] and does not consider the potential

deformations imposed on the corresponding objects while

the robot navigates through the environment. In the real

world, however, not all obstacles are rigid and taking this

knowledge into account can enable a robot to accomplish

navigation tasks that otherwise cannot be carried out. For

example, in our everyday life we often deal with deformable

objects such as plants, curtains, or cloth and we are also

able to utilize the information about the deformability of the

corresponding objects. Consider, for example, the situation

in which a curtain blocks a potential path of the robot as

depicted in Fig. 1. Without the knowledge that the curtain can

be deformed, the robot would always have to take a detour.

Precise information about the cost of potential deformations,

however, allows the robot to plan cost-optimal paths through

the corridor, thereby deforming the curtain at minimal cost.

For robots that operate in environments with deformable

objects, two tasks are essential. First, the robot needs to

be able to take the cost of deformations resulting from its

interaction with deformable objects into account during the

path planning process. Furthermore, the robot needs to be

able to appropriately interpret its sensory input during the

interaction with the deformable objects. For example, during

the interaction, the robot necessarily gets close to the de-

formable object so that its field of view might get obstructed.

However, for safe navigation the robot still needs to be able

All authors are with the Department of Computer Science, University of
Freiburg, 79110 Freiburg, Germany.
{bfrank,stachnis,schmedd,burgard,teschner}@informatik.uni-freiburg.de

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8.

Fig. 1. The mobile robot Albert reasoning about its trajectory.

to identify the measurements that do not correspond to the

deformable object and come from other, possibly even rigid

objects.

In this paper, we present a probabilistic approach that

allows a mobile robot to distinguish measurements caused

by deformable objects it is interacting with from ordinary

measurements. This allows the robot to utilize standard re-

active collision avoidance techniques like potential fields [12]

or dynamic window techniques [4, 3, 14] simply by filtering

out measurements that are caused by the objects the robot is

interacting with. Additionally, the ability to reliably identify

measurements not perceiving parts of the deformable object

enables the robot to correctly interpret them also for the sake

of collision avoidance. Our approach has been implemented

on a real robot and evaluated in a collision avoidance task

carried out while the robot interacts with a curtain. The re-

sults demonstrate that our approach allows the robot to safely

avoid obstacles while it is interacting with a deformable

object.

This paper is organized as follows. After discussing related

work in the following section, we present in Section III an

overview of our current navigation system for robots operat-

ing in environments with deformable objects. In Section IV,

we describe how our robot estimates the cost of deforming

objects and how it incorporates this information during the

path planning process. Section V then contains our approach

to determining which sensors measurements are influenced

by the deformable object and how this information can be

incorporated into the collision avoidance process. Finally,

Section VI contains experimental results.

II. RELATED WORK

Most approaches to mobile robot path planning assume

that the environment is static and that all objects are rigid [13,

11, 2]. In the last years, however, path planning techniques

for deformable robots in static environments have been

presented [7, 10].

In case objects in the environment are deformable, the

underlying model for deformations and the model of the

environment have a substantial influence on the accuracy of

the estimated deformations as well as on the performance

of the planner. There exist geometric approaches such as

the free-form deformation (FFD) that can be computed

efficiently, for example, the FFD method of Sederberg and

Parry [19]. Physically motivated approaches use either mass-

spring systems [16] or Finite element methods (FEMs) which

reflect physical properties of the objects in a better way,

see [8, 15].

Kavraki et al. [10] developed the f-PRM-Framework that

is able to plan paths for flexible robots of simple geometric

shapes such as surface patches [9] or simple volumetric

elements [1]. They apply a mass-spring model and the

planner selects the deformation of the robot that minimizes

its deformation energy. Similar to this technique, Gayle

et al. [7] presented an approach to path planning for a

deformable robot that is based on PRMs. To achieve a more

realistic simulation of deformations they add constraints for

volume preservation to the mass-spring model of the robot.

In the context of collision avoidance, several successful

methods have been presented. They are typically executed

with a higher frequency compared to path planning, operate

mainly on the sensor data itself with the task to ensure

collision free motion of the robot. Such methods can roughly

be divided into map-based approaches such as road-map

or cell-decomposition techniques (see [13] for an extensive

overview), and reactive, sensor-based approaches [4, 14, 20].

Such methods are designed to react to unforeseen obstacles

but assume all objects to be rigid.

The techniques described by Fox et al. [5] as well as

Schmidt and Azarm [18] combine the sensory information

with a given map of the environment to deal with objects

that cannot be detected with the robot’s sensors. Brock and

Kathib [3] presented an integration of path planning and

reactive collision avoidance. There exist also methods that

incorporate speed into the planning process in combination

with collision avoidance [22].

The techniques mentioned above that are able to deal with

deformable objects have been mainly used in simulations and

not on real robots. When applying those techniques in the

real world, a series of problems arise such as how to interpret

the sensor data perceived by the robot while it is deforming

an object as well as adaptation to the collision avoidance

system.

Our planning system applies FEMs to compute object

deformations. In order to perform the path planning task

efficiently, we precompute potential deformations for a set

of robot movements through the objects and estimate the

costs by means of regression. This is based on our previous

approach [6]. In contrast to [6], we realize in this paper a

planning system on a real physical mobile robot and not only

in simulation which requires a series of adaptations and new

techniques for successfully planning paths in environments

with deformable objects. This includes a sound way on

how to interpret the sensor data a mobile robot perceives

while deforming an object. Our approach allows for filtering

the range data obtained with the robot’s sensor to label

beams that are reflected from a deformable objects. This,

in turn, makes our technique orthogonal to other collision

avoidance techniques and enables the robot to combine

existing techniques with our method. Thus, we explicitly

address these open issues and are able to deploy a real robot

with the capability of safely moving though environments

with deformable objects, leaving the world of simulation

behind.

III. SYSTEM OVERVIEW

Our approach to mobile robot motion planning in real

environments with deformable objects uses a typical lay-

ered architecture for realizing the navigation functionalities.

Besides drivers for sensors and the robot, the hardware

abstraction layer, etc., three key components are the

• path planning module, the

• collision avoidance module, and the

• localization module.

The path planning system computes trajectories that guide

the robot to its desired goal location and is executed with

rather low frequency. In contrast to that, a collision avoidance

module operates with high frequency in order to avoid colli-

sions with unforeseen and/or dynamic obstacles. Finally, the

localization module runs Monte-Carlo localization keeping

track of the robot’s pose.

In the context of navigation in real environments with

deformable objects the key questions are: (i) how to plan

trajectories in the presence of such obstacles and (ii) how

to interpret the sensor data so that the robot can distinguish

between unforeseen obstacles to avoid and deformable ob-

jects, which is needed for collision avoidance as well as for

localization.

A prerequisite to address these issues is an appropriate

model of the environment. First, a traditional map (here

grid map) is needed to represent static obstacles. Second,

deformable objects need to be modeled. It is, however,

significantly more complex to represent deformable objects

since one needs to store the three-dimensional structure of

the object as well as its elasticity parameters to allow for

adequate simulation of deformations.

IV. ROBOT TRAJECTORY PLANNING

CONSIDERING OBJECT DEFORMATIONS

A. Learning Deformation Cost Functions

To allow for efficient generation of trajectories for a

mobile robot in environments with deformable objects, we

build upon our recent work [6]. The key idea is to learn cost

functions for the individual deformable objects parameterized

by different trajectories leading to deformations. In order

to carry out this task in an efficient manner, a physical

simulation engine is used in a preprocessing step to calculate

the corresponding cost functions. For making adequate pre-

dictions of the object deformations, we apply finite element

methods to model the deformations.

Once a set of trajectories deforming an object is simulated

in order to obtain the corresponding costs, these values can

be used to approximate the deformation cost function. Our

path planner then evaluates trajectories using A⋆ according

to the cost function

C(path) = α Cdef (path) + (1 − α)Ctravel (path), (1)

where α ∈ [0, 1] is a user-defined weighting coefficient that

determines the trade-off between deformation and path costs.

Given our current implementation, the robot is able to

answer path queries in typical indoor environments in less

than 1 second – in contrast to several hours that would

be needed if the deformation simulations were carried out

at runtime. For further details, we refer the reader to our

previous work [6]. It should be noted that our approach

makes the assumption that there are no interactions between

the different deformable objects and that they are fixed in

the environment, such as curtains or (rather heavy) plants.

B. Object Reconstruction

Our previous work dealt with the path planning issues

on an abstract level carried out only in simulation. We

furthermore assumed that accurate 3D models incorporating

the deformation parameters are known. In this work, we go

a step further and also learn the 3D model of the objects.

This is done by using a real mobile robot equipped with a

laser range finder mounted on a pan-tilt unit.

The robot perceives 3D range scans of the object from

different perspectives and generates a consistent 3D model

by means of the iterative closest point (ICP) algorithm. For

the simulation of deformable objects, a tetrahedral mesh is

needed, which is reconstructed from the 3D model as shown

in [21]. This method can handle un-orientable, non-manifold

or damaged surfaces, and is therefore particularly suitable for

the reconstruction from 3D scans. Based on the 3D scan, a

signed distance field is computed where the set of voxels

having negative sign represents the volume of the object.

Next, a uniform axis-aligned grid is laid over the distance

field. All cells outside the volume are discarded and the

remaining cubical cells are split into tetrahedrons. Finally, a

smoothing filter is applied to optimize the tetrahedral mesh

(see Fig. 2 for example models). Deformations of objects are

then computed using a linear relation between the forces and

displacements q of the single elements (i.e. the tetrahedrons):

f = K(E, ν)q (2)

with stiffness matrix K(E, ν) depending on the elasticity

parameters Poisson ratio ν and Young modulus E.

One open issue is the question of how to determine the

elasticity parameters of the individual objects after acquiring

the 3D model. In our current system, these parameters are

Fig. 2. Generating a model of a curtain (top) and a plant (bottom) for
predicting the deformation cost: Left: photo. Second from left: point cloud.
Second from right: tetrahedral mesh. Right: 3D model .

set manually. However, in a future step, we plan to acquire

this information autonomously by the robot itself from force-

displacement relations obtained with a 7-DoF manipulator.

By applying a force to unknown objects and by measuring

the displacement, we hope to learn the elasticity parameters.

Such a procedure, however, is not yet implemented in our

current system.

V. COLLISION AVOIDANCE

In this section, we describe the collision avoidance system

developed for our robot that navigates in environments with

deformable objects. Our robot is equipped with a SICK laser

scanner with 180 degree opening angle. We use the range

measurements for a basic collision avoidance behavior.

When navigating autonomously, the robot constantly has

to observe its environment in order to react to unforeseen

obstacles. At the same time, it might get close to deformable

objects when deforming them. Therefore, the main problem

in our setting is to figure out which measurements cor-

respond to a deformable object, which means that these

measurements can be ignored by the collision avoidance

system. Note that we do not claim that our approach can

distinguish deformable from rigid objects only based on laser

data in general. However, by combining the knowledge about

objects in the environment and their geometry with estimates

of range scans during deformations, we can estimate the

deformability of an observed object.

We model this problem in a probabilistic fashion: Let ci

denote the binary random variable which describes the event

that beam i hits a deformable object. Then, p(ci | x, zi)
describes the probability that beam i hits a deformable object

given the robot position x and the range measurement zi.

Applying Bayes’ formula, we obtain

p(ci|x, zi) =
p(zi|x, ci)p(ci|x)

p(zi|x, ci)p(ci|x) + p(zi|x,¬ci)p(¬ci|x)
.

(3)

Here, p(zi | x, ci) is the sensor model and p(ci | x) is

the prior denoting the probability of observing a deformable

object from position x. We will shortly go into detail of

how to learn these models. The sensor model p(zi | x,¬ci)
corresponds to the common sensor model p(zi | x) when no

deformable objects are present.

-2

-1.5

-1

-0.5

 0

 0.5

 1

-1.5 -1 -0.5 0 0.5 1 1.5

y
-p

o
s
it
io

n
 [
m

]

x-position [m]

wall points
curtain points

 0
 0.2
 0.4
 0.6
 0.8
 1

global viewing angle [deg]

y
-p

o
s
it
io

n
 [
m

]

probability p(ci|x)

-90 0 90 180 270

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0
 0.5
 1
 1.5
 2
 2.5

global viewing angle [deg]

y
-p

o
s
it
io

n
 [
m

]

µ range

-90 0 90 180 270

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0
 0.2
 0.4
 0.6
 0.8
 1

global viewing angle [deg]

y
-p

o
s
it
io

n
 [
m

]

σ range

-90 0 90 180 270

-2

-1.5

-1

-0.5

 0

 0.5

 1

Fig. 3. Sensor model for the trajectory depicted in the left figure: shown are the probabilities p(ci | x) (second from left), the average beam length when
observing the deformable object (second from right) as well as the standard deviation σ (right) for the robot position and the viewing angle.

A. Learning sensor models for deformable objects

The sensor model p(zi | x, ci) not only depends on the

robot position but also on the trajectory relative to an object.

For instance, the robot will measure a different distance

to the curtain when it is situated in front of it than it

would while passing through and deforming the curtain.

Therefore, we determine sensor models corresponding to

different trajectories of the robot relative to an object.

For each trajectory, we record different datasets consisting

of the robot positions x (provided by the localization module)

and the ranges zi and then manually label the beams reflected

by the deformable object. From the labeled measurements

obtained along these trajectories, we compute the statistics

p(ci | x) =
hitsdef

hitsdef + missesdef

, (4)

where hitsdef is the number of beams reflected by a de-

formable object and missesdef states, how often no de-

formable object was observed for position x and viewing

angle i. The sensor model p(zi | x, ci) is described by a

Gaussian with average range µ and variance σ2. An example

of the deformable sensor model for a typical robot trajectory

through the curtain is shown in Fig. 3.

B. Avoiding collisions

During path execution, the robot constantly monitors its

position and also its sensor measurements for utilization in

the collision avoidance system. In our case, the robot has

to distinguish between allowed collisions with deformable

objects and impending collisions with unforeseen or dynamic

obstacles which have to be avoided. This is done by filtering

out the range measurements that observe a deformable object

with high probability. Therefore, we evaluate Eq. (3) for each

beam and identify those beams that can be neglected for the

collision avoidance.

Note that this labeling or filtering of the range measure-

ment offers a great potential since it is done orthogonal

to traditional collision avoidance methods. As a result, this

technique can be combined with any other collision avoid-

ance technique as, for example, with the dynamic window

approach [4] or the nearness diagram technique [14].

The detected measurements which are identified as be-

longing to dynamic obstacles can be incorporated into the

navigation system to update the path of the robot or into any

existing sensor based collision avoidance routine. Our current

implementation performs replanning if a path is blocked by a

dynamic object or simply stops the robot if the distance to an

obstacle is too close. An example of the collision detection

is given in Fig. 4.

VI. EXPERIMENTAL RESULTS

We performed several experiments to evaluate the perfor-

mance of our developed planning system on a real robot.

We used an iRobot B21r platform equipped with a SICK

laser range finder. Our implementation is based on CARMEN

which is a navigation software allowing independent modules

to communicate via a middle-ware. To integrate our approach

into CARMEN, we replaced the collision detection method

inside the module “robot” as well as the planning module

termed “navigator” with our software. In addition to that, we

extended the localization module which is based on MCL

so that the laser beams hitting a deformable object during

deformation are not considered in the sensor model.

We mounted a set of curtains in the corridor of our lab

as deformable objects. First, we evaluate our sensor model

for deformable objects. Next, we analyze the performance

of our collision avoidance system during path execution in

the presence of unforeseen and dynamic obstacles. Finally,

we give some examples of how the incorporation of the

deformation cost function influences the path search.

A. Sensor model prediction

In the first experiment, we evaluated how well our sensor

model for deformable objects is able to predict the presence

of deformable objects. We learned a sensor model for two

different trajectories through the curtain that were chosen

preferably by our path planner. To compute the sensor model

statistics, we recorded the laser data and the robot position

and manually labeled the laser beams that were reflected by

the curtain. For each trajectory, we performed a leave-one-out

cross-validation using 11 trajectories for learning the model

and one for evaluation. The results of this experiment are

summarized in Table I and demonstrate, that the system is

able to distinguish between deformable and static obstacles

with high accuracy. While the number of false positives is

at around 3%, the number of false negatives is below 1%.

B. Recognition of dynamic obstacles

While it is intuitive that the sensor model is able to

distinguish between deformable and static obstacles, it is

not clear how well the classification works in the presence

of dynamic obstacles in the vicinity of the deformable

curtain points
other points

curtain points
other points

curtain points
other points

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150 180

p
ro

b
a

b
ili

ty
 p

(c
i|x

,z
)

 laserbeams

true curtain points
true other points

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150 180

p
ro

b
a

b
ili

ty
 p

(c
i|x

,z
)

 laserbeams

true curtain points
true other points

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150 180

p
ro

b
a

b
ili

ty
 p

(c
i|x

,z
)

 laserbeams

true curtain points
true other points

Fig. 4. Different collision avoidance scenarios (top row): Laser beams are evaluated with respect to their likelihood of observing a deformable object.
In the second row, the classification of the individual laser beams is illustrated while in the bottom row, the probability of each beam together with the
ground truth is shown.

True label

Detected label Deformable Object No deformable Object

Deformable Object 43857 (97.1%) 621 (0.9%)

No Deformable Object 1292 (2.9%) 65907 (99.1%)

Total 45149 66528

TABLE I

CONFUSION MATRIX FOR PREDICTING WHETHER A BEAM HITS A

DEFORMABLE OBJECT IN A STATIC ENVIRONMENT.

objects. The key question is whether the system is able to

distinguish well between these obstacle classes and therefore

is able to navigate safely. An important precondition for

this is of course that the sensor can perceive a dynamic

obstacle and that it is not completely occluded by the

deformable object. To answer this question we performed

several experiments where our robot moved on a trajectory

deforming the curtain while dynamic obstacles were blocking

its path. The recorded laser scans were labeled accordingly

and evaluated with respect to the prediction performance.

The results are listed in Table II. In this experiment, the

number of false negatives is comparable to the situation

in static environments while the number of false positives

is around 1% higher than in the previous experiment. Our

experiments, however, showed that this still leads to a safe

behavior. In the worst case, the false negatives forced the

robot to stop when it was not necessary while the false

positives usually where outliers in a region of correctly

classified dynamic obstacle beams. Therefore, the robot was

True label

Detected label Deformable Object Dynamic Object

Deformable Object 8563 (96.5%) 98 (2.1%)

Dynamic Object 314 (3.5%) 4600 (97.9%)

Total 8877 4698

TABLE II

CONFUSION MATRIX FOR AN ENVIRONMENT CONTAINING BOTH

DEFORMABLE AND DYNAMIC OBJECTS.

still able to recognize dynamic obstacles and thus avoided

collisions with these obstacles.

C. Example Trajectories through Curtains

For our experimental setup, we varied the trade-off be-

tween the deformation cost and the travel cost. The results

for an example trajectory can be seen in Fig. 5. When

the weighting coefficient α, which determines the trade-

off between deformation and travel cost, is set to moderate

values, then the planner prefers trajectories going through

easily deformable objects. Note that in our scene, the cur-

tain consists of two individual, neighboring curtains. The

minimal-cost path, therefore, guides the robot through the

contact point of both curtains. This fact can be observed

in Fig. 6, where the curtains are moved compared to the

previous example. Here, the planner chooses a slightly longer

trajectory in order to minimize the deformation costs. Finally,

a sequence of snapshots of our real robot navigating through

the curtains is shown in Fig. 7. The execution of this

Fig. 7. The mobile robot Albert moving through a curtain.

Fig. 5. Planning a trajectory for different weightings of the deformation
cost (α = 0 (left), α = 0.2 (middle), α = 0.8 (right)).

Fig. 6. The planner prefers trajectories that minimize object deformations.
The curtains in the left picture are moved 40 cm along the positive y-axis
compared to the picture on the right. The weighting coefficient α is set to
0.2 in both examples.

path together with demonstrations of the collision avoidance

system can be found in the accompanying video.

VII. CONCLUSIONS

In this paper, we presented an approach for navigation in

environments with deformable objects that explicitly takes

into account the influence of the interaction between the

robot and the deformable objects onto the measurements.

Our approach is purely probabilistic and estimates for each

measurement as to whether or not it might be caused by the

deformable object in the environment. This allows the robot

to get close to deformable objects and still avoid collisions

with non-deformable objects. In our planning system, the

costs of object deformations are determined using finite ele-

ment methods to appropriately model the physical properties.

Additionally we perform pre-computations to allow for an

efficient online-calculation of path queries.

Our approach has been implemented and tested on a real

robot and in a practical experiment, in which the robot is

able to deform objects and at the same time avoid collisions

with people. Future work will include the learning of the

parameters of the deformable object based on the interaction

between the robot and the objects so that better statistics

about the influence on the sensory input can be calculated.

REFERENCES

[1] E. Anshelevich, S. Owens, F. Lamiraux, and L.E. Kavraki. Deformable
volumes in path planning applications. In Proc. of the Int. Conf. on

Robotics & Automation (ICRA), pages 2290–2295, 2000.

[2] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential
field techniques for robot path planning. IEEE Transactions on

Systems, Man and Cybernetics, 22(2):224–241, 1992.
[3] O. Brock and O. Khatib. High-speed navigation using the global

dynamic window approach. In Proc. of the Int. Conf. on Robotics

& Automation (ICRA), 1999.
[4] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach

to collision avoidance. IEEE Robotics & Automation Magazine, 4(1),
1997.

[5] D. Fox, W. Burgard, and S. Thrun. A hybrid collision avoidance
method for mobile robots. In Proc. of the Int. Conf. on Robotics &

Automation (ICRA), 1998.
[6] B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard. Effi-

cient path planning for mobile robots in environments with deformable
objects. In Proc. of the Int. Conf. on Robotics & Automation (ICRA),
2008.

[7] R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for
deformable robots in complex environments. In Proc. of Robotics:

Science and Systems (RSS), pages 225–232, 2005.
[8] M. Hauth and W. Strasser. Corotational Simulation of Deformable

Solids. In WSCG, pages 137–145, 2004.
[9] C. Holleman, L.E. Kavraki, and J. Warren. Planning paths for a flexible

surface patch. In Proc. of the Int. Conf. on Robotics & Automation

(ICRA), pages 21–26, 1998.
[10] L.E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning

for elastic objects. In Robotics: The Algorithmic Perspective, pages
313–325. A.K. Peters, 1998. Proc. of the Third Workshop on the
Algorithmic Foundations of Robotics (WAFR).

[11] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[12] M. Khatib and R. Chatila. An extended potential field approach for
mobile robot sensor-based motions. In Proc. Int. Conf. on Intelligent

Autonomous Systems (IAS’4), 1995.
[13] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub., 1991.
[14] J. Minguez and L. Montano. Nearness diagram navigation (nd): A new

real time collision avoidance approach. In Proc. of the Int. Conf. on

Intelligent Robots and Systems (IROS), pages 2094–2100, 2000.
[15] M. Mueller and M. Gross. Interactive Virtual Materials. In Graphics

Interface, pages 239–246, 2004.
[16] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson.

Physically Based Deformable Models in Computer Graphics. Com-

puter Graphics Forum, 25(4):809–836, 2006.
[17] N.J. Nilsson. A mobile automation: An application of artificial

intelligence techniques. In Proc. of the Int. Joint Conf. on Artificial

Intelligence (IJCAI), 1969.
[18] K. Schmidt and K. Azarm. Mobile robot navigation in a dynamic

world using an unsteady diffusion equation strategy. In Proc. of the

Int. Conf. on Intelligent Robots and Systems (IROS), 1992.
[19] T.W. Sederberg and S.R. Parry. Free-form deformation of solid

geometric models. In Proc. of the Conf. on Computer graphics and

interactive techniques, pages 151–160, 1986.
[20] R. Simmons. The curvature-velocity method for local obstacle avoid-

ance. In Proc. of the Int. Conf. on Robotics & Automation (ICRA),
1996.

[21] J. Spillmann, M. Wagner, and M. Teschner. Robust tetrahedral meshing
of triangle soups. In Proc. Vision, Modeling, Visualization (VMV),
pages 9–16, 2006.

[22] C. Stachniss and W. Burgard. An integrated approach to goal-
directed obstacle avoidance under dynamic constraints for dynamic
environments. In Proc. of the Int. Conf. on Intelligent Robots and

Systems (IROS), pages 508–513, 2002.

[C8] M. Bennewitz, C. Stachniss, S. Behnke, and W. Burgard. Utiliz-

ing reflection properties of surfaces to improve mobile robot localization.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Kobe,

Japan, 2009.

Utilizing Reflection Properties of Surfaces

to Improve Mobile Robot Localization

Maren Bennewitz Cyrill Stachniss Sven Behnke Wolfram Burgard

Abstract— A main difficulty that arises in the context of prob-
abilistic localization is the design of an appropriate observation
model, i.e., determining the likelihood of a sensor measurement
given the pose of the robot and a map of the environment. Many
successful approaches to localization rely on data provided by
range sensors, e.g., laser range scanners. When using such
data one normally has to deal with erroneous maximum-range
readings that occur due to poor-reflecting surfaces. In general,
these readings cannot be distinguished from readings obtained
when no obstacle is within the measurement range of the sensor.
Therefore, existing localization techniques treat these readings
alike in the observation model. In this paper, we present a novel
approach that explicitly considers the reflection properties of
surfaces and thus the expectation of valid range measurements.
In addition to the expected range measurement, we compute
the probability of reflectance for a beam given the relative pose
of the robot to the obstacle taking into account the angle of
incidence of the beam. We estimate the reflection properties
of surfaces using data collected with a mobile robot equipped
with a laser range scanner. As we demonstrate in experiments
carried out with a real robot, our technique leads to significantly
improved localization results compared to a state-of-the-art
observation model.

I. INTRODUCTION

Robust localization is a prerequisite for mobile service

robots operating in the real world. Several tasks, such as

deliveries [1], giving tours [2] as well as assisting people [3],

can only be carried out if the robot knows its pose.

Since sensor data is noisy, probabilistic approaches that

explicitly take the uncertainty into account are typically

applied to estimate the pose of the robot. One of the key

problems in probabilistic localization is the design of the

observation model. For a given pose of the robot and the

map of the environment, the observation model specifies the

likelihood of a sensor measurement.

Laser range sensors have been widely used for successful

localization [4], [5], [6], [7], [8]. They provide distance

and bearing information to objects in the environment. In

practice, one has to deal with erroneous readings also called

“maximum-range” readings that result from poor-reflecting

surfaces or readings obtained in situations in which no obsta-

cle is within the measurement range of the sensor. Especially,

low-cost laser range sensors suffer from maximum-range

readings caused by objects with low reflection properties.

One popular approach that explicitly models failures corre-

sponding to low or non reflectance is the ray-cast model

M. Bennewitz, C. Stachniss, and W. Burgard are with the Institute for
Computer Science, University of Freiburg, Germany and S. Behnke is with
the Institute for Computer Science, University of Bonn, Germany

This work has been supported by the DFG under the contract number BE
2556/2-2 and SFB/TR-8 as well as by the EC under FP7-231888-EUROPA.

proposed by Fox et al. [5]. This model, however, does not

take into account that the likelihood of erroneous readings

depends on the reflection properties of the corresponding

surfaces.

In this paper, we propose to estimate the reflection proper-

ties of surfaces and to use this information in the observation

model. We collect data with a mobile robot equipped with

a low-cost, miniature laser range scanner to estimate the

distances and angles from which the objects are detected

by the scanner. We compute histograms for the number of

detections and non-detections for regions in the environment

given the viewing angle and the viewing distance. We then

use this information to calculate the probability of reflectance

for a beam given the pose of the robot in the map.

We apply the well-known Monte-Carlo localization (MCL)

technique [9] to estimate the robot’s pose and use a variant

of the ray-cast model [5] in which expected measurements

are compared to measured distances. The novelty of our ap-

proach is that we additionally take into account the viewing

angle and distance to the objects contained in the map to

calculate the probability of reflectance for a beam.

As we demonstrate in the experiments carried out with

a real robot, we can significantly improve the localization

compared to the standard ray-cast model. Our approach is

especially valuable when large parts of a range scan are

erroneous maximum-range readings due to low reflectance

of objects or due to a comparably short sensor range. Such

effects may occur rarely when using a highly accurate SICK

laser range finder but can be observed frequently when using

low-cost, light-weight scanners such as the Hokuyo URG-

04LX. This sensor is often used for humanoid robots [10] or

flying vehicles [11] since these types of robots have only a

very limited payload of a few hundred gram.

This paper is organized as follows. After reviewing related

work, we explain in Section III how to learn reflection

properties of surfaces. In Section IV, we present our novel

observation model for MCL. Finally, our experimental results

illustrate that the accuracy of our localization approach

and demonstrates the significantly improved performance

compared to the standard ray-cast model.

II. RELATED WORK

Various observation models for probabilistic localization

based on laser range data have been proposed [12], [13].

These approaches either approximate the characteristics of

the sensor or aim to increase the robustness of the localiza-

tion process by smooth likelihood models. Thrun et al. [9] as

well as Lenser and Veloso [14] observed that the likelihood

function can have a serious influence on the performance of

the localization technique.

In the standard ray-cast model proposed by Fox et al. [5],

it is assumed that beams are reflected by the first obstacle

in the map along the ray with the robot’s pose as origin.

Expected distances, which can be computed easily for a pose

of the robot given the map, are then compared to the actually

measured distances. In this approach, failures due to low or

non reflectance are considered in the observation model and

it has been successfully applied in practice. However, it is not

taken into account that different surfaces can have distinct

reflection properties. As we show in our experiments, this

variance in reflection properties may substantially influence

the localization performance especially when they lead to

larger numbers of erroneous maximum-range readings.

In correlation-based methods presented by Konolige and

Chou [6] and by Schiele and Crowley [15] as well as in

the endpoint model proposed by Thrun [7], the likelihood

of a single range measurement depends on the distance of

the corresponding beam endpoint to the closest obstacle

represented in the map. Whereas these models haven been

shown to be robust in highly cluttered environments, they

suffer from two drawbacks. First, they do not take into

account visibility constraints, second, they provide no direct

mechanism to deal with maximum-range readings, which is

why these readings are typically ignored.

Gutmann et al. [4] and Arras et al. [8] presented feature-

based localization approaches. Here, a set of features is ex-

tracted out the range scan and matched to features contained

in the representation of the environment. One drawback

of these methods are the assumptions the feature extractor

makes about the structure of the environment.

Moravec and Elfes [16] presented an approach to map-

ping with sonar sensors. When using sonar sensors, one

encounters the inherent problem of specular reflection which

means that sonar beams are reflected between different

objects resulting in false range measurements. Moravec and

Elfes simply do not consider range readings above a certain

distance since they assume that specular reflection results

in readings near the maximum range. Lim and Cho [17]

proposed to use specular reflection probabilities to compute

a measure of reliability for range readings. This quantity

is computed given the measured distance and the angle

of incidence. The difference to our approach is that we

explicitly model that objects yield either valid measurements

or erroneous maximum-range readings depending on the

viewing angle and distance. Our goal is not to discount

measurements with a low reliability or to ignore readings.

Instead, we seek to utilize all measurements in an appropriate

fashion during localization.

III. ESTIMATING REFLECTION PROPERTIES

A. Standard Reflection Probability Maps

In our approach, the environment is represented using a

grid map that consists of equally spaced cells. Reflection

probability grids are typically computed using so-called hits

and misses which are counted for each cell [13]. The number

hit

miss

miss

robot robot

error

error

error

?

?

?

robot

d a

error

Fig. 1. (Left) The cell containing the beam endpoint gets assigned a hit,
the cells the beam passes through get assigned a miss. (Middle) In the first
stage of our mapping approach, we do not know which object along the
ray of the beam caused the erroneous maximum-range reading. Thus, all
cells along the ray get assigned the error. (Right) In the second stage, we
assign the error reading to the first occupied cell along the ray (which has
been observed from a different pose). We update the histogram given the
distance d and the angle a.

of hits represents the number of cases a beam ended in the

corresponding cell. The endpoint of a beam can easily be

computed given the robot’s pose and the measured range. The

number of misses corresponds to the number of cases a beam

passed through the cell. The cells a beam passes through can

be determined via ray-casting. Consider the example depicted

in Fig. 1 (left) for an illustration. The reflection probability

of a cell (x, y) is then computed as

pref (x, y) =
hitsx,y

hitsx,y + missesx,y

. (1)

A classical reflection probability map does not model the

case that erroneous maximum-range readings can occur when

the beam hits an object with a poor-reflecting surface and

such beams are ignored during mapping. In our approach,

we explicitly take into account the case that the beam is

reflected by the object or that a too small fraction of the light

has been reflected by the surface and thus an error reading

is obtained.

When using highly accurate laser range sensors such as

the SICK laser scanner, these considerations can in general

be neglected since the mentioned effects occur rarely. In

contrast to that, range measurements obtained by low-cost

and light-weight range scanners, such as the Hokuyo URG-

04LX, are highly sensitive to the surface material of the

measured object. In our experience, the probability of a valid

measurement depends on the viewing angle, i.e., the angle

of incidence of the beam as well as on the distance to the

object. In the following, we describe how to estimate such

reflection properties of surfaces.

B. Estimating Reflection Properties from Laser Data

Learning reflection probabilities requires an accurate es-

timate about the robot’s trajectory. To acquire such an

estimate, we use a robot that is equipped with two laser

range finders: an accurate SICK LMS and a comparably

noisy Hokuyo URG-04LX. To compute the trajectory of

the robot given accurate laser range data, we apply an

approach to grid-based SLAM (Simultaneous Localization

and Mapping) with Rao-Blackwellized particle filters. A

detailed description of this approach can be found in [18].

We then use the obtained pose estimates to learn a reflection

probability map of the environment given data of the noisy

laser range scanner.

We count the number of hits and misses for each cell.

Additionally, the number of error readings potentially caused

by each cell is determined (see Fig. 1, center image). We

use histograms that store those values for a discrete set of

viewing distances and angles of incidence. To compute the

angle of incidence of a beam, we estimate the normal of the

surface in a neighborhood in the scan around the beam under

consideration by fitting a line through neighboring endpoints.

Here, we assume that the normal can be uniquely determined

for each grid cell (which typically have a size of 5× 5 cm).

When learning these histograms, two problems arise.

First, it is not clear which cell along the beam caused

the error reading given an invalid measurement. Second,

the histograms are typically not completely filled since the

cells are not observed from all distances and angles. In the

following, we describe how to deal with these two problems.

1) Two-stage Mapping: To deal with the first problem, we

apply a two-stage mapping approach. In the first stage, we

process the sensor data to count the number of hits, misses,

and errors for each cell. Here, misses are counted for all

cells along the ray within a distance below the maximum

measurement range of the sensor. To obtain a decision at

which cell a ray-casting operation is aborted, we calculate

for each cell:

bin(x, y) =

{

1 if
hitsx,y

hitsx,y+missesx,y
> 0.5

0 otherwise
(2)

Afterwards, we initialize the histograms for all occupied cells

that have error readings assigned and process the sensor

data again. This time, we can assume that error readings

are caused by the first occupied cell along the beam if one

exists within the maximum measurement range of the sensor.

Fig. 1 (middle) and (right) visualize the error assignment in

the two stages of mapping. In case an error reading occurs,

we update the histogram of the occupied cell (x, y), which

is assumed to have caused the error reading. This is done

given the distance d and the angle a computed based on

the map. This means that err(d, a) is increased for (x, y).
Accordingly, hits(d, a) is updated for (x, y) when a beam

with length d and angle a ends in the cell (x, y) .

Since we only need the histograms at occupied cells, our

representation is only slightly more complex than that of

standard reflection probability maps.

2) Dealing with Incomplete Data: We assume a mono-

tonic increase of the probability of error readings with

distance. In practice, one typically observes a cell from many

different angles but only from very few distances. Therefore,

if an error reading occurs at distance de, we also count an

error for all greater distances di > de in the histogram given

the angle of incidence a:

∀di > de : err(di, a)← err(di, a) + err(de, a) (3)

For reasons of readability, we omit the cell (x, y) in the

formulas. The motivation behind this approach is the mode

of operation of a laser scanner. The sensor emits light and

measures the time needed until a certain amount of the

reflected light is observed by the detector in the scanner. If

not enough light is reflected, we obtain an error reading. In

this case, either no object was within the range of the sensor

or too little light was reflected in direction of the sensor. The

amount of the reflected light given a surface depends non-

trivially on the angle of incidence and the distance between

the sensor and the object. The closer the object to the sensor

and the closer the angle of incidence to the normal angle of

the measured object, the higher the amount of reflected light.

Similarly to Eq. (3), for a hit at distance dh, we count this

hit also for all shorter distances di < dh in the histogram

given the angle of incidence:

∀di < dh : hits(di, a)← hits(di, a) + hits(dh, a) (4)

To estimate the maximum angle of incidence for which we

expect to obtain valid range measurements, we proceed as

follows. Given the histogram for a certain distance, we search

for a separator line that best explains the corresponding hit

and error readings. The optimal separator given the data

can be determined by means of a score function we have

to maximize. The score function is defined as

score(d, a) =

a∑

i=0

[hits(d, i)− err(d, i)] +

B∑

i=a+1

[err(d, i)− hits(d, i)] , (5)

where B refers to the number of bins in the angular his-

togram. According to this function, we compute for each

distance d the angle a∗ that gets the highest score and thus

best separates the hit observations from the error observations

a∗ = argmax
a

score(d, a). (6)

Fig. 2 illustrates the separator line (dashed line) for an

example histogram and Fig. 3 depicts the corresponding

score function.

For probabilistic localization, we need to compute the

probability that an occupied cell reflects a beam or leads

to an error reading. From physics, we know that the closer

the angle of incidence of a beam is to the normal angle of

the observed object, the higher the amount of reflected light.

It is therefore reasonable to assume that there exists one

angular difference where there will be a valid measurement

for smaller values and an error reading for bigger ones. As

a result, we use a step function to model this probability.

Given the separator a∗, we can do this in a straight-forward

manner. We then can compute the probability of reflectance

given d averaged over the all angles a smaller than a∗ as

pref (d, a < a∗) =

∑a∗

a′=0
hits(d, a′)

∑a∗

a′=0
hits(d, a′) +

∑a∗

a′=0
err(d, a′)

,

(7)

and for d, a < a∗ accordingly. Since a∗ cannot always be

determined perfectly due to missing data (see also Fig. 2),

we do not use Eq. (7) directly but apply linear interpolation

between pref (d, a < a∗) and pref (d, a > a∗) for all angles

around a∗ where no data is available. See Fig. 4 for an

illustration.

-30

-20

-10

 0

 10

 20

 30

 0 10 20 30 40 50 60 70 80 90

e
rr

o
r

c
o

u
n

t

h
it
 c

o
u

n
t

angle of incidence [deg]

hit count
error count

Fig. 2. Illustration on how to compute the optimal separator a
∗ (here

illustrated by the dashed line).

-20
 0

 20
 40
 60
 80

 100
 120

 0 10 20 30 40 50 60 70 80 90

s
c
o

re

angle of incidence [deg]

Fig. 3. Score function corresponding to the histogram show in Fig. 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

re
fl
e

c
ti
o

n
 p

ro
b

a
b

ili
ty

angle of incidence [deg]

Fig. 4. Resulting reflection probability function.

Note that if enough statistical data was collected with

the robot, these approximations would not be necessary. In

this case, one could compute the reflectance probability and

analogously the probability of obtaining an error reading for

each discrete angle a separately. In practice, however, it is

typically impossible to observe each cell with each angle of

incidence and from each distance. In the following section,

we describe how to use the information about the reflectance

properties of objects during probabilistic localization with a

particle filter.

IV. CONSIDERING REFLECTION PROPERTIES

DURING LOCALIZATION

A. Monte-Carlo localization

We apply Monte-Carlo localization (MCL) [9] to estimate

the pose xt of the robot at time t. MCL recursively estimates

the posterior about the robot’s pose based on the following

equation

p(xt | z1:t, u0:t−1) = η · p(zt | xt)
︸ ︷︷ ︸

observation model

·

∫

xt−1

p(xt | xt−1, ut−1)
︸ ︷︷ ︸

motion model

· p(xt−1 | z1:t−1, u0:t−2)
︸ ︷︷ ︸

recursive term

dxt−1.(8)

Here, η is a normalization constant, u0:t−1 denotes the

sequence of motion commands up to time t − 1, and z1:t

is the sequence of observations. For reasons of readability,

the map m is neglected in Eq. (8).

MCL uses a set of particles to represent the above pos-

terior. This set is updated using the sampling-importance-

resampling particle filter.

B. Improved Observation Model

We propose an improved observation model p(zt | xt)
that takes into account the estimated reflection properties

explained in the previous section to realize a more robust

and efficient localization for robots equipped with low-cost

laser range finders such as the Hokuyo URG-04LX.

Typical observation models for MCL, that use ray-casting

operations in the map to compute the expected distance of

a sensor measurement, are defined as a weighted sum of

functions. In Section 6.3 of [13], Thrun et al. propose to ap-

ply a uniform distribution to model a random measurement,

an exponential function to better cope with people in the

vicinity of the robot, a Gaussian to model the measurement

uncertainty of the sensor, and a constant for maximum range

readings.

In general, such ray-cast models can be described by

p(zt | xt,m) = α · pmax range(zt | xt,m) +

β · pexp dist(zt | xt,m) +

γ · p1(zt | xt,m) + . . . , (9)

where pmax range describes the function that determines

the likelihood to obtain maximum-range readings, pexp dist

handles the measurement noise in the sensor and is typically

modeled by a Gaussian. Other properties can be described by

the functions labeled p1, The terms α, β, γ, . . . represent

weights that can be set manually or learned by techniques

such as expectation maximization.

Our novel technique, that considers the angle of incidence

of the beam as well as the distance of the robot for each cell

individually to estimate the reflection probability, can be seen

as orthogonal to such models and can easily be combined

with them. We can directly integrate our knowledge about

the reflection properties of cells into Eq. (9) without the need

to change the individual functions:

p(zt | xt,m) = α · perr(d, a) · pmax range(zt | xt,m) +

β · pref (d, a) · pexp dist(zt | xt,m) +

γ · p1(zt | xt,m) + . . . , (10)

where pref (d, a) denotes the probability of reflection of the

first occupied cell along the beam given distance d and angle

of incidence a, and perr(d, a) = 1 − pref (d, a) stands for

the corresponding probability for an error reading. These

probabilities are computed for a cell given the histogram

as described in the previous section.

As a result, the reflection properties of surfaces of the

individual cells are directly incorporated into the existing

observation model. Perfectly reflecting surfaces will lead to

the original observation model. However, if the surface in the

corresponding cell has different properties, our model explic-

itly takes these properties into account which results in more

appropriate distributions as our experiments demonstrate.

V. EXPERIMENTAL RESULTS

To evaluate our approach, we carried out experiments with

a wheeled robot equipped with a noisy and short-range (theo-

window front

railing

black

black

black

window
with
door

window
with
door

door

door
black

door
black

trash	
can

image best
viewed in color

Fig. 5. Enhanced reflection probability map. Different colors of cells
indicate the maximum angle of incidence until which valid measurements
are expected (the brighter the color red, the bigger the angle). The shown
angles correspond to a measurement distance of 0.5− 1 m.

retical maximum measurement range: 5.6m) Hokuyo URG-

04LX laser range scanner. The scanner provides a 240◦ field

of view. To estimate the trajectory of the robot and to obtain

ground truth data, we used the data of the SICK LMS laser

scanner (maximum measurement range: 80m, 180◦ field of

view) which was also mounted on the robot. In contrast to the

Hokuyo, the SICK sensor provides highly accurate distance

data.

A. Learning an Enhanced Reflection Probability Map

In the dataset used to learn the enhanced reflection prob-

ability map of the environment, the robot traveled approx-

imately 300m. We manually steered the robot through the

environment which has a size of approximately 20 × 20m.

Afterwards, we estimated the trajectory of the robot from the

data of the SICK scanner using a SLAM approach with Rao-

Blackwellized particle filters [18]. We then used the resulting

trajectory to learn a representative map of the environment

for the data of the Hokuyo scanner.

The enhanced reflection probability map learned by our

approach is visualized in Fig. 5. The map has a resolution of

5 cm. The different colors of the cells indicate the maximum

angle of incidence until which valid measurements are ex-

pected (the darker the color the smaller the angle). The shown

angles correspond to the measurement distance of 0.5m to

1m. For this dataset, we used an angular discretization of

5◦ and a distance discretization of 50 cm.

As can be seen, dark doors which frequently occur in the

environment, have only a small range of angles for which

valid measurements are expected. Similarly, the window

front leads only to valid measurements when the angle of

incidence is almost orthogonal to the surface.

B. Improving Global Localization

We recorded a second dataset which we used for the

evaluation of our localization approach. A close to ground

 0

 2

 4

 6

 8

 10

 0 50 100 150

e
rr

o
r

(m
e
a
n
-t

ru
e
)

[m
]

time step

standard raycast
our method

 0

 0.5

 1

 0 20 40 60 80 100 120

p
(c

o
n
v
e
rg

e
d
)

time step

standard raycast
our method

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150

e
rr

o
r

(m
e
a
n
-t

ru
e
)

[m
]

time step

standard raycast
our method

 0

 0.5

 1

 0 20 40 60 80 100 120

p
(c

o
n
v
e
rg

e
d
)

time step

standard raycast
our method

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150

e
rr

o
r

(m
e
a
n
-t

ru
e
)

[m
]

time step

standard raycast
our method

 0

 0.5

 1

 0 20 40 60 80 100 120

p
(c

o
n
v
e
rg

e
d
)

time step

standard raycast
our method

Fig. 6. Statistical evaluation of the global localization performance of
our method vs. the standard ray-cast model for three different dataset (15
runs with different seeds). The left plots shows the error, computed as
weighted mean error, vs. time and the right plots show the corresponding
convergence probability vs. time given the 15 runs. As can be seen, our
method significantly outperform the ray-cast model (the error bars illustrate
the 95% confidence intervals).

truth estimate of the robot poses is obtained by using the

SICK laser scanner (and by registering the second dataset

in the map build from the first dataset). The following

localization experiments were carried out using only the data

of the Hokuyo scanner.

We partitioned the dataset into three parts and evaluated

the performance of our method in comparison to the standard

ray-cast model. We performed 15 runs with different seeds

for each dataset and evaluated the distance of the weighted

mean of the particles to the true pose over time for each

technique. One time step corresponds to the integration

of an observation which is done after the robot traveled

for at least 10 cm or rotated by at least 10◦ according to

odometry. The results are shown in the left column of Fig. 6.

Furthermore, we computed the convergence probability of

the filter over time by counting when more that 95% of

the probability mass is inside a 1.5 m radius. The results

are depicted in the right column of Fig. 6 and the error

bars indicate the 95% confidence intervals. As these results

demonstrate, our method that explicitly considers reflection

properties of surfaces significantly outperforms the standard

ray-cast model since our filter converges significantly faster

(the task in global localization is to determine the robot’s

pose as fast as possible).

We performed a further experiment in which the robot

was moving in an environment in which the walls are highly

reflecting. As expected, no significant difference between the

standard ray-cast model and our approach can be determined

in this case (see Fig. 7).

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

e
rr

o
r

(m
e

a
n

-t
ru

e
)

[m
]

time step

standard raycast
our method

Fig. 7. Comparison of the pose error during global localization in
an environment that contains only few surfaces with different reflection
properties (multiple bright white posters have been added to the walls to
ensure high reflectance). As expected, in this setting no significant difference
between the ray-cast model and our new approach can be observed.

our method

standard raycast model

Fig. 8. Typical results obtained in a global localization experiment for
our method (top row) and the standard ray-cast model (bottom row). The
images depict the particle distribution at different time steps and the cross
indicates the ground truth. The images correspond to one experiment of
the statistical evaluation shown in the first row of Fig. 6. As can be seen,
our method converges faster towards the true location of the robot. For
illustration reasons, the maps depicted in the background of the images
show the same reflection probability map of the environment.

The images in Fig. 8 visualize a typical evolution of

the particles for one experiment. The first row depicts the

resulting particle sets when applying our method, whereas

the second row shows the particle distribution obtained with

the standard ray-cast model. Again, it can be seen that our

method converges faster towards the true pose of the robot.

Since the standard ray-cast model does not consider different

reflection properties of surfaces, particles at poses far away

from the true location of the robot are more likely to survive.

VI. CONCLUSIONS

In this paper, we presented a novel technique to learn

reflection properties of surfaces and to utilize this knowledge

in probabilistic localization. Especially for low-cost and

light-weight laser range scanners, which are frequently used

with humanoids or small flying vehicles, the probability of

the reflectance of a beam depends highly on the angle of

incidence and on the distance of the scanner to the object. We

therefore proposed to explicitly consider the reflection prop-

erties of surfaces during localization. Our approach extends

the standard ray-cast observation model by incorporating the

learned knowledge about reflection properties of objects.

As we demonstrate in experiments carried out with a

wheeled robot, we can significantly speed-up global local-

ization in comparison to the standard ray-cast model. Our

method converges faster to the true pose of the robot and

substantially reduces the error in the estimated pose.

Given these encouraging results, it can be presumed that

utilizing reflection properties of surfaces can also improve

solutions to the simultaneous localization and mapping prob-

lem using data of such low-cost sensors. One possibility, for

example, is to incorporate the reflection properties in the

scan-matching routine underlying existing SLAM methods

such as [18] to obtain better proposal distributions which in

turn leads to more efficient algorithms.

REFERENCES

[1] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O’Sullivan, “A
layered architecture for office delivery robots,” in Proc. of the First

Int. Conf. on Autonomous Agents, 1997.
[2] R. Siegwart, K. Arras, B. Jensen, R. Philippsen, and N. Tomatis,

“Design, implementation and exploitation of a new fully autonomous
tour guide robot,” in Proc. of the 1st Int. Workshop on Advances in

Service Robotics (ASER), 2003.
[3] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma, “Expe-

riences with a mobile robotic guide for the elderly,” in Proc. of the

National Conf. on Artificial Intelligence (AAAI), 2002.
[4] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige, “An experi-

mental comparison of localization methods,” in Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 1998.
[5] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile

robots in dynamic environments,” Journal of Artificial Intelligence

Research, vol. 11, 1999.
[6] K. Konolige and K. Chou, “Markov localization using correlation,” in

Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), 1999.
[7] S. Thrun, “A probabilistic online mapping algorithm for teams of

mobile robots,” Int. Journal of Robotics Research, vol. 20, no. 5, pp.
335–363, 2001.

[8] K. Arras, R. Philippsen, N. Tomatis, M. de Battista, M. Schilt, and
R. Siegwart, “A navigation framework for multiple mobile robots
and its application at the Expo.02 exhibition,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2003.
[9] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo

localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, 2001.

[10] S. Thompson, S. Kagami, and K. Nishiwaki, “Localisation for au-
tonomous humanoid navigation,” in Proc. of IEEE-RAS Intl. Conf. on

Humanoid Robots (Humanoids), 2006.
[11] R. He, S. Prentice, and N. Roy, “Planning in information space for

a quadrotor helicopter in a gps-denied environment,” in Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2008.
[12] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,

L. Kavraki, and S. Thrun, Principles of Robot Motion Planning.
Cambridge, MA, USA: MIT Press, 2005.

[13] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

[14] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2000.
[15] B. Schiele and J. L. Crowley, “A comparison of position estimation

techniques using occupancy grids,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 1994.
[16] H. Moravec and A. Elfes, “High resolution maps from wide angle

sonar,” in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 1985.
[17] J. Lim and D. Cho, “Physically based sensor modeling for a sonar

map in a specularenvironment,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 1992.
[18] C. Stachniss, G. Grisetti, W. Burgard, and N. Roy, “Evaluation of

Gaussian proposal distributions for mapping with Rao-Blackwellized
particle filters,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2007.

[C9] C. Eppner, J. Sturm, M. Bennewitz, C. Stachniss, and W. Burgard.

Imitation learning with generalized task descriptions. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Kobe, Japan, 2009.

Imitation Learning with Generalized Task Descriptions

Clemens Eppner Jürgen Sturm Maren Bennewitz Cyrill Stachniss Wolfram Burgard

Abstract— In this paper, we present an approach that allows
a robot to observe, generalize, and reproduce tasks observed
from multiple demonstrations. Motion capture data is recorded
in which a human instructor manipulates a set of objects. In
our approach, we learn relations between body parts of the
demonstrator and objects in the scene. These relations result
in a generalized task description. The problem of learning
and reproducing human actions is formulated using a dynamic
Bayesian network (DBN). The posteriors corresponding to the
nodes of the DBN are estimated by observing objects in the
scene and body parts of the demonstrator. To reproduce a task,
we seek for the maximum-likelihood action sequence according
to the DBN. We additionally show how further constraints
can be incorporated online, for example, to robustly deal with
unforeseen obstacles. Experiments carried out with a real 6-DoF
robotic manipulator as well as in simulation show that our
approach enables a robot to reproduce a task carried out by
a human demonstrator. Our approach yields a high degree of
generalization illustrated by performing a pick-and-place and
a whiteboard cleaning task.

I. INTRODUCTION

Several techniques exist for transferring new skills to

robots. A very promising technique is called “imitation

learning”: Here, a robotic system observes an instructor while

performing a task [4], [2]. From multiple demonstrations,

the robot then needs to infer a generalized task description

and reproduce it accordingly even under slightly modified

conditions. As an example, consider Fig. 1. The task of

cleaning a whiteboard is demonstrated by a human and

transferred to a simulated as well as to a real robotic

manipulator.

Teaching skills by direct demonstration is a very natural

way of skill transfer in humans and animals. In the aim to

create more versatile, adaptable, and sociable robotic plat-

forms, research on the mechanisms of learning new behaviors

by observation has a very high potential. Furthermore, such

social learning can speed up learning complex behaviors

enormously, as it provides strong prior information for the

learning process, thereby scaling back the learning task for

the robot. This can reduce the search space for traditional

learning algorithms significantly, such that previously in-

tractable tasks can be learned.

In this paper, we show that imitation learning is well

suited as a user-friendly instruction method for manipulation

tasks. Our approach uses motion capture data generated

by a vision system to track body parts of the instructor

This work was partly supported by the DFG under contract number
SFB/TR-8 as well as by the EC under contract number FP6-IST-045388-
INDIGO

All authors are with the Computer Science Department of the University
of Freiburg, Germany
{eppner, sturm, maren, stachnis, burgard}@informatik.uni-freiburg.de

Fig. 1. Learning the whiteboard cleaning task. Left: The human instructor
demonstrates how to clean the whiteboard using visual motion capturing.
Middle: After the first demonstration, the robot can replay the recorded
trajectory. Right: After several demonstrations, the robot can generalize
the task and reproduce it under changed conditions, for example, on a
whiteboard with different size and position.

and the 3D positions of relevant objects in the scene. The

body configuration as well as the relations between objects

and body parts of the demonstrator are in turn modeled

as normally distributed observation nodes of a dynamic

Bayesian network (DBN). For reproducing an observed skill,

the network is evaluated at each time step in order to infer the

most-likely action. Within our framework, new constraints

can be dynamically added to the network, e.g., to incorporate

collision avoidance during reproduction in order to deal with

unforeseen obstacles.

Our relation-based approach extends the recent work of

Calinon and Billard [6] by formalizing the problem by means

of a DBN. We furthermore allow for incorporating additional

constraints for modeling unexpected obstacles that should be

considered during imitation.

The remainder of the paper is organized as follows: We

briefly review related work on imitation learning in Sec. II.

Our framework on imitation learning via inference in a DBN

is introduced in Sec. III, followed by Sec. IV on learning

the parameters of the DBN from motion capture data and

Sec. V on reproducing the generalized skill. Experimental

results obtained with a real 6-DoF robotic manipulator as

well as in simulation are presented in Sec. VI.

II. RELATED WORK

In the past, various techniques have been used for trans-

ferring task knowledge to a robotic system. Initially, the

required motion trajectories were hand-coded by an en-

gineer [10], [19]. However, the more complex the task

description becomes, the more difficult it is to create and

maintain large controllers. Alternatively, the required joint

angle trajectories of the robot can be shown by a single

demonstration, for example, by a human teacher using a

joystick, a motion capturing system, or kinesthetic training.

The resulting sequence is recorded and can then be replayed

by the robot. However, if the observations are noisy or

unpredicted disturbances in the task environment occur,

simple playback of the recorded motion is in general not

sufficient to reliably reproduce a given task. To deal with

noise in the observations and to generalize over multiple

demonstrations of the same tasks, several authors suggested

hidden Markov models (HMM) to encode and reproduce a

demonstrated action, e.g., [1], [7], [20].

Reinforcement learning techniques have been successfully

applied to learn controllers for an individual skill or for

motor primitives [12], [3], [17]. As the size of the search

space grows exponentially with the dimensionality of the

learning problem, Ijspeert and Schaal [13], [18] proposed

to learn parameterized controllers instead that are based on

differential equations.

Pardowitz and Dillmann presented a system that general-

izes over household tasks in a hierarchical manner [16]. Ac-

tions performed by the human demonstrator are recognized

as a sequence of “elementary operators”, of which a graph-

based task representation is learned. In this approach, the

incrementally updated network topology reflects the learned

temporal ordering of the individual actions.

Although symbolic representations are well suited for

planning and reasoning, their limitation to higher-level skills

renders them inapplicable in domains where a continuous

motor control is required. By contrast, trajectory learning

directly starts by encoding each demonstration by a sequence

of continuous observations. Due to the massive amounts of

captured data, dimensionality reduction techniques are often

applied. Chalodhorn et al. [8] used principal component anal-

ysis (PCA) to reduce the high-dimensional motion capture

data of a recorded human walk. While a direct playback

of the human data on a humanoid robot would make the

robot fall, the authors showed that after a few trials the robot

was able to modify the imitated gait incrementally. There, a

sensory-motor predictor was learned and used to produce

dynamically stable actions. Similarly, Grimes et al. [11]

also used PCA to reduce the high-dimensional configuration

space and applied a DBN to infer dynamically stable imita-

tive actions using constraint variables and a learned forward

model of the robot dynamics.

In our approach, we also use a DBN to learn and re-

produce tasks. By means of the DBN, relations between

objects in the environments and body parts are learned

and considered during reproduction. We show that by using

this framework, it becomes also possible to incorporate

additional constraints (such as collision avoidance) during

skill reproduction.

We use the idea presented by Calinon and Billard [6] to

describe actions using relations between objects. In contrast

to their approach which is based on Gaussian mixture mod-

els, we use a kernel estimator to model the relations. This

way, we can deal with a small number of demonstrations and

avoid fitting Gaussian mixtures.

III. IMITATION LEARNING FRAMEWORK

As most techniques for generating imitative actions, our

approach uses two steps. First, a set of repeatedly carried-out

... ...

... ...

z~

r~

x

z

r

t t+1

q

Fig. 2. Dynamic Bayesian network (DBN) illustrating the conditional
independence assumptions used for learning and reproducing tasks. The
arrows indicate conditional dependencies between variables. Here, z̃ denotes
the observation of the demonstrators body configuration which is represented
by q (joint angles). z is the observation of the world state x that encodes the
position of relevant object in the scene. The object-manipulator relations r

as well as the constraints on joint angles r̃ are used to model the action
that should be learned and carried out by the robot. During learning, the
distributions over the relations p(r̃) and p(r) is determined. During repro-
duction, these relations are known and the most likely body configuration
of the robot is to be estimated and executed by the robot.

actions of a human demonstrator is observed by the robot.

The robot has to infer the relevant parts of the demonstrated

task and to build an internal representation. This is done in

the so-called learning step. Second, the robot must be able

to reproduce an action to actually imitate the demonstrator.

This step is called imitation or reproduction step.

From a more formal point of view, we treat the problems

as a stochastic process that can be described by means of

the dynamic Bayesian network depicted in Fig. 2. The DBN

is an intuitive graphical description of the conditional inde-

pendence assumptions made in the model. While the teacher

demonstrates the task several times during the first phase of

our imitation learning approach, we learn relevant relations,

also called constraints, between n objects in the world and

the manipulator as well as the joint angle constraints for

each point in time. Thus, the constraints encode the actions

necessary to carry out the task which is being demonstrated.

The corresponding latent variables are denoted r(t) ∈ R
3n

– the constraints between objects in world space, encoded

as the 3D displacement from end-effector to each object –

and r̃(t) ∈ R
m the constraints in configuration space – i.e.,

the joint angles of the m-DoF manipulator – respectively.

The relations r̃(t) regarding the joint angles are only

meaningful if the demonstrator and the imitator have a

similar body structure. They are important in case actions

should be imitated as precise as possible.

In the second phase, we use the learned relations to infer

actions of the robot. At this time, the relation variables are

observable variables in the DBN and generate the actions of

the robot given the estimated world state.

For reasons of simplicity, let us consider first the DBN

for one time step t (neglecting the index t). Let q ∈ R
m

refer to the configuration of the m-DoF arm of the demon-

strator (during learning) or the robot (during reproduction).

Let x ∈ R
3n+3 be the vector of the 3D positions of relevant

objects in the scene

x = {xE , x1, . . . , xn} , (1)

where x1, . . . , xn are the positions of the n objects in

the scene. In the remainder of the paper, we use a robot

manipulator for imitating humanoid arm movements and xE

is the position of the end effector. Note that any set of body

parts can be used in case full body actions should be imitated

without changing the math except for adding additional

variables and indices (xE would become xE1
, . . . , xEM

).

The observation of 3D poses x is called z ∈ R
3n+3,

and the observations of joint configurations q ∈ R
m will

be referred to as z̃ ∈ R
m.

Our DBN depicted in Fig. 2 implies the following inde-

pendence assumptions:

p(r̃, q, z̃, r, x, z) = p(z | x) · p(z̃ | q) · p(r̃) · p(r) ·

p(x | q, r) · p(q | r̃) (2)

In our model, we assume the following distributions in

the nodes of the DBN: The observation models p(z | x) and

p(z̃ | q) are assumed to be Gaussian distributions and so are

the distributions over the relations p(r) and p(r̃). Since we

have no information about the distributions over relations in

the beginning, we set their variance to infinity.

The posterior about the objects in the scene can be written

as follows:

p(x | q, r) = p(xE | q) · p(x1, . . . xn | xE , r) (3)

Eq. (3) is obtained by applying the product rule and by

assuming that the poses of objects are independent from the

joint configuration given the position of the end effector. By

further applying the product rule, we obtain:

p(x | q, r) = p(xE | q) · p(x1 | xE , r) ·

p(x2, . . . xn | xE , r) (4)

= p(xE | q) · Πn
i=1p(xi | xE , ri) (5)

≈ p(xE | q) · Πn
i=1Nri

(xi − xE ; Σi) (6)

Eq. (4) is obtained by assuming that given the relations r

as well as xE , the positions of two objects in the scene are

independent. By applying this assumption n times, we obtain

Eq. (5).

We additionally assume that also the posterior about the

pose of the end effector p(xE | q) is Gaussian, which is a

reasonable assumption for the robots equipped with accurate

joints (such as Schunk modules in our case). p(xE | q) then

corresponds to the kinematic function.

Finally, we make the assumption that the differences

between actions carried out during the individual demonstra-

tions can be described by Gaussian distributions. Thus, the

individual ri ∈ r are represented by a mean and a variance

for the three dimensions. This leads to Eq. (6). Similarly,

the individual joint constraints rj ∈ r̃ are represented by

Gaussians. Thus, p(q | r̃) can also be computed by a product

as in Eq. (6).

IV. LEARNING PHASE

In the first phase, the robot observes a person that re-

peatedly carries out the task the robot has to perform. Given

the DBN structure explained above, the key challenge of this

learning phase is to learn the object-manipulator relations (r)

and – if needed – the joint constraints (r̃).

A. Motion Capturing and Object Pose Estimation

To estimate the motion trajectories of the human demon-

strator while executing a task and the 3D position of relevant

objects in the scene, we use passive markers and images of a

monocular camera. In particular, we use the ARToolKit [14],

which is a software library providing the means to extract the

6D pose (orientations and position) of fiducial markers (black

squares on a white background) from single camera images.

We attach compounds of 4 markers around the teacher’s

arm (see left image of Fig. 1) to bypass the problem

of occlusions. In most cases, not more than one marker

of the same compound is visible. To deal with the case

that two markers are visible simultaneously (sensing more

markers at the same time is impossible due to their mutual

orthogonality within one compound), we perform a linear

interpolation between their poses depending on the degree of

visibility of the markers. Finally, we apply a Kalman filter to

track the 3D marker position estimates over time. To derive

the demonstrator’s joint angles from marker poses, we use

an anthropomorphic arm model and apply straightforward

geometric operations. As a result, we are able to reliably

estimate the probability distributions over q and x during

the demonstrations.

B. Multiple Demonstrations

Our approach relies on demonstrating the same task mul-

tiple times in order to achieve a good generalization. One

problem when generalizing task descriptions from multiple

demonstrations is the fact that the repeatedly observed ac-

tions are not time-synchronized, even though the different

demonstrations typically do not vary largely. To deal with

varying movement velocity profiles, we apply derivative

dynamic time warping (DDTW) [15] which is able to account

for local distortions in the time domain by computing a

nonlinear transformation of the time axis of the individual

demonstrations. Based on the aligned demonstrations, we

can derive the relations r and r̃ which encode the action

to imitate.

C. Deriving Relations for Generalized Task Descriptions

By assuming that all relations in r and r̃ are (individual)

Gaussians, we can directly infer a mean and a variance

estimate for the individual relations for each point in time

given the estimates for x and q. Especially the variance is a

key element for the tasks descriptions since it describes how

accurately the demonstrator enforced this relation during the

demonstrations.

Formally, a relation ri is fully described by a 3D mean

µi and 3D variance σ2
i vector (assuming the relations in the

three dimensions to be independent).

In theory, we could compute µi and σ2
i directly from the

estimates for x and q during learning. In practice, however,

we typically have to deal with a rather small number of

demonstrations and therefore rather rough and non-smooth

estimates are obtained if the values are computed directly. To

overcome this problem, we apply a Parzen window kernel

estimator for computing smooth function approximations.

This is a non-parametric technique that allows for estimating

a function µ based on a set of sample points. To compute

estimates of the relations between objects in the scene ri and

the end effector, we compute relation samples consisting of

time and position {t, l(t, d, i)} with l(t, d, i) = xd
i (t)−xd

E(t),
t = 1, . . . , T and d = 1, . . . , D where D are the number of

demonstrations. Then, we obtain

µi(t
′) =

D
∑

d=1

T
∑

i=1

K(t′−t
h

) l(t, d, i)

D
∑

d=1

T
∑

i=1

K(t′−t
h

)

, (7)

where h is the Parzen window size (empirically determined,

h = 0.2 s) and K is a kernel function. We use the standard

choice for the K, namely the squared exponential kernel

K(x) = exp (−
1

2
||x||2). (8)

The variance given the sample points can be estimated

similarly as

σ2
i (t′) =

D
∑

d=1

T
∑

i=1

K(t′−t
h

) (l(t, d, i) − µ(t))2

D
∑

d=1

T
∑

i=1

K(t′−t
h

)

. (9)

This procedure is carried for each object in the scene and

accordingly done for the joint relations r̃.

V. REPRODUCTION PHASE

The goal of the reproduction or imitation phase is to carry

out the demonstrated task to achieve the same result. Given

the DBN, we can seek for the configuration of joints q∗ that

maximizes the likelihood given the demonstrations.

A. Incremental Optimization

If we consider only one time step during the optimiza-

tion, we seek for the configuration q∗ that maximizes the

joint probability. During reproduction, r and r̃ are known.

Furthermore, the robot can control its body/manipulator by

specifying a joint configuration and does not have to rely

on noisy marker observations of its body. Therefore, the

maximization turns into

q∗ = argmax
q

p(q | r̃)p(x | r, q)p(z | x). (10)

As discussed before in Sec. III, the posteriors p(q | r̃),
p(x | r, q), and p(z | x) are basically products of Gaussians

and lead to a Gaussian distribution again. Thus, to maximize

the joint probability, we need to determine the mean of that

Gaussian. To do so, we proceed as follows. Consider that

we are currently at time step t and want to seek for the

joint configuration that maximizes Eq. (10) at t + 1. Each

relation between xi and xE generates a relative displacement

vector ∆i:

∆i(t + 1) = xi(t) − xE(t) − µi(t + 1) (11)

Since we want to compute a new joint configuration for

the robot, we need to convert the constraints expressed in

world coordinates in joint space. We achieve this by applying

a variant of the damped-least squares method described by

Buss [5]. This approximative technique performs a lineariza-

tion of the kinematic function. According to this method, a

desired movement in world coordinates (∆) is transformed

to an executable movement in joint space (∆̃) by

∆̃i(t + 1) = J
(

JJT + λ2I
)−1

∆i(t + 1) (12)

Σ̃i(t + 1) =
(

J
(

JJT + λ2I
)−1
)

·

Σi(t + 1)
(

J
(

JJT + λ2I
)−1
)T

(13)

where λ is the so-called damping factor and J refers to the

Jacobian. Σi(t + 1) is a 3×3 matrix encoding the variances

from the relation ri with the corresponding variances for

dimension x, y, and z on the diagonal. Due to the linear

mapping, we obtain also a Gaussian in configuration space.

The constraints defined by r̃(t + 1) can be easily used to

compute a desired movement

∆̃r̃(t + 1) = r̃(t + 1) − qt (14)

while the variances Σ̃(t + 1) do not need to be transformed.

All constraints resulting from the observation of the

demonstrator’s joint angle configurations or from the ar-

rangement of objects in the scene are expressed in terms of

updates in joint space. This allows us to combine them by

multiplying the normal distributions as it has also been done

by Calinon and Billard [6]. The resulting distribution is the

product over the N +1 Gaussians resulting from the N task

space relations plus the joint space relations. We can use it to

directly obtain the next configuration q∗(t + 1) according to

Eq. (10) by selecting the mean from this combined Gaussian,

as given by

q̂(t + 1) = qt + Σ̃(t + 1)

(

(Σ̃r̃(t + 1))−1∆̃r̃(t + 1)

+

n
∑

i=1

(Σ̃i(t + 1))−1∆̃i(t + 1)

)

, (15)

with

Σ̂(t + 1) =

(

n
∑

i=1

(Σ̃i(t + 1))−1 + (Σ̃r̃(t + 1))−1

)

−1

(16)

The mean of that distribution defines the configuration of

the robot at the next time step that maximizes the probability

distribution specified in Eq. (10).

B. Local Optimization with Obstacles

The technique described in the previous section can di-

rectly be applied to deal with unforeseen obstacles in the

scene during reproduction. Consider that the robot observes

an obstacle during the imitation that was not there during

the demonstrations. To avoid this obstacle during the repro-

duction task, we can add additional constraints between the

observed obstacle and the closest point on the robot’s body,

as used in approaches based on potential fields for collision

avoidance.

Without changing the framework described above, the

robot can reactively introduce constraints for avoiding ob-

stacles while carrying out its task as close a possible to the

human demonstrator. Let xO be the position of the obstacle.

Instead of adding a repellent force, we add an attractor at

the opposite side of the end-effector,

∆O = −α
xE − xO

‖xE − xO‖
(17)

ΣO = β · exp
(

‖xE − xO‖
2
)

· I, (18)

where α determines the desired distance to the obstacle and

β gives the relative importance with respect to the other

constraints.

It should be noted that this technique works well for small

or rather simple structured obstacles added to the scene. In

case complex or, for example, U-shaped obstacles are found

in the environment, this approach is likely to suffer from

local minima caused by contradictory constraints.

C. Global Optimization

The problem of local minima, however, can be avoided by

not incrementally optimizing the joint probability distribution

of the DBN for the upcoming time step but optimizing it over

all time steps 1 . . . T of the task sequence at once:

q∗1:T = argmax
q1:T

p(q1:T , x1:T , r̃1:T , r1:T , z1:t) (19)

Note that at a particular time step t, only the first 1 . . . t

observations z1:t are already available and can be included

for planning. Doing this optimization on a global level,

however, comes with significantly increased computational

cost due to the high dimensionality of q∗1:T .

One way of rather efficiently estimating q∗1:T is to make

use of probabilistic roadmaps or rapidly-exploring random

trees (RRTs) [9], and find the shortest path using A∗ on the

sampled set of nodes since we are only interested in the most-

likely imitation sequence. Given that we properly encode the

likelihoods of all constraints in the cost function later used

by A∗, the solution of the planner will approximate Eq. (19)

well.

We propose to base the cost function on the Mahalanobis

distance to the combined Gaussian N (q̂(t); Σ̂(t + 1)) com-

puted in (15) and (16), as this Gaussian already incorporates

all constraints r, r̃ and the obstacle constraints in a time-

dependent way. For a configuration q at time t, we define the

cost as the likelihood with respect to the previously computed

combined Gaussian, i.e.,

cost(q, t) = (q − q̂(t))
T

Σ̂(t + 1)−1 (q − q̂(t)) . (20)

Then, finding the cost-optimal sequence of configurations

q∗1:T is equivalent to maximizing the likelihood of the trajec-

tory q∗1:T in (19).

VI. EXPERIMENTS

We carried out a set of experiments to analyze our ap-

proach. We always observed a human demonstrator equipped

with markers of the ARToolKit, see Fig. 3. We used this

Fig. 3. Photos of the demonstrated pick-and-place task. The trajectory is
recorded both, in task and joint space.

Fig. 4. Reproduction of the pick-and-place task by a human-like manipu-
lator using both, task and joint space constraints.

Fig. 5. Reproduction of the same pick-and-place task by our 6-DoF
manipulator. Note that the robot successfully generalized the task, as the
target and source location have been swapped.

data to learn the relations and thus constraints for the task

reproduction online. The motions were sampled at a rate

of 5 Hz. We segmented the training trajectories manually.

A. Imitating Human Actions

To imitate the observed behavior, we reproduced the tasks

using a real robot equipped with a manipulator and two

simulated robots, one with a manipulator and one with a

human-like arm.

Fig. 4 shows the reproduction of the pick-and-place task

after being demonstrated four times (see Fig. 3). The human-

like simulated robot considers both, the joint and the task

constraints, which leads to the fluent, human-like movement.

In Fig. 5, the same task is reproduced by our robotic

manipulator. As the demonstrator and the imitator have a

significantly different body scheme, the joint constraints r̃

have been disabled. As can be seen, the robot is able to

reproduce the task even though the setup between demon-

stration and imitation has been changed by setting a different

target location.

We furthermore analyzed the number of demonstrations

needed until a task could be reproduced reliable. For this

analysis, a teacher picked up a cup and placed it at a distance

of 1 m. As can be seen in Fig. 6, our approach converged

after 4 iterations.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

d
is

ta
n
c
e
 t
o
 i
n
it
ia

l
c
u
p
 p

o
s
it
io

n
 [
m

]

time [s]

picking the cup
placing the cup (1m away)

after 1 demonstration
after 2 demonstrations
after 4 demonstrations
after 8 demonstrations

Fig. 6. Illustration how the approach converges to an action after different
number of demonstrations. The demonstrated task was to pick up a cup and
place it 1 m away. As can be seen, after 4 demonstrations, our approach
converged and the robot was able to pick and place the cup.

 1.2

 1.4

 1.6

 1.8

 2

 4 5 6 7 8

z
 [
m

]

time [s]

constraint variance
constraint mean

reproduction
reproduction with obstacle

Fig. 7. Illustration of a constraint including the variance as well as two
trajectories of reproductions – one for the obstacle free case and one in case
an obstacle blocks the trajectory.

B. Dealing with Obstacles during Imitation

The additional obstacle constraints described in Sec. V-

B allow the robot to deal with unforeseen obstacles during

the task execution. The obstacle constraints act similar to a

potential field pushing the robot away from obstacles, which

are labeled by predefined markers.

Fig. 7 illustrates an example for a constraint in a pick and

place task. The figure shows a reproduced trajectory for the

obstacle free case and a trajectory that was selected in the

presence of an obstacle. As can be seen, the robot moved its

arm over the obstacle in order to avoid a collision.

We carried out a whiteboard cleaning task that nicely

illustrates the properties of the presented methods. First, a

human repeatedly cleaned a whiteboard in an area bounded

by 4 markers with the same number of ups and downs (see

left image of Fig. 1). Then, we attached a sponge to the

robot and let it perform the demonstrated task. In the first

experiment, we modified the size of the area to clean for

illustrating the capabilities of generalization. Photos from

this experiment can be seen in Fig. 8. Note that in case

the area to clean is much larger than during learning, the

whiteboard may not be cleaned well. The reason for that is

that our approach then scales the trajectory to reproduce and

thus there might be parts that will not be covered by the

sponge.

In the second experiment, we showed the robot during

reproduction phase an obstacle marker that was not there

-0.8
-0.6

-0.4
-0.2

 0

-1

-0.8

-0.6

-0.4

-0.2

 0

 1

 1.2

 1.4

 1.6

z [m]

global opt.
incremental

x [m]

y [m]

z [m]

start

target

U−shaped obs.

Fig. 10. The plot shows the end effector position of the robot over time
during two experiments. When applying the incremental method, the end
effector gets stuck in a U-shaped obstacle while the global method solves
the task and the end effector reaches the target location.

during the learning phase, see first image of Fig. 9. Then, the

robot had to clean the whiteboard while avoiding obstacles

(and thus not cleaning the area of the marker). For reasons

of illustration, we removed the marker during the experiment

but kept it in the internal memory of the robot. In this way,

the reader can see that the robot did not clean the correspond-

ing area. Eight photos were taken during the reproduction

and are depicted in Fig. 9. To avoid the area marked as

an obstacle area, the robot lifts the sponge away from the

whiteboard (in the direction of the observing camera).

C. Imitation by Planning

The experiments presented above used the reproduction by

means of incrementally computing the maximum-likelihood

configuration of the DBN. This is can be done efficiently

online, but the approach can suffer from local minima, for

example, in the presence of U-shaped obstacles. Such an

example is presented in Fig. 10 where the robot gets stuck.

If one applies the global optimization technique described

in Sec. V-C, one can overcome this problem since the optimal

solution over all time steps is computed. Thus, the robot is

able to reproduce the task including the avoidance of the U-

shaped obstacle. This global method, however, comes with

a significantly increased computational load.

VII. CONCLUSION

In this paper, we presented an approach to imitation

learning that extends a recently published method of Calinon

and Billard. It enables a robot to observe, generalize, and

reproduce tasks from observing a human demonstrator. We

formalized the problem using a dynamic Bayesian network

that is used for learning relations between the observed

positions of the objects and body parts of the instructor.

Additional constraints, for example, to avoid unforeseen

obstacles can be added online. To imitate the action of a

human, we estimate the actions that maximize the joint prob-

ability distribution represented by the DBN. We evaluated

the approach and showed that a real robot equipped with a

manipulator can learn and reproduce demonstrated actions.

Based on a pick-and-place and a whiteboard cleaning task,

Fig. 8. The reproduction of the board cleaning task by our robot. It imitates the zig-zag movement for cleaning the board with the sponge. Note that the
learned task representation allows for cleaning differently sized surfaces based on the markers.

obstacle

not cleaned

Fig. 9. The board cleaning task with an obstacle reproduced by our 6-DoF manipulator. In the first frame, the position of the obstacle is shown to the
system via a marker. Next, the manipulator cleans the whiteboard similar to the previous experiment shown in Fig. 8 but additionally avoids the obstacle. In
our current implementation, the obstacle is supposed to have the size and position of the corresponding marker that can be perceived using the ARToolkit
system. As can be seen in the last frame, part of the text in the area of the obstacle marker was not wiped.

we illustrated the flexibility of the method to generalize over

different spatial setups.

REFERENCES

[1] T. Asfour, F. Gyarfas, P. Azad, and R. Dillmann, “Imitation learning
of dual-arm manipulation tasks in humanoid robots,” in Proc. of the

IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), 2006.
[2] P. Bakker and Y. Kuniyoshi, “Robot see, robot do: An overview of

robot imitation,” in In AISB96 Workshop on Learning in Robots and

Animals, 1996, pp. 3–11.
[3] D. Bentivegna, C. G. Atkeson, and G. Cheng, “Learning tasks from

observation and practice,” Robotics and Autonomous Systems, vol. 47,
no. 2-3, pp. 163–169, 2004.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, in press.

[5] S. R. Buss and J. su Kim, “Selectively damped least squares for inverse
kinematics,” Journal of Graphics Tools, vol. 10, pp. 37–49, 2004.

[6] S. Calinon and A. Billard, “A probabilistic programming by demon-
stration framework handling skill constraints in joint space and task
space,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), September 2008.
[7] S. Calinon, F. Guenter, and A. Billard, “Goal-directed imitation in

a humanoid robot,” in Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), 2005.
[8] R. Chalodhorn, D. B. Grimes, and R. P. N. Rao, “Learning to

walk through imitation,” in Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI). San Mateo, CA:
Morgan Kaufmann, 2007.

[9] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, June 2005.

[10] J. J. Craig, Introduction to Robotics: Mechanics and Control. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[11] D. Grimes, R. Chalodhorn, and R. Rao, “Dynamic imitation in a
humanoid robot through nonparametric probabilistic inference,” in
Proc. of Robotics: Science and Systems (RSS), 2006.

[12] R. Hafner and M. Riedmiller, “Neural reinforcement learning con-
trollers for a real robot application,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2007, pp. 2098–2103.
[13] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-

scapes for learning motor primitives,” in NIPS, 2002, pp. 1523–1530.
[14] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration

for a video-based augmented reality conferencing system,” in Proc. of

the 2nd Int. Workshop on Augmented Reality (IWAR), 1999.
[15] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,”

in In Proc. of the 1st SIAM Int. Conf. on Data Mining (SDM), 2001,
pp. 5–7.

[16] M. Pardowitz and R. Dillmann, “Towards life-long learning in house-
hold robots: The piagetian approach,” in Proc. 6th IEEE International

Conference on Development and Learning, London, UK, 2007.
[17] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for

humanoid robotics,” in Proc. of the IEEE-RAS Int. Conf. on Humanoid

Robots (Humanoids), 2003.
[18] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning Move-

ment Primitives,” in International Symposium on Robotics Research

(ISRR2003), 2003.
[19] L. Sciavicco and B. Siciliano, Modelling and Control of Robot

Manipulators. Springer, January 2000.
[20] S. Tso and K. Liu, “Hidden markov model for intelligent extraction of

robot trajectory command from demonstrated trajectories,” in Proceed-

ings of The IEEE International Conference on Industrial Technology

(ICIT), 1996.

[C10] H. Kretzschmar, C. Stachniss, C. Plagemann, and W. Burgard. Es-

timating landmark locations from geo-referenced photographs. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Nice,

France, 2008.

Estimating Landmark Locations from Geo-Referenced Photographs

Henrik Kretzschmar Cyrill Stachniss Christian Plagemann Wolfram Burgard

Abstract— The problem of estimating the positions of land-
marks using a mobile robot equipped with a camera has
intensively been studied in the past. In this paper, we consider
a variant of this problem in which the robot should estimate
the locations of observed landmarks based on a sparse set
of geo-referenced images for which no heading information is
available. Sources for such kind of data are image portals such
as Flickr or Google Image Search. We formulate the problem of
estimating the landmark locations as an optimization problem
and show that it is possible to accurately localize the landmarks
in real world settings.

I. INTRODUCTION

Popular Internet resources such as Flickr or Google Image

Search offer a large amount of real world imagery. Many of

these images contain geo-references, i.e., the locations where

the photographs have been taken in longitude and latitude

coordinates as well as manual annotations such as marked

image regions and a tag word like “cathedral”. Currently,

Flickr offers millions of tagged images, a trend which is

likely to continue given the growing popularity of mobile de-

vices, GPS receivers and specialized integrated systems. The

question of how this large amount of freely available data can

be used to infer quantitative knowledge about the world was

our main motivation for this work. On a comparably small

spatial scale, systems such as Microsoft’s Photo Tourism [13]

process sets of images of the same location to yield a dense

3D model of the local environment, which is capable of

producing artificial views and virtual fly-throughs. In this

paper, we deal with the problem of localizing a discrete set

of distinct landmarks on a larger spatial scale, like a town or a

campus environment. Concretely, our task can be formulated

as follows. Given a set of geo-referenced photographs of

an environment annotated with labels for distinct landmarks,

how can we recover the locations of the landmarks in the

world? Aside from the noisy geo-reference coordinates and

inaccurate label placements, the main difficulty lies in the

missing information about the camera headings.

A robot that is able to utilize a so far unused source of

information offers new ways for building models of places

it has not observed directly. It furthermore allows a robot to

also refine or annotate exiting models. Consider, for example,

a mobile tour guide robot deployed to a city center or to an

archaeological site. Given the localized landmarks and the

corresponding imagery, the system could offer a large range

of location-dependent information without requiring a human

expert to collect and formalize this knowledge.

The authors are with the University of Freiburg, Department of Com-
puter Science, D-79110 Freiburg, Germany. {kretzsch, stachnis, plagem,
burgard}@informatik.uni-freiburg.de

Fig. 1. The goal of the work presented in this paper is to estimate the
locations of the set of distinct buildings (here enclosed by rectangles) using
geo-referenced photographs taken while walking through the city.

In this paper, we consider the problem of estimating

the positions of landmarks given a set of geo-referenced

photographs. The longitude and latitude information of the

locations from which the photos have been taken are as-

sumed to be known approximatively by means of a standard

consumer GPS device. By combining this data with labeled

regions in the photos referring to objects, such as buildings,

our approach is able to localize these buildings and to

determine the direction in which the photo has been taken.

In contrast to bearing-only SLAM, our approach does not

require an image stream from a camera. We furthermore

assume to have no knowledge about the orientation of the

camera at any point in time. We address this problem by

formulating it as an optimization problem. As we show in the

experiments, we are able to accurately localize the labeled

buildings based on photos taken in an urban environment.

Figure 1 depicts the downtown area of Freiburg including

several distinct landmarks enclosed by rectangles. The goal

of this work is to estimate the positions of such land-

marks based on photographs taken while walking or moving

through the city center.

The remainder of this paper is organized as follows.

After discussing related work, we present a mathematical

formulation of our problem and derive an objective function

that needs to be minimized to solve the estimation problem.

In Section IV, we then explain two optimization procedures

that are used throughout this work. Finally, we present real

world as well as simulation experiments that illustrate the

performance of our method.

II. RELATED WORK

The problem of estimating the poses of landmarks based

on observations has been intensively studied in the past.

Several researchers studied the landmark-based simultaneous

localization and mapping (SLAM) problem [1], [9], [8], [12],

[4], [7]. In the literature, one distinguishes between SLAM

approaches that are designed to operate on proximity sen-

sors and those operating on bearing-only (typically vision)

sensors. For example, Davison et al. [2] presented a vision-

based 6 DoF SLAM system that extracts features from a

monocular camera and creates a sparse map of high-quality

stable features. The locations of the features are tracked by

applying an EKF. Lemaire et al. [6] focused on the problem

of how to initialize landmarks in the context of EKFs and

bearing-only observations.

Approaches to bearing-only SLAM, however, consider

that the robot constantly perceives the environment with its

camera. As a result, a continuous stream of images and thus

feature observations is provided so that the landmarks can be

tracked over time. Furthermore, the robot is often assumed

to roughly know the relative change in its orientation while

moving from odometry. These two assumptions are not made

in the work presented in this paper.

Recently, related approaches to this paper have been

presented. The most prominent one is probably Microsoft’s

Photo Tourism [13]. This approach considers a set of images

of the same place and generates a dense 3D model of the

local environment. It is capable of producing artificial views

and virtual fly-throughs. In contrast to this, we deal with the

problem of localizing a discrete set of distinct landmarks on

a larger spatial scale, for example in a town or a campus

environment.

The MIT City Scanning Project [14] addresses the problem

of building models from city environments with a mobile

robot. This approach focuses on the textured 3D reconstruc-

tion of buildings in the environment. In the so-called “4D-

Cities” project, Dellaert and colleagues [3], [11] address the

problem of building spatial-temporal models of cities. They

use current and historical photographs to reconstruct city

scenes at different points in time. The temporal ordering can

be inferred from the images by formulating it as a constraint

satisfaction problem. This allows for time travels in cities.

III. LANDMARK AND CAMERA POSE ESTIMATION

We consider the problem of estimating the camera poses

and the locations of observed landmarks given a labeled set

of camera images. In the remainder of this paper, we use the

following notation.

A. Problem Formulation

Let Pi = (XPi
, YPi

, θPi
)T be the position and orien-

tation of the camera when recording image i. Let Lj =
(XLj

, YLj
)T be the position of landmark j in the Cartesian

space. Each observation of landmark j seen in image i
recorded at position Pi is a horizontal angle αij that de-

scribes the location of the landmark relative to the optical

axis of the camera when recording the image.

In this paper, we assume that the 2D locations (XPi
, YPi

)

at which the camera images have been recorded are approxi-

mately known since images are supposed to be geo-reference.

This information can be obtained from a low cost consumer

GPS device. However, the orientation information θPi
is

unknown. Given the observations αij , the goal is to estimate

the landmark locations Lj as well as the orientations of the

cameras θi. In addition to that, we improve the estimate of

the locations of the cameras as delivered by the GPS device.

We consider the landmarks as uniquely identifiable. The

problem of extracting appropriate features to identify them

is not the focus of this work. We furthermore assume that

the roll angle of the camera during image recording is zero.

By means of low cost attitude sensors used together with the

cameras, images can easily be corrected by a simple rotation.

Other information such as the focal length of the lens while

taking the image can be obtained from the EXIF tags stored

in the images.

Note that we assume to have no direct information about

the orientations of the cameras. As a result, images that

only contain a single landmark have no influence on the

estimate because the landmark can be located anywhere.

This makes our approach different from typical bearing-

only SLAM techniques which, in general, assume to have an

estimate about the orientation of the camera that is typically

computed from an image stream recorded by the camera or

by using odometry information.

B. Objective Function

In our approach, we solve the described location esti-

mation problem by means of optimization. To apply an

optimization procedure, one needs to define an objective

function. In our scenario, the objective function can be

defined as the error between the obtained observations and

the estimated positions of the landmarks.

Let the variables indicated by ·̂ refer to the estimated quan-

tities. In case the estimated camera and landmark positions

are consistent with the observations, we obtain

tan(θ̂Pi
+ αij) =

ŶLj
− ŶPi

X̂Lj
− X̂Pi

. (1)

In practice, we want to minimize the position error of

the landmarks. Our observations, however, only provide

bearing information. Thus, the error to be minimized can

be specified by the difference between the estimated land-

mark location (L̂j) and the line of sight starting from

the camera position (P̂i) in the direction of the observed

landmark (θ̂Pi
+ αij) (see Figure 2 for an illustration).

One can easily compute the arc length Eij between

the estimated landmark location (L̂j) and the line of sight

resulting from the observation. It can be computed as

Eij = eijrij , (2)

where

eij = atan2(ŶLj
− ŶPi

, X̂Lj
− ŶPi

) − θ̂Pi
− αij (3)

eij

L̂j

rij

Eij

P̂i

Ljobs

αij

X

θ̂Pi

ob
se

rv
at

io
n

Fig. 2. Illustration on how to compute the estimated error Eij . P̂i refers
to the pose of the camera looking in the direction indicated by the dotted
line. The dashed line is the line of sight on which the landmark is located

given the observation. L̂j is the estimated landmark location and eij is the
angular error between the estimated and the observed landmark. rij is the
Euclidean distance between the camera and the estimated landmark.

is the angular error in radians between the estimated and the

observed landmark computed from Eq. (1) and

rij =

√

(X̂Pi
− X̂Lj

)2 + (ŶPi
− ŶLj

)2 (4)

is the Euclidean distance between camera i and esti-

mated landmark j. The function atan2(∆Y,∆X) refers to

arctan(∆Y/∆X) but explicitly considers the four quadrants.

In our scenario, we assume that the locations of the

cameras are measured with a consumer GPS device. Thus,

these positions can be regarded as globally correct with a

bounded noise term. As a result, the optimization approach

should be allowed to locally modify them if this reduces

the overall error. Therefore, we add a penalty term f(x)
that allows for local corrections only. This function is a

differentiable barrier function that goes to infinity as x
approaches the maximum assumed GPS error, but is near

zero close to the measured location. Such an approach is

frequently applied to cope with GPS errors [15]. As a result,

the objective function E turns into

E =
∑

i,j

Eij
2 +

∑

i

f(||P̂i − P̃i||), (5)

where P̃i refers to the locations of the cameras as provided

by the GPS observation.

C. Gradient for Optimization

Most optimization techniques either directly rely on gradi-

ent information or can be sped up significantly by incorporat-

ing knowledge about the gradient of the objective function.

In our model, the gradient of the error function E as stated

in Eq. (5) is given by

∇E =
∑

i,j

∇Eij
2 +

∑

i

∇f(||P̂i − P̃i||) . (6)

The gradient consists of the partial derivatives with respect
to the individual variables we want to optimize, namely

θ̂Pi
, X̂Lj

, ŶLj
, X̂Pi

, and ŶPi
. By applying a series of

mathematical derivations, we obtain

∂E

∂θ̂Pi

= −2
∑

j

eijrij
2

(7)

∂E

∂X̂Lj

= 2
∑

i

eij
2(X̂Lj

− X̂Pi
) − eij(ŶLj

− ŶPi
) (8)

∂E

∂ŶLj

= 2
∑

i

eij(X̂Lj
− X̂Pi

) + eij
2(ŶLj

− ŶPi
) (9)

∂E

∂X̂Pi

= 2
∑

j

eij(ŶLj
− ŶPi

) + eij
2(X̂Pi

− X̂Lj
)

+
∂

∂X̂Pi

f(||P̂i − P̃i||) (10)

∂E

∂ŶPi

= 2
∑

j

eij
2(ŶPi

− ŶLj
) − eij(X̂Lj

− X̂Pi
)

+
∂

∂ŶPi

f(||P̂i − P̃i||). (11)

Note that the penalty term f(||P̂i − P̃i||) only affects

the partial derivatives with respect to the estimated camera

locations X̂Pi
and ŶPi

.

We have specified the objective function for our problem

as well as its partial derivatives. After randomly sampling an

initial guess, we can now apply gradient-based optimization

techniques to compute a solution.

IV. OPTIMIZATION

Optimization refers to the task of systematically choosing

the values of variables to minimize or maximize an objective

function E. For our problem, the objective function is given

in Eq. (5). This section briefly introduces gradient descent

and RPROP from a general point of view. Both methods are

applied in this work.

A. Gradient Descent

Gradient descent is a frequently used iterative optimization

technique. Starting from an initial parameter setting x0, it

alternates between (a) computing the gradient ∇E of the

objective function E w.r.t. its parameters and (b) changing

the parameter vector in the direction opposing the gradient.

More formally, we set

xn+1 = xn − ε · ∇E , (12)

where ε is a scale factor that specifies the change in the vari-

ables according to the gradient. This update-rule is iterated

until convergence or until a maximum number of iterations

has been carried out.

Standard gradient descent is easy to implement, provided

that the gradient of the objective function E is known. The

scale factor ε, however, is hard to choose in practice and

there is no general rule on how to determine it. If ε is

chosen too small, the resulting small steps cause convergence

to be slow. Too big values for ε, however, can lead to

oscillation or even divergence. In short, standard gradient

descent converges rather slowly and has no convergence

guarantee in the general case.

B. RPROP

Resilient backpropagation (RPROP) [10] was originally

proposed as a learning algorithm for artificial neural net-

works. The goal was to overcome the weaknesses of standard

gradient descent outlined above. In contrast to standard

gradient descent, RPROP neglects the absolute value of the

derivative. Instead, it considers the changes of signs of the

individual partial derivatives. The update rule of RPROP

consists of two steps. First, the so-called update value ∆k
n

for each dimension k is computed in each iteration n as

∆k
n =

η+∆k
n−1 , if ∂E

∂xk

n−1 ∂E
∂xk

n
> 0

η−∆k
n−1 , if ∂E

∂xk

n−1 ∂E
∂xk

n
< 0

∆k
n−1 , else,

(13)

where 0 < η− < 1 < η+ and ∂E
∂xk

n
is an abbreviation for

∂E
∂xk (xk

n). Based on this update value ∆k
n, the update rule

can be specified as

xn+1 = xn +

−∆k
n , if ∂E

∂xk

n
> 0

+∆k
n , if ∂E

∂xk

n
< 0

0 , else.

(14)

According to Eqs. (13) and (14), if the sign of a partial

derivative changes with respect to the previous iteration, the

step size is decreased by a constant factor η−. If the sign

does not change, the step size is increased by the factor η+.

The former is done in order to prevent the algorithm from

jumping over local minima, whereas the latter is done to

accelerate convergence in shallow regions.

Despite its comparably fast convergence, RPROP is rather

easy to implement. Compared to gradient descent, it does

not depend on a fixed scale factor ε which is hard to

determine. RPROP adapts its scale factors automatically and

thus leads to more robust and flexible optimization, which

does not require manual parameter tuning. As we will show

in the experimental section, RPROP is a suitable technique

for solving our estimation problem and clearly outperforms

gradient descent.

Note that other optimization approaches such as

Levenberg-Marquardt or scaled conjugate gradient can be

used as alternatives to gradient descent or RPROP. However,

as we illustrate in the experimental evaluation, the concep-

tually simpler and easy to implement RPROP already leads

to highly satisfactory results.

V. EXPERIMENTS

We performed a series of simulation and real world

experiments to test our method. Simulated experiments allow

us to compare the solution of our algorithm versus the ground

truth, whereas the real world experiments show that our

technique is able to solve the addressed problem in realistic

settings.

A. Real World Experiments

For data acquisition, we used a standard digital photo

camera and a consumer GPS logger (XAiOX iTrackU SiRF

III). We walked through the city of Freiburg and took a series

of photos from different locations. We then manually labeled

a set of buildings in the images to obtain the correspondences

between the images. Note that the data association problem

is not addressed in the paper. To get an estimate of the

quality of our approach in real applications, we compared

the estimated landmark locations to the ones obtained from

satellite images. We furthermore mounted a compass to the

camera in order to compare the estimated orientation of

the camera to the angle indicated by the compass (analog,

accurate up to ∼ 3 deg).

To determine the horizontal angle in which objects are ob-

served, the camera needs to be calibrated. Such a calibration

is a mapping between pixel coordinates and bearing angles

and accounts for lens distortion and other camera specific

parameters. To achieve the necessary calibration, one could

either use appropriate databases for consumer cameras or

accurately calibrate it using chessboard patterns [5].

We collected two datasets, one in Freiburg downtown

and one on the campus of the computer science department

of the University of Freiburg. In the city center, the land-

marks were located in an area of approximately 1.5 km by

1 km (distance camera-landmarks: 180 m to 2.5 km) and on

the campus in an area of approximately 320 m by 300 m

(distance camera-landmarks: 10 m to 300 m). Whereas the

left image in Figure 3 shows the Freiburg downtown area,

the right image depicts the campus area including the es-

timated landmark locations as well as the true positions.

Additionally, Figure 4 illustrates the absolute error for the

individual landmarks based on the campus experiment. The

true landmark locations were measured manually using high-

resolution satellite images. To further analyze the robustness

of our methods, we carried out 300 optimization runs in

both real world experiments and randomly initialized the

landmark locations and camera heading angles. In all runs,

our approach converged towards the same solution which

illustrates its robustness.

We also compared the estimated camera orientations to

the ones measured with a compass. It turned out that all

estimated orientations differ from the ones measured with

the compass by less than 3 deg, which is approximately the

measurement accuracy of our analog compass. In the future,

a digital compass could be used to automate this task.

B. Simulated Experiments

Simulated experiments allow us to analyze our method in

a controlled environment. We examine the evolution of the

real error during the process of optimization. We also provide

a comparison of the performance of our approach using

RPROP and the same approach applying standard gradient

descent.

As explained above, we assume that the locations where

the images were taken are roughly known from a GPS device.

Like all measurements, GPS observations are distorted by

noise. Hence, in our simulation experiments, we simulate

the noise by sampling from a Gaussian with a standard

deviation σ = 10 m. Furthermore, we assume a horizontal

opening angle of the cameras of 65 deg.

Fig. 3. True and estimated landmark locations in Freiburg downtown overlayed on a street map (left) as well as for the Freiburg campus experiment
overlayed on a building plan (right). Note that due to copyright reasons, we do not visualize the results using the original satellite images.

 0

 5

 10

 15

 20

 25

ab
so

lu
te

 e
rr

o
r

[m
]

landmarks (sorted)

landmark estimation error

Fig. 4. Individual estimation errors of the different landmarks in the campus
experiment. The landmarks are sorted by their errors for better visibility.

In the first simulation run, we used six images to esti-

mate the positions of six partially visible landmarks. We

applied our algorithm using RPROP and gradient descent.

We applied gradient descent in two settings, using ε = 0.01
and ε = 0.001. Figure 5 shows the evolution of the real

error versus the number of iterations in a typical run of

the experiment. As can be seen, RPROP shows the best

performance: the algorithm converges quickly to the correct

configuration (zero error). In contrast to this, gradient descent

with ε = 0.001 converges significantly slower. We repeated

the experiment with a value of ε = 0.01. In this setting,

the optimization oscillates and does not converge to the

correct solution. This illustrates the sensitivity of the factor ε
in gradient descent. In contrast to this, RPROP yielded a

substantially better performance without the need to man-

ually choose parameters. RPROP adapted these parameters

automatically and was able to converge to the correct config-

uration quickly. To provide a statistical evaluation, Figure 6

depicts the results of the experiment with different configu-

rations averaged over 10 runs. The error bars show the 95%
confidence intervals. As can be seen in Figure 7, a similar

convergence behavior can be observed when increasing the

size of the scene as well as the number of cameras and

landmarks.

While RPROP is guaranteed to always converge to a

solution, it is still a local optimization approach that might

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000

av
g

.
er

ro
r

p
er

 l
an

d
m

ar
k

 [
m

]

iteration

gradient descent (e = 10-2)
gradient descent (e = 10-3)

RPROP

Fig. 5. Convergence behavior of a single optimization run, during which
six partially visible landmarks have been observed from six geo-referenced
camera locations using gradient descent with two different scale factors (ε)
and RPROP. The figure illustrates that an improperly chosen ε parameter
leads to oscillation.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000

av
g

.
er

ro
r

p
er

 l
an

d
m

ar
k

 [
m

]

iteration

gradient descent
RPROP

Fig. 6. Empirical evaluation of the convergence behavior of gradient
descent versus RPROP. The error-bars in this plot give the 95% confidence
interval for 10 runs. On a 2 GHz laptop computer, the average computation
times per iteration of RPROP and gradient descent were 35 µs and 8 µs,
respectively.

yield a local minimum. However, we found that the starting

point of the optimization is not a critical choice. With

randomly chosen starting locations, our approach converged

in all our real world experiments to the same solution.

A more crucial precondition for success is the amount of

images and landmarks and their spatial arrangement. Obvi-

ously, if only a single landmark is detected by each camera

or less than two landmarks are common between different

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

av
g

.
er

ro
r

p
er

 l
an

d
m

ar
k

 [
m

]

iteration

RPROP

Fig. 7. Convergence behavior on an extremely large dataset. The loca-
tions of 10,000 partially visible landmarks and 1000 camera images were
initialized randomly. The error-bars give the 95% confidence intervals for
10 runs. On a 2 GHz laptop computer, the average computation time per
iteration was 4.5 s.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000

av
g

.
er

ro
r

p
er

 l
an

d
m

ar
k

 [
m

]

iteration

noisy camera positions (uncorrected)
noisy camera positions (corrected)

noise-free camera positions

Fig. 8. Influence of the x/y-position error (resulting from the GPS) on
the estimate of the landmark locations evaluated over 10 runs. The black
line shows the performance of a run with a Gaussian noise of σ = 10 m
without optimizing the camera positions, while the blue line indicates the
error when also optimizing the camera locations. The red line shows the
result if the camera poses are error-free. As can be seen, our approach
is able to compensate for this position error. The performance of the full
optimization (blue) approaches the error-free model (red).

images, the system is under-constrained geometrically and

cannot be solved. In our real world experiments and also

in a large variety of simulated scenarios, enough geometric

constraints are present to find a close to optimal solution.

Figure 8 depicts a statistical experiment which illustrates

that our approach can easily compensate for the GPS inaccu-

racies of the geo-referenced photographs. As in all simulated

experiments, we added a Gaussian noise with σ = 10 m in

the x and y-positions of the cameras. As can be seen from

the diagram, our approach compensates for this noise and

converges to the same estimate as if no noise was present.

VI. CONCLUSIONS

In this paper, we presented an approach to estimate the po-

sitions of landmarks based on a set of labeled, geo-referenced

photographs, under absence of any camera heading informa-

tion. We believe that such an approach is a first step towards

allowing a mobile robot to use additional, publicly available

sources of information like the image portal Flickr or Google

Image Search. Our technique formulates the problem of

estimating the positions of photographed objects, such as

buildings in a city, as an optimization problem and uses the

resilient backpropagation (RPROP) algorithm to solve it. We

implemented our method and used it to estimate the locations

of different buildings based on photographs taken in the city

of Freiburg, Germany. Our experiments show that RPROP

significantly outperforms gradient descent in this task.

Despite this encouraging results, there is further space

for optimizations. To actually use image databases in a

completely autonomous way, our system needs means to

robustly eliminate outliers and to build representations of

objects for determining correspondences. So far, we assumed

the labels to be known.

To summarize, we presented an approach that is able to

localize labeled objects based on geo-referenced photographs

and to simultaneously estimate the unknown camera head-

ings. This is a first step towards making such information

available to robots allowing them to improve their service

for applications in which spatial knowledge about the envi-

ronment is required.

ACKNOWLEDGMENTS

This work has partly been supported by the EC under con-

tract numbers FP6-IST-034120-muFly and FP6-IST-045144-

RAWSEEDS, by the DFG under contract number SFB/TR-

8, and by the German Ministry for Education and Research

(BMBF) through the DESIRE project.

REFERENCES

[1] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An ATLAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Taipei, Taiwan, 2003.
[2] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-

time single camera SLAM. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 29(6), 2007.
[3] F. Dellaert. 4d-cities. Invited Talk at the Int. Symposium on 3D Data

Processing, Visualization and Transmission, 2006.
[4] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally

efficient solution to the simultaneous localisation and map building
(SLAM) problem. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), San Francisco, CA, USA, 2000.
[5] J. Heikkila and O. Silven. A four-step camera calibration procedure

with implicit image correction. In Proc. of the CVPR ’97, Washington,
DC, USA, 1997.

[6] T. Lemaire, S. Lacroix, and J. Sola. A practical 3d bearing-only slam
algorithm. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), 2006.
[7] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.
[8] P.M. Newman. On the structure and solution of the simultaneous

localization and mapping problem. PhD thesis, University of Sydney,
Australia, 1999.

[9] P.M. Newman and J.J. Leonard. Consistent convergent constant time
slam. In Proc. of the Int. Conf. on Artificial Intelligence (IJCAI),
Acapulco, Mexico, 2003.

[10] M. Riedmiller and H. Braun. A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In Proc. of the

IEEE Intl. Conf. on Neural Networks, April 1993.
[11] G. Schindler, S.B. Kang, and F. Dellaert. Inferring temporal order of

images from 3d structure. In Proc. of the IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 2006.
[12] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial re-

altionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.
[13] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: Exploring

photo collections in 3d. ACM Transactions on Graphics, 25(3), 2006.
[14] S. Teller, M. Bosse, M. Jethwa, and A. Khripin. Automated, scalable

model capture of urban environments. LCS Research Abstracts, MIT
Laboratory for Computer Science, 2003.

[15] S. Thrun and colleagues. Winning the darpa grand challenge. Journal

of Field Robotics, 2006.

[C11] P. Pfaff, C. Stachniss, C. Plagemann, and W. Burgard. Efficiently

learning high-dimensional observation models for monte-carlo localization

using gaussian mixtures. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), Nice, France, 2008.

Efficiently Learning High-dimensional Observation Models

for Monte-Carlo Localization using Gaussian Mixtures

Patrick Pfaff Cyrill Stachniss Christian Plagemann Wolfram Burgard

Abstract— Whereas probabilistic approaches are a powerful
tool for mobile robot localization, they heavily rely on the
proper definition of the so-called observation model which
defines the likelihood of an observation given the position and
orientation of the robot and the map of the environment. Most
of the sensor models for range sensors proposed in the past ei-
ther consider the individual beam measurements independently
or apply uni-modal models to represent the likelihood function.
In this paper, we present an approach that learns place-
dependent sensor models for entire range scans using Gaussian
mixture models. To deal with the high dimensionality of the
measurement space, we utilize principle component analysis for
dimensionality reduction. In practical experiments carried out
with data obtained from a real robot, we demonstrate that our
model substantially outperforms existing and popular sensor
models.

I. INTRODUCTION

In the past, probabilistic localization techniques have

been demonstrated to be a robust approach to mobile robot

localization as they allow the vehicles to globally localize

themselves, to efficiently keep track of their position, and

to even recover from localization failures. One of the key

challenges in context of probabilistic localization, however,

lies in the design of the so-called observation model p(z |
x,m) which is a likelihood function that specifies how to

compute the likelihood of an observation z given the robot

is at pose x in a given map m. For probabilistic approaches

the proper design of the likelihood function is essential.

Too optimistically specified sensor models might make the

vehicle overly confident in its position. In the context of

Monte-Carlo-Localization [4], this can lead to a depletion of

particles and finally might cause a divergence of the filter.

Too conservative models, in contrast, might result in a high

pose uncertainty or even prevent the robot from localizing

itself as the sensor information cannot compensate for the

uncertainty introduced by the motion of the vehicle.

In the past, sophisticated sensor models have been devel-

oped for probabilistic approaches to robot localization. Some

of them take into account various aspects such as objects

not contained in the map or sensor cross-talk. Whereas such

approaches have been proven to be robust even in real-world

situations, they do not appropriately take into account poten-

tial effects not stemming from the measurement process it-

self. This, for example, regards the fact that the map typically

is only an approximation of the real world. Additionally, such

sensor models are sensitive to discontinuities in the map. For

The authors are with the University of Freiburg, Department of Com-
puter Science, Georges-Koehler-Allee 79, 79110 Freiburg, Germany. {pfaff,
stachnis, plagem, burgard} @ informatik.uni-freiburg.de

Fig. 1. In mobile robot localization, small variations in the robot pose can
cause large variations of the range measurements. This leads to multi-modal
distributions of beam-lengths even in small areas around a potential pose.

example, when the environment is cluttered, slight changes

in the pose of the robot in the map might lead to huge

differences in the length of the expected measurement at that

particular location. This fact is illustrated in Figure 1. The

figure shows to different scans obtained with a laser range

scanner with a robot that passes a doorway. Whereas the two

positions, at which the scans were taken, are close to each

other, the obtained scans differ largely. Accordingly, even

small errors in the pose estimate can lead to an extremely

small likelihood of the measurement. This in turn can lead

to a divergence of the filter.

One sensor model that has been especially designed

to cope with such situations are the so-called likelihood

fields [17]. This “beam-end-point-model” provides smooth

and multi-modal likelihood functions to better deal with

clutter in the environment but ignores the information along

the individual beam of a range measurement. Therefore,

likelihood fields are less effective in situations in which the

robot has to perform global localization. Most observation

models furthermore assume the independency of the individ-

ual beams of a laser range scan. However, the more beams

a scan has, the more this assumption is violated, which then

might lead to overly confident estimates. Recently, some

techniques have been developed that explicitely consider the

dependencies of individual beams [14], [16]. However, these

techniques have the drawback that they assume an uni-modal

distribution.

In this paper, we propose a novel probabilistic observation

model for proximity sensors such as laser range finders. Our

model has two advantages over most previous approaches.

First, it explicitely considers the dependencies between the

individual beams of a range scan, and second, is accounts for

the multi-modal nature of the observation function. It does

so while still considering that the observation is obtained

from a time-of-flight proximity sensor (such as laser range

finders or sonars). This is achieved by considering place-

dependent measurement models and utilizing a Gaussian

mixture model together with a dimensionality reduction

technique. In practical experiments carried out with data

obtained with a real robot we demonstrate that our new

model substantially outperforms existing sensor models.

This paper is organized as follows. After discussing related

work in the next section, we briefly describe in Section III

Monte Carlo localization and the principle of likelihood

models. In Section IV, we introduce our novel likelihood

model based on high-dimensional mixtures of Gaussians

and finally, in Section V, we present experimental results

illustrating that our sensor model outperforms other popular

likelihood models.

II. RELATED WORK

In the literature, various techniques for computing the like-

lihood function for probabilistic localization methods with

proximity sensors have been introduced [3], [8], [17], [18].

These approaches either directly approximate the physical

characteristics of the sensor or try to provide smooth like-

lihood models to increase the robustness of the localization

process. In the past, is has been observed that the likelihood

function can have a major influence on the performance of

Monte Carlo Localization. Thrun et al. [19], for example,

observed that more particles are required if the likelihood

function is peaked. In the limit, i.e., for a perfect sensor,

the number of required particles becomes infinite. To deal

with this problem, Lenser and Veloso [10] and Thrun et

al. [19] introduced techniques to directly sample from the

observation model and in this way ensure that there is

a critical mass of samples at the important parts of the

state space. Unfortunately, this approach depends on the

ability to sample from observations, which can often only

be done in an approximate, inaccurate way. An alternative

strategy to deal with this problem is to artificially inflate

the measurement uncertainty to achieve a regularization of

the likelihood function, e.g., see the Scaling Series approach

presented by Petrovskaya et al. [12].

The classical Kalman filter has limitations since it requires

Gaussian observation likelihoods and thus cannot handle

multi-modalities or ambiguous situations. To overcome this

problem, several researchers used Gaussian mixture models.

Duckett and Nehmzow [7], for example, introduced a multi-

modal generalization of the Kalman filter based on mixtures

of Gaussians. Recently, Upcroft et al. [20] introduced a fast

re-parameterization of Gaussian mixture models to represent

the probability distribution. Takamasa et al. [9] use Gaussian

mixture models to fuse odometry and sonar and to reduce

the localization error in the case of noisy sensors.

Recently, Limketkai et al. [11] proposed an approach

for learning the motion and sensor model for MCL using

conditional random fields. This allows for considering the

dependencies between the individual beams of a laser range

scan. The approach is furthermore reported to provide better

results than generatively learned models but it requires

ground truth location information of a robot to carry out

discriminative learning.

The focus of this paper is to model possible multi-

modalities in likelihood functions for laser range measure-

ments using Gaussian mixture models. Our approach im-

proves the robustness of probabilistic localization approaches

like MCL especially in situations in which small changes

of the robot’s pose can have drastic effects on the range

measurements.

III. MONTE CARLO LOCALIZATION

USING RANGE SENSORS

A. Pose Estimation using a Particle Filter

Throughout this paper, we consider the problem of esti-

mating the pose x = (x, y, θ) of a robot relative to a given

map m using a particle filter. The key idea of this approach

is to maintain a probability density p(xt | z1:t,u0:t−1) of

the location xt of the robot at time t given all observations

z1:t up to time t and all control inputs u0:t−1 up to time

t− 1. This probability is calculated recursively as

p(xt | z1:t,u0:t−1) =

α · p(zt | xt)

∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1 .(1)

Here, α is a normalizing constant ensuring that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms

to be described in Eqn. (1) are the prediction model

p(xt | ut−1,xt−1) and the sensor model p(zt | xt) respec-

tively.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known

as Monte Carlo localization (MCL) [4]. Monte Carlo local-

ization is a variant of particle filtering [6] where each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from Eqn. (1) is performed by

the following two alternating steps:

1) In the prediction step, we draw for each particle with

weight wi a new particle according to wi and to the

prediction model p(xt | ut−1,xt−1).
2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight wi to

each particle according to the sensor model p(zt | xt).

B. Likelihood Models for Range Sensors

The likelihood model p(z | x) plays a crucial role in the

correction step of the particle filter and its proper design

is essential for the robustness of the filter. Due to that, in

this paragraph we will describe typical likelihood models for

range sensors and we shortly will introduce the likelihood

models of our previous work [14], [15]. Afterwards, we will

present our new high dimensional Gaussian mixture model

that is able to represent multi-modalities in the likelihood

function as well as dependencies between the individual laser

beams.

A laser scan zt is a vector of beams zt = (z1
t , . . . , zN

t)T

which have fixed orientations relative to the sensor. Beam-

based sensor models (see Fox et al. [8] for a typical

example) consider each value zi
t of the measurement vector

z as a separate range measurement and represent its one-

dimensional distribution by a parametric function depending

on the expected distance in the respective beam direction.

Such models are closely linked to the geometry and the

physics involved in the measurement process. They are

sometimes also called ray cast models because they rely on

ray casting operations within the map of the environment,

e.g., an occupancy grid map, to calculate the expected

beam lengths. Another popular measurement model for range

finder sensors are the so-called likelihood fields (aka end

point model) [17], which are a correlation-based method

that measures the correlation between the measurement and

the map. Here, the likelihood of a range measurement is a

function of the distance of the respective endpoint of the

beam to the closest obstacle in the environment. This model

lacks physical explanation as it can basically “see through

walls”, but in the case of position tracking it is efficient and

works well in practice. The reader may notice that likelihood

fields are less effective in situations in which the robot

has to perform global localization. In all above-mentioned

approaches, the individual beams are treated independently

and the likelihood p(zt | xt,m) of the entire scan zt is

calculated as the product of the individual beam likelihoods

p(zi
t | xt,m).

Given the high resolution of typical laser range finders

(.25 to 1 degrees), the independence assumption leads to

highly peaked likelihoods. In practice, this problem is dealt

with by sub-sampling the measurements [18], by introducing

minimal likelihoods for beams, or by other means of regu-

larization of the resulting likelihoods (see Arulampalam et

al. [1]). One way to overcome the peakedness is to consider

that the likelihood models are location-dependent as well

as that the location of the robot is modeled by set finite

set of pose hypotheses (particles). Therefore, we estimate

p(z | x) based on the local environment U(x) around a

pose hypothesis x by

p(z | x) =

∫

x̃∈U(x)

p(z | x̃) p(x̃) dx̃ . (2)

Here, U(x) is a particle-dependent, circular area. The di-

ameter of that area is given by the distance to the closest

neighboring particle which can be efficiently determined

using a kd-tree. This model is able to represent the fact

that pose hypotheses given by the samples are typically less

accurate than the measurements obtained by a (SICK) laser

range finder.

Thus, if one learns p(z | x) directly for exact sensor

poses x, e.g., with a mobile robot that is not moved during

training, one gets an extremely peaked model with p(z |
x + δ) ≪ p(z | x) already for small pose perturbations

δ. This peakedness, in turn, leads to problems when only a

finite number of pose hypotheses can be evaluated, as it is

the case, for example, with particle filters where the number

 0

 50

 100

 150

 200

 250

 30 60 90 120 150 180s
c
a

n
 d

im
e

n
s
io

n
a

lit
y

number of beams

PCA
FULL SPACE

Fig. 2. Obtained dimensionality reduction over a full robot trajectory in a
real world experiment using Principal component analysis (PCA).

of particles is limited. The model described in Eqn. 2, how-

ever, is able to explicitly consider the sampling density by

adjusting the spatial extent of the local neighborhoods U(x)
accordingly. The hard task is indeed to estimate and represent

the distributions of range scans p(z | x) from a given number

of training scans from U(x), which are typically simulated

using the map of the environment m.

In our previous approaches, we modeled the observa-

tion likelihood as either unimodal distributions for single

beams [8], [13] or for entire scans [14], [16]. Alternatively,

our recently proposed method [15] is able to consider the

multi-modality of the observation model but is unable to

represent the dependency between the individual scans. In

contrast to this, the novel method presented in this pa-

per combines the advantages of these previous models: It

considers the dependency between the beams of a range

scan and it correctly handles the multi-modal nature of the

likelihood function and at the same time can be computed

efficiently. As we will demonstrate in the experiments, this

more sophisticated model significantly improves the ability

of a mobile robot to localize itself.

In the following section, we describe how to efficiently

learn a high-dimensional Gaussian mixture model for the

distribution obtained by Eqn. 2 to improve the robustness of

the localization process.

IV. LEARNING HIGH DIMENSIONAL GAUSSIAN

MIXTURE OBSERVATION MODELS

Figure 1 illustrates the drastic effects that small changes

of the robot’s pose can have on the measured range scans.

The distribution of measured distances that arises when the

robot pose is varied locally as described in the previous

section is only unimodal in a perfectly convex world. In

general, however, there can be large jumps in perceived range

measurements when the sensor pose is changed only slightly.

Typically, such multi-modalities arise in the proximity of

doorways, corners, and cluttered areas of the environment.

One way to model the different modes in the distribution

of the expected range observation for each laser beam is

to explicitly consider the multi-model nature [15]. Whereas

this technique yields appropriate, multi-model distributions

for individual beams, it is unable to model the dependency

between in individual beams.

The straightforward extension that considers also the

dependency between the individual beams is to learn a

Gaussian mixture model (GMM) based on full laser scans

and not individual beams. Most clustering techniques based

on the Gaussian mixture model, however, show a suboptimal

performance if the size of the training dataset is too small

compared to the number its dimensionality (the parameters

to estimate). Typically, this leads to serious over-fitting. It

is therefore necessary to find a good balance between the

number of parameters to estimate and the generality of the

model.

One way to overcome this problem is to apply k-means

clustering since it does not estimate the covariance matrix

and thus less parameters need to be estimated. However,

the dependencies between beams are then neglected when

estimating the clusters. Alternatively, the high dimensional

data clustering (HDDC) approach recently proposed by Bou-

veyron et al. [2] can be applied. This technique combines

dimensionality reduction with the expectation-maximization

(EM) algorithm [5] to learn a Gaussian mixture model. By

assuming certain dependencies in the covariance matrix, the

learned clusters can be easily re-projected onto the original

space yielding robust clusters with a significantly reduced

risk of over-fitting.

Our approach can be seen as a reduced version of the

method of Bouveyron et al. [2]. We perform an EM-based

Gaussian mixture clustering in a reduced space and then use

the obtained class coefficients to compute the mixture model

in the high dimensional space.

A. Dimensionality Reduction

In dimensionality reduction techniques, one is interested

in finding a mapping from the original, n-dimensional inputs

space to a new space with k < n-dimensions with a minimal

loss of information. Principal component analysis (PCA) is

an un-supervised technique that maximizes the variance in

the data in the new space.

Let Σ be the covariance matrix of the input data D. PCA

computes the eigenvalues λi and eigenvectors of Σ. Let Q be

the matrix of the eigenvectors sorted according to the eigen-

values. We can then compute a matrix ∆ = QT ΣQ so that

∆ is a diagonal matrix with the eigenvalues on the diagonal

in descending order. Let λi ≥ λj for all i < j. We consider

only the first k dimensions for clustering that cover 95% of

the variance which is given by
∑k

i=1 λi [
∑n

i=1 λi]
−1
≥ 0.95.

By considering only the first k dimensions, we obtain

an approximative but compact representation for laser range

scans. Figure 2 depicts the obtained dimensionality reduction

in real world settings.

Concretely, for each pose hypothesis xt, we simulate

L complete range scans D = {d1, . . . ,dL} at locations

drawn uniformly from U(xt) using the given map m of

the environment. The simulation of the laser range scans D
takes into account the geometry and the physics involved in

the measurement process. It relies on ray casting operations

within an occupancy grid map to calculate the expected beam

lengths. The elements of the set D of laser range scans are

used to compute the PCA and thus lead to a projection into

a reduced, k-dimensional space.

B. Clustering in the Reduced Space

Let ·̃ refer to quantities computed in the reduced, k-

dimensional space. Thus, D̃ = {d̃1, . . . , d̃L} are the ele-

ments of the set D projected to the low-dimensional space

given the transformation matrices described in the previous

section. In the reduced space, we are now able to efficiently

cluster the range scans while reducing the risk of over-fitting

(compare [2]).

To estimate the clusters in the low-dimensional space, we

apply the EM algorithm to efficiently learn the mixture dis-

tribution. The EM algorithm iteratively assigns the reduced

data scans in D̃ to the mixture components and optimizes

their parameters in the following manner. Consider that θ′

denotes the current estimate of parameters µ̃j , Σ̃j , and αj . In

the E-Step, we calculate the expected value of the complete

log-likelihood

Q(θ,θ′) =E
[

log{p(D̃, Y | θ)} | D̃,θ′

]

(3)

=

∫

y

log{p(D̃, y | θ)}p(y | D̃,θ′) dy, (4)

where Y denotes data associations of the projected simulated

data points D̃ to one of the Gaussian mixture components.

Visually speaking, we estimate the assignment likelihoods

of the individual samples to the clusters while keeping the

other model parameters fixed. Then, in the M-Step, we fix

the data associations and optimize the expected value of the

complete log-likelihood

θ′′ = argmax
θ
Q(θ,θ′) (5)

by updating the cluster parameters according to

αj =
1

L

L
∑

l=1

P (j | d̃l,θ
′), (6)

µ̃j =

∑L

l=1 P (j | d̃l,θ
′) d̃l

∑L

l=1 P (j | d̃l,θ′)
, (7)

Σ̃j =

∑L

l=1 P (j | d̃l,θ
′)(d̃l − µ̃j)(d̃l − µ̃j)

T

∑L

l=1 P (j | d̃l,θ′)
. (8)

We now set θ′ ← θ′′ and iterate this procedure until the

amount of improvement per iteration falls below a specified

threshold. To determine the actual number of clusters in the

resulting model, we apply the Bayesian information criterion

and choose the model with the best score.

C. Transferring the Mixture Components to the Measure-

ment Space

After identifying the individual clusters and the corre-

sponding probabilities P (j | d̃l,θ
′), we can compute our

mixture model in the high dimensional space. This can

be easily achieved if we assume that the corresponding

probabilities are identical in the reduced space as well as

in the measurements space. Thus, the mixture in the high-

dimensional space is given by

p(zt | xt,m) =
J

∑

j=1

αj N (xt, µj ,Σj), (9)

-800

-600

-400

-200

 0

 200

 400

 0 200 400 600 800

a
v
e
ra

g
e
 t
ru

e
p
o
s
e
 l
o
g
 l
ik

e
lih

o
o
d

iteration step

IB
EC

HDGM

-800

-600

-400

-200

 0

 200

 400

 0 200 400 600 800

a
v
e
ra

g
e
 t
ru

e
p
o
s
e
 l
o
g
 l
ik

e
lih

o
o
d

iteration step

IB
EC

HDGM

-200

-150

-100

-50

 0

 50

 0 200 400 600 800

a
v
e
ra

g
e
 t
ru

e
p
o
s
e
 l
o
g
 l
ik

e
lih

o
o
d

iteration step

GM
HDGM

-200

-150

-100

-50

 0

 50

 0 200 400 600 800

a
v
e
ra

g
e
 t
ru

e
p
o
s
e
 l
o
g
 l
ik

e
lih

o
o
d

iteration step

GM
HDGM

Fig. 3. Evaluated likelihood for 61, and 181 laser beams (from left to
right) for different sensor models (upper diagrams) and the two sensor mod-
els(HDGM,GM) which take the multi-modalities in the laser measurements
into account (lower diagrams) at 847 robot poses in our office environment
depicted in Figure 5.

 0

 50

 100

 150

 200

 250

 300

 350

 30 60 90 120 150 180s
td

 d
e

v
.

o
f

tr
u

e
 p

o
s
e

 l
o

g
 l
ik

e
.

number of beams

IB
EC
GM

HDGM

 0

 10

 20

 30

 40

 50

 60

 70

 30 60 90 120 150 180s
td

 d
e

v
.

o
f

tr
u

e
 p

o
s
e

 l
o

g
 l
ik

e
.

number of beams

GM
HDGM

Fig. 4. Standard deviations of the different sensor models for 31, 61, and
181 laser beams (left). Comparison of the standard deviation of the two
sensor models(HDGM,GM) which take the multi-modalities in the expected
laser measurements into account.

where J is the number of clusters and N (x,µ,Σ) refers to

the n-dimensional Gaussian evaluated at x with mean µ and

covariance Σ according to

µj =

∑L

l=1 P (j | d̃l,θ
′)dl

∑L

l=1 P (j | d̃l,θ′)
(10)

Σj =

∑L

l=1 P (j | d̃l,θ
′)(dl − µj)(dl − µj)

T

∑L

l=1 P (j | d̃l,θ′)
. (11)

In contrast to former approaches which modeled the

likelihood functions as unimodal distributions for single

beams [8], [13] or entire scans [14], [16], or as a multi-

modal distributions for single beams [15], we now consider

high-dimensional, multi-modal mixture models. This allows

us to take the dependency between the individual beams

as well as the multi-modal nature of the distribution into

account. As we will demonstrate in the experiments, this

more sophisticated model significantly improves the ability

of a mobile robot to localize itself.

V. EXPERIMENTS

The approach described above has been implemented and

tested on data obtained with a mobile robot. To evaluate

our approach, we performed several experiments. We first

show that the pose uncertainty of the robot can result in

serious problems during a localization process, especially

when the multi-modality of the beams is not considered.

Additionally, we show the improvements achieved by also

considering the dependencies between the individual laser

beams. Then in the second set of experiments, we analyze

our high-dimensional Gaussian mixture model in a global

localization task in which multi-modal situations frequently

occur. We therefore compare it to alternative models, which

do not simultaneously take into account the multi-modality

and the dependencies between the individual laser beams. In

particular, we compared the performance of the following

sensor models:

HDGM: Our high-dimensional Gaussian mixture model as

detailed in Section IV.

GM: The place-dependent beam-based Gaussian mixture

sensor model as detailed in our previous work [15].

IB: The standard beam-based sensor model that as-

sumes independent beams with an additive white

noise component.

EC: The scan-based, place-dependent model with

learned covariance matrix as detailed in our earlier

previous work [14].

A. Likelihood Evaluation

In the first set of experiments, we evaluated the likelihood

of the true position of the robot in a data set acquired using

a real robot. We therefore compared our high-dimensional

Gaussian mixture model (HDGM) to other likelihood models

which are also based on ray casting operations (GM, IB, and

EC). This set of experiments is designed to investigate the

case that the robot is not able to localize itself at different lo-

cations with the same robustness. In our previous work [15],

we demonstrated that whenever the robot traverses regions

close to obstacles, doorways, or clutter, the likelihood of the

true position decreases. In the case of global localization

using a particle filter this leads to serious problems because

the particles at these positions have a high risk of being

depleted. Then, we calculated for different sensor models

(GM, IB, EC, and DC) the likelihood of the simulated range

scan given the true position of the robot. The two upper

diagrams of Figure 3 show the evaluated likelihood for

61, and 181 laser beams (from left to right) for different

sensor models at 847 robot poses in our office environment

depicted in Figure 5. The lower diagrams show the same

for the two sensor models (HDGM, GM) which take the

multi-modalities in the expected laser measurements into

account. As can be seen from Figure 4, our high-dimensional

Gaussian mixture model (HDGM) yields a smaller variance

in the estimated likelihood of the true pose compared to

the other sensor models. Additionally, the right diagram of

this Figure illustrates that our novel high-dimensional model

(HDGM) yields even a smaller variance in the estimated

likelihood compared to the beam-based Gaussian mixture

model (GM) especially when the number of integrated laser

beams is increased. This higher variance in the estimated

likelihoods, which is caused by the independence assumption

of the beam-based sensor model might lead to a divergence

of the probabilistic localization even in the case of position

tracking.

B. Localization

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10000 15000 20000 25000 30000

s
u

c
c
e

s
s
 r

a
te

 [
%

]

number of particles

HDGM
GM
EC
DC
IB

 40

 60

 80

 100

 120

 140

 5000 10000 15000 20000 25000 30000

s
u

c
c
e

s
s
 r

a
te

 [
%

]

number of particles

181 beams
91 beams
61 beams
31 beams

 40

 60

 80

 100

 120

 140

 5000 10000 15000 20000 25000 30000

s
u

c
c
e

s
s
 r

a
te

 [
%

]

number of particles

181 beams
91 beams
61 beams
31 beams

Fig. 5. The six positions with the highest probability that the global
localization in the office environment fails (upper left). The upper right
diagram shows the number of successful localizations after ten integrations
of 61 measurements at these locations. The lower diagrams show the same
experiment for the two multi-modal sensor models (left: HDGM, right: GM)
for different beam numbers.

The second set of experiments is designed to illustrate

that our new high-dimensional sensor model (HDGM), which

takes the multi-modality as well as the dependencies of

measurements into account, achieves a more robust and

accurate localization than the other sensor models. The upper

left image in Figure 5 shows the six positions in a real

environment where we obtained the highest probability that

the global localization fails. These probabilities have been

determined by random restarts of the localization procedure

during 50 complete runs on the data set. At these positions

typically the likelihoods of the true poses are extremely low

due to the multi-modality of the measurements. To evaluate

the properties of the different sensor models, we performed

20 global localization runs at each position and compared

the average success rates. In these experiments, we assumed

that the localization was achieved when the mean of the

particles differed by at most 50 cm from the true location

of the robot. The upper diagram of Figure 5 shows the

number of successful localizations after ten integrations of

61 measurements at these locations. The lower diagrams

show the same experiment for different beam numbers for

the two sensor models (HDGM, GM) which take the multi-

modalities in the expected laser measurements into account.

The experiments show that our high-dimensional Gaussian

mixture model (GM) allows us to more robustly localize the

robot in situations in which the other models frequently fail.

Additionally, it demonstrates that we are able to integrate

more measurements to achieve a higher accuracy of the

filtering process without losing robustness.

VI. CONCLUSIONS

In this paper, we presented a novel place-dependent sensor

model for range scans that considers entire scans instead of

individual beams and in this way overcomes the indepen-

dence assumption underlying popular alternative models. At

the same time, it utilizes Gaussian mixture models to rep-

resent potential multi-modalities of the likelihood function.

To reduce the dimensionality of the measurement space it

applies the principle component analysis.

Our approach has been implemented and extensively tested

on data obtained with mobile robots equipped with laser

range finders. In our experiments, our new model showed

superior performance over other popular models proposed in

the past.

REFERENCES

[1] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking.
In IEEE Transactions on Signal Processing, volume 50, pages 174–
188, 2002.

[2] C. Bouveyron, S. Girard, and C. Schmid. High-dimensional data
clustering. Computational Statistics and Data Analysis, 52(1):502–
519, 2007.

[3] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
Kavraki L.E., and S. Thrun. Principles of Robot Motion Planning.
MIT-Press, 2005.

[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), pages 99–141, 1998.
[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal

Statistical Society, 1977.
[6] A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-

Carlo Methods in Practice. Springer Verlag, 2001.
[7] T. Duckett and U. Nehmzow. Mobile robot self-localization using

occupancy histograms and a mixture of Gaussians location hypotheses.
Robotics and Autonomous Systems, 34(2-3):119–130, 2001.

[8] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence

Research, 11:391–427, 1999.
[9] T. Koshizen, P. Bartlett, and A. Zelinsky. Sensor fusion of odometry

and sonar sensors by the Gaussian mixture Bayes’ technique in mobile
robot position estimation. In IEEE International Conference on

Systems, Man, and Cybernetics (SMC), 1999.
[10] S. Lenser and M. Veloso. Sensor resetting localization for poorly

modelled mobile robots. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2000.
[11] B. Limketkai, D. Fox, and L. Liao. Crf-filters: Discriminative particle

filters for sequential state estimation. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2007.
[12] A. Petrovskaya, O. Khatib, S. Thrun, and A.Y. Ng. Bayesian estima-

tion for autonomous object manipulation based on tactile sensors. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2006.

[13] P. Pfaff, W. Burgard, and D. Fox. Robust monte-carlo localization
using adaptive likelihood models. In H.I. Christiensen, editor, Euro-

pean Robotics Symposium 2006, volume 22 of STAR Springer tracts

in advanced robotics, pages 181–194. Springer Verlag, 2006.
[14] P. Pfaff, C. Plagemann, and W. Burgard. Improved likelihood models

for probabilistic localization based on range scans. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2007.
[15] P. Pfaff, C. Plagemann, and W. Burgard. Gaussian mixture models for

probabilistic localization. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2008.
[16] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Gaussian beam

processes: A nonparametric bayesian measurement model for range
finders. In Robotics: Science and Systems (RSS), June 2007.

[17] S. Thrun. An online mapping algorithm for teams of mobile robots.
Int. Journal of Robotics Research, 20(5):335–363, 2001.

[18] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT-Press,
2005.

[19] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo
localization for mobile robots. Artificial Intelligence, 128(1-2), 2001.

[20] B. Upcroft, S. Kumar, M.F. Ridley, L. Ong, and H.F. Durrant-Whyte.
Fast re-parameterisation of Gaussian mixture models for robotics
applications. In Australian Conference on Robotics and Automation,
2004.

[C3] K.M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-

robot exploration using a segmentation of the environment. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Nice,

France, 2008.

Coordinated Multi-Robot Exploration

using a Segmentation of the Environment

Kai M. Wurm Cyrill Stachniss Wolfram Burgard

Abstract— This paper addresses the problem of exploring
an unknown environment with a team of mobile robots. The
key issue in coordinated multi-robot exploration is how to
assign target locations to the individual robots such that the
overall mission time is minimized. In this paper, we propose a
novel approach to distribute the robots over the environment
that takes into account the structure of the environment.
To achieve this, it partitions the space into segments, for
example, corresponding to individual rooms. Instead of only
considering frontiers between unknown and explored areas as
target locations, we send the robots to the individual segments
with the task to explore the corresponding area. Our approach
has been implemented and tested in simulation as well as
in real world experiments. The experiments demonstrate that
the overall exploration time can be significantly reduced by
considering our segmentation method.

I. INTRODUCTION

Autonomous robots that are designed to create a map

of their environment require the capability to effectively

cover the space. There are several applications in which

robots have been designed to autonomously explore their

environment such as planetary exploration or in disaster

missions. Using a coordinated team of robots instead of a

single robot has often been suggested to be advantageous [4],

[7] and cooperating robots have the potential to accomplish

a task faster than a single robot [11]. By using several

robots, redundancy can be explicitely introduced so that such

a team can be expected to be more fault-tolerant than a

single robot. Another advantage of robot teams arises from

merging overlapping sensor information, which can help to

compensate for sensor uncertainty. However, when robots

operate in teams there is the risk of interference between

them [10], [20]. For example, if the robots have the same

type of active sensors such as ultrasound sensors, the overall

performance can be reduced due to cross-talk. The more

robots are used, the more time each robot may spend on

detours in order to avoid collisions with other members of

the team.

In this paper, we consider the problem of efficient explo-

ration with teams of mobile robots that seek to minimize

the overall time required to complete the mission. The entire

task of coordinating a team of robots during exploration can

roughly be separated into two subsequent tasks. First, one

needs to identify potential exploration targets for the robots.

Second, one needs to assign the individual robots to the target

locations calculated in the previous step.

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany

Fig. 1. Typical coordination of robots obtained by assigning them to
different segments of the partial map.

A popular method for generating potential exploration

targets has been proposed by Yamauchi et al. [26]. In

this approach, robots are sent to so-called frontiers, which

are given as the borders between the explored and the

unexplored space. In a multi-robot context, it is important

to carefully assign robots to targets so that redundant work

and interference between robots is minimized. Therefore, it

is the exploration strategy which affects the efficiency of the

robot team the most. In many approaches, the robots are

assigned directly to frontier targets based on a cost function

that takes into account the expected path costs or travel time

as well as a utility function that covers aspects such as the

expected gain in information [3], [9], [21], [24], [28].

The coordination strategies described there consider in-

dividual locations rather than segments of the environment.

Segmentation approaches which have recently received an

increased amount of attention [2], [8], [23], [27] have origi-

nally been designed to facilitate topological localization and

loop closing or have been used to reduce planning costs. In

this paper, we introduce a new online coordination strategy

for multi-robot exploration. It uses a segmentation of the

already explored area to assign robots to segments instead

of directly assigning them to frontier targets. Based on this

segmentation, the robots are distributed over the environment

more effectively which leads to a reduction of redundant

work and the avoidance of interference between robots. As

a result, the exploration time is significantly reduced.

This paper is organized as follows. After discussing re-

lated work, we describe the Hungarian Method for target

assignment in Section III. In Section IV, we introduce a

graph-based method for map segmentation while in Section

V we present our coordination approach. Finally, we describe

simulated and real world experiments conducted to evaluate

our approach.

II. RELATED WORK

The problem of exploring unknown terrains with teams

of mobile robots has received considerable attention in the

past. Yamauchi [26] presented a technique to learn maps

with a team of mobile robots. He introduced the concept of

frontiers between known and unknown areas in a grid map,

which are widely used to select potential target locations

during exploration. In this paper, we also consider frontiers

but additionally utilize the structure of the environment for

defining potential target locations. Koenig et al. [14] analyze

different terrain coverage methods for small robots with

limited sensing and computational capabilities. Furthermore,

there has been research on how to deal with limited commu-

nication in the context of multi-robot exploration [3], [19].

An approach towards cooperation in heterogeneous robot

systems has been presented by Singh and Fujimura [21].

If a robot is too big to pass through a narrow passage, it

informs other robots about this task. Howard et al. [12]

presented an incremental deployment approach that explicitly

deals with obstructions, i.e., situations in which the path of

one robot is blocked by another. Zlot and colleagues [28]

proposed an architecture for mobile robot teams in which the

exploration is guided by a market economy. They consider

sequences of potential target locations for each robot and

trade tasks between the robots using single-item first-price

sealed-bid auctions. Such auction-based techniques have also

been applied by Gerkey and Matarić [9] to efficiently solve

the task allocation problem with a group of robots.

Matarić and Sukhatme [17] consider different strategies for

task allocation in robot teams and analyze the performance

of the team in extensive experiments. Ko et al. [13] present

an approach that uses the Hungarian method [15] to compute

the assignments of frontier cells to robots. In contrast to our

work, Ko et al. mainly focus on finding a common frame

of reference in case the start locations of the robots are not

known.

In a previous work [24], we considered the problem

of integrating semantic background information into the

coordination procedure. This technique is related to the

method proposed in this paper, even if the methodology

is substantially different. Compared to our previous ap-

proach [24], we obtain a significantly reduced exploration

time also for small teams of robot. The map segmentation

technique used throughout this work is related to the spatial

semantic hierarchy introduced by Kuipers and Byun [16].

The difference lies in the fact that we do not learn a model

based on distinct places but utilize this information for a

better coordination. Learning topological maps is itself a

research field on its own and different methods have been

proposed [2], [8], [25], [27]. These approaches are related to

the technique described in this paper as they can be applied

to separate the environment into appropriate regions that are

then assigned to the individual robots.

III. TARGET ASSIGNMENT

USING THE HUNGARIAN METHOD

In 1955, Kuhn [15] presented a general method, which is

often referred to as the Hungarian method, to assign a set of

jobs to a set of machines given a fixed cost matrix. Consider

a given n × n cost matrix which represents the cost of all

individual assignments of jobs to machines. The Hungarian

method, which is able to find the optimal solution with the

minimal cost given this matrix, can be summarized by the

following three steps:

1) Compute a reduced cost matrix by subtracting from

each element the minimal element in its row. After-

wards, do the same with the minimal element in each

column.

2) Find the minimal number of horizontal and vertical

lines required to cover all zeros in the matrix. In case

exactly n lines are required, the optimal assignment is

given by the zeros covered by the n lines. Otherwise,

continue with Step 3.

3) Find the smallest nonzero element in the reduced cost

matrix that is not covered by a horizontal or vertical

line. Subtract this value from each uncovered element

in the matrix. Furthermore, add this value to each

element in the reduced cost matrix that is covered by

a horizontal and a vertical line. Continue with Step 2.

The computationally difficult part lies in finding the mini-

mum number of lines covering the zero elements (Step 2).

The overall algorithm has a complexity of O(n3). The

method described above can directly be applied to assign

a set of target locations (tasks) to the individual robots

(machines). Here, each entry in the cost matrix can be the

length of the path the corresponding robot has to travel to

reach the designated target point.

Since the implementation of the Hungarian method de-

scribed above requires the number of jobs and the number

of machines to be equal, we need to slightly adapt the

cost matrix computed in that way. This can be achieved

by expanding the cost matrix using “dummy machines”

(which will result in target locations that are not approached

by any of the robots) and by duplicating existing targets.

The Hungarian Method is then able to compute the optimal

assignment, given the cost matrix.

IV. MAP SEGMENTATION

Several researchers investigated the problem of segment-

ing maps based on the partitioning of a graph [1], [8],

[16], [25], [27]. A very popular graph-based representation

in this context are Voronoi Graphs (VGs) [5]. To compute

the Voronoi Graph G(m) = (V,E) of a given map m, we

consider the set Op(m) which contain for each point p in

the free-space C of m the set of closest obstacle points. The

Voronoi Graph then is given by the set of points in Op(m)
for which there are at least two obstacle points with an equal

minimal distance:

V = {p ∈ C | |Op(m)| ≥ 2} (1)

E = {(p, q) | p, q ∈ V, p adjacent q in m} (2)

For each pair of nodes in G(m) we add an edge if their

corresponding points in m are adjacent. The Voronoi Graph

can be generated from metric maps of the environment such

as occupancy grid maps [6], [25]. In a practical implemen-

tation this can be efficiently done by applying the Euclidean

distance transformation [18] to an occupancy grid map. This

transformation results in a distance map which holds for each

grid cell the distance to the closest obstacle. A Voronoi Graph

can then be constructed using skeletonization on the distance

map. Figure 2 illustrates the process of generating a Voronoi

Graph for an example occupancy grid map.

After generating the Voronoi Graph we are now interested

in creating a partitioning of the graph into k disjoint sets

V1, V2, . . . , Vk with

V =
k

⋃

i=1

Vi (3)

such that each cluster of nodes Vi corresponds to a segment

we can assign robots to. Thrun et al. suggest the graph to

be separated at so-called critical points [25]. Here, critical

points are those nodes in the Voronoi Graph at which

the distance to the closest obstacle in the map is a local

minimum. This is usually the case in doorways or other

narrow passages.

Whereas this approach is able to reliably find doorways, it

also generates a lot of false positive candidates in cluttered

environments. To eliminate these false positives, we constrain

them in the following way: First, critical points have to be

nodes of degree 2 (two edges) and second, need to have

a neighbor of degree 3 (a junction node). In addition, we

require the points to lead from known into unknown areas,

since segments which do not contain unknown areas can

safely be ignored in an exploration task. To verify this

constraint, we compute the distance to the closest reachable

unknown cell for each point. This can be done efficiently

in a similar way as the computation of the distance map.

Figure 3 shows a pruned version of the Voronoi graph and

the critical points found by our algorithm. All doorways

have been selected as candidates and the number of false

positives is much smaller than the number of critical points

according to the definition of Thrun et al. [25] which includes

distance minima in the Euclidean distance transformation

within corridors and rooms.

In the practical experiments described in this paper we

found that this segmentation technique yields sufficient re-

sults and allows to nicely distribute the robots. In unmodified

office environments, we can typically reliably separate rooms

and segments of a corridor. Other, more complex environ-

ments may however suggest more sophisticated segmentation

algorithms which rely on hand-labeled training data [2], [8]

or more complex reasoning [1], [27].

Fig. 2. Generation of the Voronoi Graph. Left: Example grid-map. Center:
Map plus distance transform (the darker a point the larger the distance to
the closest obstacle). Right: Map and Voronoi Graph generated from the
distance transform using skeletonization.

Fig. 3. Example segmentation of a small fraction of an environment. The
marked nodes are the candidates for the partitioning of the graph calculated
by our approach.

V. ASSIGNMENT OF ROBOTS TO TARGET AREAS

Typical approaches to coordinated exploration seek to

minimize the time needed to cover the whole environment

with the robot’s sensors. Therefore, it is often sub-optimal to

explore the same (local) area with more than one robot. A

cluster of robots which has a serious overlap in the field of

view of the robots’ sensors does not exploit its full potential.

In practice, it is generally much more efficient to explore

separate regions of the environment instead. For this reason,

it is important to assign robots to exploration targets such

that the robots do not get too close to each other during

exploration.

Indoor environments are in general structured environ-

ments. Buildings are usually divided into rooms which can be

reached via corridors. In many cases, it can be a disadvantage

to assign more than one robot to one room. The room might,

for example, be too small for a second robot to speed up

it’s exploration even though there initially is more than one

frontier in the room. When the room is fully explored, robots

might even block each other while trying to leave the room

which will result in an increase in exploration time.

In our approach, we assign individual robots to different

segments of unexplored space. Segments could be separate

rooms, corridors, or parts of larger corridors or rooms. This

takes into account the structure of the environment and

prevents the forming of inefficient clusters of robots.

Algorithm 1 Target Assignment Using Map Segmentation.

1: Determine segmentation S = {s1, ..., sn} of map.

2: Determine the set of frontier targets for each segment.

3: Compute for each robot i the cost Ci
s for reaching each

map segment s ∈ S.

4: Discount cost Ci
s if robot i is already in segment s.

5: Assign robots to segments using the Hungarian Method.

6: for all segments s do

7: Assign robot(s) to frontier targets in s w.r.t. path costs

using the Hungarian Method.

8: end for

Our assignment algorithm is summarized in Algorithm 1.

An assignment is determined whenever one of the robots

requests a new exploration target. First, a partition of the

partial map of the environment is created using the graph-

based method described in Section IV. To generate targets

within the segments, we then determine the set of frontier

cells. The cost Ci
s for reaching segment s with robot i is

defined as the expected path cost to the nearest frontier

cell within s. This cost is discounted by a constant factor

if robot i is already located in segment s. This has the

effect that the robots stay in their assigned segment until

it is completely explored. After computing the costs of

a segment, an assignment is calculated by applying the

Hungarian method (see Section III) based on the cost matrix.

The Hungarian method does not assign more than one

robot to the same segment unless there are more robots avail-

able than there are unexplored segments. To appropriately

handle those cases in which multiple robots are assigned to

a single segment, we apply a local assignment based on the

cost-optimal frontier within a segment. For this reason, our

algorithm is equivalent to a purely frontier-based assignment

if the environment cannot be partitioned, i.e., there is only

one segment.

By assigning robots to separate segments, an appropriate

distribution of the robots can be achieved. As we will

demonstrate in the experiments, this leads to a significant

reduction in exploration time. Instead of aiming at the closest

frontier, robots share work more efficiently. A typical office

environment, for example, contains corridors and rooms.

Using our approach, each of the corridors is explored com-

pletely by one of the robots. In this way, the rough structure

of the building will quickly be revealed. Meanwhile other

robots will be assigned to the rooms reachable from the

corridors, one at a time. This behavior does not only appear

to be a natural way of exploring an unknown environment,

our experiments also revealed that it significantly increases

the efficiency of the robot team compared to approaches

which ignore the structure of the building.

Fig. 4. Maps used in our simulated experiments: Building 079 of the
Freiburg University (top) and Bremen University Cartesium (bottom).

Note that our algorithm is not limited to homogenous

teams of robots. Consider the situation in which one par-

ticular robot cannot enter a certain part of the environment

while another robot can. The assignment algorithm described

above can be applied in this case by using modified segment

costs C̄i
s defined as:

C̄i
s =

{

Ci
s , if robot i can enter segment s

∞ , otherwise.
(4)

VI. EXPERIMENTAL RESULTS

Our approach has been implemented and evaluated using

simulated as well as with real teams of robots. The real

world experiments were conducted using two ActivMedia

Pioneer II robots equipped with a laser range finder with

a 180 degrees field of view. For generating the simulation

results, we used the Carnegie Mellon Robot Navigation

Toolkit. In all our experiments we assumed that the robots

share a joint occupancy grid map, which is generated based

on the sensor readings of all robots and under the assumption

that all positions of the vehicles are known. This map is used

for coordination, path planning, and path execution. We also

assume that there is a central planning component which

can communicate with all robot and can assign exploration

targets to them. If there is only a limited communication

range, then clusters of robots can be coordinated if one

selects one individual planning agent per cluster [13], [22].

The experiments have been designed to verify that our ex-

ploration approach leads to significantly shorter exploration

time compared to a standard frontier-based approach.

A. Simulation Results

To evaluate our robot coordination algorithm, we simu-

lated teams of robots in various environments. We com-

pared our segmentation-based approach to a frontier-based

approach in which each robot is assigned to the closest

frontier which has not been assigned to another robot yet.

Since this strategy does not consider the structure of the

environment, it will in general also assign more than one

robot to one room or corridor if they contain more than one

frontier.

To eliminate influences from the segmentation algorithm

used in the real world experiment, we assumed a given

segmentation of the environment into rooms and corridors

in our simulation experiments. As mentioned above, such

a segmentation could also be reliably generated from the

partial map alone.

Figure 4 depicts two maps of real environments used

for the simulation (see also real world experiments). Both

of them are office environments, one at the University of

Freiburg and the other at the University of Bremen. To

make the maps more different, we added clutter to the map

representing the office environment located at the University

of Bremen.

We varied the size of the simulated team from two to six

robots (Freiburg map) respectively from two to eight robots

(Bremen map). Since the Bremen map is considerably bigger

than the Freiburg map, we simulated larger teams of robots

there. For each team size, we conducted a series of simulated

exploration runs starting from 20 different starting positions.

The results of our experiments can be seen in Figure 5.

We measured the runtime gain of our approach which

uses the assignment described in Section V compared to

the alternative assignment described above. We plotted the

runtime gain in percent of the total runtime against the size

of the robot team. The error bars in the plots indicate the

95% confidence level. It can be seen that our approach

significantly outperforms the approach which does not use a

segmentation based assignment.

The runtime gain is bigger for the Cartesium map since

this map features several large rooms. This observation can

be seen as an indicator as to when our approach will lead to

especially good results. Whenever the environment can be

divided into reasonably large and separated segments, our

technique substantially reduces the overall exploration time.

In general, our strategy assigns one robot to one segment.

As soon as there are more robots than segments multiple

robots may be assigned to the same segment as mentioned

in Section V. For this reason, the runtime gain of our

strategy will decrease for large teams of robots in small

environments. This can be seen in Figure 5. Note however,

that the overall time to complete the mission still gets smaller

the more robots are added to the task (the plot only shows

the improvement of our approach vs. the frontier-based

approach).

B. Real Robot Experiments

Our coordination algorithm has been evaluated using a

team of real robots. For this experiment, we used two

identical Pioneer II robots equipped with a laser range finder

and a standard laptop-computer. During the experiment both

robots were connected via a wireless network. The robot

localization was achieved using a standard scan-matching

approach. The relative starting poses of the robot were

manually set in the beginning. Figure 6 depicts the two robots

during their exploration mission.

The experiments were conducted in the lower floor of

building 079 of the Freiburg computer science campus. The

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7

ru
n
ti

m
e

g
ai

n
 [

%
]

number of robots

segmentation based coordination
frontier based coordination

-5

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9

ru
n
ti

m
e

g
ai

n
 [

%
]

number of robots

segmentation based coordination
frontier based coordination

Fig. 5. Exploration time gain of our approach compared to a frontier-
based approach for the AIS lab in Freiburg (top) and the Bremen Cartesium
(bottom).

Fig. 6. Two robots exploring the AIS laboratory of the University of
Freiburg using our coordination approach.

building has a size of approximately 37m x 14m and consists

of numerous office rooms and two long corridors divided by

a door.

The team of robots was able to successfully explore the

environment using our coordination approach. The result of

one of the experiments can be seen in Figure 7. The figure

shows the combined map of both robots after the exploration

had finished. It also shows the trajectories of both robots

during the exploration. The total exploration time was less

than nine minutes, each of the robots traveled approximately

120m.

It can be seen that each of the rooms was explored by

exactly one of the robots. It can also be seen that both

corridors have been explored completely by one of the robots

while the other one was exploring rooms reachable from the

corridor. Another interesting effect is that the robots did not

Fig. 7. Resulting map of the real world experiment including the trajectories
of the two individual robots.

block each other during the execution of their tasks.

VII. CONCLUSION

In this paper, we proposed a novel technique for coordinat-

ing a team of exploring robots. We use a segmentation of the

environment to determine exploration targets for the individ-

ual robots. By assigning each robot to a separate segment,

a balanced distribution of the robots over the environment

is achieved. This leads to a shorter overall exploration time

compared to an approach which does not use our segmen-

tation. Thus, our approach reduces the risk of interference

between robots and the amount of redundant work. We also

introduced an efficient graph-based segmentation technique

for partially explored environments. Our approach has been

implemented and evaluated in simulation as well as with

a team of real robots. The experiments show a significant

improvement of the segmentation-based approach compared

to a standard frontier-based approach for structured indoor

environments. Note that our approach is not limited to our

segmentation method. Using a heterogenous team of robots,

for example, such a segmentation can be defined based on

traversability constraints of the different robots.

ACKNOWLEDGMENT

This work has partly been supported by the German

Research Foundation (DFG) under contract number SFB/TR-

8 (A3).

REFERENCES

[1] P. Beeson, N.K. Jong, and B. Kuipers. Towards autonomous topolog-
ical place detection using the extended voronoi graph. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[2] E. Brunskill, T. Kollar, and N. Roy. Topological mapping using
spectral clustering and classification. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), San Diego,
October 2007.

[3] W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated
multi-robot exploration. IEEE Transactions on Robotics, 21(3):376–
378, 2005.

[4] Y.U. Cao, A.S. Fukunaga, and A.B. Khang. Cooperative mobile
robotics: Antecedents and directions. Journal of Autonomous Robots,
4(1):7–27, 1997.

[5] H. Choset, , and Burdick J. Sensor-based exploration: The hierarchical
generalized voronoi graph. J. of Robotics Research, 19(2), 2000.

[6] H. Choset and J. Burdick. Sensor based planning, part i: The
generalized voronoi graph. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), Nagoya, Japan, 1995.

[7] G. Dudek, M.. Jenkin, E. Milios, and D. Wilkes. A taxonomy for
multi-agent robotics. Journal of Autonomous Robots, 3(4):375–397,
1996.

[8] S. Friedman, H. Pasula, and D. Fox. Voronoi random fields: Extracting
topological structure of indoor environments via place labeling. In
Manuela M. Veloso, editor, Proc. of the Int. Conf. on Artificial

Intelligence (IJCAI), pages 2109–2114, 2007.
[9] B.P. Gerkey and M.J. Matarić. Sold!: Auction methods for multi-

robot coordination. IEEE Transactions on Robotics and Automation,
18(5):758– 768, 2002.

[10] D. Goldberg and M.J. Matarić. Interference as a tool for designing and
evaluating multi-robot controllers. Journal of Robotics & Autonomous

Systems, 8:637–642, 1997.
[11] D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige. Many robots make

short work. AI Magazine, 18(1):55–64, 1997.
[12] A. Howard, M.J. Matarić, and S. Sukhatme. An incremental deploy-

ment algorithm for mobile robot teams. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), pages 2849–2854,
Lausanne, Switzerland, 2002.

[13] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical,
decision-theoretic approach to multi-robot mapping and exploration.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), pages 3232–3238, Las Vegas, NV, USA, 2003.
[14] S. Koenig, B. Szymanski, and Y. Liu. Efficient and inefficient ant

coverage methods. Annals of Mathematics and Artificial Intelligence,
31:41–76, 2001.

[15] H.W. Kuhn. The hungarian method for the assignment problem. Naval

Research Logistics Quarterly, 2(1):83–97, 1955.
[16] B. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy

based on a semantic hierarchy of spatial representations. Journal of

Robotics & Autonomous Systems, 8:47–63, 1991.
[17] M.J. Matarić and G. Sukhatme. Task-allocation and coordination of

multiple robots for planetary exploration. In Proc. of the Int. Conf. on

Advanced Robotics (ICAR), pages 61–70, Budapest, Hungary, 2001.
[18] A. Meijster, J.B.T.M. Roerdink, and W.H. Hesselink. Mathematical

Morphology and its Applications to Image and Signal Processing,
chapter A General Algorithm for Computing Distance Transforms in
Linear Time, pages 331–340. Kluwer Academic Publishers, 2000.

[19] I. Rekleitis, V. Lee-Shue, A. Peng New, and H. Choset. Limited
communication, multi-robot team based coverage. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), pages 3462–3468,
New Orleans, LA, USA, 2004.

[20] M. Schneider-Fontan and M.J. Matarić. Territorial multi-robot task
division. IEEE Transactions on Robotics and Automation, 14(5):815–
822, 1998.

[21] K. Singh and K. Fujimura. Map making by cooperating mobile robots.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 254–259, Atlanta, GA, USA, 1993.

[22] C. Stachniss. Exploration and Mapping with Mobile Robots. PhD
thesis, University of Freiburg, Department of Computer Science, April
2006.

[23] C. Stachniss, G. Grisetti, O. Martı́nez-Mozos, and W. Burgard. Effi-
ciently learning metric and topological maps with autonomous service
robots. it – Information Technology, 49(4):232–238, 2007.

[24] C. Stachniss, O. Martı́nez-Mozos, and W. Burgard. Speeding-up
multi-robot exploration by considering semantic place information. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pages
1692–1697, Orlando, FL, USA, 2006.

[25] S. Thrun. Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1):21–71, 1998.

[26] B. Yamauchi. Frontier-based exploration using multiple robots. In
Proc. of the Second International Conference on Autonomous Agents,
pages 47–53, Minneapolis, MN, USA, 1998.

[27] Z. Zivkovic, B. Bakker, and B. Kröse. Hierarchical map building
and planning based on graph partitioning. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 803–809, 2006.
[28] R. Zlot, A.T. Stenz, M.B. Dias, and S. Thayer. Multi-robot exploration

controlled by a market economy. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Washington, DC, USA, 2002.

[C13] C. Stachniss, C. Plagemann, A.J. Lilienthal, and W. Burgard. Gas

distribution modeling using sparse gaussian process mixture models. In

Proc. of Robotics: Science and Systems (RSS), Zurich, Switzerland, 2008.

Gas Distribution Modeling

using Sparse Gaussian Process Mixture Models

Cyrill Stachniss1 Christian Plagemann1 Achim Lilienthal2 Wolfram Burgard1

1Albert-Ludwigs-University Freiburg, Dept. for Computer Science, D-79110 Freiburg, Germany
2Örebro University, AASS, Dept. of Technology, S-70182 Örebro, Sweden

{stachnis, plagem, burgard}@informatik.uni-freiburg.de, achim.lilienthal@tech.oru.se

Abstract— In this paper, we consider the problem of learning a
two dimensional spatial model of a gas distribution with a mobile
robot. Building maps that can be used to accurately predict the
gas concentration at query locations is a challenging task due
to the chaotic nature of gas dispersal. We present an approach
that formulates this task as a regression problem. To deal with
the specific properties of typical gas distributions, we propose
a sparse Gaussian process mixture model. This allows us to
accurately represent the smooth background signal as well as
areas of high concentration. We integrate the sparsification of
the training data into an EM procedure used for learning the
mixture components and the gating function. Our approach has
been implemented and tested using datasets recorded with a real
mobile robot equipped with an electronic nose. We demonstrate
that our models are well suited for predicting gas concentrations
at new query locations and that they outperform alternative
methods used in robotics to carry out in this task.

Index Terms— Gas distribution modeling, gas sensing, Gaus-
sian processes, mixture models

I. INTRODUCTION

Gas distribution modeling has important applications in

industry, science, and every-day life. Mobile robots equipped

with gas sensors are deployed, for example, for pollution mon-

itoring in public areas [1], surveillance of industrial facilities

producing harmful gases, or inspection of contaminated areas

within rescue missions.

Although humans have a natural odor sensor, it is hard for

us to build a spatial representation of a sensed gas distribution.

Building gas distribution maps is actually a challenging task

due to the chaotic nature of gas dispersal. The complex interac-

tion of gas with its surroundings is dominated by two physical

effects. First, on a comparably large timescale, diffusion mixes

the gas with the surrounding atmosphere to achieve a homo-

geneous mixture of both in the long run. Second, turbulent

air flow fragments the gas emanating from a source into

intermittent patches of high concentration with steep gradients

at their edges [16]. Especially this chaotic system of localized

patches of gas makes the modeling problem a hard one. In

addition to that, gas sensors provide information about a small

spatial region only since gas sensor measurements require

direct interaction between the sensor surface and the analyze

molecules. This makes gas sensing different to perceiving the

environment with laser range finders or other popular robotic

sensors.

Fig. 1 illustrates actual gas concentration measurements

recorded with a mobile robot along a corridor containing a

5 10 152

3

4

2

4

6

8

10

x [m]
y [m]

o
b
s
e
rv

e
d
 g

a
s
 c

o
n
c
e
n
tr

a
ti
o
n

Fig. 1. Gas concentration measurements acquired by a mobile robot in a
corridor. The distribution consists of a rather smooth “background” signal and
several peaks indicating high gas concentrations.

single gas source. The distribution consists of a rather smooth

“background” signal and several peaks indicating high gas

concentrations. The challenge in gas distribution mapping is

to model this background signal while being able to cover

also the areas of high concentration and their sharp bound-

aries. Since performing measurements is a comparably costly

operation, one is also interested in reducing the number of

samples needed to build a representation. It is important to

note that the noise is dominated by the large fluctuations of

the instantaneous gas distribution and not by the electronic

noise of the gas sensors. From a probabilistic point of view,

the task of modeling a gas distribution can be described as

finding a model that best explains the observations and that is

able to accurately predict new ones. Thus, the data likelihood

in combination with cross validation is the standard criterion

to evaluate such a model.

Simple spatial averaging, which represents a straight-

forward approach to the modeling problem, disregards the

different nature of the background noise and the peaks result-

ing from areas of high gas concentrations and, thus, achieves

only limited prediction accuracy. On the other hand, precise

physical simulation of the gas dynamics in the environment

would require immense computational resources as well as

precise knowledge about the physical conditions, which is not

known in most practical scenarios.

To achieve a balance between model accuracy and tractabil-

ity, we treat gas distribution mapping as a two-dimensional

regression problem. We derive a solution by means of a

sparse mixture model of Gaussian process experts [21] that

is able to handle both physical phenomena highlighted above.

Formally, we interpret gas sensor measurements obtained from

static sensors or from a mobile robot at locations as noisy

samples from a time-constant distribution. This implies that the

gas distribution in fact exhibits a time-constant structure, an

assumption that is often made in unventilated and un-populated

indoor environments [22].

While existing approaches to gas distribution mapping such

as local averaging [6, 11], kernel extrapolation techniques [7],

or standard GP models represent the average concentration

per location only, our mixture model explicitly distinguishes

different components of the distribution, i.e., concentration

layers varying smoothly due to dispersion processes versus

those containing localized patches of gas. This leads to a

more accurate prediction of the gas concentration. Our model

actually allows us to do both, computing the average gas

concentration per location (as existing models supply) as well

as the multi-modal predictive densities.

The contribution of this paper is a novel approach that learns

gas distribution models from sensor data using a sparse Gaus-

sian process mixture model. As a by-product, we present an

algorithm that learns a GP mixture model and simultaneously

reduces the model complexity in order to achieve an efficient

representation even for large data sets. Our technique provides

gas concentration estimates for each location in space and also

the corresponding predictive uncertainties. The mixture model

allows us to improve the gas concentration estimate close

to the boundaries and in areas with high gas concentration

compared to standard models. As we will demonstrate in

experiments carried out with a real robot, our model has a

lower mean squared error and a higher data likelihood than

other methods and thus allows to more accurately predict gas

concentration at query locations.

This paper is organized as follows. After a discussion of

related work, we introduce in Sec. III Gaussian processes for

regression. Then, Sec. IV explains our approach to learn a

sparse GP mixture to model gas distributions from observa-

tions. Finally, we present the experimental evaluation of our

work with a real mobile robot.

II. RELATED WORK

A straightforward method to create a representation of the

time-averaged concentration field is to perform measurements

over a prolonged time with a grid of gas sensors. Equidistant

gas sensor locations can be used to represent the average

concentration values directly on a grid map. This method,

though with partially simultaneous measurements, was applied

by Ishida et al. [6]. A similar method was used in [11] but

instead of the average concentration, the peak concentration

observed during a sampling period of 20 s was considered to

create the map.

Consecutive measurements with a single sensor and time-

averaging over 2 minutes for each sensor location were used

by Pyk et al. [12] to create a map of the distribution of ethanol.

Methods, which aim at determining a map of the instantaneous

gas distribution from successive concentration measurements,

rely on the assumption of a time-constant distribution profile,

i.e., uniform delivery and removal of the analyze gas and stable

environmental conditions. Thus, the experiments of Pyk et al.

were performed in a wind tunnel with a constant airflow and a

uniform gas source. To make predictions at locations different

from the measurement points, they apply bi-cubic interpolation

in the case of equidistant measurements and triangle-based

cubic filtering in the case where the measurement points are

not equally distributed [12]. A problem with these interpo-

lation methods is that there is no means of “averaging out”

instantaneous response fluctuations at measurement locations.

Even if response values were measured very close to each

other, they will appear independently in the gas distribution

map with interpolated values in-between. Consequently, inter-

polation maps tend to get more and more jagged while new

measurements are added [8].

Histogram methods take the spatial correlation of concen-

tration measurements into account because of the implicit

extrapolation on the measurements by the quantization into

histogram bins. Hayes et al. [5] suggest a two-dimensional

histogram where the bins contain the accumulated number of

“odor hits” received in the corresponding area. Odor hits are

counted whenever the response level of a gas sensor exceeds

a defined threshold. In addition to the dependency of the

gas distribution map on the selected threshold, a problem

with using only binary information from the gas sensors is

that much useful information about fine gradations in the

average concentration is discarded. A further disadvantage

of histogram methods for gas distribution modeling is their

dependency on the bin size and that they require perfectly

even coverage of the inspected area.

Kernel extrapolation gas distribution mapping, which can

be seen as an extension of histogram methods, was introduced

by Lilienthal and Duckett [7]. Spatial integration is carried out

by convolving sensor readings and modeling the information

content of the point measurements with a Gaussian kernel.

As discussed in [8], this method has also an analogy with

non-parametric estimation of density functions using a Parzen

window method.

Model-based approaches as in Ishida et al. [6] infer the

parameters of an analytical gas distribution model from

the measurements. They depend crucially on the underlying

model. Complex numerical models based on fluid dynamics

simulations are computationally expensive and depend sensi-

tively on accurate knowledge of the state of the environment

(boundary conditions) which is not available in practical

situations. Simpler analytical models, on the other hand, often

rest on rather unrealistic assumptions and are of course only

applicable for situations in which the model assumptions

hold. Model-based approaches also rely on well-calibrated

gas sensors and an established understanding of the sensor-

environment interaction.

The majority of approaches proposed in the literature create

a two-dimensional representation and represent time-constant

structures in the gas distribution. Also the effort (either in

terms of time consumption or the number of sensors) of the

model-free approaches to converge to a stable representation,

scales quadratically with the size of the environment. None of

the approaches suggested so far models the variance together

with the time-average of the concentration field.

In contrast to those approaches, we apply Gaussian pro-

cesses in a mixture model setting to learn probabilistic gas

distribution maps. GPs allow us to model the dependency

between nearby locations by means of a covariance function.

They enable us to make predictions at locations not observed

so far and do not only provide the mean gas distribution but

also a predictive variance. Our mixture model can furthermore

model sharp boundaries of areas with high gas concentration.

Gaussian processes (GPs) are a non-parametric method

frequently used to solve regression and classification prob-

lems [13]. A drawback of the standard GP approach is its com-

putational complexity. However, several methods for learning

sparse GP models [18, 19] have been presented that overcome

this limitation and lead to a near-linear complexity [19].

Tresp [21] introduced a mixture model of GP experts to better

deal with spatially varying properties in the data. Extensions of

this technique using infinite mixtures have been proposed by

Rasmussen and Ghahramani [15] and Meeds and Osindero [9].

GPs have already received considerable attention within the

robotics community. Schwaighofer et al. [17] introduced a

positioning system for cellular networks based on Gaussian

processes. Brooks et al. [2] proposed a Gaussian process

model in the context of appearance-based localization with

an omni-directional camera. Ferris et al. [3] applied Gaus-

sian processes to locate a mobile robot from wireless signal

strength. Related Bayesian regression approaches have been

also followed for example by Ting et al. [20] to identify rigid

body dynamics and Grimes et al. [4] to learn imitative whole-

body motions.

III. GAUSSIAN PROCESSES FOR REGRESSION

The general gas distribution mapping problem, given a set

of gas concentration measurements y1:n acquired at locations

x1:n, is to learn a predictive model p(y∗ | x∗,x1:n, y1:n) for

gas concentrations y∗ at a query location x∗. We address

this estimation problem as a regression problem. Gaussian

processes (GPs) offer a flexible way of solving such regression

problems [13]. GPs are a “non-parametric” method, since no

parametric form of the underlying function x 7→ y is assumed.

The model is represented directly using the given training data.

GPs can be seen as a generalization of the Gaussian probability

distribution to a distribution over functions. A GP for real-

valued functions f is defined by a mean function m(·) and a

covariance function k(·, ·)

m(x) = E[f(x)] (1)

k(xp,xq) = E[(f(xp)−m(xp))(f(xq)−m(xq))]. (2)

In the following, we set m(x) = 0 for simplicity of notation

and apply the squared exponential covariance function

k(xp,xq) = σ2

f · exp

(

−
1

2

|xp − xq|
2

l2

)

. (3)

Observations y obtained from the process are assumed to be

affected by Gaussian noise, y ∼ N (m(x), σ2

n). The variables

Φ = {σf , l, σn} are the so-called hyperparameters of the

process which have to be learned from data.

Given a set D = {(xi, yi)}ni=1
of training data where xi ∈

R
d are the inputs and yi ∈ R the targets, the goal in regression

is to predict target values y∗ ∈ R at a new input point x∗. Let

X = [x1; . . . ;xn] be the n × d matrix of the inputs and X∗

be defined analogously for multiple test data points. In the GP

model, any finite set of samples is jointly Gaussian distributed
[

y

f(X∗)

]

∼ N

(

0,

[

K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])

, (4)

where K(·, ·) refers to the matrix with the entries given by the

covariance function k(·, ·) and y the vector of the (observed)

targets yi. To actually make predictions at X∗, we obtain for

the predictive mean

f̄(X∗) := E[f(X∗)] = K(X∗, X)[K(X,X) + σ2

nI]−1y (5)

and for the (noise-free) predictive variance

V[f(X∗)] = K(X∗, X∗)

−K(X∗, X)[K(X,X) + σ2

nI]−1K(X,X∗), (6)

where I is the identity matrix. The corresponding (noisy)

predictive variance for an observation y∗ can be obtained by

adding the noise term σ2

n to the individual components of

V[f(X∗)].
GPs are a sound mathematical framework with many prac-

tical applications. The standard GP model as described above,

however, has two major limitations in our problem domain.

First, the computational complexity is high, since to compute

the predictive variance given in Eq. (6), one needs to invert

the matrix K(X,X) + σ2

nI , which introduces a complexity

of O(n3) where n is the number of training examples. As a

result, an important issue for GP-based solutions to practical

problems is the reduction of this complexity. This can, as we

will show in Sec. IV, be achieved by artificially limiting the

training data set in a way that introduces small loss in the data

likelihood of the whole training set while at the same time

minimizing the runtime. As a second limitation, the standard

GP model generates a uni-modal distribution per input location

x. This assumption hardly fits our application domain in which

a relatively smooth “background” signal is typically mixed

with high-concentration “packets” of gas. In the following,

we address this issue by deriving a mixture model of Gaussian

processes.

A. Mixtures of Gaussian Process Models

The GP mixture model [21] constitutes a locally weighted

sum of several Gaussian process models. For simplicity of no-

tation, we consider without loss of generality the case of single

predictions only (x∗ instead of X∗). Let {GP1, . . . ,GPm}
be a set of m Gaussian processes representing the individual

mixture components. Let P (z(x∗) = i) be the probability that

x∗ is associated with the i-th component of the mixture. Let

f̄i(x∗) be the mean prediction of the GPi at x∗. The likelihood

of observing y∗ in such as model is thus given by

h(x∗) := p(y∗ | x∗) =

m
∑

i=1

P (z(x∗) = i) · Ni(y∗;x∗) , (7)

where we define Ni(y;x) as the Gaussian density function

with mean f̄i(x) and variance V[fi(x)] + σ2

n evaluated at

y. One can sample from such a mixture by first sampling

the mixture component according to P (z(x∗) = i) and

then sampling from the corresponding Gaussian. For some

applications such as information-driven exploration missions,

it is practical to estimate the mean and variance for this multi-

modal model. The mean E[h(x∗)] of the mixture model is

given by

h̄(x∗) := E[h(x∗)] =
m

∑

i=1

P (z(x∗) = i) · f̄i(x∗) (8)

and the corresponding variance is computed as

V[h(x∗)] =
m

∑

i=1

(V[fi(x∗)] + (f̄i(x∗)− h̄(x∗))
2)

· P (z(x∗) = i). (9)

IV. LEARNING THE MIXTURE MODEL FROM DATA

Given a training set D = {(xj , yj)}
n
j=1

of gas concentration

measurements yj and the corresponding sensing locations xj ,

the task is to jointly learn the assignment z(xj) of data

points to mixture components and, given this assignment,

the individual regression models GPi. Tresp [21] describes

an approach based on Expectation Maximization (EM) for

solving this task. We take his approach, but also seek to

minimize the model complexity to achieve a computationally

tractable model even for large training data sets D. This

is of major importance in our application, since typical gas

concentration data sets easily exceed n = 1000 data points and

the standard GP model (see Sec. III) is of cubic complexity

O(n3). Different solutions have been proposed for lowering

this upper bound, such as dividing the input space into

different regions and solving these problems individually or

the usage of the so called sparse GPs. Sparse GPs [18, 19]

use a reduced set of inputs to approximate the full space.

This new set can be either a subset of the original inputs [18]

or a set of new pseudo-inputs [19] which are obtained using

an optimization procedure. This reduces the complexity from

O(n3) to O(nm2) with m≪ n, which in practice results in a

nearly linear complexity. In this section, we describe a greedy

forward-selection algorithm integrated into the EM-learning

procedure which achieves a sparse mixture model while also

maximizing the data likelihood of the whole training set D.

A. Initializing the Mixture Components

In a first step, we subsample n1 data points and learn a

standard GP for this set. This model GP1 constitutes the

first mixture component. To cover areas of gas concentrations

that are poorly modeled by this initial model, we learn an

“error GP” which models the absolute differences between

a set of target values and the predictions of GP1. We then

sample points according to the error GP and use them as the

initialization for the next mixture component. In this way, the

new mixture is initialized with the data points that are poorly

approximated by the first one. This process is continued until

the desired number m of model components is reached. For

typical gas modeling scenarios, we found that two mixture

components are often sufficient to achieve good results. In

our experiments, the converged mixture models nicely reflect

the bi-modal nature of gas distributions, having one smooth

“background” component and a layer of locally concentrated

structures as outlined in the introduction of this paper.

B. Iterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be used

to obtain a maximum likelihood estimate when hidden and

observable variables need to be estimated. It consists of two

steps, the so-called estimation (E) step and the maximiza-

tion (M) step which are executed alternately.

In the E-step, we estimate the probability P (z(xj) = i) that

the data point j corresponds to the model i. This is done by

computing the marginal likelihood of each data point for all

models individually. Thus, the new P (z(xj) = i) is computed

given the previous one as

P (z(xj) = i) ←
P (z(xj) = i) · Ni(yj ;xj)

∑m

k=1
P (z(xj) = k) · Nk(yj ;xj)

.(10)

In the M-step, we update the components of our mixture

model. This is achieved by integrating the probability that a

data point belongs to a model component into the individual

GP learning steps (see also [21]). This is achieved by modi-

fying Eq. (5) to

f̄i(X∗) = K(X∗, X)[K(X,X) + Ψi]−1y, (11)

where Ψi is a matrix with

Ψi
jj =

σ2

n

P (z(xj) = i)
(12)

and zeros in the off-diagonal elements. Eq. (6) is updated

respectively. The matrix Ψi allows us to consider the prob-

abilities that the individual inputs belong to the corresponding

components. The contribution of an unlikely data point to a

model is reduced by increasing the data point specific noise

term. If the probability, however, is one, only σ2

n remains as

in the standard GP model.

Learning a GP model also involves the estimation of its

hyperparameters Φ = {σf , l, σn}. To estimate them for GPi,

we first apply a variant of the hyperparameter heuristic used

by Snelson and Ghahramani [19] in their open-source imple-

mentation. We extended it to incorporate the correspondence

probability P (z(xk) = i) into this initial guess

l ← max
xj

P (z(xj) = i) ||xj − x̄|| (13)

σ2

f ←

∑n

j=1
P (z(xj) = i) (yj − E[y])2
∑n

j=1
P (z(xj) = i)

(14)

σ2

n ← 0.25 · σ2

f , (15)

where x̄ refers to the weighted mean of the inputs—each xj

having a weight of P (z(xj) = i).
To optimize the hyperparameters further given this initial es-

timate, one could apply, for example, Rasmussen’s conjugate-

gradient–based optimization technique [14] to minimize the

negative log marginal likelihood. In our experiments, however,

this approach lead to serious overfitting and we therefore

resorted to cross validation-based optimization. Concretely, we

randomly sample the hyperparameters and evaluate the model

accuracy according to Sec. IV-B on a separate validation set.

As a sampling strategy, we draw in each even iteration new

parameters from an uninformed prior and in each odd iteration,

we improve the current best parameters Θ′ by sampling from

a Gaussian with mean Θ′. The standard deviation of that

Gaussian decreases with the iteration. In our experiments,

this strategy found appropriate hyperparameters quickly while

significantly reducing the risk of overfitting.

C. Learning the Gating Function

In our mixture model, the gating function defines for each

data point the likelihood that it belongs to the individual mix-

ture components. The EM algorithm learns these assignment

probabilities for all inputs xj , maximizing the overall data

likelihood. These learned hidden variables are then used to

estimate the assignment at an unknown location x∗ by means

of regression. Concretely, we learn a gating GP for each

component i that uses the xj as inputs and the z(xj) obtained

from the EM algorithm as targets. Let f̄z
i (x) be the prediction

of z for GPi. Given this set of m GPs, we can compute the

correspondence probability for a new test point x∗ as

P (z(x∗) = i) =
exp(f̄z

i (x∗))
∑m

j=1
exp(f̄z

j (x∗))
. (16)

D. Illustrating Example

We have specified all quantities that are needed to model gas

distributions with sparse Gaussian process mixture models. To

summarize the approach, we use a a simple, simulated, one-

dimensional example.

The first part of the data points where uniformly distributed

around a y value of 2 while the second part was generated

with higher noise at two distinct locations. The left image of

Fig. 2 depicts the standard GP learned from the input data and

the right one the resulting error GP. Based on the error GP, a

second mixture component is initialized and used as the input

to the EM algorithm.

The individual images in Fig. 3 illustrate the iterations

of the EM algorithm. They depict the two components of

the mixture model. After convergence, the gating function

is learned using the hidden variables reported by the EM

algorithm. The learned gating function is depicted in the left

image of Fig. 4 and the final GP mixture model is shown

in the right image. It is obvious that this model is a better

representation of the distribution than the standard GP model

shown in the left image of Fig. 2 (averaged negative log

likelihood of -1.70 vs. -0.24).

V. EXPERIMENTS

We carried out pollution monitoring experiments in which

the robot followed a predefined sweeping trajectory covering

the area of interest. Along its path, the robot was stopped at a

pre-defined set of grid points to carry out measurements on the

spot between 10 s (outdoors) and 30 s (indoors). The spacing

between the grid points was set to values between 0.5 m to

2.0 m depending on the topology of the available space. The

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

5

10

15

Fig. 2. Left: The standard GP used to initialize the first mixture component.
Right: The error GP used to initialize the next mixture component.

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

0 20 40 60 80
0

2

4

6

8

10

Fig. 3. Components during different iterations of the EM algorithm.

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

2

4

6

8

10

Fig. 4. Left: The learned gating function. Right: Resulting distribution of
the GP mixture model.

sweeping motion was performed twice in opposite directions

and the robot was driven at a maximum speed of 5 cm/s in

between the stops (to reduce the risk of turbulent air flow due

to the motion of the robot). The gas source was a small cup

filled with ethanol.

Apart from a SICK laser range scanner used for pose

correction, the robot was equipped with an electronic nose

and an anemometer. The electronic nose comprises six Figaro

gas sensors (2 × TGS 2600, TGS 2602, TGS 2611, TGS

2620, TGS 4161) enclosed in an aluminum tube. This tube

is horizontally mounted at the front side of the robot (see also

Fig. 5). The electronic nose is actively ventilated through a fan

that creates a constant airflow towards the gas sensors. This

lowers the effect of external airflow and the movement of the

robot on the sensor response.

Note that in this work, we concentrate only on the gas

concentration measurements and do not consider the pose

uncertainty of the vehicle. One can apply one of the various

SLAM systems available to account for the uncertainty in the

robot’s pose.

Fig. 5. Pictures of the robot inspecting three different environments as well
as the corresponding sweeping trajectories.

TABLE I

AVERAGED NEGATIVE LOG LIKELIHOODS OF TEST DATA POINTS GIVEN

THE DIFFERENT MODELS

Dataset GP GPM GPM avg

3-rooms -1.22 -1.54 -1.50

corridor -0.98 -1.60 -1.58

outdoor -1.01 -1.77 -1.69

Three environments with different properties have been

selected for the pollution monitoring experiments. The first

experiment (3-rooms) was carried out in an enclosed indoor

area that consists of three rooms which are separated by

slightly protruding walls in between them. The area covered

by the path of the robot is approximately 14×6 m2. There

is very little exchange of air with the “outer world” in this

environment. The gas source was placed in the central room

and all three rooms were monitored by the robot. The second

location was a part of a corridor with open ends and a high

ceiling. The area covered by the trajectory of the robot is ap-

proximately 14×2 m2. The gas source was placed on the floor

in the middle of the investigated corridor segment. Finally, an

outdoor scenario was considered. Here, the experiments were

carried out in an 8×8 m2 region that is part of a much bigger

open area.

We used the raw sensor readings in all three environments

and applied our approach to learn gas distribution models.

In the experiments shown here, the robot moved through

the environment twice. Therefore, we used the first run for

learning the model and the second one for evaluating it. For a

comparison with our technique, we also computed a gas distri-

bution model using a standard GP. We furthermore compared

our mean estimates to the one of the grid-based method with

interpolation and the kernel extrapolation technique.

−15 −10 −5 0
−10

−8

−6

−4

−2

100

200

300

−15 −10 −5 0

−10

−8

−6

−4

−2

2
4
6

Initial GP Error GP

−15
−10

−5
0

−10
−8

−6
−4

−2

200

400

600

800

−15 −10 −5 0

−10

−8

−6

−4

−2

0

0.2

0.4

0.6

0.8

Mixture components Gating function

−15 −10 −5 0
−10

−8

−6

−4

−2

200

400

600

800

−15 −10 −5 0
−10

−8

−6

−4

−2

200

400

600

GPM mean (3d) Standard GP mean (3d)

−15 −10 −5 0
−10

−8

−6

−4

−2

−15 −10 −5 0
−10

−8

−6

−4

−2

GPM mean (2d) Standard GP mean (2d)

−15 −10 −5 0
−10

−8

−6

−4

−2

−15 −10 −5 0
−10

−8

−6

−4

−2

GPM Variance (2d) Standard GP variance (2d)

Fig. 6. The 3-rooms dataset with one ethanol gas source in the central room.
The room structure itself is not visualized here. In all plots, blue represents
low, yellow reflect medium, and red refers to high values.

Fig. 6 depicts the learned models for the 3-room dataset.

The left plot in the first row illustrates the mean prediction

for the standard GP on the sub-sampled training set which

serves as the first mixture component. The right image depicts

the error GP representing the differences between the initial

prediction and a set of observations. Based on the error GP, a

new mixture component is initialized and the EM algorithm is

carried out. After convergence, the gating function is learned

based on the hidden variables reported by the EM (right image,

second row). The left image in the third row shows the final

mean prediction of our mixture model. As can be seen, the

“background” distribution is smoothly modeled while at the

5
10

15

1
2

3
4

5

0

200

400

600

800

Means of the GPM components

5 10 15
1

2

3

4

5

Learned gating function

5 10 15
1

2

3

4

5

Standard GP predictive mean

5 10 15
1

2

3

4

5

Standard GP predictive variance

5 10 15
1

2

3

4

5

GPM predictive mean

5 10 15
1

2

3

4

5

GPM predictive variance

Fig. 7. Models learned from concentration data recorded in the corridor
environment (see Fig. 1 for the raw data). The gas source was placed at the
location 10, 3. The standard GP and our GPM model provide similar mean
estimates. Our approach, however, provides a better predictive uncertainty and
thus a higher likelihood given the test data (see Tab. I).

same time the gas concentration peak close to the gas source

has a sharp boundary. In contrast to this, the standard GP

learned using the same data is unable to provide an appropriate

estimate since the area around the peak is to smoothed too

much.

Tab. I summarizes the negative log likelihoods of the test

data (second part of the dataset) given our mixture model as

well as the standard GP model. We provide two likelihoods

for our model, the one given in Eq. (7) (called ’GPM’ in the

table) and the one computed based on the averaged prediction

specified in Eq. (8) and Eq. (9) (called ’GPM avg’). As can be

seen, our GPM method outperforms the standard GP model in

all our experiments since it provides the best data likelihood.

Note that we repeated the experiment 10 times and the t-test

shows that the results are significant.

By considering the 2d plots in the last two rows of Fig. 6,

two reasons for this fact can be observed easily. First, as

already mentioned before, the standard GP smoothes too much

in the area close to the gas source while this smoothing is

fine for the rest of the scene. Second, the variance around the

source is too small (standard GPs assumes constant noise for

all inputs).

In the corridor experiment, the area of high gas concentra-

tion was mapped appropriately also by the standard GP, but

again the variance was too small close to the area of high gas

concentration. This can be observed by considering Fig. 7.

In contrast to this, our GPM model provides a high variance

in this area – which actually models the observations in a

more precise way. Similar results are obtained in the outdoor

dataset. Mean and variance predictions of the standard GP and

our model are provided in Fig. 9.

In all our experiments, we limited the number of data points

in the reduced input set to n1 = 100 (taken from the first

part of the datasets). The datasets itself contained between

2,500 and 3,500 measurements so our model was able to make

accurate predictions with less than 5% of the data. Matrices

of that size can be easily inverted and as a result the overall

computation time to learn our model including cross validation

using unoptimized Matlab code on a notebook computer takes

around 1 minute for all datasets shown above.

Finally, we compared the mean estimates of our mixture

model to the results obtained with the method of Lilienthal

and Duckett [7] as well as with the standard approach of using

a grid in combination with interpolation. The results of this

comparison is shown in Fig. 8. As can be seen, our method

outperforms both alternative methods.

VI. CONCLUSIONS

In this paper, we considered the problem of modeling gas

distributions from sensor measurements by means of sparse

Gaussian process mixture models. Gaussian processes are an

attractive modeling technique in this context since they do not

only provide a gas concentration estimate for each point in the

space but also the predictive uncertainty. Our approach learns

a GP mixture model and simultaneously decreases the model

complexity by reducing the training set in order to achieve an

efficient representation even for a large number of observa-

tions. This overcomes the major drawback of GPs, their high

 0

 0.005

 0.01

 0.015

 0.02

A
v
e

ra
g

e
 M

S
E

3-rooms corridor outdoor

GP mixture
kernel extrapolation
grid w. interpolation

Fig. 8. Mean squared error of the GP mixture model mean and the kernel
extrapolation technique and the grid approximation with interpolation.

computational complexity. The mixture model allows us to

explicitly distinguish the different components of the spatial

gas distribution, namely areas of high gas concentration from

the smoothly varying background signal. This improves the

accuracy of the gas concentration prediction.

Our method has been implemented and tested using gas

sensors mounted on a real robot. With our method, we obtain

gas distribution models that better explain the sensor data

compared to techniques such as the standard GP regression

for gas distribution mapping. Our approach and the one of

Lilienthal and Duckett [7] provide similar mean gas concen-

tration estimates, their approach as well as the majority of

techniques in the field, however, lack the ability of estimating

their predictive uncertainties.

Despite this encouraging results, there is space for further

optimizations. Considering non-stationary kernels [10] might

further improve the estimates or might serve as an alternative

to explictly modeling mixtures. In addition, we are currently

exploring the possibility to model the diffusion in high con-

centration areas by smoothing the gating function over time.

ACKNOWLEDGMENT

This work has partly been supported by the DFG under

contract number SFB/TR-8 as well as by the EC under

contract number FP6-IST-34120-muFly and FP6-2005-IST-6-

RAWSEEDS.

REFERENCES

[1] DustBot - Networked and Cooperating Robots for Urban Hygiene.
http://www.dustbot.org.

[2] A. Brooks, A. Makarenko, and B. Upcroft. Gaussian process models
for sensor-centric robot localisation. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2006.
[3] B. Ferris, D. Haehnel, and D. Fox. Gaussian processes for signal

strength-based location estimation. In Proceedings of Robotics: Science

and Systems, 2006.
[4] D. Grimes, R. Chalodhorn, and R. Rao. Dynamic imitation in a

humanoid robot through nonparametric probabilistic inference. In
Proceedings of Robotics: Science and Systems, 2006.

[5] A.T. Hayes, A. Martinoli, and R.M. Goodman. Distributed Odor Source
Localization. IEEE Sensors Journal, Special Issue on Electronic Nose

Technologies, 2(3):260–273, 2002.
[6] H. Ishida, T. Nakamoto, and T. Moriizumi. Remote Sensing of Gas/Odor

Source Location and Concentration Distribution Using Mobile System.
Sensors and Actuators B, 49:52–57, 1998.

[7] A. Lilienthal and T. Duckett. Building Gas Concentration Gridmaps
with a Mobile Robot. Robotics and Autonomous Systems, 48(1):3–16,
2004.

[8] A. Lilienthal, A. Loutfi, and T. Duckett. Airborne Chemical Sensing
with Mobile Robots. Sensors, 6:1616–1678, 2006.

−8 −6 −4 −2 0

−2

0

2

4

6

−8 −6 −4 −2 0

−2

0

2

4

6

Standard GP predictive mean Standard GP predictive variance

−8 −6 −4 −2 0

−2

0

2

4

6

−8 −6 −4 −2 0

−2

0

2

4

6

GPM predictive mean GPM predictive variance

Fig. 9. Outdoor dataset of a 8 m by 8 m area with an ethanol source in the
center and airflow. approximatively from south-east to north-west.

[9] E. Meeds and S. Osindero. An alternative infinite mixture of gaussian
process experts. In Advances in Neural Information Processing Systems,
2006.

[10] C. Plagemann, K. Kersting, and W. Burgard. Nonstationary gaussian
process regression using point estimates of local smoothness. In Proc. of

the European Conference on Machine Learning (ECML), Antwerp,
Belgium, 2008.

[11] A.H. Purnamadjaja and R.A. Russell. Congregation Behaviour in a
Robot Swarm Using Pheromone Communication. In Proc. of the

Australian Conf. on Robotics and Automation, 2005.
[12] P. Pyk et al. An Artificial Moth: Chemical Source Localization Using a

Robot Based Neuronal Model of Moth Optomotor Anemotactic Search.
Autonomous Robots, 20:197–213, 2006.

[13] C. E. Rasmussen and C. K.I. Williams. Gaussian Processes for Machine

Learning. The MIT Press, 2006.
[14] C.E. Rasmussen. Minimize. http://www.kyb.tuebingen.mpg.de/

bs/people/carl/code/minimize, 2006.
[15] C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of gaussian

process experts. In Advances in Neural Information Processing Systems

14, 2002.
[16] P.J.W. Roberts and D.R. Webster. Turbulent Diffusion. In H. Shen,

A. Cheng, K.-H. Wang, M.H. Teng, and C. Liu, editors, Environmental

Fluid Mechanics - Theories and Application. ASCE Press, Reston,
Virginia, 2002.

[17] A. Schwaighofer, M. Grigoras, V. Tresp, and C. Hoffmann. Gpps: A
gaussian process positioning system for cellular networks. In Proc. of

the Conf. on Neural Information Processing Systems (NIPS), 2003.
[18] A.J. Smola and P.L. Bartlett. Sparse greedy gaussian process regression.

In NIPS, pages 619–625, 2000.
[19] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-

inputs. In Advances in Neural Information Processing Systems 18, pages
1259–1266, 2006.

[20] J. Ting, M. Mistry, J. Peters, S. Schaal, and J. Nakanishi. A bayesian
approach to nonlinear parameter identification for rigid body dynamics.
In Proceedings of Robotics: Science and Systems, 2006.

[21] V. Tresp. Mixtures of gaussian processes. In Proc. of the Conf. on

Neural Information Processing Systems (NIPS), 2000.
[22] M. Wandel, A. Lilienthal, T. Duckett, U. Weimar, and A. Zell. Gas

distribution in unventilated indoor environments inspected by a mobile
robot. In Proc. of the Int. Conf. on Advanced Robotics (ICAR), pages
507–512, 2003.

[C14] C. Stachniss, M. Bennewitz, G. Grisetti, S. Behnke, and W. Burgard.

How to learn accurate grid maps with a humanoid. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Pasadena, CA, USA, 2008.

How to Learn Accurate Grid Maps with a Humanoid

Cyrill Stachniss Maren Bennewitz Giorgio Grisetti Sven Behnke Wolfram Burgard

Abstract— Humanoids have recently become a popular re-
search platform in the robotics community. Such robots offer
various fields for new applications. However, they have several
drawbacks compared to wheeled vehicles such as stability
problems, limited payload capabilities, violation of the flat
world assumption, and they typically provide only very rough
odometry information, if at all. In this paper, we investigate the
problem of learning accurate grid maps with humanoid robots.
We present techniques to deal with some of the above-mentioned
difficulties. We describe how an existing approach to the
simultaneous localization and mapping (SLAM) problem can
be adapted to robustly learn accurate maps with a humanoid
equipped with a laser range finder. We present an experiment
in which our mapping system builds a highly accurate map
with a size of around 20 m by 20 m using data acquired with a
humanoid in our office environment containing two loops. The
resulting maps have a similar accuracy as maps built with a
wheeled robot.

I. INTRODUCTION

In the last few years, humanoid robots have become

a popular research tool. They are assumed to offer new

perspectives compared to wheeled vehicles since they are, for

example, able to access different types of terrain and climb

stairs. Generally, their human-like body plan helps when

acting in a world designed for humans. The drawback of

humanoids is that several tasks that can be easily carried out

with wheeled robots are hard to achieve with legged systems.

This includes, for example, stable motion with payload and

the accurate execution of motion commands.

Maps of the environment are needed for a wide range of

robotic applications including search and rescue, automated

vacuum cleaning, home assistance, and several other service

robotic tasks. Learning maps has therefore been a major re-

search topic in the robotics community over the last decades.

In the literature, the mobile robot mapping problem is often

referred to as the simultaneous localization and mapping

(SLAM) problem. It is considered to be a complex problem,

because for localization a robot needs a consistent map and

for acquiring a map a robot requires a good estimate of its

location. This mutual dependency between the pose and the

map estimates makes the SLAM problem hard and requires

searching for a solution in a high-dimensional space. Several

techniques to the SLAM problem have been developed for

wheeled robots but only a few of them have been shown to

work on humanoid robots.

The central question in this context is what makes the data

acquired with a humanoid different from data obtained with

a wheeled platform. First, wheeled platforms are typically

All authors are with the University of Freiburg, Department of Computer
Science, D-79110 Freiburg, Germany

Fig. 1. A learned map by our approach using noisy and short-range laser
data acquired with the humanoid Robotinho.

equipped with sensors that provide rather accurate odome-

try information. This yields good estimates of the relative

movement or at least a reasonable starting point for local

pose correction methods such as scan-matching. Compared

to that, most humanoid robots (at least the ones that are

affordable) do not have any odometry sensor. Furthermore,

wheeled robots provide significantly more stable and smooth

motion behaviors. This allows most robots to make the

2D plane assumption which means that the robot moves

on a plane and the sensor is located parallel to that plane.

Typically, this is not the case with a humanoid robot since

they need to keep their balance at all time, even while

standing. The attitude (roll and pitch angle) of the robot’s

sensors can easily change up to 20◦. Due to the very limited

payload of most humanoid robots and to keep the motion

behavior stable, sensors have to be light-weight and small.

A SICK LMS sensor for example, cannot be mounted on

most humanoids. Therefore, one typically has to deal with

rather noisy and short-range sensor data resulting from light-

weight laser scanners such as Hokuyo URGs.

In this paper, we investigate humanoid-specific adaptations

of a mapping approach that has been successfully used on

wheeled vehicles equipped with a SICK laser range finders.

We present a variant of our Rao-Blackwellized particle filter

for learning grid maps [6] that can be used on a humanoid.

This includes corrections for changing attitude (roll and

pitch) of the sensor, dealing with missing odometry informa-

tion, and scan-matching with a few distinct features only. In

contrast to other mapping system that operate on humanoid

robots, our approach is able to learn maps of comparably

large indoor environments. We present an experiment in

which our system built a map of an environment with a size

of 20 m by 20 m containing two loops. The map has a quality

comparable to the ones generated by a wheeled robot. The

map shown in Fig. 1 illustrates the result of our mapping

system given data acquired with our humanoid robot.

II. RELATED WORK

The majority of approaches described in the SLAM liter-

ature addressed the problem of building maps with wheeled

platforms. So far, only few researchers have addressed the

problem of learning maps with a humanoid robot. Gutmann

et al. [7] presented an approach to learn occupancy grid maps

including elevation information with the Sony humanoid

QRIO using stereo vision. In this context, they consider

mapping mainly as a local problem to support collision

avoidance or path planning tasks but they do not address

issues such as loop-closing or place-revisiting.

A system that performs real-time localization and mapping

with a humanoid robot was developed by Ozawa et al. [14].

Their approach is mainly based on 3D visual odometry

and uses dense feature maps to estimate the position of

the camera. A well-known drawback of this incremental

approach is the drift created by the accumulation of errors.

There exist systems that concentrate on localization with

a humanoid. Bennewitz et al. [1] presented an approach to

visual localization of a humanoid that relies on a particle

filter. Thompson et al. [16] performed localization with a

humanoid equipped with a Hokuyo URG laser scanner. They

use a known 2.5-dimensional map for a relatively small

operational range of the robot. They do not suggest how

to automatically learn such a map.

Solutions to the SLAM problem for wheeled vehicles often

use EKFs. The effectiveness of the EKF approaches comes

from the fact that they estimate a fully correlated posterior

over landmark maps and robot poses [15]. Their weakness

lies in the strong assumptions that have to be made on

both, the robot motion model and the sensor noise. If these

assumptions are violated, the filter is likely to diverge [9].

The unscented Kalman filter described in [9] is one way of

better dealing with the non-linearities in the motion model

of the vehicle. Moreover, the landmarks are assumed to be

uniquely identifiable, even so, there exist techniques to deal

with unknown data association in the SLAM context [13].

Lidoris et al. [10] presented an approach for motion planning

in the context of EKF-based map learning with humanoids.

They select gaze actions based on the expected entropy

reduction in their model. They showed in simulation that

such gaze actions can improve the pose estimate.

A full vision-based SLAM system that considers all 6 DoF

and enables a humanoid robot to learn landmark maps has

recently been presented by Davison et al. [2]. They extract

features from a monocular camera and create a sparse map

of high-quality stable features. The location of the features

are tracked by applying an EKF.

Thrun et al. [17] describe a mapping approach that has

been proven to work without odometry information. How-

ever, it requires an accurate laser range finder such as a SICK

LMS sensor which cannot be carried by most humanoid

robots. Furthermore, the sensor is assumed to have constant

attitude angles. For robots equipped with a stereo camera,

Elinas et al. [5] presented a SLAM system that does not

need any odometry information.

In a work by Murphy [12], Rao-Blackwellized particle

filters (RBPF) have been introduced as an effective means to

solve the SLAM problem. Each particle in a RBPF represents

a possible robot trajectory and a map. The framework has

been subsequently extended by Montemerlo et al. [11] for

approaching the SLAM problem with landmark maps. To

learn accurate grid maps, RBPFs have been used by Eliazar

and Parr [4] and Hähnel et al. [8]. Whereas the first work

describes an efficient map representation, the second presents

an improved motion model that reduces the number of

required particles.

In this paper, we apply a variant of our mapping ap-

proach [6] that applies a Rao-Blackwellized particle filter

with an informed proposal distribution to efficiently sample

the next generation of particles. We adapted our approach to

explicitely address the problems that appear in the context

of humanoid robots. This includes missing odometry infor-

mation, comparably noisy data from light-weight proximity

sensors, as well as a non-constant attitude (roll and pitch

angle) resulting from the walking behavior.

III. LEARNING MAPS WITH

RAO-BLACKWELLIZED PARTICLE FILTERS

Mapping with Rao-Blackwellized particle filters has been

first introduced by Murphy [12]. The goal is to estimate the

trajectory of the robot as well as a map of the environment up

to time t. The key idea of a Rao-Blackwellized particle filter

for map learning is to separate the estimate of the trajectory

x1:t of the robot from the map m of the environment. This

is done by the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(x1:t | z1:t, u1:t−1) · p(m | x1:t, z1:t), (1)

where z1:t is the observation sequence and u1:t−1 the odom-

etry information. In practice, the first term of Eq. (1) is

estimated using a particle filter and the second term turns

into “mapping with known poses”.

A particle filter requires three sequential steps to update its

estimate. Firstly, one draws the next generation of samples

from the so-called proposal distribution π. Secondly, one

assigns a weight to each sample. The weights account for

the fact that the proposal distribution is in general not equal

to the target distribution. The third step is the resampling step

in which the target distribution is obtained from the weighted

proposal by drawing particles according to their weight.

One of the main challenges in particle filtering is to

choose an appropriate proposal distribution. The closer the

proposal is to the true target distribution, the more precise

is the estimate represented by the sample set. Typically, one

requires the proposal π to fulfill the assumption

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1:t, u1:t−1)

·π(x1:t−1 | z1:t−1, u1:t−2). (2)

According to Doucet [3], the distribution

p(x
(i)
t | m(i)

t−1, x
(i)
t−1, zt, ut−1) =

p(zt | m(i)
t−1, x

(i)
t)p(x

(i)
t | x(i)

t−1, ut−1)

p(zt | m(i)
t−1, x

(i)
t−1, ut−1)

(3)

is the optimal proposal for particle i with respect to the

variance of the particle weights that satisfies Eq. (2). This

proposal minimizes the degeneracy of the algorithm (Propo-

sition 4 in [3]). In Eq. (2), z1:t−1 and x1:t−1 represent the

map mt−1. Based on the importance sampling principle, the

weights have to be computed as follows [6]

w
(i)
t =

target distribution

proposal distribution
(4)

= w
(i)
t−1

ηp(zt | m(i)
t−1, x

(i)
t)p(x

(i)
t | x(i)

t−1, ut−1)

p(x
(i)
t | m(i)

t−1, x
(i)
t−1, zt, ut−1)

(5)

∝ w
(i)
t−1

p(zt | m(i)
t−1, x

(i)
t)p(x

(i)
t | x(i)

t−1, ut−1)

p(zt|m
(i)
t−1

,x
(i)
t

)p(x
(i)
t

|x
(i)
t−1

,ut−1)

p(zt|m
(i)
t−1

,x
(i)
t−1

,ut−1)

(6)

= w
(i)
t−1 · p(zt | m(i)

t−1, x
(i)
t−1, ut−1). (7)

Unfortunately, the optimal proposal distribution is in gen-

eral not available in closed form or in a suitable form

for efficient sampling. As a result, most efficient mapping

techniques use a Gaussian approximation of the optimal

proposal. This approximation can easily be computed and

allows the robot to sample efficiently.

For each particle i, the parameters µ
(i)
t and Σ

(i)
t of the

Gaussian are determined individually by sampling J test

points {xj}J
j=1. The test points have to be sampled close

to the expected location of the robot. A good guess for the

expected location of the robot can be determined by scan-

matching, a method to find the pose with a locally optimal

match of the current scan with the map constructed so far.

Note that a robust scan-matching method is an important

prerequisite for successfully applying the RBPF mapping

technique. Otherwise, the Gaussian approximation that is

used as the proposal distribution is not valid. The Gaussian

is computed for each sample based on the set {xj}J
j=1

µ
(i)
t =

1

η(i)

J
∑

j=1

xj · p(zt | m(i)
t−1, xj)p(xj | x(i)

t−1, ut−1) (8)

Σ
(i)
t =

1

η(i)

J
∑

j=1

p(zt | m(i)
t−1, xj)p(xj | x(i)

t−1, ut−1)

·(xj − µ
(i)
t)(xj − µ

(i)
t)T , (9)

with the normalization factor

η(i) =

J
∑

j=1

p(zt | m(i)
t−1, xj) · p(xj | x(i)

t−1, ut−1). (10)

With Eq. (8)-(10), we obtain a closed form approximation

of the optimal proposal which enables us to efficiently

obtain the next generation of particles. Using this proposal

distribution, the weights have to be computed as

w
(i)
t = w

(i)
t−1 · p(zt | m(i)

t−1, x
(i)
t−1, ut−1) (11)

= w
(i)
t−1 ·

∫

p(zt | m(i)
t−1, x

′) · p(x′ | x(i)
t−1, ut−1) dx

′

≃ w
(i)
t−1 · η(i). (12)

As we showed in previous work [6], such an approach is

well suited to robustly learn accurate maps of the environ-

ment with wheeled robot such as ActivMedia Pioneer robots

equipped with SICK laser range finders.

IV. ADAPTATIONS FOR MAPPING WITH A HUMANOID

In this section, we present the modifications to our map-

ping system so that it can be applied to successfully learn

accurate maps with data acquired by a humanoid.

A. Attitude-based Scan Correction

When applying the approach described in the previous

section to laser data recorded by a humanoid, the quality of

the map will typically be poor. One reason for this is that the

humanoid cannot move and at the same time keep the sensor

with zero roll and pitch angles. As a result, the object that

caused a reflection of the laser beam is observed at different

heights in consecutive scans. This makes it nearly impossible

to match scans as it is a prerequisite for our approach. Hence,

we have to account for the changing attitude. The roll and

pitch angle of the laser range finder, however, can be quite

accurately estimated using an attitude sensor or a low-cost

IMU. As result, we are able to compute the three-dimensional

position of the object that caused a reflection. Let ρk be the

measured range of laser beam k and αk the corresponding

angle. The 3D position of the object is given by

px

py

pz

 = ρkR(φ, θ, ψ)

cosαk

sinαk

0

 +

rx
ry
rz

 , (13)

where R is the 3 × 3 rotation matrix, φ, θ, and ψ refer to

the roll, pitch, and yaw angle, and rx, ry, rz to the position

of the sensor in the world.

By assuming that the observed objects are walls, cup-

boards, or similar objects that have the same shape for all z,

we can compute a corrected range ρ′k as

ρ′k = ρk

∣

∣

∣

∣

∣

∣

(

1 0 0
0 1 0

)

R(φ, θ, 0)

cosαk

sinαk

0

∣

∣

∣

∣

∣

∣
. (14)

By replacing ρk by ρ′k for each beam k in a laser range

scan, we obtain a corrected range observation that stays

constant under changes to the attitude of the sensor. Note

that if the roll and pitch angle are too huge, scans might hit

the floor. In this case, the measurements are neglected since

they do not contain information about the walls.

map

laser scan

unknown terrain
forward
moves
robot

i

j

scan−matching draggs the robot back

Fig. 2. The problem of scan-matching in a feature-less corridor: (1) The scan is integrated, (2) the robot moves forward, (3) the new scan is obtained,
(4) the scan is matched against the map constructed so far and thus the robot is dragged back to the previous location.

B. Scan-Matching with Poor Features

To compute the Gaussian proposal in our mapping system,

we perform scan-matching to find the most likely pose by

matching the current observation against the map constructed

so far

x∗t = argmax
x

p(x | mt−1, zt, x
′
t), (15)

where x′t is the initial guess which is typically computed

from odometry. In practice, one applies Bayes’ rule and

seeks for the pose with the highest observation likelihood

p(zt | mt−1, x). Often, a search technique similar to gra-

dient descent is applied. To compute the likelihood of an

observation, we use the so called “beam endpoint model”. In

this model, the likelihood of an individual beam is computed

based on the distance between the endpoint of the beam and

the closest obstacle from that point.

Using the Hokuyo URG scanner, we have a significantly

reduced measurement range compared to traditional range

scanners such as a SICK LMS. As a result, the robot can

observe only a small area of the environment. Especially if

a mobile robot moves along a symmetric structure with poor

features, such as a long corridor, scan-matching becomes dif-

ficult since ambiguities cannot be resolved. Fig. 2 illustrates

a typical situation in which scan-matching in a feature-less

corridor fails.

In such a situation, observations are identical or at least

very similar for all poses independent of the horizontal

position. As a result, the scan-matching procedure reverts

the movements of the robot in the horizontal direction. The

reason for this is that the obtained scans match perfectly

the map at the initial position. Therefore, corridors are often

shorter in the maps than in reality. In case an accurate

odometry information is available, such situations might be

resolved. In general, the shorter the range of the laser, the

higher the risk of ambiguities and the lower the quality of

the odometry, the worse the initial guess for the matching

algorithm. Since this problem occurs comparably often when

building maps with a humanoid robot equipped with a

Hokuyo URG scanner, we present a way to better deal with

such ambiguities when matching scans.

To overcome this problem, we propose to use only a subset

of the scan for finding the correspondence but to use the full

scan to update the map. Even if this might sound counter-

intuitive at first sight, it substantially improves the result of

scan-matching in areas with poor features. By neglecting a

small fraction of the scan, namely those beams that are close

to the maximum usable range of the scanner, the problem

of virtually dragging the robot backwards during the pose

correction step can be reduced. If, however, in Fig. 2 the

beams labeled as i and j are not used for matching but for

r1
c

d

r2

b

d

r1

Fig. 3. Geometry used to determine the maximum length of a beam that
should be used for scan-matching.

α

r1 ≃ (r2 − b) if α is small

updating the map, the scan-matcher will typically confirm

the predicted position and will mainly align the robot in the

vertical direction but not in the horizontal one. Note that after

this correction is carried out, the full scan is used to update

the map.

Based on this example, we can investigate which beams

should be neglected in the matching phase. Consider the

situation depicted in Fig. 3 in which the robot moves a

distance d forward. After moving, the robot should only

consider those beams for matching that are likely to hit an

obstacle that was visible from the previous location of the

robot. To consider only these obstacles, we have to neglect

the beams that are longer than the maximum usable range

of the scanner minus the distance b. Let α be the angular

resolution between two beams. Then, we can compute the

length b as

b =
√
d2 − c2 =

√

d2 − sin2 α · r21 ≤ d. (16)

As can be seen, b is bounded by the distance d moved by

the robot. As a result, we can improve the scan-matching

in feature-less corridors by using only those scans which are

shorter than the maximum usable range of the scanner minus

the estimated moved distance d of the robot when optimizing

Eq. (15).

Note that an alternative strategy that neglects beams that

end in an unknown cell in the previous map is not sufficient

since this can lead to wrong corrections if appropriate

features are visible and the motion of the robot is slightly

overestimated.

C. Dealing with Missing Odometry

Today’s expensive humanoid robots provide odometry

information that allows a robot to incrementally build lo-

cal maps (compare Gutmann et al. [7]). Low cost or self

constructed humanoids, however, often do not provide such

a reliable estimate about the motion of the robot. Dead

reckoning, i.e., the prediction of the robot’s pose based on

executed motion commands, could be applied, however, it

provides only very noisy estimates due to slippage on the

ground. Our robot, for example, does not provide any usable

information about its relative movement.

cluttered lab

alignment error

stairs
desks corrected trajectory

(a) (b) (c) (d)

Fig. 4. Image (a) depicts the grid map learned with data acquired by a humanoid. By considering an overlay with the floor-plan (walls in the floor plan
are colored red), one can see that the environment is rather accurately mapped (b). Image (c) shows the corrected trajectory of the laser scanner projected
on the x/y plane. Image (d) depicts a map learned without the attitude correction. The map is inconsistent and comparably blurred.

Reducing only the range during scan-matching as de-

scribed in the previous paragraph is not sufficient when no

odometry information at all is available. We furthermore need

an initial estimate for the motion of the robot to obtain a good

pose and thus map estimate. Assuming that the robot starts in

a place at which sufficient distinct structure is available for

scan-matching, it can quite accurately estimate its motion.

Assuming an approximately constant speed of the vehicle,

we set

ut−1 = x∗t−1 ⊖ x∗t−2, (17)

where ut−1 is the motion estimate that guides the robot

from xt−1 to xt, ⊖ is the inverse of the motion composition

operator, and x∗ results from Eq. (15). This estimate leads

to a reasonable odometry guess in case the robot moves

with constant speed through passages that do not provide

distinct features in the sensor data. In all other passages, the

scan-matching technique will anyway find an acceptable pose

estimate. In practice, Eq. (15) and Eq. (17) are always com-

puted in an alternating way. One starts with scan-matching

without odometry, then estimates the odometry, which is

in the subsequent step used to initialize the scan-matcher.

Even though, the techniques presented in this paper do not

describe a new mapping framework, we found that they

are relevant to solve the mapping problems with humanoid

robots. Furthermore, we believe that they can be easily

integrated into other mapping frameworks which apply scan-

matching as an intermediate procedure.

V. EXPERIMENTS

The humanoid robot Robotinho used for the experiments

is depicted in Fig. 1. It is self-constructed, around 1 m tall

with a total weight of about 5.2 kg, and has 23 degrees

of freedom. For our experiments, we equipped it with a

Hokuyo URG laser range finder and a XSens IMU (here,

only the attitude information is used). The Hokuyo URG is

a light-weight scanner with a maximum range of 4.2 m. A

measurement range of 4 m, however, can only be obtained

with bright and highly reflective obstacles. Dark doors, badly

reflecting furniture, or even grayish concrete walls lead to a

significantly reduced measurement range of the scanner if

the obstacle is not hit perpendicularly. The XSens is used to

estimate the attitude (roll and pitch angle) of the chest of the

robot. The robot does not possess any odometry sensors.

Fig. 5. Grid map learned from data obtained by a human carrying a
laser range finder in the hand. The arrows indicate parts of the environment
in which the sensor perceived mainly invalid observations. The estimated
trajectory is shown in red.

A. Learning Accurate Grid Maps

The first experiment is designed to show that our approach

is well suited to learn accurate grid maps with a humanoid

robot. We steered our robot with a joystick through our lab

environment. It consists of two corridors which result in two

loops the robot traversed, one of them three times. As can be

seen in Fig. 4 (a) and (b), our system maps the environment

rather accurately. Only one small alignment error occurred

at a part of the wall/door. One interesting observation is that

the stairs can be identified quite well in the map. The parallel

lines are not alignment errors but result from reflection of

the individual steps while the robot was walking and thus

changing the attitude of the sensor. Fig. 4 (c) shows the

estimated trajectory of the robot during that experiment.

Additionally, we disabled the attitude-based scan correc-

tion to illustrate its effect. The right image in Fig. 4 depicts

the result. The map is more blurred since the laser beams

often hit the wrong grid cells. Furthermore, the filter made

one wrong pose correction which leads to an inconsistent

estimate.

We furthermore performed a second experiment in which a

person was holding the laser range scanner and was walking

through the environment. As can be seen in Fig. 5, also here

we obtain a comparably good map. By looking closely, one

can see that the corridors are not perfectly matched and one

corridor is slightly too short. This is due to the fact that on

one side, the corridor consists of glass panes only and the

Hokuyo scanner does not provide any valid data in case a

beam hits glass. Therefore, several observations contain no

useful information which results in an imperfectly aligned

20m3m

Fig. 6. Scan-matching in a feature-less corridor. Left: Using standard scan-
matching, the estimated pose of the robot is always the same. Right: By
using our approach, the robot performs much better even if the corridor is
still too short (20 m vs. 22.3 m). The estimated trajectory is shown in red.

beam length forward movement d

reduction 0.3m 0.4m 0.5m 0.75m 1.0m

0.3m 19.9m 16.3m 14.1m 10.1m 9.5m
0.4m 19.7m 20.0m 17.2m 11.8m 9.6m

Fig. 7. Estimated corridor length for different movements (truth=22.3 m).

map. Nevertheless, the resulting map is sufficient for most

tasks such as robot localization or motion planning.

B. Scan-Matching with Poor Features

A further set of experiments investigates the advantages of

our scan-matching variant compared to the same approach

lacking our technique. By neglecting long beams during

the matching phase but integrating them into the map, a

substantially better pose estimate can be obtained. Fig. 6

shows the result of the standard scan-matching approach (left

image) and our variant (right image). As can be seen, our

approach does not provide a perfect motion estimate since the

corridor is still shorter than in reality (20 m instead if 22.3 m).

As illustrated in Fig. 7, the estimated forward movement (d

in Eq. (16)) is a good parameter to quantify the reduction of

the maximum valid beam length. If the beam length reduction

is chosen too small, the accuracy of the scan matcher drops

substantially.

C. Limitations

Given the short range of the sensor, our robot is currently

only able to map environments without large free spaces

such as hallways. In large rooms such as entrance halls, the

proposal cannot be computed accurately - especially without

real odometry. In case the robot moves through areas with

poor structure, we assumed a constant speed of the vehicle.

Furthermore, our system might be less accurate in situations

in which the attitude is affected by significant changes while

at the same time most of the objects observed by the scanner

look different in different heights such as desks for example.

In our current configuration, however, the system appears to

be comparably robust in practical scenarios.

VI. CONCLUSION

In this paper, we addressed the problem of learning

accurate grid maps using laser data acquired by a humanoid.

We present techniques to deal with the specific difficulties of

typical humanoids such as changing roll and pitch angle of

the sensor, missing odometry information, and comparably

noisy and short-range sensor data. As a result, we are able

to apply a Rao-Blackwellized particle filter to estimate the

joint posterior about the trajectory of the robot and the map

of the environment. In combination with the adaptations for

the mentioned difficulties, this solution to the simultaneous

localization and mapping problem allows a humanoid robot

to robustly learn maps. As our experimental results show,

the resulting grid maps have a high accuracy, similar to maps

built with a wheeled robot. To the best of our knowledge, our

system is the first one which is able to build such accurate

grid maps containing several loops with a humanoid robot.

ACKNOWLEDGMENT

This work has partially been supported by the German

Research Foundation (DFG) under the contract numbers

SFB/TR-8 and BE 2556/2-2 as well as by the EC under

contract number FP6-IST-34120-muFly.

REFERENCES

[1] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric local-
ization with scale-invariant visual features using a single perspective
camera. In European Robotics Symposium 2006, volume 22 of STAR

Springer tracts in advanced robotics, pages 143–157, 2006.
[2] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM: Real-

time single camera SLAM. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 29(6), 2007.
[3] A. Doucet. On sequential simulation-based methods for bayesian filter-

ing. Technical report, Signal Processing Group, Dept. of Engeneering,
University of Cambridge, 1998.

[4] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous local-
ization and mapping without predetermined landmarks. In Proc. of

the Int. Conf. on Artificial Intelligence (IJCAI), pages 1135–1142,
Acapulco, Mexico, 2003.

[5] P. Elinas, R. Sim, and J. J. Little. σSLAM: Stereo vision SLAM
using the rao-blackwellised particle filter and a novel mixture proposal
distribution. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2006.
[6] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for

grid mapping with rao-blackwellized particle filters. IEEE Transac-

tions on Robotics, 23(1):34–46, 2007.
[7] J.-S. Gutmann, M. Fukuchi, and M. Fujita. A floor and obstacle height

map for 3D navigation of a humanoid robot. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Barcelona, Spain, 2005.
[8] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM

algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211, 2003.
[9] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach

for filtering nonlinear systems. In Proc. of the American Control

Conference, pages 1628–1632, Seattle, WA, USA, 1995.
[10] G. Lidoris, K. Kühnlenz, D. Wollherr, and M. Buss. Information-based

gaze direction planning algorithm for SLAM. In Proc. of IEEE-RAS

Intl. Conf. on Humanoid Robots (Humanoids), 2006.
[11] M. Montemerlo and S. Thrun. Simultaneous localization and mapping

with unknown data association using FastSLAM. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), pages 1985–1991,
Taipei, Taiwan, 2003.

[12] K. Murphy. Bayesian map learning in dynamic environments. In
Proc. of the Conf. on Neural Information Processing Systems (NIPS),
pages 1015–1021, Denver, CO, USA, 1999.

[13] J. Neira and J.D. Tardós. Data association in stochastic mapping
using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890–897, 2001.
[14] R. Ozawa, Y. Takaoka, Y. Kida, K. Nishiwaki, J. Chestnutt, J. Kuffner,

S. Kagami, H. Mizoguchi, and H. Inoue. Using visual odometry
to create 3d maps for online footstep planning. In Proc. of IEEE

Intl. Conf. on Systems, Man, and Cybernetics, 2005.
[15] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial re-

altionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.
[16] S. Thompson, S. Kagami, and K. Nishiwaki. Localisation for au-

tonomous humanoid navigation. In Proc. of IEEE-RAS Intl. Conf. on

Humanoid Robots (Humanoids), 2006.
[17] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile

robot mapping with applications to multi-robot and 3D mapping. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), San
Francisco, CA, 2000.

[C15] B. Frank, M. Becker, C. Stachniss, M. Teschner, and W. Burgard.

Efficient path planning for mobile robots in environments with deformable

objects. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),

Pasadena, CA, USA, 2008.

Efficient Path Planning for Mobile Robots

in Environments with Deformable Objects

Barbara Frank Markus Becker Cyrill Stachniss Wolfram Burgard Matthias Teschner

Abstract— The ability to reliably navigate through the en-
vironment is an important prerequisite for truly autonomous
robots. In this paper, we consider the problem of path planning
in environments with non-rigid obstacles such as curtains or
plants. We present an approach that combines probabilistic
roadmaps with a physical simulation of object deformations to
determine a path that optimizes the trade-off between the de-
formation cost and the distance to be traveled. We describe how
our approach utilizes Finite Element theory for calculating the
deformation cost. Since the high computational requirements of
the corresponding simulation prevent this method from being
applicable online, we present an approximation that uses a
preprocessing step to determine a deformation cost function
for each object. This cost function allows us to estimate the
deformation costs of arbitrary paths through the objects and is
used to evaluate the trajectories generated by the roadmap
planner online. We present experiments which demonstrate
that the resulting algorithm plans nearly identical trajectories
compared to the method that relies on computationally intense
simulations. At the same time, our approach allows the robot
to quickly calculate paths in environments with deformable
objects.

I. INTRODUCTION

Path planning is one of the fundamental problems in

robotics, and the ability to plan collision-free paths is

a precondition for numerous applications of autonomous

robots. The path planning problem has traditionally received

considerable attention in the past and has been well-studied.

The majority of approaches, however, has focused on the

problem of planning paths in static environments and with

rigid obstacles [16, 7, 17]. In the real world, not all obstacles

are rigid and considering this knowledge can enable a robot

to accomplish navigation tasks that otherwise cannot be

carried out. For example, in our everyday life we deal

with many deformable objects such as plants, curtains, or

cloth and we typically utilize the information about the

deformability of objects when planning a movement. As a

motivating example, consider the situation depicted in Fig. 1,

in which the robot needs to pass through a curtain to move

from its current position to the goal location since no other

path exists in the environment. In this particular situation,

traditional approaches that do not take the deformability of

objects into account, will fail since no collision-free path

exists. In contrast to this, the approach presented in this

paper is able to determine the deformation cost introduced by

passing the curtain and to utilize this information during path

planning. The key idea of our approach is to use a heuristic

All authors are with the Department of Computer Science, University of
Freiburg, 79110 Freiburg, Germany.

{bfrank,mbecker,stachnis,burgard,teschner}@informatik.uni-freiburg.de

Fig. 1. Path planning in an environment with a deformable object. The
robot (shown in red) deforms the curtain on its path to the goal.

function to estimate the deformation cost, which allows the

robot to perform the necessary calculations online.

One potential method of taking deformations of objects

into account is by generating trajectories using a method

such as probabilistic roadmaps (PRM) [15] and considering

deformable objects as free space. When answering path

queries, the planner has to simulate the deformation of

the non-rigid objects resulting from the interaction with

the robot. However, performing an appropriate simulation

typically requires significant computational efforts which

makes such an approach unsuitable for online trajectory

planning. Therefore, we propose an approach to learn an

approximative deformation cost function in a preprocessing

step. The advantage of our method is that this function can

be evaluated efficiently during planning. In this way, our

approach reduces the time to solve a path query from several

minutes to a few hundred milliseconds. The assumption made

throughout this paper is that the robot can deform but cannot

move objects in the environment. Additionally, we neglect

the interactions between different deformable objects.

The contribution of this paper is an approach to mobile

robot path planning that explicitly considers deformable

objects in the environment. It employs the probabilistic

roadmap method and learns a deformation cost function

using a physical simulation engine that is based on Finite

Element theory. Our approach trades off the travel cost with

the deformation cost when answering path queries and can

be executed online.

This paper is organized as follows: After discussing related

work, we present in Section III our technique to compute the

deformations of objects by means of physical simulation.

We then describe how to plan a path in the presence of

deformable objects. Additionally, we describe our approx-

imation of the deformation cost function in Section IV.

Finally, we present experiments that illustrate the advantages

of our approach compared to previous methods.

II. RELATED WORK

The majority of approaches to mobile robot path planning

assumes that the environment is static and that all objects are

rigid [16, 15, 3]. Recently, several path planning techniques

for deformable robots in static environments have been pre-

sented [4, 10, 14]. In the context of deformable objects, the

underlying model has a substantial influence on the accuracy

of the estimated deformations as well as on the performance

of the planner. One typically distinguishes between geo-

metrically and physically motivated approaches. Geometric

approaches such as the free-form deformation (FFD) can

be computed efficiently. For example, the FFD method of

Sederberg and Parry [21] is based on trivariate Bernstein

polynomials and allows for deformation by manipulating the

control points.

To represent non-rigid objects and to calculate deforma-

tions, mass-spring systems have been frequently used. They

are easy to implement and can be simulated efficiently.

Whereas such models are able to handle large deformations,

their major drawback is the tedious modeling as there is

no intuitive relation between spring constants and physical

material properties in general [19]. Finite Element Methods

(FEMs) reflect physical properties of the objects in a better

way. This allows for a more intuitive modeling since they

require only a small number of parameters. The disadvan-

tage of FEMs is the computational resources required to

calculate deformations. In our current system we therefore

use the computationally efficient co-rotational Finite Element

approach [11, 18] which avoids nonlinear computations.

In the context of path planning, Kavraki et al. [14]

developed the f-PRM-Framework that is able to plan paths

for flexible robots of simple geometric shapes such as surface

patches [13] or simple volumetric elements [2]. They apply

a mass-spring model to compute deformations. The planner

selects the deformation of the robot that minimizes its de-

formation energy. Similar to this technique, Gayle et al. [10]

presented an approach to path planning for a deformable

robot that is based on PRMs. To achieve a more realistic

simulation of deformations they add constraints for volume

preservation to the mass-spring model of the robot. Bayazit

et al. [4] also studied planning for a deformable robot. Their

algorithm proceeds in two steps. First, an approximate path is

found in a probabilistic roadmap. In the next step, this path is

refined by applying a free-form deformation to the robot and

hence avoiding collisions with obstacles. This deformation

method can be computed efficiently but is less accurate than

physically motivated models. In contrast to our approach,

these planners deform the robot rather than the obstacles to

avoid collisions.

An approach to planning in completely deformable en-

vironments has been proposed by Rodrı́guez et al. [20].

They employ a mass-spring system with additional physical

constraints for volume-preservation [23] to enforce a more

realistic behavior of deformable objects. They use rapidly

exploring random trees and apply virtual forces to expand

the leaves of the tree until the goal state is reached. The

Fig. 2. Different levels of representation for a deformable object (left) in the
simulation environment: fine surface mesh (middle) and coarse tetrahedral
mesh (right).

obstacles in the environment are deformed through external

forces resulting from collisions with the robot.

All techniques mentioned above, however, require substan-

tial computational resources and cannot be executed online

in general. In contrast to this, our approach can efficiently

answer path queries by estimating potential deformations

of objects in a preprocessing step. This is achieved by

approximating a deformation cost function which is then

considered during the planning process. Furthermore, our

deformable model is based on FEM, which allows for more

accurate deformations.

III. SIMULATION OF DEFORMABLE OBJECTS

To consider non-rigid obstacles in the environment during

planning, we need a model that allows us to compute the

deformations given an external force. In this section, we

describe how we achieve a physically realistic simulation of

object deformations. We will first introduce the co-rotational

FEM. Then, we describe how to detect collisions between

deformable objects and the robot and how to compute contact

forces resulting from collisions. Finally, we introduce the

cost resulting from a deformation.

Our simulation system proceeds as follows: in each time

step, it computes deformations and unconstrained motions

of objects, then it detects collisions, computes contact forces

for colliding points, and finally corrects the unconstrained

motion with appropriate repulsion forces.

A. Deformable Modeling

The obstacles in the workspace are 3D objects. The surface

of objects is represented by a fine resolution triangle mesh.

A tetrahedral mesh is used to represent the interior of these

volumetric objects (see Fig. 2). The actual deformations are

computed based on the coarse resolution tetrahedral mesh.

To compute the deformation of our tetrahedral objects we

use the co-rotational Finite Element formulation [11, 18].

The total potential energy of a single tetrahedral element e

is given by

Π = Ue + WP , (1)

where WP is the work potential. WP is determined by the

external forces and inner energy Ue

Ue =
1

2

∫

e

σT ǫ dV. (2)

Since we assume only linear isotropic materials, we have a

linear relation between the stress σ and the strain ǫ given by

the generalized Hooke’s law.

The key idea of the Finite Element method is to discretize

the object into a finite set of elements (in our case tetra-

hedrons) to compute the deformations based on Eq. (1) on

the nodes and to interpolate the deformation in the elements

using the nodal values. To compute the strain ǫ from the

nodal deformations in our model, we use the linear Cauchy

strain tensor which is efficient to compute. The Cauchy

tensor, however, is not rotationally invariant. This leads to

ghost forces which result in distortions for large rotational

deformations. Therefore, we keep track of the rigid body

motion for each element by extracting the rotation from the

transformation matrix using polar decomposition. Applying

the strain tensor in the rotated frame, leads to rotational

invariance and has low computational costs compared to

the nonlinear strain tensor. We will discuss the performance

of our Finite Element approach compared to the versatile

mass-spring approach used by Rodrı́guez et al. [20] in the

experimental results section.

B. Collision Detection

For the realistic processing of interactions between the

robot and the deformable objects, an efficient collision detec-

tion algorithm is required. We employ a spatial subdivision

scheme in our simulation system, where the elements are

stored in a hash grid [24]. The key idea of this approach is

to implicitly discretize R
3 by storing the elements and nodes

in the hash grid. Since the space is usually filled sparsely and

non-uniformly, this method consumes less memory than an

explicit discretization. The hash key is computed from the

coordinates of the corresponding grid cell. As a result, only

the elements with the same hash key need to be checked for

collisions.

To check for collisions, one computes the intersection

between points and tetrahedra. This can be done efficiently

using barycentric coordinates of the points with respect to

the tetrahedra.

Methods commonly employed for rigid bodies such as

bounding box hierarchies [8] are less suited for deformable

objects, since these spatial data structures cannot be precom-

puted [25].

C. Computation of Contact Forces

To handle collisions between the robot and the de-

formable objects, we employ the force-based collision han-

dling scheme proposed by Spillmann et al. [22]. It combines

the advantages of penalty and constraint-based collision han-

dling schemes. For a set of colliding points of a tetrahedral

mesh, we compute a collision free state using a linearized

relation between internal forces and displacements of all

affected points. Contact forces can be computed analytically

to obtain this collision-free state while conserving overall

system energy.

Using this combination of FEM-based simulation and

the collision handling described above, our system can

simulate thousands of tetrahedra at interactive rates. An

example implementation of the simulation system is available

online [12].

D. Object Deformation Costs

The inner energy of an object, specified in Eq. (2),

provides a measure of the deformation costs of a tetrahedral

object and thereby of the additional energy consumption of

the robot. In case of an undeformed object, the inner energy

is zero. Otherwise, the inner energy increases depending

on the deformation of the object. For an object O with

tetrahedral elements {ei}, we define the total inner energy

UO induced by a robot r at position p approaching from

direction θ by the sum over the inner energies of all elements

ei of the object UO(r,p, θ) :=
∑

ei∈O

Uei
(r,p, θ).

For any given position p and direction θ we determine

the total deformation cost Cdef (p, θ) :=
∑

O

UO(r,p, θ)

by summing over all objects O in our workspace. The

direction θ has to be taken into account, since deformable

objects might deform differently when approaching them

from different directions.

The total deformation cost on a path Γ of the robot

approaching from direction θ in our environment naturally

results in the sum of the deformation costs of all objects

that are deformed by the robot while moving on the path in

discrete time steps ti:

Cdef (Γ, θ) =

tn
∑

t=t1

Cdef (pr(ti), θ(ti)). (3)

Here pr(ti) is the position of the robot on Γ at time ti. θ(t1)
is given by θ, all other directions θ(ti) are determined as the

difference between pr(ti) and pr(ti−1).

IV. PATH PLANNING

WITH DEFORMABLE OBJECTS

In this section, we introduce an approximative deformation

cost function that allows a robot to plan a path in such

environments online.

A. Overview of the Path Planning System

The general path planning problem is to find a sequence of

valid robot configurations that lead from the starting to the

goal configuration. Probabilistic roadmap planners achieve

this by constructing a roadmap that represents the environ-

ment of the robot and by applying a graph search algorithm

to find a path from the starting to the goal configuration. The

roadmap is constructed in a preprocessing step by sampling

points in the configuration space of the robot. These points

have to satisfy certain feasibility constraints. In general, valid

configurations are required to be part of the free configura-

tion space Cfree . In our situation, however, we modify this

constraint and require configurations to be in Cfree ∪ Cdef .

Thus, we also accept configurations that lead to collisions

with deformable objects. In our current implementation,

we use Hammersley-sampling [6] to generate configuration

hypotheses in the space. This deterministic sampling method

generates a sequence of points that are distributed with low

discrepancy. After a designated number of samples has been

generated, a local planner connects neighboring samples

-1
-0.5

 0
 0.5

x [m]

 -0.5
 0.0

 0.5
 1.0

y [m]

deformation cost

Fig. 3. Deformation costs for moving a robot along straight lines through a
curtain. The lines are specified by starting points (x, y) and travel direction
θ = 0◦ relative to the center of mass of the obstacle.

for which a valid path exists. This typically results in a

roadmap that covers the environment of the robot and can be

utilized for planning paths on which objects are allowed to

be deformed by the robot. To answer a path query, we then

insert the starting and the goal configuration into the roadmap

and connect them to their neighbors. Finally, we apply A⋆ to

find the best path from the starting to the goal location on the

graph. Here, we search for the path with the best trade-off

between travel costs and deformation cost. Therefore, we

need to be able to estimate the expected deformation cost

arising on the edges of the roadmap.

The simulation system presented in the previous section

can be used inside the planning algorithm to compute the

deformation cost Cdef (i) of an edge i by simulating a robot

moving along this edge deforming the object. The edges

considered during A⋆ planning are evaluated by trading off

the deformation and travel cost. In our planning system, we

assume the travel cost to be proportional to the length of the

edge i. This results in the cost function

C(i) := α Cdef (i) + (1 − α) length(i), (4)

where α ∈ [0, 1] is a user-defined weighting coefficient.

In order to obtain an admissible heuristic for A⋆, we use

the Euclidean distance to the goal location weighted with

(1 − α). Thus, we are able to find the path in the roadmap

that optimizes the trade-off between travel cost and defor-

mation cost for a given user-defined parameter α.

This technique leads to a working planning system that

considers deformations of the objects in the environment

when planning a trajectory for a mobile robot. The draw-

back of this technique, however, is its high computational

requirements. Answering a path query typically takes several

minutes even for small examples. Therefore, we developed

an alternative approach that computes an approximation of

the cost function in advance and thus facilitates online path

planning.

B. Approximative Deformation Cost Function

The goal of the approximative cost function is to quickly

provide an estimate of the deformation costs for all objects

along an edge in the roadmap. Such a function can be used

in the planning approach described above to determine Cdef .

The actual value of the deformation cost function of an

object mainly depends on the trajectory of the robot relative

to the object. Therefore, we precompute the deformation

cost for a number of line segments through each object.

Fig. 4. Test environments: world 1 with curtains (left), world 2 with rubber
ducks (middle), and world 3 with rubber ducks and curtains (right).

A line is specified by a starting location (x, y) and the

traveling direction θ as well as the traveled distance l on

the line segment. The traveled distance is constrained to

the maximum distance that the robot can move while still

deforming the object.

In a preprocessing step, we carry out the simulations for

a uniform resolution of starting points and directions and

store the deformation costs for a fine length resolution in a

histogram. This leads to the approximate deformation cost

function Ĉdef (x, y, θ, l) → R which returns the deformation

cost for edges of the roadmap.

We compute the deformation cost Ĉdef (x, y, θ, l) of an

arbitrary edge e in the roadmap by first determining the

starting position (x, y), direction θ, and length l relative to

the deformable object. We then apply a kernel smoother [1]

considering all neighboring line segments et in the histogram

Ĉdef (e) =

∑

t
K

(

e−e
t

h

)

Ĉdef (e
t)

∑

t
K

(

e−et

h

) , (5)

where K(u) is the multivariate Gaussian kernel with identity

as covariance.

As distance metric between different line segments, we

employ the Euclidean distance and normalize the orientation

with respect to the positions.

To finally answer path queries, we apply the A⋆ algorithm

on the roadmap. The cost of each edge in the graph is com-

puted according to Eq. (4) using the precomputed approxi-

mation Ĉdef of Cdef . Computing the deformation costs in

a preprocessing step substantially increases the performance

of our planner as can be seen in the experiments.

Although the precomputation is computationally intense,

it has to be done only once for each distinct object. Such a

cost function can even be transfered between environments.

The following section provides results on the runtime of the

precomputation for different resolutions of the deformation

cost grid. Fig. 3 illustrates the deformation cost Ĉdef of the

curtain shown in Fig. 1 along a series of straight lines.

V. EXPERIMENTS

We carried out different experiments to evaluate our path

planning approach. In this section, we first compare the

deformation cost obtained by the FEM-based simulation

technique with our approximative solution that computes a

deformation cost function for each object in a preprocess-

ing step. Next, we investigate how the deformation cost

weighting coefficient α influences the path search. Finally,

we present examples of planned trajectories in environments

with deformable objects.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 3

∅
 r

el
at

iv
e

er
ro

r
(%

)

experiment

simulation approach fem
simulation approach ms

approx fem hires
approx fem lores
approx ms hires
approx ms lores

Fig. 5. Comparison of the error in the deformation cost for the simulation-
based approach and our approximation.

Fig. 6. Example trajectories generated by the simulation approach (left)
vs. our approximation approach (right).

A. Cost Function and Runtime

In the first experiment, we compare the simulation ap-

proach to estimate the deformation cost with our approxi-

mative cost function. We chose curtains and rubberducks as

deformable objects. The curtains are modeled to be easily

deformable while the rubberducks have high deformation

costs. Both approaches had to solve 25 path queries in the

three test environments depicted in Fig. 4. After planning,

the best trajectory is sent to a path execution module that

guides the robot along that trajectory. In our simulation, the

execution of motion commands is affected by noise.

The experiments are carried out for different resolutions

of the approximate cost function. Furthermore, we compare

our approach to a simulation system using the versatile mass-

spring model. We evaluated the error between predicted

and measured deformation cost. The results are shown in

Fig. 5. As expected, the error of the simulation technique is

typically smaller compared to our approximative approach.

This, however, comes at the expense of running time as

illustrated in Table I. While our approach answers path

queries even for complex environments in a few hundred

milliseconds on average, the simulation approach spends

generally about half an hour on a single query. Thus, our

approach is about four orders of magnitude faster than the

simulation using FEM. We also compared our approach to

a simulation system using the versatile mass-spring model.

Although this simulation system can be evaluated faster, our

approach still is about 2000 times faster. The runtime for the

precomputation of the approximate cost function for different

resolutions of the cost grid is summarized in Table II.

Additionally, we carried out an experiment in a ran-

domized world, where we compare the computed paths

for the simulation and the approximation approach. The

TABLE I

AVERAGE RUNTIME INCLUDING CONFIDENCE INTERVALS.

World ∅ Query ∅ Query ∅ Query
(FEM) (mass-spring) (our approach)

1 36 m 41 s ± 347 s 12 m 45 s ± 112 s 0.4 s ± 0.04 s
2 30 m 33 s ± 512 s 8 m 10 s ± 73 s 0.2 s ± 0.02 s
3 29 m 43 s ± 130 s 7 m 27 s ± 36 s 0.3 s ± 0.04 s

TABLE II

RUNTIME FOR THE PRECOMPUTATION OF THE DEFORMATION COST

FUNCTION FOR DIFFERENT RESOLUTIONS OF THE COST GRID.

Object Mass-spring simulation FEM simulation

coarse res. fine res. coarse res. fine res.
(200 lines) (7056 lines) (200 lines) (7056 lines)

curtain 17 m 48 s 10 h 37 m 1 h 11 m 41 h 16 m
rubberduck 18 m 21 s 10 h 56 m 1 h 16 m 44 h 44 m

generated trajectory points deviate on average by 0.09 m in

an environment of 2.6× 9 m and the deformation costs of

the trajectories deviate by 9.4 ± 5.2%.

In most cases, the actual trajectories reported by the dif-

ferent planners do not deviate substantially. As the examples

depicted in Fig. 6 illustrate, the resulting trajectories are sim-

ilar. This suggests that our approximative solution provides

appropriate trajectories for planning in environments with

deformable objects.

B. Determining the Weighting Coefficient

Eq. (4) contains the weighting factor α that trades off the

travel costs with deformation costs. To find good values for

this factor, we carried out a series of planning experiments

with varying values for α. Low values for α result in

the fact that the robot traverses objects that are hard to

deform in order to obtain a short trajectory. In contrast to

this, high values for α will lead to a planning system that

Fig. 7. Different trajectories obtained in two environments depending on
the weighting coefficient α.

 1

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

co
st

 weighting coefficient α

Deformation cost
Travel cost

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

co
st

 weighting coefficient α

Deformation cost
Travel cost

Fig. 8. Deformation and travel costs of executed trajectories depending on
the weighting coefficient α. The left plot corresponds to the environment
in the first row of Fig. 7 and the right one to the one in the second row.

Fig. 9. Example trajectory guiding the robot through a deforming object.

entirely avoids deformations if possible. Examples for such

trajectories are depicted in Fig. 7. The corresponding analysis

of the deformation and travel costs is shown in Fig. 8.

Based on these experiments, we generally set α = 0.2. As a

result, the robot selects trajectories through easily deformable

objects such as curtains and tries to avoid objects that cause

high deformation costs such as the rubber ducks.

Finally, Fig. 9 shows a sequence of snapshots taken during

a planning experiment. They illustrate that a robot using our

planning approach selects trajectories through deformable

objects in case the deformation is not too expensive. More

examples and animations are available at our web site [9].

VI. CONCLUSIONS

In this paper, we presented an approach to path planning

in environments with non-rigid objects. Our planner takes

potential deformations of objects into account using a simu-

lation engine that is based on the physically accurate Finite

Element method. To improve the efficiency of the planner,

our approach uses a pre-computed and object dependent

deformation cost function that estimates the deformation cost

of path segments relative to the object. The cost function is

learned offline and is integrated into a probabilistic roadmap

planner. To calculate paths, our system trades off deformation

and travel costs. As a result, we obtain highly efficient

paths and at the same time avoid computationally expensive

simulations during runtime.

Our approach has been implemented and tested exhaus-

tively in environments with deformable objects. The utiliza-

tion of the approximative cost function leads to a speedup of

about four orders of magnitude compared to a system that

performs the simulations at runtime.

Despite these encouraging results, we envision several

aspects for further improvements. One of our next goals is to

acquire models of real obstacles with our robot and estimate

their elasto-mechanical parameters, for example by using the

method proposed in our previous work [5]. This will allow

for applying our system to real world settings and accurately

considering the properties of real deformable objects.

VII. ACKNOWLEDGMENTS

This work has partly been supported by the German Re-

search Foundation (DFG) under contract number SFB/TR-8.

REFERENCES

[1] E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

[2] E. Anshelevich, S. Owens, F. Lamiraux, and L.E. Kavraki. De-
formable volumes in path planning applications. In Proc. of the IEEE

Int. Conf. on Robotics & Automation, pages 2290–2295, 2000.

[3] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential
field techniques for robot path planning. IEEE Transactions on

Systems, Man and Cybernetics, 22(2):224–241, 1992.
[4] O.B. Bayazit, J.-M. Lien, and N.M. Amato. Probabilistic roadmap

motion planning for deformable objects. In Proc. of the IEEE

Int. Conf. on Robotics & Automation, pages 2126–2133, 2002.
[5] M. Becker and M. Teschner. Robust and efficient estimation of

elasticity parameters using the linear finite element method. In Proc.

of Simulation and Visualization, pages 15–28, 2007.
[6] M.S. Branicky, S.M. LaValle, K. Olson, and L. Yang. Quasi-

randomized path planning. In Proc. of the IEEE Int. Conf. on Robotics

& Automation, pages 1481–1487, 2001.
[7] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E.

Kavraki, and S. Thrun. Principles of Robot Motion. MIT Press, 2005.
[8] C. Ericson. Real-Time Collision Detection. Morgan Kaufmann, 2005.
[9] B. Frank. Motion planning with deformable objects, 2008.

http://www.informatik.uni-freiburg.de/˜bfrank/defplan.
[10] R. Gayle, P. Segars, M.C. Lin, and D. Manocha. Path planning for

deformable robots in complex environments. In Proc. of Robotics:

Science and Systems (RSS), pages 225–232, 2005.
[11] M. Hauth and W. Strasser. Corotational Simulation of Deformable

Solids. In WSCG, pages 137–145, 2004.
[12] B. Heidelberger, M. Teschner, J. Spillmann, M. Mueller,

M. Gissler, and M. Becker. DefColStudio –
interactive deformable modeling framework.
http://cg.informatik.uni-freiburg.de/software.htm.

[13] C. Holleman, L.E. Kavraki, and J. Warren. Planning paths for a
flexible surface patch. In Proc. of the IEEE Int. Conf. on Robotics

& Automation, pages 21–26, 1998.
[14] L.E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning

for elastic objects. In Robotics: The Algorithmic Perspective, pages
313–325. A.K. Peters, 1998. Proc. of the Third Workshop on the
Algorithmic Foundations of Robotics (WAFR).

[15] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, 1996.

[16] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Pub., 1991.
[17] S.M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.
[18] M. Mueller and M. Gross. Interactive Virtual Materials. In Graphics

Interface, pages 239–246, 2004.
[19] A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson.

Physically Based Deformable Models in Computer Graphics. Com-

puter Graphics Forum, 25(4):809–836, 2006.
[20] S. Rodrı́guez, J.-M. Lien, and N.M. Amato. Planning motion in com-

pletely deformable environments. In Proc. of the IEEE Int. Conf. on

Robotics & Automation, pages 2466–2471, 2006.
[21] T.W. Sederberg and S.R. Parry. Free-form deformation of solid

geometric models. In Proc. of the Conf. on Computer graphics and

interactive techniques, pages 151–160, 1986.
[22] J. Spillmann, M. Becker, and M. Teschner. Non-iterative computation

of contact forces for deformable objects. Journal of WSCG, 15(1–
3):33–40, 2007.

[23] M. Teschner, B. Heidelberger, M. Mueller, and M. Gross. A versatile
and robust model for geometrically complex deformable solids. In
Proc. of Computer Graphics International, pages 312–319, 2004.

[24] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross. Optimized spatial hashing for collision detection of
deformable objects. In Proc. Vision, Modeling, Visualization (VMV),
pages 47–54, 2003.

[25] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M.P. Cani, F. Faure, N. Magnenat-Thalmann, and
W. Strasser. Collision Detection for Deformable Objects. Computer

Graphics Forum, 24(1):61–81, 2005.

[C16] C. Plagemann, F. Endres, J. Hess, C. Stachniss, and W. Burgard.

Monocular range sensing: A non-parametric learning approach. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), Pasadena, CA, USA,

2008.

Monocular Range Sensing:

A Non-Parametric Learning Approach

Christian Plagemann Felix Endres Jürgen Hess Cyrill Stachniss Wolfram Burgard

Abstract— Mobile robots rely on the ability to sense the geo-
metry of their local environment in order to avoid obstacles or
to explore the surroundings. For this task, dedicated proximity
sensors such as laser range finders or sonars are typically
employed. Cameras are a cheap and lightweight alternative to
such sensors, but do not directly offer proximity information.
In this paper, we present a novel approach to learning the
relationship between range measurements and visual features
extracted from a single monocular camera image. As the
learning engine, we apply Gaussian processes, a non-parametric
learning technique that not only yields the most likely range
prediction corresponding to a certain visual input but also
the predictive uncertainty. This information, in turn, can be
utilized in an extended grid-based mapping scheme to more
accurately update the map. In practical experiments carried
out in different environments with a mobile robot equipped
with an omnidirectional camera system, we demonstrate that
our system is able to produce proximity estimates with an
accuracy comparable to that of dedicated sensors such as sonars
or infrared range finders.

I. INTRODUCTION

Cameras have become popular sensors in the robotics

community. Compared to proximity sensors such as laser

range finders, they have the advantage of being cheap,

lightweight, and energy efficient. The drawback of cameras,

however, is the fact that due to the projective nature of the

image formation process, it is not possible to sense depth

information directly. From a geometric point of view, one

needs at least two images taken from different locations

to recover the depth information analytically. An alternative

approach, that requires just one monocular camera and that

we follow in this work, is to learn from previous experience

how visual appearance is related to depth. Such an ability

is also highly developed in humans who are able to utilize

monocular cues for depth perception [22].

As a motivating example, consider Figure 1, which depicts

the (warped) image of an office environment. Overlayed

in white, we visualize the most likely area of free space

that is predicted by our approach. We explicitly do not

try to estimate a depth map for the whole image, as for

example Saxana et al. [18]. Rather, we aim at learning the

function that, given an image, maps measurement directions

to their corresponding distances to the closest obstacles. We

believe that such a function can be utilized to solve various

tasks of mobile robots including local obstacle avoidance,

localization, mapping, exploration, or place classification.

The authors are with the University of Freiburg, Department of Computer
Science, Georges-Koehler-Allee 79, 79110 Freiburg, Germany
{plagem, endres, hess, stachnis, burgard} @ informatik.uni-freiburg.de

Fig. 1. Our approach estimates proximity information from a single image
after having learned how visual appearance is related to depth.

In this paper, we formulate the range estimation task as

a supervised regression problem, in which the training set

is build by acquiring images of the environment as well

as proximity data provided by a laser range finder. We

discuss how appropriate visual features can be extracted

from the images using algorithms for edge detection and

dimensionality reduction. We apply Gaussian processes as

the learning framework in our proposed system, since this

technique is able to model non-linear functions, offers a

direct way of estimating uncertainties for its predictions, and

it has proven successful in previous work involving range

functions [15].

The paper is organized as follows. After discussing related

work, we formalize our problem and introduce the proposed

learning framework in Section III. In Section IV we then

discuss appropriate visual features and how they can be

extracted from images. Section V presents the experimental

evaluation of our algorithm as well as an application to the

mapping problem. Finally, we conclude in Section VI and

give an outlook to future research.

II. RELATED WORK

The problem of recovering geometric properties of a

scene from visual measurements is one of the fundamental

problems in computer vision and is also frequently addressed

in the robotics literature. Stereo camera systems are widely

used to estimate the missing depth information that single

cameras cannot provide directly. Stereo systems either requi-

re a careful calibration to analytically calculate depth using

geometric constraints or, as Sinz et al. [20] demonstrated,

can be used in combination with non-linear, supervised

learning approaches to recover depth information. Often, sets

of features such as SIFT [12] are extracted from two images

and matched against each other. Then, the feature pairs are

used to constrain the poses of the two camera locations

and/or the point in the scene that corresponds to the image

feature. In this spirit, the motion of the camera is considered

by [5], [21]. Sim and Little [19] present a stereo-vision based

approach to the SLAM problem, which also includes the

recovery of depth information. Their approach contains both

the matching of discrete landmarks as well as dense grid

mapping using vision cues.

An active way of sensing depth using a single monocular

camera is known as depth from defocus [8] or depth from

blur. Corresponding approaches typically adjust the focal

length of the camera and analyze the resulting local changes

in image sharpness. Torralba and Oliva [24] present an

approach for estimating the mean depth of full scenes from

single images using spectral signatures. While their approach

is likely to improve a large number of recognition algorithms

by providing a rough scale estimate, the spatial resolution of

their depth estimates does not appear to be sufficient for the

problem studied in this paper. Dahlkamp et al. [3] learn a

mapping from visual input to road traversability in a self-

supervised manner.

The problem dealt with in this paper, is closely related

to the work of Saxena et al. [18], who utilize Markov

random fields (MRFs) for reconstructing dense depth maps

from single monocular images. An alternative approach that

predicts 2D range scans based using reinforcement learning

techniques has been presented by Michels et al. [13]. Com-

pared to these methods, our Gaussian process formulation

provides the predictive uncertainties for the depth estimates

directly, which is not straightforward to achieve in an MRF

model. Hoiem et al. developed an approach to monocular

scene reconstruction based on local features combined with

global reasoning [11]. Whereas Han and Zhu presented a

Bayesian method for reconstructing the 3D geometry of wire-

like objects in simple scenes [10], Delage et al. introduced

an MRF model on orthogonal plane segments to recover the

3D structure of indoor scenes [6].

As mentioned above, one potential application of the

approach described in this paper is to learn occupancy grid

maps. This type of maps and an algorithm to update such

maps based on ultrasound data has been introduced by

Moravec and Elfes [14]. In the past, different approaches

to learn occupancy grid maps from stereo vision have been

proposed [23], [17]. If the positions of the robot are unknown

during the mapping process, the entire task turns into the

so-called simultaneous localization and mapping (SLAM)

problem. Vision-based techniques have been proposed by

Elinas et al. [7] and Davison et al. [5] to solve this problem.

In contrast to the mapping approach presented in this paper,

these techniques mostly focus on landmark-based represen-

tations.

III. LEARNING DEPTH FROM MONOCULAR VISION

FEATURES

The goal of this work is to learn the relationship between

visual input and the extent of free space around the robot. By

using a regular range sensors, it is comparably easy to acqui-

re training data for this task, so that we can formulate the pro-

blem as a supervised learning problem. Figure 2 (a) depicts

the configuration of our robot used for data acquisition. An

omnidirectional camera system (catadioptric with a parabolic

mirror) is mounted on top of a SICK laser range finder. This

setup allows the robot to perceive the full surrounding area

at every time step as the two example images in Figure 2 (b)

and (c) illustrate. The omnidirectional images can be mapped

directly to the laser scans, since both measurements can be

represented in a common, polar coordinate system. Note that

our approach is not restricted to omnidirectional cameras

in principle. However, the correspondence between range

measurements and omnidirectional images is a more direct

one and the field of view is considerably larger compared to

standard perspective optics.

A. A Gaussian Process Model for Range Functions

We extract for every viewing direction α a vector of

visual features x from the images and phrase the problem as

learning the range function f(x) = y that maps the visual

input x to distances y. We learn this function in a supervised

manner using a training set D = {xi, yi}
n
i=1

of observed

features xi and corresponding laser range measurements yi.

If we place a Gaussian process (GP) prior [16] on the non-

linear function f , i.e., we assume that all range samples y
indexed by their corresponding feature vectors x are jointly

Gaussian distributed, we obtain

f(x∗) ∼ N (µ, σ) (1)

with

µ = k
∗T

(K + σ2

nI)−1y (2)

σ = k(x∗,x∗)− k
∗T

(K + σ2

nI)−1k
∗ (3)

as the predictive distribution for the range function at new

query points x∗. Here, K denotes the n × n-dimensional

covariance matrix constructed as Kij = k(xi,xj) using a

covariance function k, which is parameterized by a set of

hyper-parameters θ. The term y denotes the vector of given

target values from the training set, k∗ stands for the vector of

covariances between the new query point x∗ and the training

points with k
∗

i = k(x∗,xi). Finally σn denotes a global noise

parameter. In this work, we apply the often-used squared

exponential covariance function

k(xp,xq) = σ2

f · exp

(

−
1

2ℓ2
|xp − xq|

)

, (4)

which depends on the Euclidian distance between points

xp and xq as well as on the amplitude parameter σ2

f and

the length-scale ℓ. These parameters as well as the noise

parameter σn in Eq. (2) and (3) can be learned from data.

Starting from an initial guess, we apply conjugate gradient-

based optimization to find the values for {ℓ, σ2

f , σ2

n} that

(a) (b) (c)

Fig. 2. The left diagram depicts our experimental setup: the training set was recorded using a mobile robot equipped with an omnidirectional camera
(monocular camera with a parabolic mirror) as well as a laser range finder. The next two images illustrate two typical omnidirectional images recorded at
the University of Freiburg (b) and at the DFKI in Saarbruecken (c).

minimize the negative log marginal likelihood of the GP

model.

A particularly useful property of Gaussian processes for

our application is the availability of the predictive uncertainty

(see Eq. (3)) at every query point. This means, that visual

features x∗, which lie close to points x of the training set

result in more confident predictions than features, which fall

into a less densely sampled region of feature space.

IV. FEATURES IN OMNIDIRECTIONAL IMAGES

The part of an omnidirectional image which is most

strongly correlated with the distance to the nearest obstacle in

a certain direction α is the strip of pixels oriented in the same

direction and going from the center of the image to its marg-

ins. With the type of camera used in our experiments, such

strips have a dimensionality of 420 (140 pixels, each having

a hue, saturation, and a value component). In order to make

these strips easier accessible to filter operators, we warp the

omnidirectional images (e.g., see Figure 2 (b) and (c)) into

panoramic views (e.g., see Figure 5 (a)), such that angles in

the polar representation now correspond to column indices in

the panoramic one. This transformation allows us to replace

complicated image operations in the polar domain by easier

and more robust ones. In the following, we describe several

ways of extracting useful low-dimensional feature vectors x

from the 420-dimensional image columns, which can then

be directly used to index the training and test targets in the

GP framework.

1) Unsupervised Dimensionality Reduction: As a classic

way of reducing the complexity of a data set, we applied

the principle component analysis (PCA) to the raw 420-

dimensional pixel vectors that are contained in the columns

of the panoramic images. The PCA is implemented using

eigenvalue decomposition of the covariance matrix of the

training vectors. It yields a linear transformation which

brings the input vectors into a new basis such that their

dimensions are now ordered by the amount of data-set

variance they carry. In this way, we can truncate the vectors

to a few components without losing a large amount of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10
R

e
la

ti
v
e
 e

n
e
rg

y
 c

o
n
te

n
t

Number of eigenvectors

Saarbruecken
Freiburg

Fig. 3. The amount of variance explained by the the first principle
components (eigenvectors) of the pixel columns in the two data sets.

information. The diagram in Figure 3 depicts the relative

amount of variance that is explained for two different data

sets when truncating the transformed data vectors after a

certain number of components. In the experiments reported

below, we trained the PCA on 600 input images and retained

the first six principle components. Our experiments revealed

that the value channel of the visual input is more important

than hue and saturation for our task. The GP model learned

with these 6-dimensional features is termed PCA-GP in the

experimental section.

2) Edge-based Features: The PCA is an unsupervised

method that does not take into account prior information

that might be available about the task to be solved – in this

case, the fact that distances to the closest obstacles are to be

predicted. Driven by the observation that, especially in indoor

environments, there is a strong correlation between the extent

of free space and the presence of horizontal edge features in

the panoramic image, we also assessed the potential of edge-

type features in our approach.

Laws’ convolution masks [4] provide an easy way of

constructing local feature extractors for discretized signals.

The idea is to define three basic convolution masks

• L3 = (1, 2, 1)T (Weighted Sum: Averaging),

• E3 = (−1, 0, 1)T (First difference: Edges),

• S3 = (−1, 2,−1)T (Second difference: Spots),

Fig. 4. Feature histogram for Laws5+LMD edge features. Each cell
in the histogram is indexed by the pixel location of the edge feature
(x-axis) and the length of the corresponding laser beam (y-axis). The
optimized (parametric) mapping function that is used as a benchmark in
our experiments is overlaid in green.

each having a different effect on (1-dimensional) patterns,

and to construct more complex filters by a combination of

the basic masks. In our application domain, we obtained good

results with the (2-dimensional) directed edge filter E5L
T
5

,

which is the outer product of E5 and L5. Here, E5 is a

convolution of E3 with L3 and L5 denotes L3 convolved with

itself. After filtering with this mask, we apply an optimized

threshold to yield a binary response. This feature type is

denoted as Laws5 in the experimental section. As another

well-known feature type, we applied the E3L
T
3

filter, i.e., the

Sobel operator, in conjunction with Canny’s algorithm [2].

This filter yields binary responses at the image locations

with maximal grey-value gradients in gradient direction. We

denote this feature type as Laws3+Canny in Section V. For

both edge detectors, Laws5 and Laws3+Canny, we search

along each image column for the first detected edge. This

pixel index then constitutes the feature value.

To increase the robustness of the edge detectors described

above, we applied lightmap damping as an optional prepro-

cessing step to the raw images. This means that, in a first

step, a copy of the image is converted to gray scale and

strongly smoothed with a Gaussian filter, such that every

pixel represents the brightness of its local environment. This

is referred to as the lightmap. The brightness of the original

image is then scaled with respect to the lightmap, such that

the value component of the color is increased in dark areas

and decreased in bright areas. In the experimental section,

this operation is marked by adding +LMD to the feature

descriptions.

All parameters involved in the edge detection procedures

described above were optimized to yield features that lie as

close as possible to the laser end points projected onto the

omnidirectional image using the acquired training set. For

our regression model, we can now construct 4-dimensional

feature vectors x consisting of the Canny-based feature,

the Laws5-based feature, and both features with additional

preprocessing using lightmap-damping. Since every of these

individual features captures slightly different aspects of the

visual input, the combination of all in what we call the

Feature-GP yields more accurate predictions than any single

one.

As a benchmark for predicting range information from

edge features, we also evaluated the individual features

directly. For doing so, we fitted a parametric function to trai-

ning samples of feature-range pairs. This mapping function

computes for each pixel location of an edge feature the length

of the corresponding laser beam. The diagram in Figure 4

depicts the feature histogram for the Laws5+LMD features

from one of our test runs that was used for the optimization.

The color of a cell (x, y) in this diagram encodes the relative

amount of features that were extracted at the pixel location

x (measured from the center of the omnidirectional image)

and that have a corresponding laser beam with a length of

y in the training set. The optimized projection function is

overlayed in green.

V. EXPERIMENTS

The experiments presented in this section are designed to

evaluate how well the proposed system is able to estimate

range data from single monocular camera images. We docu-

ment a series of different experiments: First, we evaluate the

accuracy of the estimated range scans using the individual

edge features directly, the PCA-GP, and the Feature-GP,

which constitutes our regression model with the 4 edge-

based vision features as input dimensions. Then, we illustrate

how these estimates can be used to build grid maps of the

environment. We also evaluated, whether applying the GBP

model [15] as a post-processing step to the predicted range

scans can further increase the prediction accuracy. The GBP

model places a Gaussian process prior on the range function

(rather than on the function that maps features to distances)

and, thus, also models angular dependencies. We denote

these models by Feature-GP+GBP and PCA-GP+GBP.

The two data sets used for the experiments have been

recorded using a mobile robot equipped with a laser scanner,

an omnidirectional camera, and odometry sensors at the

AIS lab at the University of Freiburg (Figure 2 (b)) and

at the DFKI lab in Saarbrücken (Figure 2 (c)). The two

environments have quite different characteristics – especially

in the visual aspects. While the environment in Saarbrücken

mainly consists of solid, regular structures and a homoge-

neously colored floor, the lab in Freiburg exhibits many glass

panes, an irregular, wooden floor, and challenging lighting

conditions.

A. Accuracy of Range Predictions

We evaluated eight different system configurations, each

on both test data sets. Table I summarizes the average

RMSE (root mean squared error) obtained for the individual

scenarios. The error is measured as the deviation of the range

predictions using the visual input from the corresponding

laser ranges recorded by the sensor. The first four configura-

tions, referred to as C1 to C4, apply the optimized mapping

functions for the different edge features (see Figure 4).

Depending on the data, the features provide estimates with

an RMSE of between 1.7 m and 3 m. We then evaluated the

configurations C5 and C6 which use the four edge-based

features as inputs to a Gaussian process model as described

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3 2 1 0 1 2 3 4 5

Ground Truth Distances (Laser)
Predicted means (FeatureGP)

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400

R
M

S
E

Image Number

Laws3+Canny
Laws3+Canny+LMD

Laws5
Laws5+LMD
Feature-GP

Feature-GP+GBP

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500

R
M

S
E

Image Number

Laws3+Canny
Laws3+Canny+LMD

Laws5
Laws5+LMD
Feature-GP

Feature-GP+GBP

(a) (b) (c) (d)

Fig. 5. (a) Estimated ranges projected back onto the camera image using the feature detectors directly (small dots) and using the Feature-GP model (red
points). (b) Prediction results and the true laser scan at one of the test locations. The evolution of the root mean squared error (RSME) for the individual
images of the Saarbrücken (c) and Freiburg (d) data sets.

in Section III to learn the mapping from the feature vectors

to the distances. The learning algorithm was able to perform

range estimation with an RMSE of around 1 m. Note that

we measure the prediction error relative to the recorded laser

beams rather than to the true geometry of the environment.

Thus, we report a conservative error estimate that also

includes errors due to reflected laser beams contained in

the test set. To give a visual impression of the prediction

accuracy of the Feature-GP, we give a typical laser scan

and the mean predictions in diagram (b) of Figure 5.

TABLE I

AVERAGE ERRORS OBTAINED WITH THE DIFFERENT METHODS

RMSE on test set
Configuration Saarbrücken Freiburg

C1: Laws5 1.70m 2.87m
C2: Laws5+LMD 2.01m 2.08m
C3: Laws3+Canny 1.74m 2.87m
C4: Laws3+Canny+LMD 2.06m 2.59m

C5: Feature-GP 1.04m 1.04m
C6: Feature-GP+GBP 1.03m 0.94m

C7: PCA-GP 1.24m 1.40m
C8: PCA-GP+GBP 1.22m 1.41m

As configuration C7, we evaluated the PCA-GP approach

that does not require engineered features, but rather works

on the low-dimensional representation of the raw visual

input computed using the PCA. The resulting 6-dimensional

feature vector is used as input to the Gaussian process model.

With an RMSE of 1.2 m to 1.4 m, the PCA-GP outperforms

all four engineered features, but is not as accurate as the

Feature-GP. For configurations C6 and C8, we predicted

the ranges per scan using the two different methods and

additionally applied the GBP model [15] to incorporate

angular dependencies between the predicted beams. This

post-processing step yields slight improvements compared

to the original variants C5 and C7.

Figure 5 (a) depicts an example images showing the

predictions based on the individual vision features and the

Feature-GP. It can be clearly seen from the image, that

the different edge-based features model different parts of

the range scan well. The Feature-GP fuses these unreliable

estimates to achieve high accuracy on the whole scan. The

result of the Feature-GP+GBP variant for the same situation

is given in Figure 1. The evolution of the RMSE for the

different methods over time is given in Figures 5 (c) and (d).

As can be seen from the diagrams, the prediction using

the Feature-GP model outperforms the other techniques and

achieves a near-constant error rate.

B. Application to Mapping

Our approach can be applied to a variety of robotics tasks

such as obstacle avoidance, localization, or mapping. To

illustrate this, we show how to learn a grid map of the envi-

ronment from the predictive range distributions. Compared

to occupancy grid mapping where one estimates for each cell

the probability of being occupied or free, we use the so called

reflection probability maps. A cell of such a map models the

probability that a laser beam passing this cell is reflected

or not. Reflection probability maps, which are learned using

the so called counting model, have the advantage of requiring

no hand-tuned sensor model such as occupancy grid maps

(see [1] for further details). The reflection probability mi of

a cell i is given by mi = αi/(αi + βi) where αi is the

number of times an observation hits the cell, i.e., ends in it,

and βi is the number of misses, i.e., the number of times a

beam has intercepted a cell without ending in it. Since our

GP approach does not estimate a single laser end point, but

rather a full (normal) distribution p(z) of possible end points,

we have to integrate over this distribution. More precisely,

for each grid cell ci, we update the cell’s reflectance values

according to the predictive distribution p(z) according to the

following formulas:

αi ← αi +

∫

z∈ci

p(z) dz (5)

βj ← βi +

∫

z>ci

p(z) dz . (6)

Note that for perfectly accurate predications, the extended

update rule is equivalent to the standard formula stated above.

Fig. 6. Maps of the Freiburg AIS lab (top row) and DFKI Saarbrücken
(bottom row) using real laser data (left) and the predictions of the Feature-

GP (right).

We applied this extended reflection probability mapper

to the trajectories and range predictions that resulted from

the experiments reported on above. Figure 6 gives the laser-

based maps using a standard mapper (left column) and the

extended mapper using the predicted ranges (right column)

for both environments (Freiburg on top and Saarbrücken

below). In both cases, it is possible to build an accurate

map, which is comparable to maps obtained with infrared

proximity sensors [9] or sonars [23].

VI. CONCLUSIONS

We presented a novel approach for predicting range func-

tions from single images recorded with a monocular camera.

Our model is based on a Gaussian process model for regres-

sion, utilizing edge-based features extracted from the image

or, alternatively, using the PCA to find a low-dimensional

representation of the visual input in an unsupervised manner.

Both models outperform the optimized individual features.

We showed in experiments with a real robot that the range

predictions are accurate enough to feed them into an exten-

ded mapping algorithm for predictive range distributions and

that the resulting maps are comparable to maps obtained with

infrared or sonar sensors.

In future research we would like to evaluate alternative

techniques for dimensionality reduction, especially those

taking the actual task into account (supervised PCA, LDA)

or others that are directly integrated into the GP framework.

Furthermore, we would like to evaluate our approach in other

robotics tasks, such as exploration or place classification.

ACKNOWLEDGMENTS

We would like to thank Kristian Kersting for the fruitful

discussions and Andrzej Pronobis and Jie Luo for creating

the data sets. This work has partly been supported by the EC

under contract numbers FP6-004250-CoSy, FP6-IST-034120,

and FP6-IST-045144, by the DFG under contract number

SFB/TR-8, and by the German Ministry for Education and

Research (BMBF) through the DESIRE project.

REFERENCES

[1] W. Burgard, C. Stachniss, and D. Haehnel. Autonomous Navigation

in Dynamic Environments, volume 35 of STAR Springer tracts in

advanced robotics, chapter Mobile Robot Map Learning from Range
Data in Dynamic Environments. Springer Verlag, 2007.

[2] F. Canny. A computational approach to edge detection. IEEE Trans.

Pattern Analysis and Machine Intelligence, pages 679–714, 1986.
[3] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G.R. Bradski.

Self-supervised monocular road detection in desert terrain. In Proc.

of Robotics: Science and Systems (RSS), 2006.
[4] E. R. Davies. Laws texture energy in texture. In Machine Vision:

Theory, Algorithms, Practicalities. Acedemic Press, 1997.
[5] A. Davision, I. Reid, N. Molton, and O. Stasse. Monoslam: Real-

time single camera slam. IEEE Transaction on Pattern Analysis and

Machine Intelligence, 29(6), 2007.
[6] E. Delage, H. Lee, and A.Y. Ng. Automatic single-image 3d recon-

structions of indoor manhattan world scenes. In Proceedings of the

12th International Symposium of Robotics Research (ISRR), 2005.
[7] P. Elinas, R. Sim, and J. J. Little. σSLAM: Stereo vision SLAM

using the rao-blackwellised particle filter and a novel mixture proposal
distribution. In Proc. of ICRA, 2006.

[8] P. Favaro and S. Soatto. A geometric approach to shape from defocus.
IEEE Trans. Pattern Anal. Mach. Intell., 27(3):406–417, 2005.

[9] Y.S. Ha and H.H. Kim. Environmental map building for a mobile robot
using infrared range-finder sensors. Advanced Robotics, 18(4):437–
450, 2004.

[10] F. Han and S.-C. Zhu. Bayesian reconstruction of 3d shapes and
scenes from a single image. In IEEE Intern. Workshop on Higher-

Level Knowledge in 3D Modeling and Motion Analysis (HLK, page 12,
Washington, DC, USA, 2003.

[11] D. Hoiem, A.A. Efros, and M. Herbert. Recovering surface layout
from an image. IJCV, 75(1), October 2007.

[12] D. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[13] J. Michels, A. Saxena, and A.Y. Ng. High speed obstacle avoidance
using monocular vision and reinforcement learning. In ICML, pages
593–600, 2005.

[14] H.P. Moravec and A.E. Elfes. High resolution maps from wide angle
sonar. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 116–121, St. Louis, MO, USA, 1985.
[15] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Gaussian beam

processes: A nonparametric bayesian measurement model for range
finders. In Proc. of Robotics: Science and Systems (RSS), 2007.

[16] C.E. Rasmussen and C. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006.
[17] K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, and

T. Yoshigahara. Obstacle avoidance and path planning for humanoid
robots using stereo vision. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), New Orleans, LA, USA, 2004.
[18] A. Saxena, S.H. Chung, and A.Y. Ng. 3-d depth reconstruction from

a single still image. Intern. Journal of Computer Vision (IJCV), 2007.
[19] R. Sim and J. J. Little. Autonomous vision-based exploration and

mapping using hybrid maps and Rao-Blackwellised particle filters. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), pages 2082–2089, 2006.
[20] F. Sinz, J. Quinonero-Candela, G. Bakir, C. Rasmussen, and M. Franz.

Learning depth from stereo. In 26th DAGM Symposium, 2004.
[21] H. Strasdat, C. Stachniss, M. Bennewitz, and W. Burgard. Visual

bearing-only simultaneous localization and mapping with improved
feature matching. In Fachgespräche Autonome Mobile Systeme (AMS),
2007.

[22] G. Swaminathan and S. Grossberg. Laminar cortical mechanisms
for the perception of slanted and curved 3-D surfaces and their 2-
D pictorical projections. J. Vis., 2(7):79–79, 11 2002.

[23] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig,
T. Hofmann, M. Krell, and T. Schimdt. Map learning and high-
speed navigation in RHINO. In D. Kortenkamp, R.P. Bonasso,
and R. Murphy, editors, AI-based Mobile Robots: Case studies of

successful robot systems. MIT Press, Cambridge, MA, 1998.
[24] A. Torralba and A. Oliva. Depth estimation from image structure.

IEEE Transactions on Pattern Analysis and Machine Learning, 2002.

[C17] G. Grisetti, D. Lordi Rizzini, C. Stachniss, E. Olson, and W. Bur-

gard. Online constraint network optimization for efficient maximum likeli-

hood map learning. In Proc. of the IEEE Int. Conf. on Robotics & Automa-

tion (ICRA), Pasadena, CA, USA, 2008.

Online Constraint Network Optimization

for Efficient Maximum Likelihood Map Learning

Giorgio Grisetti∗ Dario Lodi Rizzini‡ Cyrill Stachniss∗ Edwin Olson† Wolfram Burgard∗

Abstract— In this paper, we address the problem of incremen-
tally optimizing constraint networks for maximum likelihood
map learning. Our approach allows a robot to efficiently
compute configurations of the network with small errors while
the robot moves through the environment. We apply a variant
of stochastic gradient descent and use a tree-based parame-
terization of the nodes in the network. By integrating adaptive
learning rates in the parameterization of the network, our algo-
rithm can use previously computed solutions to determine the
result of the next optimization run. Additionally, our approach
updates only the parts of the network which are affected by the
newly incorporated measurements and starts the optimization
approach only if the new data reveals inconsistencies with
the network constructed so far. These improvements yield an
efficient solution for this class of online optimization problems.

Our approach has been implemented and tested on simu-
lated and on real data. We present comparisons to recently
proposed online and offline methods that address the problem
of optimizing constraint network. Experiments illustrate that
our approach converges faster to a network configuration with
small errors than the previous approaches.

I. INTRODUCTION

Maps of the environment are needed for a wide range of

robotic applications such as search and rescue, automated

vacuum cleaning, and many other service robotic tasks.

Learning maps has therefore been a major research focus in

the robotics community over the last decades. Learning maps

under uncertainty is often referred to as the simultaneous

localization and mapping (SLAM) problem. In the literature,

a large variety of solutions to this problem can be found.

The approaches mainly differ in the underlying estimation

technique. Typical techniques are Kalman filters, information

filters, particle filters, network based methods which rely on

least-square error minimization techniques.

Solutions to the SLAM problem can be furthermore di-

vided into online an offline methods. Offline methods are

so-called batch algorithms that require all the data to be

available right from the beginning [1], [2], [3]. In contrast to

that, online methods can re-use an already computed solution

and update or refine it. Online methods are needed for

situations in which the robot has to make decisions based on

the model of the environment during mapping. Exploring an

unknown environment, for example, is a task of this category.

Popular online SLAM approaches such as [4], [5] are based

on the Bayes’ filter. Recently, also incremental maximum-

likelihood approaches have been presented as an effective

alternative [6], [7], [8].

∗Department of Computer Science, University of Freiburg, Germany.
†MIT, 77 Massachusetts Ave., Cambridge, MA 02139-4307, USA.
‡Department of Information Engineering, University of Parma, Italy.

trajectory

robot

constraints
matching

Fig. 1. Four snapshots created while incrementally learning a map.

In this paper, we present an efficient online optimization

algorithm which can be used to solve the so-called “graph-

based” or “network-based” formulation of the SLAM prob-

lem. Here, the poses of the robot are modeled by nodes

in a graph and constraints between poses resulting from

observations or from odometry are encoded in the edges

between the nodes. Our method belongs to the same class of

techniques of Olson’s algorithm or MLR [8]. It focuses on

computing the best map and it assumes that the constraints

are given. Techniques like the ATLAS framework [9] or

hierarchical SLAM [10], for example, can be used to obtain

the necessary data associations (constraints). They also apply

a global optimization procedure to compute a consistent

map. One can replace these optimization procedures by our

algorithm and in this way make them more efficient.

Our approach combines the ideas of adaptive learning

rates with a tree-based parameterization of the nodes when

applying stochastic gradient descent. This yields an online

algorithm that can efficiently compute network configura-

tions with low errors. An application example is shown in

Figure 1. It depicts four snapshots of our online approach

during a process of building a map from the ACES dataset.

II. RELATED WORK

A large number of mapping approaches has been presented

in the past and a variety of different estimation techniques

have been used to learn maps. One class of approaches uses

constraint networks to represent the relations between poses

and observations.

Lu and Milios [1] were the first who used constraint

networks to address the SLAM problem. They proposed a

brute force method that seeks to optimize the whole network

at once. Gutmann and Konolige [11] presented an effective

way for constructing such a network and for detecting loop

closures while running an incremental estimation algorithm.

Frese et al. [8] described a variant of Gauss-Seidel relaxation

called multi-level relaxation (MLR). It applies relaxation at

different resolutions.

Olson et al. [2] were the first who applied a variant

of stochastic gradient descent to compute solutions to this

family of problems. They propose a representation of the

nodes which enables the algorithm to perform efficient

updates. Our previously presented method [3] introduced

the tree parameterization that is also used in this paper.

Subsequently, Olson et al. [6] presented an online variant of

their method using adaptive learning rates. In this paper, we

integrate such learning rates into the tree-based parameteri-

zation which yields a solution to the online SLAM problem

that outperforms the individual methods.

Kaess el al. [7] proposed an on-line version of the smooth-

ing and mapping algorithm for maximum likelihood map

estimation. This approach relies on a QR factorization of

the information matrix and integrates the new measurements

as they are available. Using the QR factorization, the poses

of the nodes in the network can be efficiently retrieved by

back substitution. Additionally they keep the matrices sparse

via occasional variable reordering. Frese [12] proposed the

Treemap algorithm which is able to perform efficient updates

of the estimate by ignoring the weak correlations between

distant locations.

The contribution of this paper is an efficient online ap-

proach for learning maximum likelihood maps. It integrates

adaptive learning rates into a tree-based network optimization

technique using a variant of stochastic gradient descent. Our

approach presents an efficient way of selecting only the part

of the network which is affected by newly incorporated data.

Furthermore, it allows to delay the optimization so that the

network is only updated if needed.

III. STOCHASTIC GRADIENT DESCENT FOR MAXIMUM

LIKELIHOOD MAPPING

Approaches to graph-based SLAM focus on estimating

the most likely configuration of the nodes and are therefore

referred to as maximum-likelihood (ML) techniques [8], [1],

[2]. The approach presented in this paper also belongs to this

class of methods.

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. Let x = (x1 · · · xn)T be a vector of

parameters which describes a configuration of the nodes. Let

δji and Ωji be respectively the mean and the information

matrix of an observation of node j seen from node i. Let

fji(x) be a function that computes a zero noise observation

according to the current configuration of the nodes j and i.

Given a constraint between node j and node i, we can

define the error eji introduced by the constraint as

eji(x) = fji(x)− δji (1)

as well as the residual rji = −eji(x). Let C =
{〈j1, i1〉 , . . . , 〈jM , iM 〉} be the set of pairs of indices for

which a constraint δjmim
exists. The goal of a ML approach

is to find the configuration x∗ of the nodes that minimized

the negative log likelihood of the observations. Assuming the

constraints to be independent, this can be written as

x∗ = argmin
x

∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (2)

In the remainder of this section we describe how the general

framework of stochastic gradient descent can be used for

minimizing Eq. (2) and how to construct a parameterization

of the network which increases the convergence speed.

A. Network Optimization using Stochastic Gradient Descent

Olson et al. [2] propose to use a variant of the pre-

conditioned stochastic gradient descent (SGD) to address

the compute the most likely configuration of the network’s

nodes. The approach minimizes Eq. (2) by iteratively se-

lecting a constraint 〈j, i〉 and by moving the nodes of the

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation

of gradient descent, the constraints are not optimized as a

whole but individually. The nodes are updated according to

the following equation:

xt+1 = xt + λ ·H−1JT
jiΩjirji (3)

Here x is the set of variables describing the locations of

the poses in the network and H−1 is a preconditioning

matrix. Jji is the Jacobian of fji, Ωji is the information

matrix capturing the uncertainty of the observation, rji is

the residual, and λ is the learning rate which decreases with

the iteration. For a detailed explanation of Eq. (3), we refer

the reader to our previous works [3], [2].

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing subsets of nodes,

one subset for each constraint. Whenever time a solution for

one of these subproblems is found, the network is updated

accordingly. Obviously, updating the different constraints one

after each other can have antagonistic effects on the corre-

sponding subsets of variables. To avoid infinitive oscillations,

one uses the learning rate λ to reduce the fraction of the

residual which is used for updating the variables. This makes

the solutions of the different sub-problems to asymptotically

converge towards an equilibrium point that is the solution

reported by the algorithm.

B. Tree Parameterization

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. The poses can be described

by a vector of parameters x such that a bidirectional map-

ping between p and x exists. The parameterization defines

the subset of variables that are modified when updating a

constraint. An efficient way of parameterizing the node is to

use a tree. One can construct a spanning tree (not necessarily

a minimum one) from the graph of poses. Given such a tree,

we define the parameterization for a node as

xi = pi − pparent(i), (4)

where pparent(i) refers to the parent of node i in the spanning

tree. As defined in Eq. (4), the tree stores the differences

between poses. This is similar in the spirit to the incremental

representation used in the Olson’s original formulation, in

that the difference in pose positions (in global coordinates)

is used rather than pose-relative coordinates or rigid body

transformations.

To obtain the difference between two arbitrary nodes based

on the tree, one needs to traverse the tree from the first node

upwards to the first common ancestor of both nodes and

then downwards to the second node. The same holds for

computing the error of a constraint. We refer to the nodes

one needs to traverse on the tree as the path of a constraint.

For example, Pji is the path from node i to node j for the

constraint 〈j, i〉. The path can be divided into an ascending

part P
[−]
ji of the path starting from node i and a descending

part P
[+]
ji to node j. We can then compute the residual in

the global frame by

r′ji =
∑

k[−]∈P
[−]
ji

xk[−] −
∑

k[+]∈P
[+]
ji

xk[+] + Riδji. (5)

Here Ri is the homogeneous rotation matrix of the pose pi.

It can be computed according to the structure of the tree

as the product of the individual rotation matrices along the

path to the root. Note that this tree does not replace the

graph as an internal representation. The tree only defines the

parameterization of the nodes.

Let Ω′
ji = RiΩjiR

T
i be the information matrix of a

constraint in the global frame. According to [2], we compute

an approximation of the Jacobian as

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] , (6)

with Ik = (0 · · · 0 I
︸︷︷︸

kth element

0 · · · 0). Then, the update

of a constraint turns into

xt+1 = xt + λ|Pji|M
−1Ω′

jir
′
ji, (7)

where |Pji| refers to the number of nodes in Pji. In Eq. (7),

we replaced the preconditioning matrix H−1 with its scaled

approximation M−1 as described in [2]. This prevents from

a computationally expensive matrix inversion.

Let the level of a node be the distance in the tree between

the node itself and the root. We define the top node of a

constraint as the node on the path with the smallest level.

Our parameterization implies that updating a constraint will

never change the configuration of a node with a level smaller

than the level of the top node of the constraint.

In principle, one could apply the technique described in

this section as a batch algorithm to an arbitrarily constructed

spanning tree of the graph. However, our proposed method

uses a spanning tree which can be constructed incrementally,

as described in the next section.

IV. ONLINE NETWORK OPTIMIZATION

The algorithm presented in the previous section is a batch

procedure. At every iteration, the poses of all nodes in the

network are optimized. The fraction of the residual used

in updating every constraint decreases over time with the

learning rate λ, which evolves according to an harmonic

progression. During online optimization, the network is dy-

namically updated to incorporate new movements and obser-

vations. In theory, one could also apply the batch version of

our optimizer to correct the network. This, however, would

require to compute a solution from scratch each time the

robot moves or makes an observation which would obviously

lead to an inefficient algorithm.

In this section we describe an incremental version of our

optimization algorithm, which is suitable for solving on-

line mapping problems. As pointed in [6] an incremental

algorithm should have the following properties:

1) Every time a constraint is added to the network, only

the part of the network which is affected by that

constraint should be optimized. For example, when

exploring new terrain, the effects of the optimization

should not perturb distant parts of the graph.

2) When revisiting a known region of the environment it

is common to re-localize the robot in the previously

built map. One should use the information provided

by the re-localization to compute a better initial guess

for the position of the newly added nodes.

3) To have a consistent network, performing an opti-

mization step after adding each constraint is often

not needed. This happens when the newly added con-

straints are adequately satisfied by the current network

configuration. Having a criterion for deciding when to

perform unnecessary optimizations can save a substan-

tial amount of computation.

In the remainder of this section, we present four im-

provements to the algorithm so that it satisfies the discussed

properties.

A. Incremental Construction of the Tree

When constructing the parameterization tree online, we

can assume that the input is a sequence of poses corre-

sponding to a trajectory of the robot. In this case, subsequent

poses are located closely together and there exist constraints

between subsequent poses resulting from odometry or scan-

matching. Further constraints between arbitrary nodes result

from observations when revisiting a place in the environment.

We proceed as follows: the oldest node is the root of the

tree. When adding a node i to the network, we choose as

its parent the oldest node for which a constraint to the node

i exists. Such a tree can be constructed incrementally since

adding a new node does not require to change the existing

parts of the tree.

The pose pi and parameter xi of a newly added node i is

initialized according to the position of the parent node and

the connecting constraint as

pi = pparent(i) ⊕ δi,parent(i) (8)

xi = pi − pparent(i). (9)

The parent node represents an already explored part of the

environment and the constraint between the new node and the

parent can be regarded as a localization event in an already

constructed map, thus satisfying Property 2. As shown in the

experiments described below, this initialization appears to be

a good heuristic for determining the initial guess of the pose

of a newly added node.

B. Constraint Selection

When adding a constraint 〈j, i〉 to the graph, a subset of

nodes needs to be updated. This set depends on the topology

of the network and can be determined by a variant of breadth

first visit. Let Gj,i be the minimal subgraph that contains the

added constraint and has only one constraint to the rest of

the graph. Then, the nodes that need to be updated are all

nodes of the minimal subtree that contains Gj,i. The precise

formulation on how to efficiently determine this set is given

by Algorithm 1.

Data: 〈j, i〉: the constraint, G: the graph, T : the tree.
Result: Nji: the set of affected nodes, Eji: the affected

constraints.
Queue f = childrenOf(topNode(〈j, i〉));
Eji := edgesToChildren(topNode(〈j, i〉));
foreach 〈a, b〉 ∈ Eji do

〈a, b〉 .mark = true;
end
while f 6= {} do

Node n := first(f);
n.mark := true
foreach 〈a, b〉 ∈ edgesOf(n) do

if 〈a, b〉 .mark = true then
continue;

end
Node m := (a = n)?b : a;
if m = parent(n) or m.mark = true then

continue;
end
〈a, b〉 .mark = true;
Eji := Eji ∪ {〈a, b〉};
if 〈a, b〉 ∈ T then

f := f ∪ {m};
else

f := f ∪ childrenOf(topNode(〈a, b〉));
end

end
f := removeFirst(f);
Nji := Nji ∪ {n};

end
Algorithm 1: Construction of the set of nodes affected by
a constraint. For readability we assume that the frontier f can
contain only the nodes which are not already marked.

Note that the number of nodes in Gj,i does depend only

on the root of the tree and on the overall graph. It contains

all variables which are affected by adding the new costraint

〈i, j〉.

C. Adaptive Learning Rates

Rather than using one learning rate λ for all nodes, the

incremental version of the algorithm uses spatially adaptive

learning rates introduced in [6]. The idea is to assign an

individual learning rate to each node, allowing different parts

of the network to be optimized at different rates. These

learning rates are initialized when a new constraint is added

to the network and they decrease with each iteration of the

algorithm. In the following, we describe how to initialize and

update the learning rates and how to adapt the update of the

network specified in Eq. (7).

a) Initialization of the learning rates: When a new

constraint 〈j, i〉 is added to the network, we need to update

the learning rates for the nodes Nji determined in the

previous section. First, we compute the learning rate λ′
ji for

the newly introduced information. Then, we propagate this

learning rate to the nodes Nji.e

A proper learning rate is determined as follows. Let βji

be the fraction of the residual that would appropriately fuse

the previous estimate and the new constraint. Similar to a

Kalman filter, βji is determined as

βji = Ωji(Ωji + Ωgraph
ji)−1, (10)

where Ωji is the information matrix of the new constraint,

and Ωgraph
ji is an information matrix representing the uncer-

tainty of the constraints in the network. Based on Eq. (10),

we can compute the learning rate λ′
ji of the new constraint

as

λ′
ji = maxrow

(
1

|Pji|
(βji ⊘MΩ′

ji)

)

. (11)

Here ⊘ represents the row by row division (see [6] for further

details). The learning rate of the constraint is then propagated

to all nodes k ∈ Nji as

λk ← max(λk, λ′
ji), (12)

where λk is the learning rate of the node k. According

to Eq. (11) constraints with large residuals result in larger

learning rate increases than constraints with small residuals.

b) Update of the network: When updating the network,

one has to consider the newly introduced learning rates.

During an iteration, we decrease the individual learning

rates of the nodes according to a generalized harmonic

progression [13]:

λk ←
λk

1 + λk

(13)

In this way, one guarantees the strong monotonicity of λk

and thus the convergence of the algorithm to an equilibrium

point.

The learning rates of the nodes cannot be directly used

for updating the poses since Eq. (7) requires a learning rate

for each constraint and not for each node. When updating

the network given the constraint 〈j, i〉, we obtain an average

learning rate λ̃ji from the nodes on Pji as

λ̃ji =
1

|Pji|

∑

k∈Pji

λk. (14)

Then, the constraint update turns into

∆xk = λ̃ji|Pji|M
−1Ω′

jir
′
ji. (15)

D. Scheduling the Network Optimization

When adding a set of constraints 〈j, i〉 ∈ Cnew to a network

without performing an optimization, we can incrementally

compute the error of the network as

enew =
∑

〈j,i〉∈Cold

rT
jiΩjirji +

∑

〈j,i〉∈Cnew

rT
jiΩjirji. (16)

Here enew is the new error and Cold refers to the set of

constraints before the modification.

To avoid unnecessary computation, we perform the opti-

mization only if needed. This is the case when the newly

incorporated information introduced a significant error com-

pared to the error of the network before. We perform an

optimization step if

enew

|Cnew|+ |Cold|
> α max

〈j,i〉∈Cold

rT
jiΩjirji. (17)

Here α is a user-defined factor that allows the designer of

a mapping system to adapt the quality of the incremental

solutions to the needs of the specific application.

If we assume that the network in Cold has already con-

verged, this heuristic triggers an optimization only if a signif-

icant inconsistency is revealed. Furthermore, the optimization

only needs to be performed for a subset of the network and

not for the whole network. The subset is given by

E =
⋃

〈j,i〉∈Cnew

Eji. (18)

Here Eji is the set of constraints to be updated given a new

constraint 〈j, i〉 ∈ Cnew. The sets Eji are computed according

to Algorithm 1. This criterion satisfies Property 3 and leads

to an efficient algorithm for incrementally optimizing the

network of constraints.

V. EXPERIMENTS

This section is designed to evaluate the effectiveness

of the proposed methods to incrementally learn maximum

likelihood maps. We first show that such a technique is

well suited to generate accurate grid maps given laser range

data and odometry from a real robot. Second, we provide

simulation experiments to evaluate the evolution of the error

and provide comparisons to our previously proposed tech-

niques [3], [2], [6]. Finally, we illustrate the computational

advantages resulting from our algorithm.

A. Real World Experiments

To illustrate that our technique can be used to learn maps

from real robot data, we used the freely available ACES

dataset. The motivating example shown in Figure 1 depicts

four different maps computed online by our incremental

mapping technique. During this experiment, we extracted

constraints between consecutive poses by means of pairwise

scan matching. Loop closures were determined by localizing

Fig. 2. Network used in the simulated experiments. Left: initial guess.
Right: ground truth.

 0.001

 1

 1000

 0 5 10 15 20 25 30

er
ro

r
p

er
 c

o
n

st
ra

in
t

iteration

Olson Offline
Olson Incremental

Tree Offline
Tree Incremental

 0.001

 1

 1000

 0 5 10 15 20 25 30

er
ro

r
p

er
 c

o
n

st
ra

in
t

iteration

Olson Offline
Olson Incremental

Tree Offline
Tree Incremental

Fig. 3. Statistical experiments showing the evolution of the error per
iteration of the algorithm. Top: situation in which the robot is closes a small
loop. Bottom: closure of a large loop. The statistics have been generated
by considering 10 different realizations of the observation noise along the
same path.

the robot in the previously built map by means of a particle

filter.

As can be seen, our approach leads to accurate maps for

real robot data. Similar results were obtained with all datasets

we found online or recorded on our own.

B. Statistical Experiments on the Evolution of the Error

In the these experiments, we moved a virtual robot on

a grid world. An observation is generated each time the

current position of the robot was close to a previously visited

location. The observations are corrupted by a given amount

of Gaussian noise. The network used in this experiment is

depicted in Figure 2.

We compare our approach named Tree Incremental with

its offline variant [3] called Tree Offline which solves the

overall problem from scratch. In addition to that, we compare

it to the offline version without the tree optimization [2]

called Olson Offline as well as its incremental variant [6]

referred to as Olson Incremental. For space reasons, we omit

comparisons to LU decomposition, EKF, and Gauss-Seidel.

The advantages of our method over these other methods is

similar to those previously reported [2].

To allow a fair comparison, we disabled the scheduling of

the optimization of Eq. (17) and we performed 30 iterations

every time 16 constraints were added to the network. During

the very first iterations, the error of all approaches may show

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1000 2000 3000 4000

ti
m

e

Tree Offline
Tree Incremental

 0

 0.01

 0.02

 0.03

 0.04

 0 1000 2000 3000 4000

er
ro

r/
co

n
st

ra
in

t

constraints

Treemap
Tree Incremental

Fig. 4. Top: runtime comparison of the offline and the incremental
approaches using a tree parameterization. The optimization is performed
only when the error condition specified by Eq. (17) was verified. Bottom:
Comparison of the evolution of the global error between Treemap[12] and
the online version of our approach.

an increase, due to the bigger correction steps which result

from increasing the learning rates.

Figure 3 depicts the evolution of the error for all four

techniques during a mapping experiment. We depicted two

situations. In the first one, the robot closed a small loop.

As can be seen, the introduced error is small and thus our

approach corrects the error within 2 iterations. Both incre-

mental techniques perform better than their offline variants.

The approach proposed in this paper outperforms the other

techniques. The same holds for the second situation in which

the robot was closing a large loop. Note that in most cases,

one iteration of the incremental approach can be carried

out faster, since only a subpart of the network needs to be

updated.

C. Runtime Comparison

Finally, we evaluated our incremental version and its of-

fline variant with respect to the execution time. Both methods

where executed only when needed according to our criterion

specified by Eq. (17). We measured the time needed to run

the individual approach until convergence to the same low

error configuration, or until a maximum number of iterations

(30) was reached. As can be seen in Figure 4(top), the

incremental technique requires significantly less operations

and thus runtime to provide equivalent results in terms of

error. Figure 4(bottom) shows the error plot of a comparison

of our approach and Treemap [12] proposed by Frese. As

shown in the error-plot, in the beginning Treemap performs

slightly better than our algorithm, due to the exact calculation

of the Jacobians. However, when closing large loops Treemap

is more sensitive to angular wraparounds (see increase of

the error at constraint 2400 in Figure 4). This issue is

typically better handled by our iterative procedure. Overall,

we observed that for datasets having a small noise Treemap

provides slightly better estimates, while our approach is

generally more robust to extreme conditions.

VI. CONCLUSION

In this paper, we presented an efficient online solution to

the optimization of constraint networks. It can incrementally

learn maps while the robot moves through the environ-

ment. Our approach optimizes a network of constraints

that represents the spatial relations between the poses of

the robot. It uses a tree-parameterization of the nodes and

applies a variant of gradient descent to compute network

configurations with low errors.

A per-node adaptive learning rate allows the robot to re-

use already computed solutions from previous steps, to up-

date only the parts of the network, which are affected by the

newly incorporated information, and to start the optimization

approach only if the new data causes inconsistencies with the

already computed solution. We tested our approach on real

robot data as well as with simulated datasets. We compared

it to recently presented online and offline methods that also

address the network-based SLAM problem. As we showed

in practical experiments, our approach converges faster to a

configuration with small errors.

ACKNOWLEDGMENT

The authors gratefully thank Udo Frese for providing us

his Treemap implementation. This work has partly been

supported by the DFG under contract number SFB/TR-

8 (A3), by the EC under contract number FP6-IST-34120-

muFly, and FP6-2005-IST-6-RAWSEEDS.

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Journal of Autonomous Robots, vol. 4, 1997.

[2] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2006, pp. 2262–2269.
[3] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree

parameterization for efficiently computing maximum likelihood
maps using gradient descent,” in Proc. of Robotics: Science and

Systems (RSS), Atlanta, GA, USA, 2007. [Online]. Available:
http://www.informatik.uni-freiburg.de/ stachnis/pdf/grisetti07rss.pdf

[4] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
realtionships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer Verlag, 1990, pp. 167–193.

[5] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping
with unknown data association using FastSLAM,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Taipei, Taiwan, 2003.
[6] E. Olson, J. Leonard, and S. Teller, “Spatially-adaptive learning rates

for online incremental slam,” in Robotics: Science and Systems,
Atlanta, GA, USA, 2007.

[7] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental
smoothing and mapping with efficient data association,” in Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.
[8] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algo-

rithm for simultaneous localisation and mapping,” IEEE Transactions

on Robotics, vol. 21, no. 2, pp. 1–12, 2005.
[9] M. Bosse, P. Newman, J. Leonard, and S. Teller, “An ALTAS

framework for scalable mapping,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Taipei, Taiwan, 2003.
[10] C. Estrada, J. Neira, and J. Tardós, “Hierachical slam: Real-time

accurate mapping of large environments,” IEEE Transactions on

Robotics, vol. 21, no. 4, pp. 588–596, 2005.
[11] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic

environments,” in Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), Monterey, CA, USA,
1999, pp. 318–325.

[12] U. Frese, “Treemap: An o(logn) algorithm for indoor simultaneous
localization and mapping,” Journal of Autonomous Robots, vol. 21,
no. 2, pp. 103–122, 2006.

[13] H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.

[C18] C. Stachniss, G. Grisetti, N. Roy, and W. Burgard. Evaluation of

gaussian proposal distributions for mapping with rao-blackwellized parti-

cle filters. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), San Diego, CA, USA, 2007.

Analyzing Gaussian Proposal Distributions

for Mapping with Rao-Blackwellized Particle Filters

Cyrill Stachniss∗ Giorgio Grisetti∗ Wolfram Burgard∗ Nicholas Roy†

Abstract— Particle filters are a frequently used filtering tech-
nique in the robotics community. They have been successfully
applied to problems such as localization, mapping, or tracking.
The particle filter framework allows the designer to freely
choose the proposal distribution which is used to obtain the
next generation of particles in estimating dynamical processes.
This choice greatly influences the performance of the filter.
Many approaches have achieved good performance through
informed proposals which explicitly take into account the
current observation. A popular approach is to approximate
the desired proposal distribution by a Gaussian. This paper
presents a statistical analysis of the quality of such Gaussian
approximations. We also propose a way to obtain the optimal
proposal in a non-parametric way and then identify the error
introduced by the Gaussian approximation. Furthermore, we
present an alternative sampling strategy that better deals with
situations in which the target distribution is multi-modal.
Experimental results indicate that our alternative sampling
strategy leads to accurate maps more frequently that the
Gaussian approach while requiring only minimal additional
computational overhead.

I. INTRODUCTION

Particle filters are a frequently used technique in robotics

for dynamical system estimation. They have been used to

localize robots [4], to build both feature-maps [12], [13]

and grid-maps [7], [8], [9], and to track objects based on

vision data [10]. A particle filter approximates the posterior

by a set of random samples and updates it in a recursive

way. The particle filter framework specifies how to update

the sample set but leaves open how to choose the so-called

proposal distribution. The proposal is used to draw the next

generation of samples at the subsequent time step in the

dynamical process. For example, in the context of localizing

a robot, the odometry motion model is a good choice for

the proposal in that it can be easily sampled and then easily

transformed into the target distribution by such techniques as

weighted importance sampling. In practice, the design of the

proposal has a major influence on the performance and ro-

bustness of the filtering process. On the one hand, the closer

the proposal is to the target distribution, the better is the

estimation performance of the filter. On the other hand, the

computational complexity of the calculation of the proposal

distribution should be small in order to run the filter online.

For this reason, the majority of particle filter applications

restrict the proposal distribution to a Gaussian since one can

efficiently draw samples from such a distribution.

Murphy, Doucet, and colleagues [6], [14] introduced fac-

tored particle filters, known as “Rao-Blackwellization”, as an

∗University of Freiburg, Department of Computer Science, D-79110
Freiburg. †MIT, 77 Massachusetts Ave., Cambridge, MA 02139-4307

effective means to solve the simultaneous localization and

mapping (SLAM) problem. By applying this factorization,

several efficient mapping algorithms have been presented [7],

[8], [9], [12] and we can note that all of these algorithms have

used Gaussians to obtain the next generation of particles.

In this paper, we analyze how well such Gaussian proposal

distributions approximate the optimal proposal in the context

of mapping. We apply well-founded statistical measures to

carry out the comparisons. To the best of our knowledge,

this question has not been addressed in the context of

particle filter applications in robotics so far. It turns out that

Gaussians are often an appropriate choice but there exist

situations in which multi-modal distributions are needed to

appropriately sample the next generation of particles. Based

on this insight, we present an alternative sampling technique

that has the same complexity as the Gaussian approximation

but can appropriately capture distributions with multiple

modes, resulting in more robust mapping systems.

This paper is organized as follows. After a discussion

of related approaches, we briefly introduce in Section III

the ideas of mapping with Rao-Blackwellized filters. In

Section IV, we explain how to actually represent and sample

from the optimal proposal. We then present an efficient

variant that allows us to deal with multi-modal proposals in

an efficient way. In Section VI, we introduce the statistical

tests that are used in the experimental section for evaluation.

II. RELATED WORK

Particle filters have been applied to various kinds of

robotic state estimation problems such as localization [4],

mapping [7], [8], [9], [12], visual tracking [10], or data

association problems [20]. Murphy, Doucet, and colleagues

were the first that presented an approach based on a

Rao-Blackwellized particle filter that learns grid maps [6],

[14]. The first efficient approach for mapping with Rao-

Blackwellized particle filters was the FastSLAM algorithm

by Montemerlo et al. [13]. It uses a set of Kalman filters to

represent the map features conditioned on a sampled robot

pose. A Gaussian process model is used to sample the odom-

etry motion model and generate the proposal distribution on

the next step. The grid-based variant presented by Haehnel

et al. [9] performs scan-matching as a preprocessing step.

In this way, they are able to draw samples from Gaussians

with lower variances compared to proposals computed based

on the odometry only. This reduces the number of required

particles and allows a robot to maintain a map estimate

online. In contrast to that, Eliazar et al. [7] focus on an

efficient grid map representation which allows the particles

to share a map. Subsequently, Montemerlo et al. published

FastSLAM2 [12] that uses an informed proposal based on

the most recent sensor observation to restrict the space for

sampling. Again, to efficiently draw the next generation

of particles, the distribution is assumed to be Gaussian.

Grisetti et al. [8] extended FastSLAM2 to deal with large-

scale occupancy grid maps. This technique combines scan-

matching on a per particle basis with informed Gaussian

proposal distributions.

To the best of our knowledge, there exists no evaluation

of how well the Gaussian proposal distributions approximate

the optimal proposal which in general is non-Gaussian in the

context of mapping. There exist approaches that show that

the uncertainty of certain SLAM techniques monotonically

decreases over time. For example, Newman proved this

property for the relative map filter and also showed that

“in the limit, as the number of observations increases, the

relative map becomes perfectly known” [15]. In the context

of particle filters for SLAM, Montemerlo et al. [12] showed

that FastSLAM2 “converges [...] for a restricted class of

linear Gaussian problems”. It, however, makes no statement

about the validity of Gaussian approximations in real world

settings.

III. LEARNING MAPS

WITH RAO-BLACKWELLIZED PARTICLE FILTERS

A particle filter requires three sequential steps to update its

estimate. Firstly, one draws the next generation of samples

from the so-called proposal distribution π. Secondly, one

assigns a weight to each sample. The weights account for

the fact that the proposal distribution is in general not equal

to the target distribution. The third step is the resampling step

in which the target distribution is obtained from the weighted

proposal by drawing particles according to their weight.

In the context of the SLAM problem, one aims to estimate

the trajectory of the robot as well as a map of the environ-

ment. The key idea of a Rao-Blackwellized particle filter for

SLAM is to separate the estimate of the trajectory x1:t of

the robot from the map m of the environment. This is done

by the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1), (1)

where z1:t is the observation sequence and u1:t−1 the odom-

etry information. In practice, the first term of Eq. (1) is

estimated using a particle filter and the second term turns

into “mapping with known poses”.

One of the main challenges in particle filtering is to

choose an appropriate proposal distribution. The closer the

proposal is to the true target distribution, the more precise

is the estimate represented by the sample set. Typically, one

requires the proposal π to fulfill the assumption

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1:t, u1:t−1)

·π(x1:t−1 | z1:t−1, u1:t−2). (2)

According to Doucet [5], the distribution

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) =

p(zt | m
(i)
t−1, xt)p(xt | x

(i)
t−1, ut−1)

p(zt | m
(i)
t−1, x

(i)
t−1, ut−1)

(3)

is the optimal proposal for particle i with respect to the

variance of the particle weights that satisfies Eq. (2). This

proposal minimizes the degeneracy of the algorithm (Propo-

sition 4 in [5]). As a result, the computation of the weights

turn into

w
(i)
t = w

(i)
t−1

ηp(zt | m
(i)
t−1, x

(i)
t)p(x

(i)
t | x

(i)
t−1, ut−1)

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1)

(4)

∝ w
(i)
t−1

p(zt | m
(i)
t−1, x

(i)
t)p(x

(i)
t | x

(i)
t−1, ut−1)

p(zt|m
(i)
t−1

,xt)p(xt|x
(i)
t−1

,ut−1)

p(zt|m
(i)
t−1

,x
(i)
t−1

,ut−1)

(5)

= w
(i)
t−1 · p(zt | m

(i)
t−1, x

(i)
t−1, ut−1) (6)

= w
(i)
t−1 ·

∫

p(zt | x′)p(x′ | x
(i)
t−1, ut−1) dx′. (7)

Unfortunately, the optimal proposal distribution is in gen-

eral not available in closed form or in a suitable form

for efficient sampling. As a result, most efficient mapping

techniques use a Gaussian approximation of the optimal

proposal. This approximation is easy to compute and allows

the robot to sample efficiently. As we will show in this paper,

the Gaussian assumption is not always justified. To provide

examples for this statement, we first compute the optimal

proposal explicitly and then compare it to the Gaussian

approximation. Using the optimal proposal in a mapping

system leads to computationally expensive operations which

are explained in the next section in more detail.

IV. COMPUTING AND SAMPLING

FROM THE OPTIMAL PROPOSAL

This section explains how to compute the optimal proposal

and how to sample from that distribution. In mapping as

well as in many other problems, there is no closed form

solution available but we can arrive at a high-fidelity nu-

merical solution for the likelihood function. In our case,

the numerator of Eq. (3) is the product of the observation

likelihood and the odometry motion model. When using

laser range finders, the dominating factor is the observation

likelihood. To point-wise evaluate the observation likelihood,

we use the so called “beam endpoint model” [19]. In this

model, the individual beams within a scan are considered

to be independent. Furthermore, the likelihood of a beam

is computed based on the distance between the endpoint of

the beam and the closest obstacle from that point. Using

this point-wise evaluation of the observation likelihood, we

can compute a three-dimensional histogram providing the

observation likelihood for the different poses.

The second term in Eq. (3) is the robot motion model.

In this paper, we consider the “banana-shaped” distribu-

tion known from most approaches to Monte-Carlo localiza-

tion [4]. The likelihood for the individual poses is computed

point-wise and is stored in a histogram. This histogram

describes the likelihood function in a non-parametric form.

Histograms, however, are affected by discretization errors.

To smooth this effect, we furthermore apply the Parzen

window/kernel estimator [1] based on the evaluated data

points. Let xj be the evaluated poses, then this estimator

is defined as

p̂(x) =
p(xj)

h

n
∑

j=1

K

(

x − xj

h

)

(8)

where h is called Parzen window. We chose the kernel K(u)
as

K(u) =
1√
2π

exp

(

−u2

2

)

. (9)

This technique allows us to smooth the histogram data and

in this way avoid the discontinuities which are inherent

in the histogram representation itself. Furthermore, we can

make the likelihood of the smoothed histogram arbitrarily

close to the optimal distribution of Eq. (3) by increasing the

resolution of the local grid map and reducing the size of the

histogram bins.

Given this non-parametric estimator, we can perform re-

jection sampling to draw the next generation of particles.

Obviously, this results in a highly inefficient mapping system

with respect to the computation time. However, it allows

us to sample from an arbitrarily close approximation to

the optimal proposal distribution and to compare it to its

Gaussian approximation.

As we will illustrate in the experiments, in most cases

the proposal can be safely approximated by a Gaussian.

This explains why existing methods based on this particular

approximation have been so successful. In certain situations,

however, the distribution is highly non-Gaussian and often

multi-modal so that the Gaussian does not properly approx-

imate the true distribution which in turn can lead to the

divergence of the filter. To overcome this problem, we present

an alternative sampling method in the following section.

This sampling strategy is able to handle multiple modes in

the likelihood functions used as the proposal distribution.

Note that our approach does not require any significant com-

putational overhead compared to existing mapping systems

that apply scan-matching in combination with a Gaussian

proposal [8].

V. EFFICIENT MAPPING

WITH MULTI-MODAL PROPOSAL DISTRIBUTIONS

In this section, we present our alternative sampling strat-

egy that can handle multiple modes in the distributions while

at the same time keeping the efficiency of a Gaussian pro-

posal distribution. Our approach is equivalent to computing

a sum of weighted Gaussians to model the proposal but does

not require the explicit computation of a sum of Gaussians.

Note that an open source implementation of our mapping

system using this technique is available online [18].

Our previous method [8] first applies scan-matching on a

per-particle basis. It then computes a Gaussian proposal for

odometry measurement

mode 2 mode 2mode 1 mode 1

convergence to 2convergence to 1

Fig. 1. The left image illustrates a 1D likelihood function and an odometry
measurement. Conventional informed sampling first performs scan-matching
starting from the odometry measurement. In this situation, the scan-matcher
will find a local peak in the likelihood function (most likely mode 1) and
the future sample will be drawn from a Gaussian centered at this single
mode. The right image illustrates the new approach. It draws the sample
first from the odometry model and applies scan-matching afterwards. When
a drawn sample falls into the area colored black, the scan-matcher will
converge to mode 1, otherwise, it will converge to mode 2. By sampling
first from the odometry, then applying scan-matching, and finally computing
local Gaussian approximations, multiple modes in the likelihood function
are likely to be covered by the overall sample set.

each sample by evaluating poses around the pose reported

by the scan-matcher. This technique yields accurate results

in case of a uni-modal distribution, but encounters problems

in that it focuses only on the dominant mode to which the

scan-matching process converges. The left image in Figure 1

illustrates an example in which the scan-matching process

converges to the dominant peak denoted as “mode 1”. As a

result, the Gaussian proposal samples only from this mode

and at most a few particles cover “mode 2” (and only if the

modes are spatially close). Even if such situations are rarely

encountered in practice, we found in our experiments that

they are one of the major reasons for filter divergence.

One of the key ideas of our approach is to adapt the scan-

matching/sampling procedure to better deal with multiple

modes. It consists of a two step sampling. First, only the

odometry motion model is used to propagate the samples.

This technique is known from standard Monte-Carlo local-

ization approaches (c.f. [4]) and allows the particles to cover

possible movements of the robot. In a second step, gradient

descent scan-matching is applied based on the observation

likelihood and the denominator of Eq. (3). As a result, each

sample converges to the mode in the likelihood function that

is closest to its own starting position. Since the individual

particles start from different locations, they are likely to

cover the different modes in their corresponding likelihood

functions as illustrated in the right image of Figure 1. Our

approach leads to sample sets distributed according to a

Gaussian around the modes in the observation likelihood

functions. As we will demonstrate in the experimental re-

sults, this technique leads to proposal distributions which are

closer to the optimal proposal given in Eq. (3) than the Gaus-

sian approximations; when the distribution has only a single

mode, the solution is equivalent to previous approaches [8].

VI. STATISTICAL TESTS

To analyze how close the Gaussian proposal as well as

our new proposal are to the optimal proposal distribution,

we make use of three statistical measures. First, we apply

the Anderson-Darling test on normality [2]. This test is

reported to be one of the most powerful tests in statistics

for detecting most departures from normality. This test is

superior to the Kolmogorov-Smirnov test and has a similar

performance than the Shapiro-Wilk test [16]. Second, we use

the Kullback-Leibler divergence [11] to measure the distance

between distributions. Third, we make use of a measure

taken from the Cramér-von-Mises test [3], [21] to identify

differences between distribution.

Given a set of n samples {y1 < . . . < yn} in ascending

order of magnitude, the Anderson-Darling (AD) test com-

putes the A statistic as

A=−n−
n

∑

k=1

2k − 1

n

[

lnF (yk)+ln(1−F (yn+1−k))
]

, (10)

where F is the cumulated density function (CDF) of the

distribution that is assumed to have generated the samples.

In our case, F is the CDF of the normal distribution.

To determine if the samples are generated by a Gaussian

or not, one needs to test if

A ·
(

1 +
0.75

n
+

2.25

n2

)

≤ c, (11)

where c is the Anderson-Darling test value for normal

distributions corresponding to a desired level of significance.

For example, for a 95% confidence test of normality, the

corresponding c is 0.752.

This test allows us to check if the optimal proposal is in

fact a Gaussian distribution. An interesting property of the

AD test is that it also provides a confidence level for its

result. To apply this test, we only need to draw a sample

set from the optimal proposal and compute Eq. (10) and

Eq. (11). Performing this test for all proposals generated

during a mapping experiment provides a measure of how

often a sample set is generated from a wrong distribution.

Besides the Anderson-Darling test, we apply the Kullback-

Leibler divergence (KLD) which is a frequently used tech-

nique to measure the distance between two arbitrary distribu-

tions. This allows us to also compare our proposal given in

the previous section to the optimal proposal distribution. A

KLD value of zero indicates that the distributions are equal

and the higher the KLD, the bigger is the difference between

them. The KLD between p and f is defined as

KLD(p, f) =

∫

p(x) · log

(

p(x)

f(x)

)

dx. (12)

The KLD takes into account a quotient between two distri-

butions. This can give a high weight to differences in the

tails of the distributions (see Eq. (12), where f(x) is small).

An alternative measure for comparison is used in the

Cramér-von-Mises test [3], [21]. It measures the disparity

of two distributions by taking into account their cumulative

density functions (CDF). Since it does not use a quotient

as the KLD does, it gives less weight to the tails of

the distribution. It computes the integral over the squared

distances between the CDFs. Let p and f be the distributions

to compare and P and F the corresponding CDFs. Then,

d(p, f) =

∫

[P (x) − F (x)]2 dP (x) (13)

TABLE I

PROPOSAL DISTRIBUTIONS WHICH ARE REGARDED AS GAUSSIANS

ACCORDING TO THE ANDERSON-DARLING TEST (95% CONFIDENCE).

Dataset Gaussian
proposal

Non-Gauss
(unimodal)

Multi-modal
proposal

Intel Research Lab 89.2% 7.2% 3.6%

FHW Museum 84.5% 10.4% 5.1%

Belgioioso 84.0% 10.4% 5.6%

MIT CSAIL 78.1% 15.9% 6.0%

MIT Killian Court 75.1% 19.1% 5.8%

Freiburg Bldg. 79 74.0% 19.4% 6.6%

provides a measure about the similarity of both distributions

which is zero if both are equal.

The three techniques presented here are used in our

experiments to identify the differences between the individ-

ual proposals and to illustrate potential weaknesses of the

Gaussian proposals.

VII. EXPERIMENTS

The experiments presented in this paper are all based on

real world data. We furthermore used freely available datasets

to perform our analysis. The learned maps and the datasets

used here are available online [17].

A. Quality of Gaussian Proposals

In the first experiment, we carried out the Anderson-

Darling (AD) test with a confidence of 95% to determine

if the optimal proposal can be considered as Gaussian. The

results of the test are described in Table I. As can be seen,

depending on the dataset, in the optimal proposal was non-

Gaussian in 10% to 26% of all cases.

By visually inspecting the datasets and resulting maps,

we observed two different scenarios in which non-Gaussian

situations occurred. Firstly, we often observed non-Gaussian

observation likelihood functions in highly cluttered environ-

ments where small changes in the position led to substantial

changes of the likelihood. Multi-modal distributions are

likely to occur and Gaussians are not well suited to serve as

a proposal in these cases. Secondly, non-Gaussian proposals

occurred when the robot was moving in environments with

long corridors, a fact that surprised us. At first sight, this may

appear counterintuitive since corridors are well-structured

environments. However, in positions where the robot cannot

observe the end of the corridor with its sensor, the likelihood

along the main axis of the corridor is almost constant which

is highly non-Gaussian and can lead to a negative result of

the AD test. One example is MIT Killian Court, consisting

mainly of long corridors. Note that even if the AD test fails

in such situations, Gaussians can be still good proposals.

In addition to testing acceptance as a Gaussian distribution,

we analyzed the distance between the optimal proposal and

its Gaussian approximation based on the KLD and the

measure from the Cramér-von-Mises test (which is referred

to as CvM in the remainder of this paper). Figure 2 plots the

frequencies of the individual KLD and CvM values for the

Intel and FHW datasets. As can be seen, the approximation

error was small (values close to zero) in 94% to 97% of

 0

 0.05

 0.1

 0.15

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2

p
ro

b
ab

il
it

y

CvM value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2

p
ro

b
ab

il
it

y

CvM value

Fig. 2. Difference between the optimal proposal and the Gaussian
approximation based on the Intel Research Lab (first row) and the FHW
dataset (second row). The images on the left depict the frequencies of the
individual Kullback-Leibler divergence values and the images on the right
show the frequencies of the distance measure based on the Cramér-von-
Mises test (see Eq. (13)). The right-most bin contains also all values larger
or equal 0.4 (KLD) and 0.2 (CvM).

all cases. In all other cases, however, the distributions were

substantially different. This fact is represented by the peak

in the right-most bin of the histograms which contains all

values larger or equal than 0.4 (KLD) and 0.2 (CvM). This

peak corresponds to situations with multi-modal distributions

which can only be badly approximated by a Gaussian. Note

that similar results were obtained for the other datasets (see

first row of Figure 3).

B. Multi-Modal Proposal Distribution

In the next experiment, we evaluated the alternative sam-

pling strategy proposed in this paper. We used the KLD to

compare our new proposal to the optimal proposal distribu-

tion. To actually perform the comparison, we computed all

modes of the distribution explicitly, which is not required in

the mapping system itself as described in Section V. To do

so, we drew a set of samples and performed a gradient ascent

in the likelihood function to find the individual modes. The

modes were then approximated by Gaussians according to

the sampled points.

The results of the comparison are shown in Figure 3

for different datasets. The plots in the first row show the

KLD distance between the optimal proposal and its Gaussian

approximation. The plots in the second row depict the

corresponding comparison of our new proposal to the optimal

one.

As can be seen, we obtained distributions that no longer

approximated a significant fraction of the proposal distribu-

tions with large error (i.e., the right-most bin of the distance

histograms). In contrast to this, the Gaussian approach ap-

proximates the optimal proposal inappropriately in 3% to 6%
of all cases. The comparisons using the CvM value showed

similar results and are omitted due to reasons of space.

Approaches using the Gaussian proposal have shown to

build highly accurate maps of most datasets (compare the

experiments in [8]) but there exist situations in which such

new approach

distribution

selected
wrong mode

Gaussian proposal

 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014
 0.016
 0.018

 15.5
 16

 16.5
 17

 17.5
 18

 18.5

x 16 16.5 17 17.5 18 18.5 19 19.5 y

 0

 0.01

 0.02

likelihood

Fig. 4. Resulting map of the MIT CSAIL dataset using a Gaussian proposal
(left) and our new approach (right). The Gaussian approach fails due to
highly non-Gaussian likelihood functions in the cluttered room (illustrated
for a given orientation θ in the top image). Trajectory length: 385m,
recording time: 7 min, average speed: 0.9m/s.

TABLE II

EXECUTION TIME ON A 2.8 GHZ PC WITH A P4 SINGLE CORE CPU.

Dataset N Execution time

optimal [8] new method

MIT Killian Court 80 155 h 112 min 113 min

Freiburg Bldg. 79 30 84 h 62 min 62 min

Intel Research Lab 30 40 h 29 min 29 min

FHW Museum 30 38 h 27 min 27 min

Belgioioso 30 18 h 13 min 13 min

MIT CSAIL 30 10 h 7 min 7 min

techniques are likely to fail. This is especially the case if

the dominant mode in the likelihood function is not the

correct one. Such a situation occurs, for example, in the

CSAIL dataset [17] recorded at MIT. Our expectation is

that modeling multiple modes in the proposal distribution

leads to more robust filters. We carried out 10 experiments

with different random seeds and evaluated the success rate

of the approach using the Gaussian proposal and our new

method. Using the Gaussian approximation for the proposal

distribution, the final map had the correct topology (all

loops closed, etc.) in only 20% of trials whereas our new

approach generated a correct map every time. Figure 4 shows

example maps using the Gaussian proposal (left) and our new

approach (right).

C. Runtime

In principle, it is possible to avoid Gaussian approxi-

mations in the proposal distribution. The main disadvan-

tage when sampling from the optimal proposal is the high

computational overhead. To illustrate this overhead, Table II

shows the execution time for the individual approaches

as well as the number of samples used (N). As can be

seen, sampling from the optimal proposal is not suitable

for practical applications since it took up to one week to

correct a single dataset. In contrast to this, the computational

overhead of our new approach is negligible. It allows a robot

to learn an accurate map online while moving through the

environment.

MIT Killian Court FHW Museum Intel Research Lab Belgioioso

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.1 0.2 0.3 0.4

p
ro

b
ab

il
it

y

KLD value

high approx.
error

@R

high approx.
error

@R

high approx.
error

@R

high approx.
error

@R

Fig. 3. The plots in the first row show the KLD between optimal proposal and its Gaussian approximation for different datasets. The plots in the second
row depict the corresponding KLD between the optimal proposal and the proposal proposed in this paper. The right-most bin contains also all values larger
or equal to 0.4. The right-most bin illustrates the mayor drawback of the Gaussian approximation since it described the situations in which the optimal
proposal is highly non-Gaussian (e.g., multi-modal). Our new approach, however, can better deal with such situations.

VIII. CONCLUSION

In this paper, we analyzed how well Gaussian proposal

distributions approximate the optimal proposal in the context

of the application of Rao-Blackwellized particle filters to

the simultaneous localization and mapping problem. We

demonstrated that in around 5% of all cases, the Gaussian ap-

proximation is not sufficient to model the likelihood function.

As such situations are one of the sources for the divergence

of the filter, we presented an alternative sampling technique

that is able to deal with multi-modal distributions while

maintaining the same efficiency as the Gaussian proposal.

This resulted in a more robust approach to mapping with

Rao-Blackwellized particle filters. In experiments carried out

with real data, we showed the efficiency and robustness of

our approach.

ACKNOWLEDGMENT

This work has partly been supported by the DFG under

contract number SFB/TR-8, by the EC under contract num-

ber FP6-IST-34120-muFly (action line: 2.5.2.: micro/nano

based subsystems) and FP6-2005-IST-6-RAWSEEDS, and

by the NSF under CAREER grant 0546467. Thanks to Dirk

Hähnel for providing the Intel and the Belgioioso dataset as

well as to Mike Bosse for the Killian Court dataset.

REFERENCES

[1] E. Alaydin. Introduction to Machine Learning, chapter Nonparametric
Density Estimation, pages 157–161. MIT Press, 2004.

[2] T. W. Anderson and D. A. Darling. Asymptotic theory of certain
goodness-of-fit criteria based on stochastic processes. Annals of

Mathematical Statistics, 23:193–212, 1952.
[3] H. Cramér. On the composition of elementary errors. ii: statistical

applications. Skandinavisk Aktuarietidskrift, 11:141–180, 1928.
[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization

for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Leuven, Belgium, 1998.
[5] A. Doucet. On sequential simulation-based methods for bayesian filter-

ing. Technical report, Signal Processung Group, Dept. of Engeneering,
University of Cambridge, 1998.

[6] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Black-
wellized partcile filtering for dynamic bayesian networks. In Proc. of

the Conf. on Uncertainty in Artificial Intelligence (UAI), 2000.
[7] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localiza-

tion and mapping without predetermined landmarks. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), pages 1135–1142, 2003.
[8] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for

grid mapping with rao-blackwellized particle filters. IEEE Transac-

tions on Robotics, 23(1):34–46, 2007.
[9] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM

algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211, 2003.
[10] M. Isard and A. Blake. Contour tracking by stochastic propagation of

conditional density. In Proc. of the European Conference on Computer

Vision, pages 343–356, 1996.
[11] S. Kullback and R. A Leibler. On information and sufficiency. Annals

of Mathematical Statistics, 22:79–86, 1951.
[12] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, 2003.
[13] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A

factored solution to simultaneous localization and mapping. In Proc. of

the National Conference on Artificial Intelligence (AAAI), 2002.
[14] K. Murphy. Bayesian map learning in dynamic environments. In

Proc. of the Conf. on Neural Information Processing Systems (NIPS),
pages 1015–1021, Denver, CO, USA, 1999.

[15] P.M. Newman. On the structure and solution of the simultaneous

localization and mapping problem. PhD thesis, University of Sydney,
Australia, 1999.

[16] S. S. Shapiro and M. B. Wilk. An analysis of variance test for
normality (complete samples). Biometrika, 52:591–611, 1965.

[17] C. Stachniss. Robotic datasets. http://www.informatik.uni-
freiburg.de/∼stachnis/datasets, 2007.

[18] C. Stachniss and G. Grisetti. GMapping project at OpenSLAM.org.
http://openslam.org, 2007.

[19] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics, chapter
Robot Perception, pages 171–172. MIT Press, 2005.

[20] G.D. Tipaldi, A. Farinelli, L. Iocchi, and D. Nardi. Heterogeneous
feature state estimation with rao-blackwellized particle filters. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.

[21] R. von Mises. Wahrscheinlichkeitsrechnung und Ihre Anwendung in

der Statistik und Theoretischen Physik. Deuticke, Leipzig, Germany,
1931. In German.

[C19] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Effi-

cient estimation of accurate maximum likelihood maps in 3d. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), San Diego,

CA, USA, 2007.

Efficient Estimation of Accurate Maximum Likelihood Maps in 3D

Giorgio Grisetti Slawomir Grzonka Cyrill Stachniss Patrick Pfaff Wolfram Burgard

Abstract— Learning maps is one of the fundamental tasks
of mobile robots. In the past, numerous efficient approaches
to map learning have been proposed. Most of them, however,
assume that the robot lives on a plane. In this paper, we
consider the problem of learning maps with mobile robots
that operate in non-flat environments and apply maximum
likelihood techniques to solve the graph-based SLAM problem.
Due to the non-commutativity of the rotational angles in 3D,
major problems arise when applying approaches designed for
the two-dimensional world. The non-commutativity introduces
serious difficulties when distributing a rotational error over a
sequence of poses. In this paper, we present an efficient solution
to the SLAM problem that is able to distribute a rotational error
over a sequence of nodes. Our approach applies a variant of
gradient descent to solve the error minimization problem. We
implemented our technique and tested it on large simulated and
real world datasets. We furthermore compared our approach to
solving the problem by LU-decomposition. As the experiments
illustrate, our technique converges significantly faster to an
accurate map with low error and is able to correct maps with
bigger noise than existing methods.

I. INTRODUCTION

Learning maps has been a major research focus in

the robotics community over the last decades and is of-

ten referred to as the simultaneous localization and map-

ping (SLAM) problem. In the literature, a large variety

of solutions to this problem can be found. In this paper,

we consider the popular and so-called “graph-based” or

“network-based” formulation of the SLAM problem in which

the poses of the robot are modeled by nodes in a graph.

Constraints between poses resulting from observations or

from odometry are encoded in the edges between the nodes.

The goal of algorithms to solve this problem is to find a

configuration of the nodes that maximizes the observation

likelihood encoded in the constraints.

In the past, this concept has been successfully applied [3],

[4], [7], [8], [9], [10], [12], [13], [15]. Such solutions apply

an iterative error minimization techniques. They correct

either all poses simultaneously [7], [9], [10], [15] or perform

local updates [3], [4], [8], [13]. Most approaches have been

designed for the two-dimensional space where the robot is

assumed to operate on a plane [3], [4], [7], [10], [13]. Among

all these approaches, multi-level relaxation [4] or Olson’s

algorithm [13] belong to the most efficient ones.

In the three-dimensional space, however, distributing an

error between different nodes of a network is not straight-

forward. One reason for that is the non-commutativity of

the three rotational angles. As a result, most approaches

that provide good results in 2D are not directly applicable

All authors are members of the University of Freiburg, Department of
Computer Science, 79110 Freiburg, Germany

Fig. 1. A simulated trajectory of a robot moving on the surface of a sphere.
The left image shows an uncorrected trajectory and the right image depicts
the corrected one (approx. 8,600 constraints, 100 iterations, 21s).

in 3D. One way is to ignore the non-commutativity of the

rotational angles. In this case, however, the algorithm works

only in case of small noise and in small environments. A

few maximum likelihood mapping techniques have been

proposed for the three-dimensional space [9], [12], [15].

Some approaches ignore the error in pitch and roll [9]

whereas others detect loops and divide the error by the

number of poses along the loop (weighted with path length,

as in [12]). An alternative solution is to apply variants of

the approach of Lu and Milios [10] and to correct the whole

network at once [15].

The contribution of this paper is a technique to efficiently

distribute the error over a sequence of nodes in all six

dimensions (x, y, z, and the three rotational angles φ, θ,

ψ). This enables us to apply a variant of gradient descent

in order to reduce the error in the network. As a result,

our approach converges by orders of magnitudes faster than

the approaches mentioned above to low error configurations.

As a motivating example, consider Figure 1. It depicts a

trajectory of a simulated robot moving on the surface of a

sphere. The left image depicts the input data and the right

one the result of the technique presented in this paper.

The remainder of this paper is organized as follows. After

discussing related work, we explain in Section III the graph-

based formulation of the mapping problem as well as the

key ideas of gradient descent in Section IV. Section V

explains why the standard 2D approach cannot be used in

3D and introduces our technique to correct the poses given a

network of constraints. Section VI analyzes the complexity

of our approach. We finally present our experimental results

in Section VII.

II. RELATED WORK

A popular approach to find maximum likelihood (ML)

maps is to apply least square error minimization techniques

based on a network of relations. In this paper, we also

follow this way of describing the SLAM problem. Lu and

Milios [10] first applied this approach in robotics to address

the SLAM problem using a kind of brute force method.

Their approach seeks to optimize the whole network at once.

Gutmann and Konolige [7] proposed an effective way for

constructing such a network and for detecting loop closures

while running an incremental estimation algorithm. Howard

et al. [8] apply relaxation to localize the robot and to build

a map. Duckett et al. [3] propose the usage of Gauss-Seidel

relaxation to minimize the error in the network of constraints.

In order to make the problem linear, they assume knowledge

about the orientation of the robot. Frese et al. [4] propose

a variant called multi-level relaxation (MLR). It applies

relaxation based on different resolutions. Recently, Olson

et al. [13] presented a novel method for correction two-

dimensional networks using (stochastic) gradient descent.

Olson’s algorithm and MLR are currently the most efficient

techniques available in 2D. All techniques discussed so far

have been presented as solutions to the SLAM problem in

the two-dimensional space. As we will illustrate in this paper,

they typically fail to correct a network in 3D.

Dellaert proposed a smoothing method called square root

smoothing and mapping [2]. It applies smoothing to correct

the poses of the robot and feature locations. It is one of

the few techniques that can be applied in 2D as well as

in 3D. A technique that combines 2D pose estimates with

3D data has been proposed by Howard et al. [9] to build

maps of urban environments. They avoid the problem of

distributing the error in all three dimensions by correcting

only the orientation in the x, y-plane of the vehicle. The roll

and pitch is assumed to be measured accurately enough using

an IMU.

In the context of three-dimensional maximum likelihood

mapping, only a few approaches have been presented so

far [11], [12], [15]. The approach of Nüchter et al. [12] de-

scribes a mobile robot that builds accurate three-dimensional

models. In their approach, loop closing is achieved by

uniformly distributing the error resulting from odometry

over the poses in a loop. This technique provides good

estimates but typically requires a small error in the roll and

pitch estimate. Newman et al. [11] presented a sophisticated

approach for detecting loop closures using laser and vision.

Such an approach can be used to find the constraints which

are the input to our algorithm.

Recently, Triebel et al. [15] described an approach that

aims to globally correct the poses given the network of

constraints in all three dimensions. At each iteration the

problem is linearized and solved using LU decomposition.

This yields accurate results for small and medium size net-

works especially when the error in the rotational component

is small. We use this approach as a benchmark for our

technique presented in this paper.

The contribution of this paper is a highly efficient tech-

nique to compute maximum likelihood maps in 3D. We

present a way of distributing an error in all three rotational

angles that accounts for the non-commutativity of these

angles. This technique in combination with a variant of

gradient descent allows us to correct larger networks than

most state-of-the-art approaches.

III. ON GRAPH-BASED SLAM

The goal of graph-based maximum-likelihood mapping

algorithms is to find the configuration of nodes that max-

imizes the likelihood of the observations. For a more precise

formulation consider the following definitions:

• x is a vector of parameters (x1 · · · xn)T which

describes a configuration of the nodes.

• δji represents a constraint between the nodes i and j
based on measurements. These constraints are the edges

in the graph structure.

• Ωji is the information matrix capturing the uncertainty

of δji.

• fji(x) is a function that computes a zero noise obser-

vation according to the current configuration of nodes.

It returns an observation of node j from node i.

Given a constraint between node i and node j, we can

define the error eji introduced by the constraint and residual

rji as

eji(x) = fji(x)− δji = −rji(x). (1)

At the equilibrium point, eji is equal to 0 since fji(x) = δji.

In this case, an observation perfectly matches the current

configuration of the nodes. Assuming a Gaussian observation

error, the negative log likelihood of an observation fji is

Fji(x) =
1

2
(fji(x)− δji)

T
Ωji (fji(x)− δji) (2)

∝ rji(x)T Ωjirji(x). (3)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
1

2

∑

<j,i>∈C

rji(x)T Ωjirji(x) (4)

Here C = {< j1, i1 >, . . . , < jM , iM >} is set of pairs of

indices for which a constraint δjmim
exists.

A maximum likelihood map learning approach seeks to

find the configuration x
∗ of the nodes that maximizes the

likelihood of the observations which is equivalent to mini-

mizing the negative log likelihood written as

x
∗ = argmin

x

F (x). (5)

IV. GRADIENT DESCENT

FOR MAXIMUM LIKELIHOOD MAPPING

Gradient descent (GD) is an iterative technique to find the

minimum of a function. Olson et al. [13] were the first who

applied it in the context of the SLAM problem in the two-

dimensional space. GD seeks for a solution of Eq. (5) by

iteratively selecting a constraint < j, i > and by moving a

set of nodes of the network in order to decrease the error

introduced by the selected constraint. The nodes are updated

according to the following equation:

x
t+1 = x

t + λ · JT
jiΩjirji

︸ ︷︷ ︸

∆x

(6)

Here x is the set of variables describing the locations of

the poses in the network. Jji is the Jacobian of fji, Ωji

is the information matrix capturing the uncertainty of the

observation, and rji is the residual.

Reading the term ∆x of Eq. (6) from right to left gives

an intuition about the iterative procedure used in GD:

• rji is the residual which is the opposite of the error vec-

tor. Changing the network configuration in the direction

of the residual rji will decrease the error eji.

• Ωji represents the information matrix of a constraint.

Multiplying it with rji scales the residual components

according to the information encoded in the constraint.

• JT
ji: The role of the Jacobian is to map the residual term

into a set of variations in the parameter space.

• λ is the learning rate which decreases with the iteration

of GD and which makes the system to converge to an

equilibrium point.

In practice, GD decomposes the overall problem into many

smaller problems by optimizing the constraints individually.

The difference between GD and stochastic GD is that the

stochastic variant selects the constraints in a random order.

Obviously, updating the different constraints one after each

other can have opposite effects on a subset of variables. To

avoid infinitive oscillations, one uses the learning rate to

reduce the fraction of the residual which is used for updating

the variables. This makes the solutions of the different sub-

problems to asymptotically converge towards an equilibrium

point that is the solution found by the algorithm. This

equilibrium point is then reported as the maximum liklihood

solution to the mapping problem.

V. 3D GRAPH OPTIMIZATION

The graph-based formulation of the SLAM problem does

not specify how the poses are presented in the nodes of the

graph. In theory, one can choose an arbitrary parameteriza-

tion. Our algorithm uses a tree based parameterization for

describing the configuration of the nodes in the graph. To

obtain such a tree from an arbitrary graph, one can compute

a spanning tree. The root of the spanning tree is the node

at the origin p0. Another possibility is to construct a graph

based on the trajectory of the robot in case this is available.

In this setting, we build our parameterization tree as follows:

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly.

2) The first node is the root of the tree.

3) As the parent of a node, we choose the node with the

smallest id for which a constraint to the current node

exists.

This tree can be easily constructed on the fly.

In the following, we describe how to use this tree to define

the parameterization of the nodes in the network. Each node

i in the tree is related to a pose pi in the network and

maintains a parameter xi which is a 6D vector that describes

its configuration. Note that the parameter xi can be different

from the pose pi. In our approach, the parameter xi is chosen

as the relative movement from the parent of the node i in

Fig. 2. A simple example that illustrates the problem of distributing the
error in 3D. The left image shows the input data which was obtained by
moving a simulated robot over a hexagon twice with small Gaussian noise.
The middle image show the result obtained if the non-commutativity of the
rotation angles is ignored. The right images shows the result of our approach
which is very close to the ground truth.

the tree to the node i itself

xi = pi ⊖ pparent(i), (7)

with x0 = p0. The operator ⊖ is the motion decomposition

operator in 3D which is analogous to the one defined in

2D (see Lu and Milios [10]). A detailed discussion on tree

parameterizations in combination with GD is out of the scope

of this document and we refer the reader to [6].

Before presenting our approach for correcting the poses in

a network, we want to illustrate the problem of distributing

an error over a sequence of nodes. Consider that we need

to distribute an error e over a sequence of n nodes. In the

two-dimensional space, this can be done in a straightforward

manner as follows. Given the residual r2D = (rx, ry, rθ), we

can simply change the pose of the i-th node in the chain by

i/n times r2D. This error propagation works well in 2D and

is performed in most maximum-likelihood methods in the

2D space. In the three-dimensional space, however, such a

technique is not applicable (with exception of very small

errors). The reason for that is the non-commutativity of the

three rotations

R(φ, θ, ψ) 6=

n∏

1

R(
φ

n
,
θ

n
,
ψ

n
), (8)

where R(φ, θ, ψ) is the three-dimensional rotation matrix. As

illustrated in Figure 2, applying such an error propagation

leads to divergence even for small and simple problems.

Therefore, one has to find a different way of distributing

the error over a chain of poses which is described in the

following.

A. The Error Introduced by a Constraint

Let Pi be the homogenous transformation matrix corre-

sponding to the pose pi of the node i and Xi the transfor-

mation matrix corresponding to the parameter xi. Let Pi,0

be the ordered list of nodes describing a path in the tree from

the root (here referred to as node 0) to the node i. We can

express the pose of a node as

Pi =
∏

k∈Pi,0

Xk. (9)

The homogenous transformation matrix Xi consists of a

rotational matrix R and a translational component t. It has

the following form

Xi =

(
Rk tk
0 1

)

with X−1
i =

(
RT

k −RT
k tk

0 1

)

(10)

In order to compute the transformation between two

nodes i and j, one needs to consider the path Pji from node i
to node j. Since the nodes are arranged in a tree, this path

consists of an ascending part and a descending part. Let Pa
ji

be the ascending part of the path starting from node i and

Pd
ji the descending part to node j. We can then compute the

error eji in the reference frame of pi as

eji = (pj ⊖ pi)⊖ δji. (11)

Using the matrix notation, the error is

Eji = ∆−1
ji P

−1
i Pj (12)

= ∆−1
ji

∏

kd∈Pd
ji

X−1
kd ·

∏

ka∈Pa
ji

Xka , (13)

where ∆ji is the matrix corresponding to δji.

So far, we described the prerequisites for applying GD to

correct the poses of a network. The goal of the update rule

in GD is to iteratively update the configuration of a set of

nodes in order to reduce the error introduced by a constraint.

In Eq. (6), the term JT
jiΩji maps the variation of the error

to a variation in the parameter space. This mapping is a

linear function. As a result, the error might increase when

applying GD in case of non-linear error surfaces. In the three-

dimensional space, the rotational components often lead to

highly non-linear error surfaces. Therefore, GD as well as

similar minimization techniques cannot be applied directly

to large mapping problems.

In our approach, we therefore chose a slightly different

update rule. To overcome the problem explained above,

we allow the usage of non-linear functions to describe

the variation. The goal of this function is to compute a

transformation of the nodes along the path in the tree so

that the error introduced by the corresponding constraint is

reduced. In detail, we design this function in a way so that it

computes a new configuration of the variables xk ∈ Pji so

that it corrects only a fraction λ of the error, where λ is the

learning rate. In our experiments, we observed that such an

update typically leads to a smooth deformation of the nodes

along the path when reducing the error. In our approach,

this deformation is done in two steps. First, we update the

rotational components Rk of the variables xk and second,

we update the translational components tk.

B. Update of the Rotational Component

This section explains how to deform a path in order to

reduce the error introduced by a constraint. Without loss

of generality, we consider the origin of the path pi to be

in the origin of our reference system. The orientation of

pj (in the reference frame of pi) can be computed by

multiplying the rotational matrices along the path Pji. To

increase the readability of the document, we refer to the

rotational matrices along the path as Rk neglecting the

indices (compare Eq. (13)). The orientation of pj is described

by

R1R2 . . .Rn = R1:n, (14)

where n is the length of the path Pji.

Distributing a given error over a sequence of 3D rotations,

can be described in the following way: we need to determine

a set of increments in the intermediate rotations of the chain

so that the orientation of the last node (here node j) isR1:nB
where B the matrix that rotates xj to the desired orientation

based on the error. Formulated in a mathematical way, we

need to compute a set of rotations Ak so that

R1:nB =

n∏

k=1

RkAk. (15)

Once the matrices Ak are known, the new rotational matrices

of the parameters xk are updated by

Rk ← RkAk. (16)

We can decompose the matrix B into a set of incremental

rotations B = B1:n. In our current implementation, we com-

pute the individual matrices Bk by using the spherical linear

interpolation (slerp) [1]. We can decompose B using the slerp

function with a parameter u ∈ [0, 1] with slerp(B, 0) = I
and slerp(B, 1) = B. According to this framework, we can

compute the rotation Bk as

Bk = [slerp(B, uk−1)]
T

slerp(B, uk). (17)

To determine the values uk−1 and uk, we consider the

eigenvalues of the covariances of the constraints connecting

the nodes k−1 and k. This is an approximation which works

well in case of roughly spherical covariances. Note that the

eigenvalues need to be computed only once in the beginning

and are then stored in the tree.

Using this decomposition of B leads to Eq. (15) in which

B is replaced by B1:n. This equation admits an infinitive

number of solutions. However, we are only interested in

solutions which can be combined incrementally. Informally

speaking, this means when truncating the path from n to n−1
nodes, the solution of the truncated path should be part of

the solution of the full path. Formally, we can express this

property by the following system of equations:

∀n
k=1 : R1A1 . . . RkAk = R1:kB1:k (18)

Given this set of equations, the solution for the matrices Ak

can be computed as

Ak = RT
k (B1:k−1)

TRkB1:k. (19)

This is an exact solution that is always defined since Ak,

Rk, and Bk are rotation matrices. The proof of Eq. (19) is

given in the Section IX at the end of this document. Based

on Eq. (16) and Eq. (19), we have a closed form solution for

updating the rotational matrices of the parameters xk along

the path Pji from the node i to the node j.
Note that we also use the slerp function to compute the

fraction of the rotational component of the residual that is

introduced by λ (see Section V-A).

For simplicity of presentation, we showed how to dis-

tribute the rotational error while keeping the node i fixed.

In our implementation, however, we fix the position of the

so-called “top node” in the path which is the node that is

closest to the root of the tree (smallest level in the tree). As

a result, the update of a constraint has less side-effects on

other constraints in the network. Fixing the top node instead

of node i can be obtained by simply saving the pose of the

top node before updating the path. After the update, one

transforms all nodes along path in way that the top node

maintains its previous pose. Furthermore, we used the matrix

notation in this paper to formulate the error distribution since

it provides a clearer formulation of the problem. In our im-

plementation, however, we use quaternions for representing

rotations because they are numerically more stable. In theory,

however, both formulations are equivalent. An open source

implementation is available [5].

C. Update of the Translational Component

Compared to the update of the rotational component

described above, the update of the translational component

can be done in a straightforward manner. In our mapping

system, we distribute the translational error over the nodes

along the path without changing the previously computed

rotational component.

We distribute the translational error by linearly moving

the individual nodes along the path by a fraction of the

error. This fraction depends in the uncertainty of the indi-

vidual constraints encoded in the corresponding covariance

matrices. Equivalent to the case when updating the rotational

component, these fractions is also scaled with the learning

rate.

VI. COMPUTATIONAL COMPLEXITY

A single iteration of our algorithm requires to distribute

the error introduced by the individual constraints over a set

of nodes. Therefore, the complexity is proportional to the

number of constraints times the number of operations needed

to distribute the error of a single constraint.

In the remainder of this section, we analyze the number

of operations needed to distribute the error of a single

constraint. Once the poses of the nodes involved in an update

step are known, the operations described in Section V-B

and V-C can be carried out in a time proportional to the

number of nodes |P| along the path P . Computing the poses

of the nodes along a path requires to traverse the tree up

to the root according to Eq. (9). A naive implementation

requires repeated traversals of the tree up to the root. This,

however, can be avoided by choosing an intelligent order in

which to process the constraints.

Let the “top node” of a path be the node with the smallest

level in the tree. In our current implementation, we sort the

constraints according to level of the corresponding top node.

This can be done as a preprocessing step. We can process

the constraints according to this order. The advantage of this

order is that a constraint never modifies a node that has a

smaller level in the tree. By storing the pose for each node

Fig. 3. A simulated trajectory of a robot moving on the surface of a cube.
The left image shows an uncorrected trajectory and the right image depicts
the corrected one (approx. 4,700 constraints, 100 iterations, 11s).

 0

 20

 40

 60

 80

 100

100 [21s]50 [10s]0 [0s]

er
ro

r/
co

n
st

ra
in

t

iteration and execution time

Sphere

 0

 20

 40

 60

 80

 100

200 [21s]100 [11s]0 [0s]

er
ro

r/
co

n
st

ra
in

t

iteration and execution time

Cube

Fig. 4. The evolution of the error for the sphere and cube experiment.

in the tree, we therefore do not have to traverse the tree up

to the root anymore. It is sufficient to access the parent of

the top node in order to compute the poses for all nodes

along a path P . As a result, updating a constraint requires

a time proportional to |P| and the overall complexity per

iteration turns into O(M · E(|P|)). Here M is the number

of constraints, and E(|P|) is the average path length. In

all our experiments, we experienced that the average path

length grows more or less logarithmically with the number

of nodes in the graph. This explains the fast pose updates of

our approach shown in the experimental section.

VII. EXPERIMENTS

The experiments are designed to show the properties of

our technique. We first present results obtained in simulated

experiments and then show results using real robot data.

A. Experiments with Simulated Data

In order to give the reader an intuition about the accuracy

of our approach, we generated two datasets in which the

virtual robot moved on the surfaces of easy to visualize

geometric objects. In particular, we used a sphere and a

cube. The nodes of the network as well as the constraints

between the nodes were distorted with Gaussian noise. The

left images of Figure 1 and Figure 3 depict the distorted input

data whereas the images on the right illustrate the results

obtained by our approach. As the figures indicate, the pose

correction nicely recovers the original geometric structure.

To provide more quantitative results, Figure 4 depicts the

evolution of the average error per link versus the iteration

number as well as execution time for the sphere and the

cube experiment. As can be seen, our approach converges to

a configuration with small errors in less than 100 iterations.

We also applied the approach of Triebel et al. to both

datasets. As mentioned above, this approach linearizes the

Fig. 5. The real world dataset of the Intel Research Lab recorded in 2D is used to generate a large 3D dataset. Each of the four virtual buildings consist
of four identical floors. The left image depicts the starting configuration. The image in the middle depicts an intermediate result and the right one the
corrected map after 50 iterations of our approach. We plotted in the images constraints between buildings and floors. For a better visibility, we furthermore
plotted the constraints between individual nodes which introduce a high error and not all constraints. Constraints are plotted in light gray (red) and the
laser data in black. The small image on the right shows a (corrected) map of the two-dimensional laser range data.

Fig. 6. The corrected trajectory plotted on top of an aerial image of the
EPFL campus.

problem and solves the resulting equation system using LU

decomposition. Due to the comparably high noise in the

simulated experiments, the linearization errors prevented this

approach to find an appropriate configuration of the nodes.

B. Experiments with Partially Real Robot Data

The next experiment is obtained by extending data ob-

tained from a 2D laser range finder into three dimensions.

We used the 2D real world dataset of the Intel Research Lab

in Seattle and constructed virtual buildings with multiple

floors. The constraints between buildings and floors are

manually added but all other data is real robot data. The

dataset consists of 15.000 nodes and 72.000 constraints. We

introduced a high error in the initial configuration of the

poses in all dimensions. This initial configuration is shown

in the left image of Figure 5. As can be seen, no structure

is recognizable. When we apply our mapping approach, we

get an accurate map of the environment. The image in the

middle depicts an intermediate result and the right image

show the resulting map after 50 iterations. To compute this

result, it took around 3 minutes on a dual core Pentium 4

processor with 2.4 GHz.

Fig. 7. The trajectory corrected by our approach is shown in black and the
trajectory of the (D)GPS and IMU-based localization system is shown in
orange/gray. By considering Figure 6 one can see that the black one covers
the streets accurately.

C. Mapping with a Car-like Robot

Finally, we applied our method to a real world three-

dimensional dataset. We used a Smart car equipped with 5

SICK laser range finders and various pose estimation sen-

sors to record the data. The robot constructs local three-

dimensional maps, so-called multi-level surface maps [15],

and builds a network of constrains where each node repre-

sents such a local map. Constraints between the maps are

obtained by matching the individual local maps.

We recorded a large-scale dataset at the EPFL campus in

which the robot moved on a 10 km long trajectory. Figure 6

depicts an overlay of the corrected trajectory on an aerial

image. As can be seen from the trajectory, several loops

have been closed. Furthermore, it includes multiple levels

such as an underground parking garage and a bridge with an

underpass. The localization system of the car which is based

on (D)GPS and IMU data is used to compute the incremental

constraints. Additional constraints are obtained by matching

local maps. This is achieved by first classifying cells of

the local maps into different classes and then applying a

variant of the ICP algorithm that considers these classes.

More details on this matching can be found in our previous

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000

er
ro

r/
co

n
st

ra
in

t

time[s]

Triebel et al.
Our approach

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4

er
ro

r/
co

n
st

ra
in

t

time[s]

Triebel et al.
Our approach

Fig. 8. The evolution of the average error per constraint of the approach
of Triebel et al. [15] and our approach for the dataset recorded with the
autonomous car. The right image shows a magnified view to the first 400 ms.

work [14]. Figure 7 plots the trajectory corrected by our

approach and the one of the (D)GPS/IMU-based localization

system.

We used the dataset from the EPFL campus to compare

our new algorithm to the approach of Triebel et al. In this

experiment, both approaches converge to more or less the

same solution. The time needed to achieve this correction,

however, is by orders of magnitudes smaller when applying

our new technique. This fact is illustrated in Figure 8 which

plots the average error per constraints versus the execution

time required by both techniques.

We also applied our 3D optimizer to pure 2D problems

and compared its performance to our 2D method [6]. Both

techniques lead to similar results, the 2D version, however, is

around 3 times faster that the 3D version. This results from

the additional DOF in the state space.

VIII. CONCLUSION

In this paper, we presented a highly efficient solution to the

problem of learning three-dimensional maximum likelihood

maps for mobile robots. Our technique is based on the graph-

formulation of the simultaneous localization and mapping

problem and applies a variant of gradient descent to minimize

the error in the network of relations.

Our method has been implemented and exhaustively tested

in simulation experiments as well as with real robot data.

We furthermore compared our method to a common existing

approach to learn such models in the three-dimensional

space. As shown in the experiments, our approach converges

significantly faster and yields accurate maps with low errors.

IX. APPENDIX: PROOF OF EQ. (19)

We can proof by induction that the equation system

in Eq. (18) always has a solution which is given by

Ak = RT
k (B1:k−1)

TRkB1:k k = 1, . . . , n. (20)

• Basis (n = 1):
Based on Eq. (18) with n = 1 and by knowing that

R1 is a rotation matrix, a solution always exists and is

given by

A1 = R−1
1 R1B1 = B1. (21)

• Inductive Step:

Assuming that Eq. (19) holds for k = 1, . . . , n− 1, we

show that it holds also for k = n. We use Eq. (18) with

k = n − 1 to substitute the term R1A1 . . . Rn−1An−1

in the equation for k = n. This leads to

(R1:n−1B1:n−1)RnAn = R1:n−1RnB1:n. (22)

By multiplying (R1:n−1B1:n−1Rn)−1 from the left

hand side, this turns into

An = R−1
n (B1:n−1)

−1(R1:n−1)
−1R1:n−1RnB1:n

Since Rk and Bk are rotation matrices, the inverse is

always defined and given by the transposed matrix:

An = RT
n (B1:n−1)

TRnB1:n q.e.d.(23)

ACKNOWLEDGMENT

This work has been supported by the DFG within the

Research Training Group 1103 and under contract number

SFB/TR-8 and by the EC under contract number FP6-

2005-IST-5-muFly, FP6-2005-IST-6-RAWSEEDS, and FP6-

004250-CoSy. Thanks to Udo Frese for his insightful com-

ments and to Rudolph Triebel for providing his mapping

system. Further thanks to Pierre Lamon for the joint effort

in recording the EPFL dataset.

REFERENCES

[1] T. Barrera, A. Hast, and E. Bengtsson. Incremental spherical linear
interpolation. In SIGRAD, volume 13, pages 7–13, 2004.

[2] F. Dellaert. Square Root SAM. In Proc. of Robotics: Science and

Systems (RSS), pages 177–184, Cambridge, MA, USA, 2005.
[3] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of

globally consistent maps. Autonomous Robots, 12(3):287 – 300, 2002.
[4] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm

for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.
[5] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. TORO project

at OpenSLAM.org. http://www.openslam.org/toro.html, 2007.
[6] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proc. of Robotics: Science and Systems

(RSS), Atlanta, GA, USA, 2007.
[7] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), pages 318–325,
Monterey, CA, USA, 1999.

[8] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:
a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2001.
[9] A. Howard, D.F. Wolf, and G.S. Sukhatme. Towards 3d mapping in

large urban environments. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 419–424, 2004.
[10] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.
[11] P. Newman, D. Cole, and K. Ho. Outdoor slam using visual appearance

and laser ranging. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Orlando, FL, USA, 2006.
[12] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM

with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[13] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.
[14] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Sieg-

wart. Towards mapping of cities. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Rome, Italy, 2007.
[15] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[C20] B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, A. Rottmann, and

W. Burgard. Learning maps in 3d using attitude and noisy vision sensors. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

San Diego, CA, USA, 2007.

Learning Maps in 3D using Attitude and Noisy Vision Sensors

Bastian Steder Giorgio Grisetti Slawomir Grzonka Cyrill Stachniss Axel Rottmann Wolfram Burgard

Abstract— In this paper, we address the problem of learning
3D maps of the environment using a cheap sensor setup which
consists of two standard web cams and a low cost inertial
measurement unit. This setup is designed for lightweight or
flying robots. Our technique uses visual features extracted from
the web cams and estimates the 3D location of the landmarks
via stereo vision. Feature correspondences are estimated using
a variant of the PROSAC algorithm. Our mapping technique
constructs a graph of spatial constraints and applies an efficient
gradient descent-based optimization approach to estimate the
most likely map of the environment. Our approach has been
evaluated in comparably large outdoor and indoor environ-
ments. We furthermore present experiments in which our
technique is applied to build a map with a blimp.

I. INTRODUCTION

In the last decades, the simultaneous localization and

mapping (SLAM) problem has been an active field of

research and effective solutions have been proposed. The

majority of approaches is able to learn 2D maps of large-

scale environments [13]. When moving from 2D to 3D map

learning, the higher dimension of the search space prevents

us to directly apply 2D algorithms to the 3D case. Different

systems for building 3D maps have been proposed [5], [12],

[14] but most of these approaches rely on bulky sensors

having a high range and accuracy (e.g., SICK laser range

finders) which cannot be used on small flying vehicles.

Cameras are an attractive alternative to laser range finders.

Due to their limited weight and low power consumption, they

can be incorporated into a wide class of devices. Existing

approaches that address the vision-based SLAM problem

mainly focus on scenarios in which a robot repeatedly

observes a set of features [4], [11]. They have been shown

to learn accurate feature maps of small-scale environments.

In this paper, we present a system that allows us to

acquire elevation maps of large environments using two

low quality web-cams and a low cost inertial measurement

unit (IMU). Especially the cameras provide comparably low

quality images which are affected by significant motion blur.

Figure 1 illustrates this sensor setup.

Our approach integrates the data coming from the IMU

and the cameras to obtain an estimate of the camera motion

of the 3D position of the features extracted from the image

data. We address the SLAM problem by constructing a graph

of relations between poses. Each node in the graph represents

a camera pose. An edge between two nodes is obtained from

the sensor measurements and encodes the spatial constraints

between two different camera poses. Our systems combines

SURF features [2] with a PROSAC-based technique [3] to

All authors are members of the University of Freiburg, Department of
Computer Science, D-79110 Freiburg, Germany

Fig. 1. Top Left: the sensors used for testing our approach. We assembled
two cheap USB web-cams as a stereo pair and combined it with a XSens
MTi inertial measurement unit. Bottom Left: a typical stereo image used for
constructing the map. Note the significant motion blur affecting the image.
Right: the procedure for acquiring the data. We mounted the sensors with
the cameras looking downwards on a stick and we then walked around the
campus.

identify the correct correspondences between images. Loops

are detected by matching features extracted from the images

recorded from the different locations. The correction step is

carried out using an optimization algorithm. The contribu-

tion of this paper is an approach that enables us to build

highly accurate elevation maps of large environments using

a comparably poor sensor setup. Our system is designed to

work on lightweight flying vehicles.

II. RELATED WORK

The effectiveness of vision-based approaches strongly

depends on the feature extraction algorithms. To this end,

SIFT features [10] represent a robust and popular option but

they require significant computational resources. Compared

to SIFT, SURF features [2] are significantly faster to com-

pute while providing comparably stable feature descriptors.

Therefore, we apply this technique in our work.

Jensfelt et al. [8] proposed an effective way of meeting

the computational constraints imposed by online processing

by combining a SIFT feature extractor and an interest points

tracker. The interest points are obtained by using an Harris

corner extractor. While the SIFT feature extraction can be

performed at low frequency, the movement of the robot is

constantly estimated by tracking the interest points at high

frequency. Andreasson et al. [1] presented a technique that

is based on a local similarity measure for images. They

store reference images at different locations and use these

references as a map. In this way, their approach is reported

to scale well with the size of the environment.

Davison et al. [4] proposed a single camera SLAM

algorithm. The system computes the map by means of a

Kalman filter. A particle filter is applied to initialize the

3D landmarks. The particles estimate the depth information

of the landmarks. The approach does not depend on an

initial odometry estimate and is effective on small scale

environments as well as in situations in which the robot

repeatedly observes the same scene. However, it requires

good quality images. Montiel et al. [11] extended this

framework by proposing an inverse depth parameterization

of the landmarks. Since this parameterization can be better

approximated by a Gaussian, the use of the particle filter in

the initial stage can be avoided.

Other approaches use a combination of inertial sensors

and cameras. For example, Eustice et. al [5] rely on a com-

bination of highly accurate gyroscopes, magnetometers, and

pressure sensors to obtain a good estimate of orientation and

altitude of an underwater vehicle. Based on these estimates,

they construct an accurate global map using an information

filter based on high resolution stereo images.

The work which is closest to our approach is a technique

proposed by Jung et al. [9]. They use a high resolution stereo

camera for building elevation maps with a blimp. The map

consists of 3D landmarks extracted from interest points in

the stereo image obtained by a Harris corner detector and

the map is estimated using a Kalman filter. Due to the

wide field of view and the high quality of the images the

nonlinearities in the process were adequately solved by the

Kalman filter. In contrast to this, our approach is able to deal

with low resolution and low quality images. It is particularly

suitable for mapping indoor environments and for being used

on small size flying vehicles. We furthermore apply a more

efficient error minimization approach [6].

III. MAXIMUM LIKELIHOOD ELEVATION MAP

ESTIMATION

The SLAM problem can be formulated as a graph: the

nodes of the graph represent the poses of the robot along

its trajectory and an edge between two nodes encodes the

pairwise observations. Here, each node xi of the graph

represents a 6D camera pose. An edge between two nodes

i and j is represented by the tuple 〈δji,Ωji〉. δji and Ωji

are respectively the mean and the information matrix of a

measurement made from the node i about the location of the

node j expressed in the reference frame of the node i.
In our system, the information between two poses depends

on the correspondence of the images acquired between the

poses and on the IMU measurements. Once the graph is

constructed, one has to compute the configuration of the

nodes which best explains the observations. This results in

deforming the robot trajectory based on the constraints to

obtain a map.

Such a graph-based maximum likelihood SLAM approach

requires to solve the following sub-problems:

• The construction of the graph based on the sensor input.

• The optimization of the graph so that the likelihood of

the observations is maximized.

The first problem is addressed in this and the two subsequent

sections. A solution to the second problem is then provided

in Section VI.

Our approach relies on visual features extracted from the

images obtained from two down-looking cameras. We use

SURF features [2] instead of SIFT features [10] since they

are significantly faster to compute while providing the same

robustness. A SURF feature is rotation and scale invariant

and is described by a descriptor vector and the position,

orientation, and scale in the image.

In order to build consistent maps, we need to determine

the camera position (x y z φ θ ψ)T given the features in

the current image, a subset of spatially close features in the

map, and the measurements obtained by the IMU.

The IMU provides the orientation of the system in terms

of the Euler angles roll (φ), pitch (θ), and yaw (ψ). Due

to the low quality IMU in combination with the presence

of magnetic disturbances in indoor environments as well as

on real robots, the heading information is highly affected

by noise. In our experiments, we found that the roll and the

pitch observations can directly be integrated into the estimate

whereas the yaw information was too noisy to provide useful

information. This reduces the dimensionality of each pose

that needs to be estimated from R
6 to R

4.

Whenever a new image is acquired, a node xi+1 that

models the new camera pose is added to the graph. The main

challenge is to add the correct edges between xi+1 and other

nodes xj , j ≤ i of the graph. To do so, one has to solve the

so-called data association problem. This means one has to

determine which feature in the current image corresponds

to which feature in the map. Let S = {s1, . . . , sn} refer

to a local map of features that will be matched against

the features F = {f1, . . . , fm} extracted from the current

image. The result of such a matching is a transformation T
which describes the spatial relations between the two sets of

features. In the remainder of this section, we discuss how to

compute the camera pose given the two sets S and F while

the question of how to determine the set S is discussed in

Section V.

IV. THE TRANSFORMATION BETWEEN CAMERA POSES

In this section, we describe how to compute the transfor-

mation of the camera based on the set of observed features

F and the set of map features S.

Given the camera parameters, such a transformation can

be determined by using two corresponding features in the

two sets. This holds only since the attitude of the camera

is known. In order to reduce the effects of outliers, we

select the correspondences by using a consensus algorithm

similar to PROSAC [3]. The main idea of PROSAC is to

construct a prior for sampling the correspondences based on

the distance of the descriptors. In this way, a smaller number

of trials is required to find good candidate transformations

than with the uninformed version of the RANSAC algorithm.

We first determine the possible correspondences based on the

feature descriptors. Subsequently, we select from this set the

correspondences to compute the candidate transformations.

We assign a score based on a fitness function to each

candidate transformation and select the transformation with

the highest score. The next subsections explain our procedure

in detail.

A. Potential Correspondences

For each feature fi in the camera image and each feature

sj in the map, we compute the Euclidian distance dF (fi, sj)
between their descriptor vectors. The distance is used to

compute the set of potential correspondences C = {cij} by

considering only the feature pairs whose distance is below a

given threshold D as

C = {cij = 〈fi, sj〉 | d
F (fi, sj) < D ∧ fi ∈ F ∧ sj ∈ S}.

(1)

For simplicity of notation, we will refer to the elements

of C as c, neglecting the indices i and j. The features

in a correspondence can be retrieved by using the selector

functions f(c) and s(c) so that

c = 〈fi, sj〉 ↔ fi = f(c) ∧ sj = s(c). (2)

A camera transformation is determined by two corre-

spondences ca and cb. Accordingly, the number of possible

transformations is proportional to |C|2. We can limit the

computational load of the approach by sorting the correspon-

dences based on their distances and by considering only the

best N correspondences, where N = 250 in our current

system. Let C ′ be this reduced set. A candidate transfor-

mation Tab is computed for each pair of correspondences

〈ca, cb〉 ∈ C ′ × C ′.

We compute the transformation Tab based on 〈ca, cb〉 as

follows. Assuming the attitude and the internal parameters of

the camera to be known, it is possible to project the segment

connecting the two features on a plane parallel to the ground.

The same is done with the two features in the map. The offset

between the two camera poses along the z axis is determined

using the pinhole camera model. Subsequently, the yaw

between the images is computed as the angle between the

two projections. Finally, x and y can be directly calculated

by matching a pair of corresponding points in the translated

image after applying the yaw correction.

B. Score

The previous step computes a set of candidate transforma-

tions {Tab}. To select the best one, we need to rank them

according to a score. The score of Tab measures the quality

of a matching by considering all potential correspondences

between the feature sets that have not been used for deter-

mining Tab. This set is given by

C̃ab = C − {ca, cb}. (3)

For each ck ∈ C̃ab, we project the associated features f(ck)
and s(ck) in the image, according to Tab. The score v(ck)
of the correspondence ck is the following:

v(ck) = w

(

1 −
dI(f(ck), s(ck))

dI
max

)

+(1−w)dF (f(ck), s(ck)) .

(4)

Here w is a weighting factor, dI(f(ck), s(ck)) is the dis-

tance between the features projected into the image space,

dI
max is the maximum value to accept as a match, and

dF (f(ck), s(ck)) is the distance between the feature descrip-

tors. The overall score of the transformation Tab is the sum

of the individual scores of the correspondences in C̃ab

score(a, b) =
∑

ck∈C̃ab

v(ck). (5)

V. EXTRACTING CONSTRAINTS

The procedure described in the previous sections tells us

how to compute the transformation of the camera given two

sets of features. So far, we left open how the subsets of map

features S is selected. In this section, we explain how to

choose this subset to adequately keep track of the potential

topologies of the environment. The selection of the subset of

features in combination with the approach described in the

previous section, defines the constraints represented by the

edges in the graph.

While incrementally constructing a graph, one can distin-

guish three types of constraints: visual odometry constraints,

localization constraints, and loop closing constraints. Visual

odometry constraints are computed by considering the poten-

tial match between the features in the current image, and a

limited subset of frames acquired from camera poses which

are temporally close to the current one. Localization con-

straints occur when the camera is moving through an already

visited region. In this case, the features in the current map are

selected in a region around the pose estimate obtained from

visual odometry. Finally, loop closing constraints model a

spatial relation between the current frame and a region in the

map which has been seen long time before. In our approach,

we seek to find these different constraints in each step.

A. Visual Odometry

Each time a new image is acquired, we augment the graph

with a new pose that represents the location of the most

recent camera observation. This node is initialized according

to the translation resulting from to the visual odometry.

The visual odometry estimate is obtained by first con-

structing the set So based on the features extracted from the

last M frames and then extracting the best transformation

according to Section IV. Let xk be a node in the graph and

let S(xk) be the set of features which have been observed

by that node. If xi+1 is the current pose, we compute the set

So for determining the visual odometry as

So =

i
⋃

j=i−M

S(xj). (6)

An advantage of this procedure is that it in practice always

finds a good incremental motion estimate. However, due to

the error accumulation the estimate is affected by a drift

which in general grows over time.

B. Localization

When the camera moves through known terrain, it is

possible to determine the constraints by matching the current

features with the ones in the map. This can be done by

localizing the robot in a region around the estimate provided

by the visual odometry. This set of features is computed by

considering all nodes in the graph that are close to the current

node. Note that we ignore the features that are already used

to compute the visual odometry. This procedure is effective

for re-localizing the camera in a small region around the most

recent position. The computational cost depends roughly on

the area spanned by the search.

C. Loop Closing

As a third step, we seek for loop closures. In case the

camera re-enters known terrain after having moved for a long

time in an unknown region, the accumulated uncertainty can

prevent the localization procedure for determining the right

correspondences. Performing the localization procedure on

the whole map is possible in theory. However, this operation

is typically too expensive to be performed online.

Therefore, our algorithm reduces this cost by executing

this search in two passes. At a first level only one feature

in the current image is matched with all the features in

the map, and the descriptors distances are computed. The

reference feature is the one having the highest score when

computing the visual odometry. Subsequently, a localization

is performed around all features whose distance from the

reference feature is below a given threshold. This is clearly

a heuristic but it shows a robust matching behavior in real

world situations. Note that it can happen that this approach

does not find an existing correspondences but it is unlikely

that this leads to a wrong constraint.

VI. GRAPH OPTIMIZATION

Given a constraint between node i and node j, we can

define the error eji introduced by the constraint as

eji = xj − (xi ⊕ δji). (7)

Here ⊕ represents the standard motion composition operator.

At the equilibrium point, eji is equal to 0 since xj = xi⊕δji.

In this case, an observation perfectly matches the current

configuration of the nodes. Assuming a Gaussian observation

error, the negative log-likelihood of an observation Fji is

Fji(x) =
1

2
(xj − (xi ⊕ δji))

T
Ωji (xj − (xi ⊕ δji)) (8)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
1

2

∑

〈j,i〉∈C

eji(x)T Ωjieji(x) (9)

Here C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is a set of pairs of indices

for which a constraint δjmim
exists.

The goal of the optimization phase is to find the configu-

ration x
∗ of the nodes that maximizes the likelihood of the

observations. This can be written as

x
∗ = argmin

x

F (x). (10)

To compute this quantity, we use a variant of the iterative

3D optimization approach presented by Grisetti et al. [6].

Since in our setting the yaw and the pitch of the camera are

known from the IMU, we perform the search in the (x y z ψ)
space only.

During one iteration, the algorithm optimizes the indi-

vidual constraints sequentially. It distributes the error eji

introduced by the constraint over a set of nodes related to

this constraint. Each time a constraint 〈δji,Ωji〉 between the

nodes i and j is optimized, we consider a path on the graph

between the two nodes and modify the configuration of these

nodes in order to reduce the error.

Let xi and xj be the poses of the nodes in the current

configuration. We can compute the error between the two

constraints in the global reference frame according to Eq. 7.

Let Pji = {x(1), x(2), . . . , x(N)} be the a path in the graph

connecting the nodes i and j. Given a node xk, we consider

the number n(k) of constraints affecting the update of the

node. This number can be determined as:

n(k) =
∑

〈j,i〉∈C

{

1 if xk ∈ Pji

0 otherwise
(11)

In practice n(k) is the number of constraints whose paths

constrain the node xk. By assuming the Ωji to be spherical

information matrices, this number represents an approxima-

tion of the stiffness of a node in the network.

We linearly distribute the error between the nodes in

the path. Each of the nodes in the path will receive a

contribution inversely proportional to its stiffness, according

to the following rule:

∆x(k) = −|Pji|

∑j−1
k=1 1/n(k)

∑N

k=1 1/n(k)
· eji. (12)

Here |Pji| is the length of the path, n(k) is the stiffness of

a node computed according to Eq. (11).

Updating a constraint, however, can increase the error

introduced by other constraints. Therefore, we merge the

effects of the individual updates according to a learning rate.

The learning rate decreases each iteration. Accordingly, the

fraction of the error used for updating a constraint decreases

with each iteration. As a consequence, the modification of

the overall network configuration introduced by the update

will be smaller and the nodes of the graph will converge

towards a common equilibrium point, close to a maximum

likelihood configuration. More details can be found in [6],

[7].

VII. EXPERIMENTS

In this section, we present the experiments carried out to

evaluate our approach. We used only real world data which

we recorded with our sensor platform shown in Figure 1 as

well as using a real blimp.

A. Outdoor Environments

In the first experiment, we measured the performance of

our algorithm using data recorded in outdoor environments.

For obtaining this dataset, we mounted our sensor platform

on the tip of a rod to simulate a freely floating vehicle

with the cameras pointing downwards (see Figure 1). We

−20

−10

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

y
 [

m
]

x [m]

−10

 0

 10

 20

 30

 40

 50

 60

−10 0 10 20 30 40 50

y
 [

m
]

x [m]

Fig. 2. The left image shows the path of the camera in black and the
matching constraints in gray. The right image shows the corrected trajectory
after applying the optimization technique.

Fig. 3. Perspective view of the textured elevation map of the outdoor
experiment together with two camera images recorded at the corresponding
locations.

walked on a long path around our building over different

types of ground like grass and pavement. The real trajectory

has a length of about 190 m (estimated via Google Earth).

The final graph contains approximately 1400 nodes and

1600 constraints. The trajectory resulting from the visual

odometry is illustrated in the left image of Figure 2. Our

system autonomously extracted data association hypotheses

and constructed the graph. These matching constraints are

colored light blue/gray in the same image. After applying

our optimization technique, we obtained a map in which the

loop has correctly been closed. The corrected trajectory is

shown in the right image of Figure 2. A perspective view of

the textured elevation is depicted in Figure 3.

The length of the trajectory after correction was 208 m

which is an overestimation of approximatively 9% (given the

rough ground truth estimate obtained from Google Earth).

Given that our low cost stereo system has an uncertainty of

around 10 cm at an altitude of 1 m, this is in the bounds of

a consistent map.

This experiment illustrates that our approach is able to

build maps of comparably large environments and that it

is able to find the correct correspondences between the

observations. Note that this is done without real odometry

information compared to wheeled robots. This is possible

even if the camera images are blurry and mainly show grass

and concrete surfaces.

B. Indoor Environments

The second experiment evaluates the performance of our

approach quantitatively in an indoor environment. The data

C B A

E FD

Fig. 4. Top view of the map in the indoor experiment. The top image show
the map estimate based on the visual odometry (before the global correction)
and the lower image depicts it after least square error minimization. The
labels A to F present six landmarks for which we determined the ground
truth location manually and which are used to evaluate the accuracy of our
approach.

TABLE I

ACCURACY OF THE RELATIVE POSE ESTIMATE BETWEEN LANDMARKS

landmarks A-B B-C C-D D-E E-F F-A loop

mean error [m] 0.19 0.27 0.1 0.23 0.2 0.13 1.11
sigma [m] 0.24 0.35 0.12 0.4 0.32 0.15 1.32
error [%] 4.2 6.1 8.1 5.7 4.5 8.6 5.2

was acquired with the same sensor setup as in the previous

experiment. We moved in the corridor of our building which

has a wooden floor. For a better illustration, some objects

were placed on the ground. Note that although the artificial

objects on the ground act as reliable landmarks, they are not

necessary for our algorithm as shown by the first experiment.

Figure 4 depicts the result of the visual odometry (top image)

and the final map after least square error minimization (lower

image). We measured the location of six landmarks in the

environment manually with a measurement tape (up to an

accuracy of approx. 3 cm). The distance in the x coordinate

between neighboring landmarks is 5 m and it is 1.5 m in

the y direction. The six landmarks are labeled as A to F

in the lower image. We used these six known locations to

estimate the quality of our mapping technique. We repeated

the experiment 10 times and measured the relative distance

between them.

Table I summarizes this experiment. As can be seen, the

error of the relative pose estimates is always below 10%

compared to the true difference. The error results mainly

from potential mismatches of features and from the error in

our low quality stereo setup. Given this cheap setup, this is

an accurate estimate for a system lacking sonar, laser range

data, and real odometry information.

C. Experiment using a Blimp

The third experiment was performed using a real flying

vehicle which is depicted in Figure 5. The problem with

the blimp is its limited payload. Therefore, we were unable

to mount the IMU and had only a single camera available

which was pointing downwards. Since only one camera was

Fig. 5. The left image depicts our blimp and the right one example images
received via the analog video transmission link.

-3

-2

-1

 0

 1

-8 -7 -6 -5 -4 -3 -2 -1 0

y
 [

m
]

x [m]

-3

-2

-1

 0

 1

-8 -7 -6 -5 -4 -3 -2 -1 0

y
 [

m
]

x [m]

Fig. 6. The left image illustrates the trajectory recovered by our approach.
Straight lines indicate that the robot re-localized in previously seen parts
of the environment (loop closure). The small loops and the discontinuities
in the trajectory result from assuming the attitude to be identically zero. In
this way changes in tilt and roll were mapped by our algorithm in changes
in x and y. The right image shows the trajectory obtained after applying
our optimization algorithm.

available, the distance information estimated by the visual

odometry can only be determined up to a scale factor. Fur-

thermore, our system had no information about the attitude

of the sensor platform due to the missing IMU. Therefore,

we flew conservative maneuvers only and assumed that the

blimp was flying parallel to the ground. The left image in

Figure 5 shows our blimp in action.

The data from the camera was transmitted via an analog

video link and all processing has been done off board.

Interferences in the image frequently occurred due to the

analog link as illustrated in the right image of Figure 5. In

practice, such noise typically leads to outliers in the feature

matching. The mapped environment is a factory floor of

concrete that provides poor textures which makes it hard

to distinguish the individual features.

Even under these hard conditions, our system worked

satisfactory well. We obtained a comparably good visual

odometry and could extract correspondences between the in-

dividual nodes on the graph. Figure 6 shows the uncorrected

as well as the corrected graph from a top view.

D. Performance

All the experiments have been executed on a 1.8 GHz Pen-

tium dual core laptop computer. The frame rate we typical

obtain for computing the visual odometry and performing the

local search for matching constraints is between 5 and 10 fps.

We use an image resolution of 320 by 240 pixel and we

typically obtain between 50 and 100 features per image. The

exact value, however, depends on the quality of the images.

The time to carry out the global search for matching

constraints increases linearly with the size of the map. In the

first experiment presented in this paper, the frequency with

which the global search for loop closures could be executed

was 1 Hz.

VIII. CONCLUSIONS

In this paper, we presented a mapping system that is

able to build consistent maps of the environment using a

cheap vision-based sensor setup. Our approach integrates

state-of-the-art techniques to extract features, to estimate

correspondences between landmarks, and to perform least

square error minimization. Our system is robust enough to

handle low textured surfaces like large areas of concrete or

lawn. We are furthermore able to deploy our system on a

flying vehicle and to obtain consistent elevation maps of the

ground.

ACKNOWLEDGMENT

This work has partly been supported by the DFG under

contract number SFB/TR-8, within the Research Training

Group 1103 and by the EC under contract number FP6-IST-

34120-muFly, action line: 2.5.2.: micro/nano based subsys-

tems, and FP6-004250-CoSy.

REFERENCES

[1] H. Andreasson, T. Duckett, and A. Lilienthal. Mini-slam: Minimalistic
visual slam in large-scale environments based on a new interpretation
of image similarity. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Rome, Italy, 2007.
[2] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust

features. In Proc. of the European Conf. on Computer Vision (ECCV),
Graz, Austria, 2006.

[3] O. Chum and J. Matas. Matching with PROSAC - progressive sample
consensus. In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), Los Alamitos, USA, 2005.
[4] A. Davison, I. Reid, , N. Molton, and O. Stasse. Monoslam:real

time single camera slam. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(6), 2007.
[5] R.M. Eustice, H. Singh, J.J. Leonard, and M.R. Walter. Visually

mapping the RMS Titanic: conservative covariance estimates for
SLAM information filters. Int. Journal of Robotics Research, 25(12),
2006.

[6] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard.
Efficient estimation of accurate maximum likelihood maps in 3d. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), San Diego, CA, USA, 2007.
[7] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proc. of Robotics: Science and Systems

(RSS), Atlanta, GA, USA, 2007.
[8] P. Jensfelt, D. Kragic, and M. Folkesson, J. B jörkman. A framework

for vision based bearing only 3d slam. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Orlando, CA, 2006.
[9] I. Jung and S. Lacroix. High resolution terrain mapping using low

altitude stereo imagery. In Proc. of the Int. Conf. on Computer Vision

(ICCV), Nice, France, 2003.
[10] D.G. Lowe. Distinctibe image features from scale invariant keypoints.

Int. Journal on Computer Vision, 2004.
[11] J.M. Montiel, J. Civera, and A.J. Davison. Unified inverse depth

parameterization for monocular slam. In Proc. of Robotics: Science

and Systems (RSS), Cambridge, Massatchuttes, USA, 2006.
[12] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM

with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.
[13] S. Thrun. An online mapping algorithm for teams of mobile robots.

Int. Journal of Robotics Research, 20(5):335–363, 2001.
[14] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[C21] K.M. Wurm, C. Stachniss, G. Grisetti, and W. Burgard. Improved

simultaneous localization and mapping using a dual representation of the

environment. In Proc. of the European Conference on Mobile Robots

(ECMR), Freiburg, Germany, 2007.

Improved Simultaneous Localization and Mapping

using a Dual Representation of the Environment

Kai M. Wurm Cyrill Stachniss Giorgio Grisetti Wolfram Burgard

University of Freiburg, Dept. of Computer Science, Georges-Köhler-Allee 79, 79110 Freiburg, Germany

Abstract— The designer of a mapping system for mobile robots
has to choose how to model the environment of the robot.
Popular models are feature maps and grid maps. Depending
on the structure of the environment, each representation has
certain advantages. In this paper, we present an approach that
maintains feature maps as well as grid maps of the environment.
This allows a robot to update its pose and map estimate based
on the representation that models the surrounding of the robot
in the best way. The model selection procedure is obtained by
reinforcement learning and takes a decision based on the current
observation. As we will illustrate in simulation as well as in real
world experiments, this allows a robot to learn accurate maps in
a more robust way than approaches using only feature or only
grid maps.

I. INTRODUCTION

Building maps is one of the fundamental tasks of mobile

robots. In the literature, the mobile robot mapping problem is

often referred to as the simultaneous localization and mapping

(SLAM) problem. It is considered to be a complex problem,

because for localization a robot needs a consistent map and

for acquiring a map a robot requires a good estimate of its

location. This mutual dependency between the pose and the

map estimates makes the SLAM problem hard and requires

searching for a solution in a high-dimensional space.

A large variety of different estimation techniques has been

proposed. Extended Kalman filter, sparse extended informa-

tion filters, maximum likelihood methods, particle filter, and

several other techniques have been applied to estimate the

pose of the robot as well as a map of the environment.

Most approaches to mapping use sets of features to model

the environment, grid maps, or topological maps. Each repre-

sentation has its own advantages. The environment the robot

is deployed in mainly influences the decision which model

to chose. For example, in large open spaces with predefined

landmarks, feature-based approaches are likely to outperform

mapping techniques based on grid maps. In dense and cluttered

environment, however, grids offer substantial advantages.

In our system, we maintain the joint posterior about the

trajectory of the robot and the map of the environment using

a Rao-Blackwellized particle filter. The contribution of this

paper is a novel approach which combines feature-based

models with occupancy grid maps. Our approach allows a

robot to perform its corrections based on both representations.

It selects the model that is currently the best one to map

the surroundings of the robot. The model selection process

is obtained using reinforcement learning. It makes a decision

based on the current sensor observations and the state of the

filter. As we will demonstrate in the experiments, our approach

(a) Feature-based mapping system (no features inside the buildings)

(b) Grid-based mapping system (few structural information outside)

(c) Combining features and grid maps

Fig. 1. When mapping environments that contain large open spaces with
few landmarks as well as dense structures, a combination of feature maps
and grids maps outperforms the individual techniques.

outperforms pure grid and pure feature-based approaches. A

motivating example is shown in Figure 1.

This paper is organized as follows. After a discussion

of related work, we briefly introduce mapping with Rao-

Blackwellized particle filters in Section III. Section IV presents

our filter for mapping which maintains the dual model of the

environment. Section V explains our model selection process

based on reinforcement learning. Experiments carried out in

simulation and on real robots are presented in Section VI.

II. RELATED WORK

Mapping techniques for mobile robots can be roughly

classified according to the map representation and the under-

lying estimation technique. One popular map representation

is the occupancy grid. Whereas such grid-based approaches

are computationally expensive and typically require a huge

amount of memory, they are able to represent arbitrary objects.

Feature-based representations are attractive because of their

compactness. However, they rely on predefined feature extrac-

tors, which assumes that some structures in the environments

are known in advance.

The model of the environment and the applied state esti-

mation technique are often coupled. One of the most popular

approaches are extended Kalman filters (EKFs) in combination

with landmarks. The effectiveness of the EKF approaches

comes from the fact that they estimate a fully correlated

posterior about landmark maps and robot poses [10, 15].

Their weakness lies in the strong assumptions that have to

be made on both the robot motion model and the sensor

noise. Moreover, the landmarks are assumed to be uniquely

identifiable. There exist techniques [14] to deal with unknown

data association in the SLAM context, however, if these

assumptions are violated, the filter is likely to diverge [5, 9,

19].

Thrun et al. [18] proposed a method that uses the inverse of

the covariance matrix. The advantage of the sparse extended

information filters (SEIFs) is that they make use of the

approximative sparsity of the information matrix and in this

way can perform predictions and updates in constant time.

Eustice et al. [4] presented a technique to make use of exactly

sparse information matrices in a delayed-state framework.

In a work by Murphy, Doucet, and colleagues [2, 13], Rao-

Blackwellized particle filters (RBPF) have been introduced as

an effective means to solve the SLAM problem. Each particle

in a RBPF represents a possible robot trajectory and a map.

The framework has been subsequently extended by Monte-

merlo et al. [11, 12] for approaching the SLAM problem with

landmark maps. To learn accurate grid maps, RBPFs have been

used by Eliazar and Parr [3] and Hähnel et al. [7]. Whereas the

first work describes an efficient map representation, the second

presents an improved motion model that reduces the number

of required particles. The work of Grisetti et al. [6] describes

an improved variant of the algorithm proposed by Hähnel et

al. [7] combined with the ideas of FastSLAM2 [11]. Instead

of using a fixed proposal distribution, the algorithm computes

an improved proposal distribution on a per-particle basis on

the fly.

So far, there exist only very few methods that try to combine

feature-based models with grid maps. One is the hybrid metric

map (HYMM) approach [8]. It estimates the location of

features and performs a triangulation between them. In this

triangulation, a so called dense map is maintained which can

be transformed according to the update of the corresponding

landmarks. This allows the robot to obtain a dense map by

using a feature-based mapping approach. However, it is still

required that the robot is able to reliably extract landmarks.

III. MAPPING WITH

RAO-BLACKWELLIZED PARTICLE FILTERS

According to Murphy [13], the key idea of the Rao-

Blackwellized particle filter for SLAM is to estimate the joint

posterior p(x1:t,m | z1:t, u1:t−1) about the map m and the

trajectory x1:t = x1, . . . , xt of the robot. This estimation is

performed given the observations z1:t = z1, . . . , zt and the

odometry measurements u1:t−1 = u1, . . . , ut−1 obtained by

the mobile robot. The Rao-Blackwellized particle filter for

SLAM makes use of the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1). (1)

This factorization allows us to first estimate only the trajectory

of the robot and then to compute the map given that trajectory.

Since the map strongly depends on the pose estimate of

the robot, this approach offers an efficient computation. This

technique is often referred to as Rao-Blackwellization.

Typically, Eq. (1) can be calculated efficiently since the

posterior about maps p(m | x1:t, z1:t) can be computed

analytically using “mapping with known poses” since x1:t and

z1:t are known.

To estimate the posterior p(x1:t | z1:t, u1:t−1) about the po-

tential trajectories, one can apply a particle filter. Each particle

represents a potential trajectory of the robot. Furthermore, an

individual map is associated with each sample. The maps are

built from the observations and the trajectory represented by

the corresponding particle.

This framework allows a robot to learn models of the

environment and estimate its trajectory but it leaves open how

the environment is represented. So far, this approach has been

applied using feature-based models [11, 12] or grid maps [3,

6, 7, 13]. Each representation has its own advantages and one

typically needs some prior information about the environment

to select the appropriate model. In this paper, we combine

both types of maps to represent the environment. This allows

us to combine the advantages of both worlds. Depending on

the most recent observation, the robot selects that model which

is likely to be the best model in the current situation.

IV. DUAL MODEL OF THE ENVIRONMENT

Our mapping system applies such a Rao-Blackwellized

particle filter to maintain the joint posterior about the trajectory

of the robot and the map of the environment. In contrast

to previous algorithms, each particle carries a grid map as

well as a map of features. The key idea is to maintain both

representations simultaneously and to select in each step the

model that is best suited to update the pose and map estimate

of the robot. Our approach is independent of the actual features

that are used. In our current system, we use a laser range finder

and extract clusters of beam end points which are surrounded

by free space. In this way, we obtain features from trees, street

lamps, etc. Note that other feature detectors can be directly

integrated into our approach. The detector itself is completely

transparent to the algorithm.

In each step, our algorithm considers the current estimate

as well as the current sensor and odometry observation to

select either the grid or the feature model to perform the next

update step. This decision affects the proposal distribution in

the particle filter used for mapping. The proposal distribution

is used to obtain the next generation of particles as well as to

compute the importance weights of the samples.

In the remainder of this section, we first introduce the

particularities of our particle filter. We then explain in the

subsequent section how to actually select the model for the

current step.

If the grid map is to be used, we draw the new particle

poses from an improved proposal distribution as introduced

by Grisetti et al. [6]. This proposal performs scan-matching

on a per particle basis and then approximates the likelihood

function by a Gaussian. This technique has been shown to

yield accurate grid maps of the environment, given that there

is enough structure to perform scan-matching for an initial

estimate.

When using feature maps, we apply the proposal distribution

as done by Montemerlo et al. [12] in the FastSLAM algorithm.

After the proposal is used to obtain the next generation of

samples, the importance weights are computed according to

Grisetti et al. [6] and Montemerlo et al. [12] respectively. Note

that we compute for each sample i two weights w
(i)
g (based

on the grid map) and w
(i)
f (based on the feature map). For

resampling, one weight is required but we need both values

in our decision process as explained in the remainder of this

paper.

To carrying out the resampling step, we apply the adaptive

resampling strategy originally proposed by Doucet [1]. It com-

putes the so-called effective sample size or effective number

of particles (Neff) to decide whether to resample or not. This

is done based on the weights resulting from the proposal used

to obtain this generation of samples.

V. MODEL SELECTION

The probably most important aspect of our proposed al-

gorithm is to decide which representation to choose given

the current sensor readings and the filter. In the following,

we describe different strategies we investigated and which are

evaluated in the experimental section of this paper.

A. Observation Likelihood Criterion

A mapping approach that relies on scan-matching is most

likely to fail if laser readings cannot be aligned to the map

generated so far. This is likely to be the case in large open

space with sparse observations. In such a situation it is often

better to use a pre-defined feature extractor (in case there are

feature) to estimate the pose of the robot.

A measure that can be used to detect such a situation is

the likelihood l(zt, xt,mg,t) that the scan-matching seeks to

maximize. To point-wise evaluate the observation likelihood

of a laser observation, we use the so called “beam endpoint

model” [17]. In this model, the individual beams within a scan

are considered to be independent. The likelihood of a beam is

computed based on the distance between the endpoint of the

beam and the closest obstacle from that point.

Calculating the average likelihood for all particles results in

a value that can be used as a heuristic to decide which map

representation to use in a given situation:

l =
1

N

∑

i

l(zt, x
(i)
t ,m

(i)
g,t) (2)

A heuristic for selecting the feature-based representation in-

stead of the grid map can be obtained based on a threshold

(l ≤ c1).

B. Neff Criterion

As described above, each particle i carries two weights

w
(i)
g and w

(i)
f , one for the grid-map and one for the feature-

map. These weights can be seen as an indicator of how well

a particle explains the data and therefore can be used as a

heuristic for model selection. Since the weights of a particle

are based on different types of measurement, they cannot be

compared directly. What can be compared, however, is the

weight distribution over the filter.

One way to measure this difference in the individual weights

is to compute the variance of the weights. Intuitively a set of

weights with low variance does not strongly favor any of the

hypothesis represented by the particles, while a high variance

indicates that some hypotheses are more likely than others.

This suggests that a strategy based on the Neff value, which

is strongly related to the variance of the weights, can be a

good heuristic. Neff is computed for both sets of weights as

N
g
eff =

1
∑N

i=1(w
(i)
g)2

and N
f
eff =

1
∑N

i=1(w
(i)
f)2

. (3)

It can be easily seen, that a higher variance in the weights

yields a lower Neff value. Assuming that a set of particles with

a higher variance in the weights is usually more discriminative,

it seems reasonable to switch to the feature-based model

whenever N
f
eff < N

g
eff .

C. Reinforcement Learning for Model Selection

Both approaches described above are clearly heuristics. In

this section, we describe how to use reinforcement learning to

combine the heuristics while avoiding their pitfalls. The basic

idea of reinforcement learning is to find a mapping from states

S to actions A which maximizes a numerical reward signal

r (see [16] for an introduction). Such a mapping is called a

policy and can be learned by interacting with the environment.

Inspired by the human learning method of trial and error, this

class of learning algorithms perform a series of actions and

analyze the obtained reward.

There exist a number of algorithms for reinforcement

learning that differ most notably in the knowledge available

about the environment. If it can be modeled as an Markov

decision process for example, technics such as policy iteration

can be applied. If no model of the environment is available,

Monte Carlo methods or Temporal-Difference Learning (TD

learning) should be applied. For our approach, we use the

Sarsa algorithm [16] which is a popular algorithm among the

TD methods and does not require a model of the environment.

It learns an action-value function Q(s, a) which assigns a value

to state-action pairs. Those values can then be used to generate

a policy (e.g., choose the action that has the highest value in

a given state).

To apply this method to our model selection problem, we

have to define the states S, the actions A, and the reward

r : S → R. Defining the actions is straight forward as A =
{ag, af}, where ag defines the use of the grid map and af the

use of the feature map.

The state set has to be defined in a way that it represents

all necessary information about the sensor input and the filter

to make a decision. To achieve this, our state consists of the

average scan matching likelihood l, a boolean variable given

by N
f
eff < N

g
eff , and a boolean variable if a known feature has

currently been detected or not. This results in

S := {l} × {1
N

f

eff
<N

g

eff

} × {1 feature detected}. (4)

The value of l is divided into (here seven) discrete intervals

(0.0 − 0.15, 0.16− 0.3, 0.31 − 0.45, 0.46− 0.6, 0.61− 0.75,

0.76−0.9, 0.91−1.0), resulting in 7×2×2 = 28 states. It is

important to keep the number of states small since learning the

policy otherwise may require too many computation resources

(even as a preprocessing step which needs to be executed only

once).

The policy is learned on simulated data where the true

robot pose x∗

t is available in every time step t. We use the

weighted average deviation from the true pose to define our

reward-function. To avoid a punishment that result from wrong

decisions in the past (e.g. a wrong rotation), we only use the

deviation accumulated since the last evaluation step t − 1:

r(st) = r(st−1) −

N∑

i=1

w(i) ||x(i) − x∗

t || (5)

Deviations from the simulated path result in negative rewards.

As mentioned in the previous section, each particle stores two

weights. For calculating the weighted average, we use w
(i)
g if

the last action taken was ag and w
(i)
f if af was taken.

The environment for learning consists of building-like struc-

tures with hallways and an outdoor part that models a set of

trees. We recorded a simulated path and executed the learning

algorithm for 1000 times. During learning, we us an ǫ-greedy

policy. In state s, a greedy policy chooses the action a which

has the highest value Q(s, a). In contrast to this, an ǫ-greedy

policy allows exploratory actions by choosing a random action

with likelihood ǫ.

This technique results in a policy that tells the robot when to

select the feature-based representation and when to choose the

grid map. Note that our approach to learn a strategy for making

decisions is independent of the actual feature detector used.

One could even use this approach to choose among multiple

feature detectors. The overall mapping algorithm is depicted

in Algorithm 1.

VI. EXPERIMENTS

Our approach has been evaluated using simulated and real

robot data. Real world experiments have been conducted using

an ActivMedia Pioneer 2-AT robot equipped with a SICK

LMS laser range finder. For generating the simulated data,

we used the Carnegie Mellon Robot Navigation Toolkit.

The experiments have been designed to verify that our

mapping approach is able to reduce the error compared to

the purely feature-based technique (FastSLAM [12]) and to

the purely grid-based approach [6]. In case the environment

suggests the use of one single model, the result is obviously

the same as using the original approach.

A. Simulation Experiments

The simulated environment used to test our approach is

shown in Figure 2. It shows two symmetric buildings con-

nected by an alley spanning 70 m in total. We simulated a

laser range finder with a maximum range of 4m which is

less than the distance between the trees in the alley (5m).

The motivating example in the introduction of this paper

Algorithm 1 Our combined approach

Require:
St−1, the sample set of the previous time step
zl,t, the most recent laser scan
zf,t, the most recent feature measurement
ut−1, the most recent odometry measurement

Ensure:
St, the new sample set

maptype = decide(St−1, zl,t, zf,t, ut−1)

St = {}

for all s
(i)
t−1 ∈ St−1 do

< x
(i)
t−1, w

(i)
g,t−1, w

(i)
f,t−1m

(i)
g,t−1, m

(i)
f,t−1 >= s

(i)
t−1

// compute proposal
if (maptype = grid) then

x
(i)
t ∼ P (xt | x

(i)
t−1, ut−1, zl,t)

else
x

(i)
t ∼ P (xt | x

(i)
t−1, ut−1)

end if

// update importance weights

w
(i)
g,t = updateGridWeight(w

(i)
g,t−1, m

(i)
g,t−1, zl,t)

w
(i)
f,t = updateFeatureWeight(w

(i)
f,t−1, m

(i)
f,t−1, zf,t)

// update maps

m
(i)
g,t = integrateScan(m

(i)
g,t−1, x

(i)
t , zl,t)

m
(i)
f,t = integrateFeatures(m

(i)
f,t−1, x

(i)
t , zf,t)

// update sample set

St = St ∪ {< x
(i)
t , w

(i)
g,t, w

(i)
f,t, m

(i)
g,t, m

(i)
f,t >}

end for

for i = 0 to N do
if (maptype = grid) then

w(i) = w
(i)
g

else
w(i) = w

(i)
f

end if
end for

Neff = 1
P

N
i=1(w(i))2

if Neff < T then
St = resample(St, {w

(i)})

end if

shows example results obtained with the different approaches.

Figure 1 (a) is the result of the purely feature-based FastSLAM

approach. Since no features are found inside the building

structures, the robot cannot correct its trajectory inside the

buildings. In contrast, the path through the alley is well

corrected.

The purely grid-based approach [6] is able to correctly

map the buildings but introduces large errors in the alley (see

Figure 1 (b)). Due to the limited range of the sensor, too few

obstacles are observed and therefore no scan registration is

possible and thus the grid-based approach fails to map the

alley appropriately.

In contrast to this, our combined approach using the learned

policy is able to correct the trajectory of the robot all the time

by selecting the appropriate model. It uses the grid maps inside

Fig. 2. Simulated environment used test our approach. This shows the ground truth map and trajectory of the robot.

 0

 5000

 10000

 15000

 20000

 0 200 400 600 800 1000 1200 1400 1600

cu
m

u
la

ti
v
e

er
ro

r

timestep

FastSLAM (features only)
Grisetti et al. (grid only)

Our approach

Fig. 3. Deviation of the weighted mean of the samples from ground truth
using grid- and feature-model on their own and using the combined approach.
The error bars illustrate the 0.05 confidence level.

 0

 1000

 2000

 3000

 4000

 5000

 0 200 400 600 800 1000 1200 1400 1600

cu
m

u
la

ti
v
e

er
ro

r

timestep

likelihood
neff

Our approach (Sarsa)

Fig. 4. Deviation of the weighted mean of the samples from ground truth
using the scan-match likelihood heuristic, the Neff heuristic and our approach.

the buildings and the features outside. The resulting map is

shown in Figure 1 (c).

To evaluate our approach more quantitatively, we repeated

this experiment for 20 times with different random seeds. We

compared our approach to the pure feature-based approach and

the pure grid-based approach. The results in Figure 3 show,

that the combined approach is significantly better than both

pure approaches (0.05 significance).

In addition, we compared the solution obtained by Sarsa

with those of the scan-matching heuristic and the Neff heuris-

tic. We measured the absolute deviation from ground truth in

every time step. Figure 4 illustrates that the average error of the

learned model selection policy is lower than when using the

heuristics. However, we could not show that this improvement

is significant.

One interesting fact can be observed when comparing the

results of these three technique by manual inspection. Even if

the error measured as the deviation from the ground truth is not

significantly smaller for the learned policy, the maps typically

Fig. 5. Typical mapping results when using the likelihood-heuristic (left)
and our Sarsa-based approach (right).

look nicer. The scan-match heuristic for example relies on a

fixed threshold c1. If the threshold is not optimally tuned, in

can happen that the grid approach is not selected eventhough

it would be better. This leads to walls which are more blurred

or slightly missaligned. Figure 5 depicts a magnified view of

two maps illustrating the difference. Unfortunately, it is hard

to design a measure that is able to take this blurriness into

account. A similar effect can be observed when using the Neff

criterion.

B. Real World Experiments

Real robot data has been recorded at Freiburg University.

The computer science campus includes a parking space of

about 50m by 120m (see Figure 6). Lamps are set in two

rows at a distance of 16m. The dataset was recorded at a time

when no cars were present and therefore only the lamps caused

reflections of the laser beam. The robot was steered manually

through a building, around the neighboring parking space, and

back into the building. The trajectory is plotted in Figure 7. To

evaluate our approach, we limited the maximum laser range

to 12m, which is less than the distance between two lamps.

Since no ground truth was available, we measured the error

to an approximated robot path which was generated using the

grid-based approach of Grisetti et al. [6] with the full 80m

sensor range (shown in red/dark gray in Figure 7). Due to

the 80m range, the robot always observed enough obstacles

to build an accurate map. Figure 8 shows the error of the

weighted mean trajectory over time. In summary, the real robot

experiment leads to similar results as simulated experiments.

The combined approach performed better compared to both

traditional SLAM techniques with 12m sensor range.

The computational requirements of the presented approach

are approximatively the sum of the individual techniques. On

a standard PC, our implementation runs online.

VII. CONCLUSIONS

In this paper, we presented an improved approach to learn-

ing models of the environment with a Rao-Blackwellized

particle filters. Our approach maintains feature maps as well

Fig. 6. Parking space at Freiburg campus.

Fig. 7. Grid map of parking space and neighboring building 078 at Freiburg
campus. The approximated robot trajectory is shown in red/dark gray, the
result of our combined mapping approach is shown in green/light gray.

as grid maps to represent spatial structures. This allows the

robot to select the model which provides the best expected

map estimate. The model selection procedure is obtained by

a reinforcement learning approach. The robot considers the

previous estimate as well as the current observations to chose

the model that will be used in the upcoming correction step.

The process itself is independent of the actual feature detector.

Our approach has been implemented and evaluated on real

robot data as well as in simulation experiments. We showed

that the presented technique allows a robot to more robustly

learn maps of different types of environments. It ourperforms

traditional approach that use only features or only grid maps.

ACKNOWLEDGMENT

This work has partly been supported by the German Re-

search Foundation (DFG) under contract number SFB/TR-8

(A3), and by the EC under contract number FP6-2005-IST-6-

RAWSEEDS, FP6-2005-IST-5-muFly, and FP6-004250-CoSy.

 0

 10000

 20000

 30000

 40000

 50000

 0 500 1000 1500 2000

cu
m

u
la

ti
v

e
er

ro
r

timestep

FastSLAM (features only)
Grisetti et al. (grid only)

Our approach

Fig. 8. Deviation of the weighted mean of the samples from the estimated
trajectory (using the 80m range scanner).

REFERENCES

[1] A. Doucet. On sequential simulation-based methods for bayesian filter-
ing. Technical report, Signal Processing Group, Dept. of Engeneering,
University of Cambridge, 1998.

[2] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Black-
wellized partcile filtering for dynamic bayesian networks. In Proc. of

the Conf. on Uncertainty in Artificial Intelligence (UAI), pages 176–183,
Stanford, CA, USA, 2000.

[3] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous local-
ization and mapping without predetermined landmarks. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), pages 1135–1142, Acapulco,
Mexico, 2003.

[4] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 2428–2435, Barcelona, Spain, 2005.

[5] U. Frese and G. Hirzinger. Simultaneous localization and mapping
- a discussion. In Proc. of the IJCAI Workshop on Reasoning with

Uncertainty in Robotics, pages 17–26, Seattle, WA, USA, 2001.
[6] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid

mapping with rao-blackwellized particle filters. IEEE Transactions on

Robotics, 23(1):34–46, 2007.
[7] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM

algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211, 2003.
[8] E.M. Nebot J.I. Nieto, J.E. Guivant. The hybrid metric maps (HYMMs):

A novel map representation for denseslam. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2004.
[9] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for fil-

tering nonlinear systems. In Proc. of the American Control Conference,
pages 1628–1632, Seattle, WA, USA, 1995.

[10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4):376–382, 1991.
[11] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, 2003.
[12] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A

factored solution to simultaneous localization and mapping. In Proc. of

the National Conference on Artificial Intelligence (AAAI), pages 593–
598, Edmonton, Canada, 2002.

[13] K. Murphy. Bayesian map learning in dynamic environments. In
Proc. of the Conf. on Neural Information Processing Systems (NIPS),
pages 1015–1021, Denver, CO, USA, 1999.

[14] J. Neira and J.D. Tardós. Data association in stochastic mapping
using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890–897, 2001.
[15] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.
[16] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.

MIT Press, Cambridge, MA, 1998.
[17] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics, chapter Robot

Perception, pages 171–172. MIT Press, 2005.
[18] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-

Whyte. Simultaneous localization and mapping with sparse extended
information filters. J. of Robotics Research, 23(7/8):693–716, 2004.

[19] J. Uhlmann. Dynamic Map Building and Localization: New Theoretical

Foundations. PhD thesis, University of Oxford, 1995.

[C22] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree

parameterization for efficiently computing maximum likelihood maps using

gradient descent. In Proc. of Robotics: Science and Systems (RSS), Atlanta,

GA, USA, 2007.

A Tree Parameterization for Efficiently Computing

Maximum Likelihood Maps using Gradient Descent
Giorgio Grisetti Cyrill Stachniss Slawomir Grzonka Wolfram Burgard

University of Freiburg, Department of Computer Science, 79110 Freiburg, Germany

Abstract— In 2006, Olson et al. presented a novel approach to
address the graph-based simultaneous localization and mapping
problem by applying stochastic gradient descent to minimize
the error introduced by constraints. Together with multi-level
relaxation, this is one of the most robust and efficient maxi-
mum likelihood techniques published so far. In this paper, we
present an extension of Olson’s algorithm. It applies a novel
parameterization of the nodes in the graph that significantly
improves the performance and enables us to cope with arbitrary
network topologies. The latter allows us to bound the complexity
of the algorithm to the size of the mapped area and not to
the length of the trajectory as it is the case with both previous
approaches. We implemented our technique and compared it to
multi-level relaxation and Olson’s algorithm. As we demonstrate
in simulated and in real world experiments, our approach
converges faster than the other approaches and yields accurate
maps of the environment.

I. INTRODUCTION

Models of the environment are needed for a wide range of

robotic applications, including search and rescue, automated

vacuum cleaning, and many others. Learning maps has there-

fore been a major research focus in the robotics community

over the last decades. Learning maps under uncertainty is

often referred to as the simultaneous localization and map-

ping (SLAM) problem. In the literature, a large variety of

solutions to this problem can be found. The approaches mainly

differ due to the underlying estimation technique such as

extended Kalman filters, information filters, particle filters, or

least-square error minimization techniques.

In this paper, we consider the so-called “graph-based” or

“network-based” formulation of the SLAM problem in which

the poses of the robot are modeled by nodes in a graph [2,

5, 6, 7, 11, 13]. Constraints between poses resulting from

observations or from odometry are encoded in the edges

between the nodes.

The goal of an algorithm designed to solve this problem

is to find the configuration of the nodes that maximizes the

observation likelihood encoded in the constraints. Often, one

refers to the negative observation likelihood as the error or the

energy in the network. An alternative view to the problem is

given by the spring-mass model in physics. In this view, the

nodes are regarded as masses and the constraints as springs

connected to the masses. The minimal energy configuration of

the springs and masses describes a solution to the mapping

problem. Figure 1 depicts such a constraint network as a

motivating example.

A popular solution to this class of problems are iterative

approaches. They can be used to either correct all poses

simultaneously [6, 9, 11] or to locally update parts of the

Fig. 1. The left image shows an uncorrected network with around 100k poses
and 450k constraints. The right image depicts the network after applying our
error minimization approach (100 iterations, 17s on a P4 CPU with 1.8GHz).

network [2, 5, 7, 13]. Depending on the used technique,

different parts of the network are updated in each iteration.

The strategy for defining and performing these local updates

has a significant impact on the convergence speed.

Our approach uses a tree structure to define and efficiently

update local regions in each iteration. The poses of the indi-

vidual nodes are represented in an incremental fashion which

allows the algorithm to automatically update successor nodes.

Our approach extends Olson’s algorithm [13] and converges

significantly faster to a network configuration with a low error.

Additionally, we are able to bound the complexity to the size

of the environment and not to the length of the trajectory.

The remainder of this paper is organized as follows. After

discussing the related work, Section III explains the graph-

based formulation of the mapping problem. Subsequently, we

explain the usage of stochastic gradient descent to find network

configurations with small errors. Section V introduces our

tree parameterization and in Section VI we explain how to

obtain such a parameterization tree from robot data. We finally

present our experimental results in Section VII.

II. RELATED WORK

Mapping techniques for mobile robots can be classified

according to the underlying estimation technique. The most

popular approaches are extended Kalman filters (EKFs), sparse

extended information filters, particle filters, and least square

error minimization approaches. The effectiveness of the EKF

approaches comes from the fact that they estimate a fully

correlated posterior about landmark maps and robot poses [10,

14]. Their weakness lies in the strong assumptions that have

to be made on both, the robot motion model and the sensor

noise. Moreover, the landmarks are assumed to be uniquely

identifiable. There exist techniques [12] to deal with unknown

data association in the SLAM context, however, if certain

assumptions are violated the filter is likely to diverge [8].

Frese’s TreeMap algorithm [4] can be applied to compute

nonlinear map estimates. It relies on a strong topological

assumption on the map to perform sparsification of the in-

formation matrix. This approximation ignores small entries in

the information matrix. In this way, Frese is able to perform

an update in O(log n) where n is the number of features.

An alternative approach is to find maximum likelihood maps

by least square error minimization. The idea is to compute

a network of relations given the sequence of sensor read-

ings. These relations represent the spatial constraints between

the poses of the robot. In this paper, we also follow this

way of formulating the SLAM problem. Lu and Milios [11]

first applied this approach in robotics to address the SLAM

problem using a kind of brute force method. Their approach

seeks to optimize the whole network at once. Gutmann and

Konolige [6] proposed an effective way for constructing such

a network and for detecting loop closures while running an

incremental estimation algorithm. Howard et al. [7] apply

relaxation to localize the robot and build a map. Duckett

et al. [2] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of constraints. In order to

make the problem linear, they assume knowledge about the

orientation of the robot. Frese et al. [5] propose a variant of

Gauss-Seidel relaxation called multi-level relaxation (MLR).

It applies relaxation at different resolutions. MLR is reported

to provide very good results and is probably the best relaxation

technique in the SLAM context at the moment.

Note that such maximum likelihood techniques as well as

our method focus on computing the best map and assume that

the data association is given. The ATLAS framework [1] or

hierarchical SLAM [3], for example, can be used to obtain

such data associations (constraints). They also apply a global

optimization procedure to compute a consistent map. One can

replace such optimization procedures by our algorithm and in

this way make ATLAS or hierarchical SLAM more efficient.

The approach closest to the work presented here is the

work of Olson et al. [13]. They apply stochastic gradient

descent to reduce the error in the network. They also propose

a representation of the nodes which enables the algorithm to

perform efficient updates. The approach of Olson et al. is

one of the current state-of-the-art approaches for optimizing

networks of constraints. In contrast to their technique, our

approach uses a different parameterization of the nodes in

the network that better takes into account the topology of

the environment. This results in a faster convergence of our

algorithm.

Highly sophisticated optimization techniques such as MLR

or Olson’s algorithm are restricted to networks that are built

in an incremental way. They require as input a sequence of

robot poses according to the traveled path. First, this makes it

difficult to use these techniques in the context of multi-robot

SLAM. Second, the complexity of the algorithm depends on

the length of the trajectory traveled by the robot and not on

the size of the environment. This dependency prevents to use

these approaches in the context of lifelong map learning.

One motivation of our approach is to build a system that

depends on the size of the environment and not explicitely

on the length of the trajectory. We designed our approach in

a way that it can be applied to arbitrary networks. As we

will show in the remainder of this paper, the ability to use

arbitrary networks allows us to prune the trajectory so that

the complexity of our approach depends only on the size

of the environment. Furthermore, our approach proposes a

more efficient parameterization of the network when applying

gradient descent.

III. ON GRAPH-BASED SLAM

Most approaches to graph-based SLAM focus on estimating

the most-likely configuration of the nodes and are therefore

referred to as maximum-likelihood (ML) techniques [2, 5, 6,

11, 13]. They do not consider to compute the full posterior

about the map and the poses of the robot. The approach

presented in this paper also belongs to this class of methods.

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. For a more precise formulation consider

the following definitions:

• x = (x1 · · · xn)T is a vector of parameters which

describes a configuration of the nodes. Note that the

parameters xi do not need to be the absolute poses of the

nodes. They are arbitrary variables which can be mapped

to the poses of the nodes in real world coordinates.

• δji describes a constraint between the nodes j and i. It

refers to an observation of node j seen from node i. These

constraints are the edges in the graph structure.

• Ωji is the information matrix modeling the uncertainty

of δji.

• fji(x) is a function that computes a zero noise observation

according to the current configuration of the nodes j and

i. It returns an observation of node j seen from node i.

Given a constraint between node j and node i, we can define

the error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

as well as the residual rji

rji(x) = −eji(x). (2)

Note that at the equilibrium point, eji is equal to 0 since

fji(x) = δji. In this case, an observation perfectly matches

the current configuration of the nodes. Assuming a Gaussian

observation error, the negative log likelihood of an observation

fji is

Fji(x) ∝ (fji(x) − δji)
T

Ωji (fji(x) − δji) (3)

= eji(x)T Ωjieji(x) (4)

= rji(x)T Ωjirji(x). (5)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
∑

〈j,i〉∈C

Fji(x) (6)

=
∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (7)

Here C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is set of pairs of indices

for which a constraint δjmim
exists.

The goal of a ML approach is to find the configuration x∗

of the nodes that maximizes the likelihood of the observations.

This can be written as

x∗ = argmin
x

F (x). (8)

IV. STOCHASTIC GRADIENT DESCENT

FOR MAXIMUM LIKELIHOOD MAPPING

Olson et al. [13] propose to use a variant of the pre-

conditioned stochastic gradient descent (SGD) to address the

SLAM problem. The approach minimizes Eq. (8) by iteratively

selecting a constraint 〈j, i〉 and by moving the nodes of the

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation

of gradient descent, the constraints are not optimized as a

whole but individually. The nodes are updated according to

the following equation:

xt+1 = xt + λ · H−1JT
jiΩjirji

︸ ︷︷ ︸

∆xji

(9)

Here x is the set of variables describing the locations of the

poses in the network and H−1 is a preconditioning matrix. Jji

is the Jacobian of fji, Ωji is the information matrix capturing

the uncertainty of the observation, and rji is the residual.

Reading the term ∆xji of Eq. (9) from right to left gives

an intuition about the sequential procedure used in SGD:

• rji is the residual which is the opposite of the error vector.

Changing the network configuration in the direction of the

residual rji will decrease the error eji.

• Ωji represents the information matrix of a constraint.

Multiplying it with rji scales the residual components

according to the information encoded in the constraint.

• JT
ji: The role of the Jacobian is to map the residual term

into a set of variations in the parameter space.

• H is the Hessian of the system and it represents the

curvature of the error function. This allows us to scale

the variations resulting from the Jacobian depending on

the curvature of the error surface. We actually use an

approximation of H which is computed as

H ≃
∑

〈j,i〉

JjiΩjiJ
T
ji. (10)

Rather than inverting the full Hessian which is computa-

tionally expensive, we approximate it by

H−1 ≃ [diag(H)]−1. (11)

• λ is a learning rate which decreases with the iteration

of SGD and which makes the system to converge to an

equilibrium point.

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing the constraints

individually. Each time a solution for one of these subproblems

is found, the network is updated accordingly. Obviously,

updating the different constraints one after each other can have

opposite effects on a subset of variables. To avoid infinitive

oscillations, one uses the learning rate to reduce the fraction

of the residual which is used for updating the variables.

This makes the solutions of the different sub-problems to

asymptotically converge towards an equilibrium point that is

the solution reported by the algorithm.

This framework allows us to iteratively reduce the error

given the network of constraints. The optimization approach,

however, leaves open how the nodes are represented (parame-

terized). Since the parameterization defines also the structure

of the Jacobians, it has a strong influence on the performance

of the algorithm.

The next section addresses the problem of how to parame-

terize a graph in order to efficiently carry out the optimization

approach.

V. NETWORK PARAMETERIZATIONS

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. The poses can be described by a

vector of parameters x such that a bijective mapping g between

p and x exists
x = g(p) p = g−1(x). (12)

As previously explained, in each iteration SGD decomposes

the problem into a set of subproblems and solves them

successively. In this work, a subproblem is defined as the

optimization of a single constraint. Different solutions to the

individual subproblems can have antagonistic effects when

combining them.

The parameterization g defines also the subset of variables

that are modified by a single constraint update. A good

parameterization defines the subproblems in a way that the

combination step leads only to small changes of the individual

solutions.

A. Incremental Pose Parameterization

Olson et al. propose the so-called incremental pose param-

eterization. Given a set of node locations pi and given a fixed

order on the nodes, the incremental parameters xi can be

computed as follows

xi = pi − pi−1. (13)

Note that xi is computed as the difference between two

subsequent nodes and not by motion composition. Under this

parameterization, the error in the global reference frame (in-

dicated by primed variables) has the following form

e′ji = pj − (pi ⊕ δji) (14)

=

(
j
∑

k=i+1

xk

)

+

(
i∏

k=1

R̃k

)

︸ ︷︷ ︸

Ri

δji, (15)

where ⊕ is the motion composition operator according to Lu

and Milios [11] and R̃k the homogenous rotation matrix of the

parameter xk. The term Rk is defined as the rotation matrix

of the pose pk. The information matrix in the global reference

frame can be computed as

Ω′
ji = RiΩjiR

T
i . (16)

According to Olson et al. [13], neglecting the contribution

of the angular terms of x0, . . . , xi to the Jacobian results in

the following simplified form

J ′
ji =

j
∑

k=i+1

Ik with Ik = (0 · · · 0 I
︸︷︷︸

k

0 · · · 0). (17)

Here 0 is the 3 by 3 zero matrix and I is the 3 by 3 identity.

Updating the network based on the constraint 〈j, i〉 with

such an Jacobian results in keeping the node i fixed and in

distributing the residual along all nodes between j and i.

Olson et al. weight the residual proportional to j−i which is

the number of nodes involved in the constraint. The parameter

xk of the node k with k = i + 1, . . . , j is updated as follows

∆xk = λwkΩ′
jir

′
ji, (18)

where the weight wk is computed as

wk = (j − i)

[
j
∑

m=i+1

D−1
m

]−1

D−1
k . (19)

In Eq. (19), Dk are the matrices containing the diagonal

elements of the kth block of the Hessian H. Intuitively, each

variable is updated proportional to the uncertainty about that

variable. Note that the simple form of the Jacobians allows us

to update the parameter vector for each node individually as

expressed by Eq. (18).

The approach presented in this section is currently one of the

best solutions to ML mapping. However, it has the following

drawbacks:

• In practice, the incremental parameterization cannot deal

with arbitrarily connected networks. This results from the

approximation made in Eq. (17), in which the angular

components are ignored when computing the Jacobian.

This approximation is only valid if the subsequent nodes

in Eq. (13) are spatially close. Furthermore, the way the

error is distributed over the network assumes that the

nodes are ordered according to poses along the trajectory.

This results in adding a large number of nodes to the

network whenever the robot travels for a long time in

the same region. This requirement prevents an approach

from merging multiple nodes into a single one. Merging

or pruning nodes, however, is a necessary precondition to

allow the robot lifelong map learning.

• When updating a constraint between the nodes j and i,

the parameterization requires to change the j-i nodes. As

a result, each node is likely to be updated by several

constraints. This leads to a high interaction between con-

straints and will typically reduce the convergence speed

of SGD. For example, the node k will be updated by all

constraints 〈j′, i′〉 with i′ < k ≤ j′. Note that using an

intelligent lookup structure, this operation can be carried

out in O(log n) time where n is the number of nodes in the

network [13]. Therefore, this is a problem of convergence

speed of SGD and not a computational problem.

B. Tree Parameterization

Investigating a different parameterization which preserves

the advantages of the incremental one but overcomes its

drawbacks is the main motivation for our approach. First,

our method should be able to deal with arbitrary network

topologies. This would enable us to compress the graph

whenever robot revisits a place. As a result, the size of the

network would be proportional to the visited area and not to

the length of the trajectory. Second, the number of nodes in

the graph updated by each constraint should mainly depend

on the topology of the environment. For example, in case of a

loop-closure a large number of nodes need to be updated but

in all other situations the update is limited to a small number

of nodes in order to keep the interactions between constraints

small.

Our idea is to first construct a spanning tree from the (arbi-

trary) graph. Given such a tree, we define the parameterization

for a node as

xi = pi − pparent(i), (20)

where pparent(i) refers to the parent of node i in the spanning

tree. As defined in Eq. (20), the tree stores the differences

between poses. As a consequence, one needs to process the

tree up to the root to compute the actual pose of a node in the

global reference frame.

However, to obtain only the difference between two arbi-

trary nodes, one needs to traverse the tree from the first node

upwards to the first common ancestor of both nodes and then

downwards to the second node. The same holds for computing

the error of a constraint. We refer to the nodes one needs to

traverse on the tree as the path of a constraint. For example,

Pji is the path from node i to node j for the constraint 〈j, i〉.

The path can be divided into an ascending part P
[−]
ji of the

path starting from node i and a descending part P
[+]
ji to node j.

We can then compute the error in the global frame by

e′ji = pj − (pi ⊕ δji) (21)

= pj − (pi + Riδji) (22)

=
∑

k[+]∈P
[+]
ji

xk[+] −
∑

k[−]∈P
[−]
ji

xk[−] − Riδji. (23)

Here Ri is the rotation matrix of the pose pi. It can be

computed according to the structure of the tree as the product

of the individual rotation matrices along the path to the root.

Note that this tree does not replace the graph as an internal

representation. The tree only defines the parameterization of

the nodes. It can furthermore be used to define an order in

which the optimization algorithm can efficiently process the

constraints as we will explain in the remainder of this section.

For illustration, Figure 2 (a) and (b) depict two graphs and

possible parameterization trees.

Similar to Eq. (16), we can express the information matrix

associated to a constraint in the global frame by

Ω′
ji = RiΩjiR

T
i . (24)

As proposed in [13], we neglect the contribution of the

rotation matrix Ri in the computation of the Jacobian. This ap-

proximation speeds up the computation significantly. Without

(a) (b) (c)

Fig. 2. (a) and (b): Two small example graphs and the trees used to determine the parameterizations. The small grey connections are constraints introduced
by observations where black ones result from odometry. (c) Processing the constraints ordered according to the node with the smallest level in the path avoids
the recomputation of rotational component of all parents. The same holds for subtrees with different root nodes on the same level.

this approximation the update of a single constraint influences

the poses of all nodes up to the root.

The approximation leads to the following Jacobian:

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] (25)

Compared to the approach described in the previous section,

the number of updated variables per constraint is in practice

smaller when using the tree. Our approach updates |Pji|
variables rather than j − i. The weights wk are computed as

wk = |Pji|

j
∑

m∈Pji

D−1
m

−1

D−1
k , (26)

where Dk is the k-th diagonal block element of H. This results

in the following update rule for the variable xk

∆xk = λwk · s(xk, i, j) · Ω′
jir

′
ji, (27)

where the value of s(xk, j, i) is +1 or −1 depending on where

the parameter xk is located on the path Pji:

s(xk, j, i) =

{

+1 if xk ∈ P
[+]
ji

−1 if xk ∈ P
[−]
ji

(28)

Our parameterization maintains the simple form of the

Jacobians which enables us to perform the update of each

parameter variable individually (as can be seen in Eq. (27)).

Note that in case one uses a tree that is degenerated to a list,

this parameterization is equal to the one proposed by Olson

et al. [13]. In case of a non-degenerated tree, our approach

offers several advantages as we will show in the experimental

section of this paper.

The optimization algorithm specifies how to update the

nodes but does not specify the order in which to process

the constraints. We can use our tree parameterization to sort

the constraints which allows us to reduce the computational

complexity of our approach.

To compute the residual of a constraint 〈j, i〉, we need to

know the rotational component of the node i. This requires to

traverse the tree up to the first node for which the rotational

component is known. In the worst case, this is the root of the

tree.

Let the level of a node be the distance in the tree between

the node itself and the root. Let zji be the node in the path of

the constraint 〈j, i〉 with the smallest level. The level of the

constraint is then defined as the level of zji.

Our parameterization implies that updating a constraint will

never change the configuration of a node with a level smaller

than the level of the constraint. Based on this knowledge, we

can sort the constraints according to their level and process

them in that order. As a result, it is sufficient to access the

parent of zji to compute the rotational component of the node i

since all nodes with a smaller level than zji have already been

corrected.

Figure 2 (c) illustrates such a situation. The constraint 〈7, 4〉
with the path 4, 3, 2, 7 does not change any node with a smaller

level than the one of node 2. It also does not influence other

subtrees on the same level such as the nodes involved in the

constraint 〈9, 8〉.
In the following section, we describe how we actually build

the tree given the trajectory of a robot or an arbitrary network

as input.

VI. CONSTRUCTION OF THE SPANNING TREE

When constructing the parameterization tree, we distinguish

two different situations. First, we assume that the input is a

sequence of positions belonging to a trajectory traveled by

the robot. Second, we explain how to build the tree given an

arbitrary graph of relations.

In the first case, the subsequent poses are located closely

together and there exist constraints between subsequent poses

resulting from odometry or scan-matching. Further constraints

between arbitrary nodes result from observations when revis-

iting a place in the environment. In this setting, we build our

parameterization tree as follows:

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly.

2) The first node is the root of the tree (and therefore has

no parent).

3) As the parent of a node, we choose the node with the

smallest id for which a constraint to the current node

exists.

This tree can be easily constructed on the fly. The Fig-

ures 2 (a) and (b) illustrates graphs and the corresponding

trees. This tree has a series of nice properties when applying

our optimization algorithm to find a minimal error configura-

tion of the nodes. These properties are:

• The tree can be constructed incrementally: when adding

a new node it is not required to change the existing tree.

• In case the robot moves through nested loops, the inter-

action between the updates of the nodes belonging to the

individual loops depends on the number of nodes the loops

have in common.

• When retraversing an already mapped area and adding

constraints between new and previously added nodes, the

length of the path in the tree between these nodes is small.

This means that only a small number of nodes need to be

updated.

The second property is illustrated in Figure 2 (a). The two

loops in that image are only connected via the constraint

between the nodes 3 and 7. They are the only nodes that are

updated by constraints of both loops.

The third property is illustrated in Figure 2 (b). Here, the

robot revisits a loop. The nodes 1 to 4 are chosen as the parents

for all further nodes. This results in short paths in the tree when

updating the positions of the nodes while retraversing known

areas.

The complexity of the approach presented so far depends

on the length of the trajectory and not on the size of the

environment. These two quantities are different in case the

robot revisits already known areas. This becomes important

whenever the robot is deployed in a bounded environment for

a long time and has to update its map over time. This is also

known as lifelong map learning. Since our parameterization

is not restricted to a trajectory of sequential poses, we have

the possibility of a further optimization. Whenever the robot

revisits a known place, we do not need to add new nodes to

the graph. We can assign the current pose of the robot to an

already existing node in the graph.

Note that this can be seen as an approximation similar to

adding a rigid constraint neglecting the uncertainty of the

corresponding observation. However, in case local maps (e.g.,

grid maps) are used as nodes in the network, it makes sense

to use such an approximation since one can localize a robot

in an existing map quite accurately.

To also avoid adding new constraints to the network, we can

refine an existing constraint between two nodes in case of a

new observation. Given a constraint δ
(1)
ji between the nodes j

and i in the graph and a new constraint δ
(2)
ji based on the

current observation. Both constraints can be combined to a

single constraint which has the following information matrix

and mean:

Ωji = Ω
(1)
ji + Ω

(2)
ji (29)

δji = Ω−1
ji (Ω

(1)
ji · δ

(1)
ji + Ω

(2)
ji · δ

(2)
ji) (30)

As a result, the size of the problem does not increase when

revisiting known locations. As the experiments illustrate, this

node reduction technique leads to an increased convergence

speed.

In case the input to our algorithm is an arbitrary graph

and no natural order of the nodes is provided, we compute

a minimal spanning tree to define the parameterization. Since

no additional information (like consecutive poses according

to a trajectory) is available, we cannot directly infer which

parts of the graph are well suited to form a subtree in the

parameterization tree. The minimal spanning tree appears

to yield comparable results with respect to the number of

iterations needed for convergence in all our experiments.

Fig. 3. The map of the Intel Research Lab before (left) and after (right)
execution of our algorithm (1000 nodes, runtime <1s).

VII. EXPERIMENTS

This section is designed to evaluate the properties of our

tree parameterization for learning maximum likelihood maps.

We first show that such a technique is well suited to generate

accurate occupancy grid maps given laser range data and

odometry from a real robot. Second, we provide simulation

experiments on large-scale datasets. We furthermore provide

a comparison between our approach, Olson’s algorithm [13],

and multi-level relaxation by Frese et al. [5]. Finally, we

analyze our approach and investigate properties of the tree

parameterization in order to explain why we obtain better

results then the other methods.

A. Real World Experiments

The first experiment is designed to illustrate that our ap-

proach can be used to build maps from real robot data. The

goal was to build an accurate occupancy grid map given the

laser range data obtained by the robot. The nodes of our graph

correspond to the individual poses of the robot during data

acquisition. The constraints result from odometry and from

the pair-wise matching of laser range scans. Figure 3 depicts

two maps of the Intel Research Lab in Seattle. The left one is

constructed from raw odometry and the right one is the result

obtained by our algorithm. As can be seen, the corrected map

shows no inconsistencies such as double corridors. Note that

this dataset is freely available on the Internet.

B. Simulated Experiments

The second set of experiments is designed to measure the

performance of our approach quantitatively. Furthermore, we

compare our technique to two current state-of-the-art SLAM

approaches that work on constraint networks, namely multi-

level relaxation by Frese et al. [5] and Olson’s algorithm [13].

In the experiments, we used the two variants of our method:

the one that uses the node reduction technique described in

Section VI and the one that maintains all the nodes in the

graph.

In our simulation experiments, we moved a virtual robot

on a grid world. An observation is generated each time the

current position of the robot was close to a previously visited

location. We corrupted the observations with a variable amount

of noise for testing the robustness of the algorithms. We

simulated different datasets resulting in graphs with a number

of constraints between around 4,000 and 2 million.

Fig. 4. Results of Olson’s algorithm (first row) and our approach (second row) after 1, 10, 50, 100, 300 iterations for a network with 64k constraints. The
black areas in the images result from constraints between nodes which are not perfectly corrected after the corresponding iteration (for timings see Figure 6).

Fig. 5. The result of MLR strongly depends on the initial configuration of
the network. Left: small initial pose error, right: large initial pose error.

Figure 4 depicts a series of graphs obtained by Olson’s

algorithm and our approach after different iterations. As can

be seen, our approach converges faster. Asymptotically, both

approaches converge to a similar solution.

In all our experiments, the results of MLR strongly de-

pended on the initial positions of the nodes. In case of a good

starting configuration, MLR converges to an accurate solution

similar to our approach as shown in Figure 5 (left). Otherwise,

it is likely to diverge (right). Olson’s approach as well as our

technique are more or less independent of the initial poses of

the nodes.

To evaluate our technique quantitatively, we first measured

the error in the network after each iteration. The left image

of Figure 6 depicts a statistical experiments over 10 networks

with the same topology but different noise realizations. As

can be seen, our approach converges significantly faster than

the approach of Olson et al. For medium size networks, both

approaches converge asymptotically to approximatively the

same error value (see middle image). For large networks,

the high number of iterations needed for Olson’s approach

prevented us from showing this convergence experimentally.

Due to the sake of brevity, we omitted comparisons to EKF and

Gauss Seidel relaxation because Olson et al. already showed

that their approach outperforms such techniques.

Additionally, we evaluated in Figure 6 (right) the average

computation time per iteration of the different approaches.

As a result of personal communication with Edwin Olson,

we furthermore analyzed a variant of his approach which is

restricted to spherical covariances. It yields similar execution

 0

 0.1

 0.2

 0.3

 0.4

 0 1000 2000 3000 4000av
er

ag
e

am
p

li
tu

d
e

[m
]

iteration

Olson’s algorithm
Our approach

Fig. 7. The average amplitude of the oscillations of the nodes due to the
antagonistic effects of different constraints.

times per iteration than our approach. However, this restricted

variant has still the same converge speed with respect to the

number of iterations than Olson’s unrestricted technique. As

can be seen from that picture, our node reduction technique

speeds up the computations up to a factor of 20.

C. Analysis of the Algorithm

The experiments presented above illustrated that our algo-

rithm offers significant improvements compared to both other

techniques. The goal of this section is to experimentally point

out the reasons for these improvements.

The presented tree parameterization allows us to decompose

the optimization of the whole graph into a set of weakly

interacting problems. A good measure for evaluating the

interaction between the constraints is the average number l

of updated nodes per constraint. For example, a network with

a large value of l has typically a higher number of interacting

constraints compared to networks with low values of l. In all

experiments, our approach had a value between 3 and 7. In

contrast to that, this values varies between 60 and 17,000 in

Olson’s approach on the same networks. Note that such a high

average path length reduces the convergence speed of Olson’s

algorithm but does not introduce a higher complexity.

The optimization approach used in this paper as well as

in Olson’s algorithm updates for each constraint the involved

nodes to minimize the error in the network. As a result,

different constraints can update poses in an antagonistic way

during one iteration. This leads to oscillations in the position

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

er
ro

r
p

er
 c

o
n

st
ra

in
t

iteration

Olson’s approach
Tree approach + node reduction

Tree approach

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000

er
ro

r
p

er
 c

o
n

st
ra

in
t

iteration

Olson’s approach (big noise)
Tree approach (big noise)

Olson’s approach (small noise)
Tree approach (small noise)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

1.9M720k360k64k30k3.7k

ex
ec

u
ti

o
n
 t

im
e

p
er

 i
te

ra
ti

o
n
 [

s]

number of constraints

Olson’s algorithm
Olson’s algorithm, spheric covariances

MLR
Our approach

Our approach with node reduction

Fig. 6. The left image illustrates shows the error of our and Olson’s approach in a statistical experiment (σ = 0.05 confidence). The image in the middle
shows that both techniques converge asymptotically to the same error. The right image shows the average execution time per iteration for different networks.
For the 1.9M constraints network, the executing of MLR required memory swapping and the result is therefore omitted.

of a node before convergence. Figure 7 illustrates the average

amplitude of such an oscillations for Olson’s algorithm as well

as for our approach. As can be seen, our techniques converges

faster to an equilibrium point. This a further reason for the

higher convergence speed of our approach.

D. Complexity

Due to the nature of gradient descent, the complexity of

our approach per iteration depends linearly on the number of

constraints. For each constraint 〈j, i〉, our approach modifies

exactly those nodes which belong to the path Pji in the

tree. Since each constraint has an individual path length,

we consider the average path length l. This results in an

complexity per iteration of O(M · l), where M is the number

of constraints. In all our experiments, l was approximatively

log N , where N is the number of nodes. Note that given our

node reduction technique, M as well as N are bounded by the

size of the environment and not by the length of the trajectory.

A further advantage of our technique compared to MLR

is that it is easy to implement. The function that performs a

single iteration requires less than 100 lines of C++ code. An

open source implementation, image and video material, and

the datasets are available at the authors’ web-pages.

VIII. CONCLUSION

In this paper, we presented a highly efficient solution to

the problem of learning maximum likelihood maps for mo-

bile robots. Our technique is based on the graph-formulation

of the simultaneous localization and mapping problem and

applies a gradient descent based optimization scheme. Our

approach extends Olson’s algorithm by introducing a tree-

based parameterization for the nodes in the graph. This has a

significant influence on the convergence speed and execution

time of the method. Furthermore, it enables us to correct

arbitrary graphs and not only a list of sequential poses. In

this way, the complexity of our method depends on the size

of the environment and not directly on the length of the input

trajectory. This is an important precondition to allow a robot

lifelong map learning in its environment.

Our method has been implemented and exhaustively tested

on simulation experiments as well as on real robot data. We

furthermore compared our method to two existing, state-of-

the-art solutions which are multi-level relaxation and Olson’s

algorithm. Our approach converges significantly faster than

both approaches and yields accurate maps with low errors.

ACKNOWLEDGMENT

The authors would like to gratefully thank Udo Frese

for his insightful comments and for providing us his MLR

implementation for comparisons. Further thanks to Edwin

Olson for his helpful comments on this paper. This work

has partly been supported by the DFG under contract number

SFB/TR-8 (A3) and by the EC under contract number FP6-

2005-IST-5-muFly and FP6-2005-IST-6-RAWSEEDS.

REFERENCES

[1] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An ALTAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation, pages 1899–1906, Taipei, Taiwan, 2003.
[2] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally

consistent maps. Autonomous Robots, 12(3):287 – 300, 2002.
[3] C. Estrada, J. Neira, and J.D. Tardós. Hierachical slam: Real-time ac-

curate mapping of large environments. IEEE Transactions on Robotics,
21(4):588–596, 2005.

[4] U. Frese. Treemap: An o(logn) algorithm for indoor simultaneous
localization and mapping. Autonomous Robots, 21(2):103–122, 2006.

[5] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.
[6] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE Int. Symp. on Comp. Intelligence in

Robotics and Automation, pages 318–325, Monterey, CA, USA, 1999.
[7] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:

a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, pages 1055–1060, 2001.
[8] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for fil-

tering nonlinear systems. In Proc. of the American Control Conference,
pages 1628–1632, Seattle, WA, USA, 1995.

[9] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A practical,
decision-theoretic approach to multi-robot mapping and exploration. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pages 3232–3238, Las Vegas, NV, USA, 2003.

[10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4):376–382, 1991.
[11] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, 4:333–349, 1997.
[12] J. Neira and J.D. Tardós. Data association in stochastic mapping

using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890–897, 2001.
[13] E. Olson, J.J. Leonard, and S. Teller. Fast iterative optimization of pose

graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation, pages 2262–2269, 2006.
[14] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[C23] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Sieg-

wart. Towards mapping of cities. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Rome, Italy, 2007.

Towards Mapping of Cities

Patrick Pfaff∗ Rudolph Triebel∗† Cyrill Stachniss†∗ Pierre Lamon† Wolfram Burgard∗ Roland Siegwart†

∗University of Freiburg, Department of Computer Science, D-79110 Freiburg, Germany
†Eidgenössische Technische Hochschule (ETH), IRIS, ASL, 8092 Zurich, Switzerland

Abstract— Map learning is a fundamental task in mobile
robotics because maps are required for a series of high level
applications. In this paper, we address the problem of building
maps of large-scale areas like villages or small cities. We present
our modified car-like robot which we use to acquire the data
about the environment. We introduce our localization system
which is based on an information filter and is able to merge
the information obtained by different sensors. We furthermore
describe out mapping technique that is able to compactly
model three-dimensional scenes and allows us efficient and
accurate incremental map learning. We additionally apply a
global optimization techniques in order to accurately close loops
in the environment. Our approach has been implemented and
deeply tested on a real car equipped with a series of sensors.
Experiments described in this paper illustrate the accuracy and
efficiency of the presented techniques.

I. I

Building models of the environment is a fundamental task

of mobile robots since maps are needed for most high-level

robotic applications. In the past, many researchers focused

on the problem of learning maps and different techniques

have been proposed [5], [10], [11], [18], [20]. Most of the

proposed approaches focus on learning models for indoor

environments like office spaces. Recently, several groups

addressed the problem of learning two and three-dimensional

models of outdoor scenes [6], [12], [13], [14], [22].

Since DARPA Grand Challenge [2], the usage of cars

instead of classical mobile robots became popular in the

research community [1], [23], [25]. Compared to standard

robots, cars offer the possibility to travel longer distances,

carry more sensors, and thus being more suitable for mapping

large areas.

The contribution of this paper is an approach towards

mapping of large-scale areas like villages or small cities.

We describe our system to learn three-dimensional models

of the environment. We apply probabilistic state estimation

techniques as well as classification approaches to obtain these

models. Our implementation uses a modified Smart car de-

picted in Figure 1 equipped with a series of sensors, ranging

from proximity sensor, GPS, and an inertial measurement

unit (IMU).

II. RW

The problem of learning models of the environment has

been studied intensively in the past. In the literature, this

problem is often referred to as simultaneous localization and

mapping (SLAM). Most approaches to map learning generate

two-dimensional models from range sensor data. A series

Fig. 1. The left image depicts the vertically mounted SICK LMS laser
range finders which are rotated with constant speed by an electric step motor
mounted under the lasers. The right image shows our robot. The robot is a
standard Smart car. The model is a Smart fortwo coupé passion of the year
2005, which is equipped with a 45 kW engine.

of different approaches has been developed to address this

problem [4], [5], [7], [9], [10], [11], [18]. Recently, several

techniques for acquiring three-dimensional data with rotating

2d range scanners installed on a mobile robot have been

developed [8], [26], [27]. Other authors have studied the

acquisition of three-dimensional maps from vehicles that are

assumed to operate on a flat surface. For example, Thrun

et al. [21] present an approach that employs two 2d range

scanners for constructing volumetric maps. Whereas the first

is oriented horizontally and is used for localization, the

second points towards the ceiling and is applied for acquiring

3d point clouds.

A popular representation for 2 1
2
-dimensional maps in

robotics are elevation maps [17], [28]. In contrast to that,

our approach learns a three dimensional model that can be

regarded as an extention to elevation map which is able to

store multiple layers for each grid cell [24]. This allows us

to model structures like, e.g., bridges, underpasses, and trees

in a more accurate way. We present our technique to match

individual surface maps into a globally consistent model of

the environment using a global error minimization approach.

All techniques have been implemented and tested on a real

car.

In the context of autonomous cars, a series of successful

systems [1], [23], [25] have been developed due to DARPA

Grand Challenge. As a result of this challenge, there exist

autonomous cars that reliably avoid obstacles and navigate at

comparably high speeds. The focus of the Grand Challenge

Fig. 2. The information flow between the individual modules.

was to finish the race as quickly as possible whereas certain

issues like building consistent large-scale maps of the envi-

ronment have been neglected since they where not needed

for the race.

Even so our Smart car applied similar techniques than

the winning vehicle Stanley [23] for following a specified

trajectory, we have a different aim compared to the teams

participating in the Grand Challenge. Our goal is to learn

consistent and accurate three-dimensional models of the

large-scale environments.

III. S O

Our instrumented car is equipped with a series of sensors.

One group of sensor is used for localization. It consists of the

inertial measurement unit, the differential GPS, the optical

gyro, and the wheel encoders. The second group of sensors

is given by the laser range finders. Three of them point to

the front of the car and two are rotating on top of the roof

of the car (see Figure 1).

Our software system is based on the modular inter-process

communication (IPC) architecture. In this framework, each

module can send and receive messages to/from other mod-

ules. The diagram in Figure 2 depicts the information flow

between the most important modules.

IV. L

Our localization system applies the inverse form of the

Kalman filter, i.e., the information filter. This filter has

the property of summing information contributions from

different sources in the update stage. This characteristic is

advantageous when many sensors are involved which is the

case in our application. The localization is done in two steps:

the state prediction and the state update.

A. State Update

The localization algorithm estimates the state of the vehi-

cle in a fixed navigation frame n which is represented by the

north, west, and the altitude. The state vector contains the

coordinates (x, y, z) of the vehicle and its three-dimensional

orientation (roll φ, pitch θ and heading ψ to true north). We

define the body frame b as the coordinate system attached to

the vehicle. This frame is aligned with the vehicle kinematic

axes (forward, left, and altitude) and its origin is placed at

the center of the rear axle. The measurements models of the

sensors are presented here.

• Inertial measurement unit (Crossbow NAV420): This unit

provides sensor data with a frequency of 100 Hz that contains

the measurements from 3 gyroscopes, 3 accelerometers, a 3D

magnetic field sensor, and a GPS receiver. The internal digital

signal processor of the unit combines the embedded sensors

to provide the filtered orientation of the vehicle (roll, pitch,

heading to true north) and the position (latitude, longitude,

and altitude). This sensor, however, is not well adapted for

ground vehicle driving at low speed. We therefore disabled

the GPS and used the unit in angle mode: the unit outputs the

filtered roll (φimu), pitch (θimu) and heading (ψimu) to magnetic

north. This improves the pose estimate when driving at low

speed. The measurement model for this sensor is

zimu =

[

φimu

θimu

]

n

=

[

φ

θ

]

n

+ vimu (1)

ψimu = ψ + bimu + vhimu, (2)

where v denotes the sensor noise and bimu the offset between

the heading to true north ψ and the heading measurement

of the IMU. The bias bimu is estimated by the filter using

the heading measurements of the GPS which provides the

heading to true north.

• Car sensors: The measurements taken by the car sensors

are reported with a frequency of 100 Hz and are accessible

via the CAN bus of the vehicle. The car provides the motor

temperature, gas pedal position, steering wheel angle, wheel

velocities, engine RPM, and some further status information.

For localization, we use the velocity ẋodo of the car from

the CAN bus. Unlike a flight vehicle, the motion of a

wheeled vehicle on the ground is governed by nonholonomic

constraints. Under ideal conditions, there is no motion nor-

mal to the ground surface and no side slip: they can be

written respectively as żodo = 0 and ẏodo = 0. In practice,

these constraints are often violated. Thus, as in [3], we use

zero mean Gaussian noise to model the extent of constraint

violation. The measurement model for the odometry is then

expressed as

zodo =

ẋodo

0

0

b

=
[

Cn
b

]T

ẋ

ẏ

ż

n

+ vodo, (3)

where Cn
b

is the matrix for transforming velocities expressed

in the reference frame b of the car into the navigation frame

n. The observation noise covariance is obtained using

Rodo = Cn
b · diag

{

σ2
enc, σ

2
vy, σ

2
vz

} [

Cn
b

]T
, (4)

where σ2
enc is the variance of the car velocity and σ2

vy,σ2
vz are

the amplitude of the noise related to the constraints.

• Differential GPS system (Omnistar Furgo 8300HP): This

device provides the latitude, longitude, and altitude together

with the corresponding standard deviation and the standard

NMEA messages with a frequency of 5 Hz. In case the

sensor receives the GPS drift correction signal, the unit

changes automatically into the high precision GPS mode.

When no correction signal is available, the device outputs

standard GPS information. We use the WGS-84 standard to

convert the GPS coordinates in Cartesian coordinates (x, y, z)

expressed in a local navigation frame n. The heading to true

north ψ is also provided by that unit in the RMC message.

The measurement model for the GPS is

zgps =

xgps

ygps

zgps

ψgps

n

=

x

y

z

ψ

n

+ vgps. (5)

In order to reject the erroneous fixes caused by satellite

constellation and multi-path change, we use the following

gating function [19]

zT (k) · S −1 · z(k) ≤ γ, (6)

where S is the innovation covariance of the observation. The

value of γ is set to reject innovations exceeding the 95%

threshold.

• Optical gyroscope (KVH DSP3000): This fiber optic gyro-

scope can measure very low rotation rates with a frequency

of 100 Hz. It is possible to use it as a heading sensor for a

comparably long period of time by integrating the angular

rate (the unit provides the integrated angle). Contrary to

compasses, the integrated heading is not sensitive to earth

magnetic field disturbances. Finally, this unit offers much

better accuracy than mechanical gyro and is not sensitive to

shocks because it contains no moving parts. The measure-

ment model for the optical gyro is

zopt = ψopt = ψ + bopt + vopt, (7)

where bopt is the angular offset between the heading to true

north ψ and the actual measurement of the gyro.

B. Prediction model

We apply a standard prediction model for the car which

has the following form

xk+1 =

Fx . . . 0
... Fy

Fz

...

0 . . . I5x5

· xk + wk. (8)

The state vector x contains the position and velocity

expressed in the navigation frame n, the orientation of the

vehicle represented by the three angles roll φ, pitch θ, yaw

ψ, and the two biases bimu and bopt:

x =
[

x ẋ y ẏ z ż φ θ ψ bimu bopt

]T
(9)

The position of the vehicle at time k+1 is predicted using

the position and velocity at time k. This takes the form of a

first order process written as

Fx,y,z =

[

1 T

0 1

]

k

, (10)

Fig. 3. Obtained traversability map using the fixed sick laser range finders.
Black refers to non traversable cells and the red/gray arrows illustrate the
trajectory taken by the car.

where T denotes the sampling period (10 ms). All the other

elements of the state vector are predicted as simple Gaussian

processes. The covariance matrix Qk associated to the state

prediction process is represented as

Qk = Gk · qk ·G
T
k , (11)

where qk is a diagonal matrix containing the variances of the

individual elements of the state vector

qx = diag
{

σ2
x σ2

y σ2
z σ2

φ σ2
θ

σ2
ψ σ2

bimu
σ2

bopt

}

.

(12)

Finally, the matrix mapping the noise covariance qk to the

process covariance Qk is written as

Gk =

gx . . . 0
... gy

...

gz

0 . . . diag5x5(T)

k

, (13)

where

gx,y,z =

[

T 2/2

T

]

. (14)

All in all, this information filter framework allows us to

robustly and efficiently integrate the information from the

different sensor into a pose estimate of the car. The pose

information is provided with a high frequency and with small

delays only. This is important for online control of the car.

V. T E

Whenever driving with a robot car, a central issue is to

identify the obstacle-free terrain. Without a reliable esti-

mation of the traversable area, autonomous car driving is

nearly impossible. This paper does not focus on autonomous

navigation, the estimation of the traversability, however, is

regarded as a mapping task and therefore also addressed in

this work.

The car is equipped with five SICK laser range finders

whereas two are mounted on a rotating unit and three are

fixed (compare Figure 1). We currently use the three static

laser range finders in order to estimate the traversability of

the area in front of the car. Given a laser range observation,

we first compute the end points of the individual beams.

We then add the 3d points to the cells of a local two-

dimensional grid map according to the x, y-coordinate of

the beam. We then parse the cells and compute the mean

and variance of the z-values for each cell. The decision

if a cell is locally traversable can be done based on these

two values. When adding the data of multiple laser range

finders into a single grid, it is likely to get a series of

obstacles at locations where actually no obstacle is located.

This phenomenon is also described by Thrun et al. [23]

as phantom obstacles. These phantom obstacles are caused

by small errors in the pitch estimate of the location of the

car, between the individual laser range scans. Therefore, we

compute the traversability estimate individually for each scan

and merged the independently estimated traversability values

into a common grid structure. We found that this yields good

results when moving on streets as well as on unpaved roads

and avoids phantom obstacles. An example for a resulting

traversability estimate is shown in Figure 3.

VI. M

During the mapping process, we create globally consistent

maps using the inputs of the localization module and the

five laser range finders mounted on the robot. We use multi-

level surface maps (MLS maps) as proposed in our previous

work [24]. MLS maps store in each cell of a discrete grid the

height of the surface in the corresponding area. In contrast

to elevation maps, MLS maps allow us to store multiple sur-

faces in each cell of the grid. In the remainder of this paper,

these surfaces a referred to as patches. This representation

enables a mobile robot to model environments with structures

like bridges, underpasses, buildings or mines. Additionally,

they enable the robot to represent vertical structures.

The localization technique described in Section IV works

well for navigation issues. However, applying mapping with

known poses based on this pose estimate usually results

in globally inconsistent maps. In practice, this typically

becomes apparent when the robot encounters a loop, i.e.,

when it returns to a previously visited place. To achieve the

goal of globally consistent maps it is needed to associate

the data which is acquired when the robot reaches the same

place of the environment at different times. To achieve this,

we build local MLS maps and apply the ICP algorithm to

iteratively find constraints between poses and to solve this

data association problem. This is described in detail in the

reminder of this section. After the map matching and loop

closing process the local MLS maps can be merged to one

global consistent MLS map.

A. Data Acquisition and Local Map Building

During the data acquisition process, we collect three-

dimensional points which corresponds directly to the sensed

environment. The data is collected while our robot is moving

continously through the environment using the five SICK

laser range finders. As explained before, three of them are

mounted in a fixed position and provide data points about the

environment in front of our robot. Additionally, we mounted

two laser range finders in vertical direction on a rotating plate

Fig. 4. Example of a single local MLS map. The example shows a typical
scene of an urban environment with street lights and trees.

on the top of the car. Figure 1 depicts the two lasers and the

electric step motor. During data acquisition the step motor

rotates the two laser range finders with a constant frequence

of 0.37 Hz. Due to this configuration the rotating lasers

provide data points which correspond to the environment in

all directions around the robot. To build a local MLS map,

we now use the data points acquired during a complete 360

degree turn by the rotating lasers. This setup is well-suited

to build 3d maps of the environment. Furthermore, we add

the data points which are acquired with the three fixed lasers

during this period of time. Figure 4 depicts an example of a

single local MLS map. From this point on, we discard the

point clouds and perform all computations based on the local

MLS maps. The example shows a typical scene of an urban

environment with street lights and trees. Note that the data of

all five SICK laser range finders are used for mapping. For

estimating the traversable area in front of the car, however,

only the three static sensor are used due to the comparable

slow rotation of the rotating laser sensors.

B. Map Matching

In addition to the traversability analysis described in

Section V, we can identify vertical objects based on the 3d

data. As a result, every patch in the MLS map is labeled

as ’traversable’, ’non-traversable’, and ’vertical’. The labels

are used in the ICP-based map matching process to obtain a

more robust and accurate registration.

ICP seeks to find a rotation matrix R and a translation

vector t that minimizes an error function computed based on

the two maps we aim to match. We integrate the labels of

the individual patches into the ICP error function in order

to improve the matching result. We only consider matches

between patches of the same label.

Let u be the vertical patches, v the traversable, and w the

non-traversable ones of the first map. The cells of the second

map are indicated by primed variables. We can define the

following error function:

e(R, t) =

C1∑

c=1

d(uic , u
′
jc

)

︸ ︷︷ ︸

vertical objects

+

C2∑

c=1

d(vic , v
′
jc

)

︸ ︷︷ ︸

traversable

+

C3∑

c=1

d(wic ,w
′
jc

).

︸ ︷︷ ︸

non-traversable

(15)

In this equation, d is the Mahalanobis distance and the

indices ic and jc indicate the correspondence between the

patches. Minimizing e(R, t) as well as the computation of

the correspondences is iterated within the ICP algorithm.

In practical experiments [16], we found that matching

only patches with the same label leads to more robust

and accurate map estimates. Furthermore, the ICP algorithm

converges faster due to the smaller number of potential

correspondences.

C. Loop Closing

The ICP-based scan matching technique described above

works well for the registratering robot poses into one global

reference frame. However, the individual scan matching

processes result in small residual errors which accumulate

over time and usually result in globally inconsistent maps.

In practice, this typically becomes apparent when the robot

encounters a loop, i.e., when it returns to a previously visited

place. Accordingly, techniques for calculating globally con-

sistent maps are necessary. Therefore, we apply an approach

that combines the ideas of Lu and Milios [10] and Olson’s

algorithm [15] to globally correct the map. This approach

applies error minimization via stochastic gradient descent on

the whole vector of poses and yields accurate map estimates

given a set of constraints between poses.

VII. E

A. Localization

Our localization system has been extensively tested and

provides accurate pose estimates in a robust manner when

moving though urban environments. A typical result obtained

with our smart car is depicted in Figure 5. The figure

represents the estimated trajectory of the car overlayed on

the ortho-photo of the EPFL campus.

GPS
loss

GPS loss
c

a

b

Fig. 5. Overlay of the estimated trajectory and the ortho-photo of the EPFL
campus. The zones where the GPS was not available are highlighted. The
total traveled distance is around 2300 m. The labels (a), (b), and (c) identify
areas which are later on referred to by Figure 6 and 7.

5

During the experiment, the car drove in areas where the

GPS quality was bad or not available, for example along

narrow alleys bordered with trees, close to buildings, or in an

underground parking lot. However, the localization algorithm

was able to cope with GPS faults and provided accurate

positioning estimation, such as depicted in Figure 6.

-200
-150

-100
-50

 0
 50

 100-30

-20

-10

 0

 10

 20

 30

 40-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

Up

GPS faults and occlusions

Measured GPS
Filtered trajectory

North

West

Up a

b c

Fig. 6. This graph represents a part of the trajectory depicted in Figure 5.
In this urban environment, the GPS signal is disturbed by many objects
(trees, buildings, etc.) and GPS faults are of high amplitude (several meters
in the horizontal plane and up to 16 m vertically). The localization algorithm
was able to reject erroneous GPS fixes and to provide accurate estimations.
The labels a,b and c mark areas where GPS is of poor quality (a), (b) or
unavailable (c).

The uncertainty associated to the pose estimation mainly

depends on the quality of the GPS fixes. As depicted in

Figure 7, the standard deviation is low when differential

GPS is available (∼3 cm) but increases as soon as fixes are

unavailable (up to 60 cm).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350 400

S
ig

m
a
 [
m

]

Time [s]

Standard deviation for X,Y

X sigma
Y sigma

c

a

b

Fig. 7. Standard deviation along the north (x) and west axis (y) for the
trajectory depicted in Figure 6. The standard deviation increases when GPS
quality is poor and decreases as soon as it gets better. The labels (a), (b)
and (c) corresponds to the zones marked in Figure 5.

B. Mapping

To acquire the data, we steered our robotic car depicted

in Figure 1 over streets of the EPFL campus. The goal of

these experiments is to demonstrate that our representation

yields a significant reduction of the memory requirements

compared to a point cloud representation, while still pro-

viding highly accurate maps. Additionally, they show that

our representation is well-suited for global pose estimation

and loop closure. Furthermore, the experiments show the

necessity of the loop closing procedure. Figure 8 show the

resulting map of a dataset acquired along a 2.3 km trajectory.

Figure 9 shows a cutout of two MLS maps from that dataset.

The left image depicts the resulting MLS Map when only

Fig. 8. Top view of the resulting MLS map with a cell size of 50cm x 50cm. The yellow/light gray surface patches are classified as traversable.The
area scanned by the robot spans approximately 300 by 250 meters. During the data acquisition, the robot traversed five nested loops with a length of
approximately 2,300m.

local map matching is applied. The right image displays the

same part of the MLS map where we additionally applied

our loop closing algorithm.

In this experiment, we acquired 374 local point clouds

consisting of 68,162,000 data points. The area scanned by

the robot spans approximately 300 by 250 meters. During the

data acquisition, the robot traversed five nested loops with

a length of approximately 2,300m. Figure 8 shows a top

view of the resulting MLS map with a cell size of 50cm x

50cm. The yellow/light gray surface patches are classified

as traversable. It requires 55 MB to store the computed

map, where 34% of 300,000 cells are occupied. Compared

to this the storage of the 68,162,000 data points requires

1,635 MB. The scan matching between the local MLS maps

has been computed online during the data acquisition on a

2GHz dual core laptop computer. The loop closing step of

our mapping algorithm is computed offline when the robot

finished the data acquisition. In our current approach, the

computation time for the optimization of the shown data set

is approximately 15 minutes.

VIII. C

In this paper, we presented our approach towards mapping

of large-scale areas like villages or cities. We presented the

setup of our modified car and the techniques applied to learn

accurate models of the environment and localize the vehicle

in the world. Our map representation can be seen as an

extention of elevation maps which are able to store different

surfaces in the environment. In order to learn these maps, we

present our pose estimation technique as well as an approach

to match sub-maps in order to correct the poses based on

the proximity sensors. In order to accurately close loops, we

apply a least square minimization approach. As a result, we

obtain high quality three-dimensional models. All techniques

have been implemented and tested using a real car equipped

with different types of sensors. The experiments presented in

this paper, show the result of real world data obtained with

this robot.

A

This work has partly been supported by the EC under

contract number FP6-IST-027140-BACS, FP6-2005-IST-5-

muFly, and by the German Science Foundation (DFG)

within the Research Training Group 1103 and under contract

number SFB/TR-8. The authors would like to thank Sascha

Kolksi, Frederic Pont, and all other members of the SMART-

Team who contributed to this work.

Fig. 9. This figure depicts the lower left corner of the MLS Map shown in Figure 8. The left image illustrates the resulting MLS Map when only
local map matching is applied. The right image displays the same part of the MLS map where we additionally applied our loop closing algorithm. The
inconsistencies can be seen by the vertical poles in the figure. Furthermore, several traversable patches have been misclassified as non traversable (red/dark
gray) due to the misalignment of the maps.

R

[1] L.B. Cremean, T.B. Foote, J.H. Gillula, G.H. Hines, D. Kogan, K.L.
Kriechbaum, J.C. Lamb, J. Leibs, L. Lindzey, C.E. Rasmussen, A.D.
Stewart, J.W. Burdick, and R.M. Murray. Alice: An information-rich
autonomous vehicle for high-speed desert navigation. Journal of Field
Robotics, 2006. Submitted for publication.

[2] DARPA. Darpa grand challenge rulebook. Website, 2004.
http://www.darpa.mil/grandchallenge05/Rules 8oct04.pdf.

[3] G. Dissanayake, S. Sukkarieh, and H. Durrant-Whyte. The aiding
of a low-cost strapdown inertial measurement unit using vehicle
model constraints for land vehicle applications. IEEE Transactions

on Robotics and Automation, 17(5), 2001.

[4] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous local-
ization and mapping without predetermined landmarks. In Proc. of

the Int. Conf. on Artificial Intelligence (IJCAI), pages 1135–1142,
Acapulco, Mexico, 2003.

[5] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 2428–2435, Barcelona, Spain, 2005.

[6] C. Früh and A. Zakhor. An automated method for large-scale, ground-
based city model acquisition. International Journal of Computer

Vision, 60:5–24, 2004.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), pages 2443–2448, Barcelona, Spain, 2005.

[8] P. Kohlhepp, M. Walther, and P. Steinhaus. Schritthaltende 3D-
Kartierung und Lokalisierung für mobile inspektionsroboter. In
18. Fachgespräche AMS, 2003. In German.

[9] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and

Automation, 7(4), 1991.

[10] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Journal of Autonomous Robots, 4:333–349,
1997.

[11] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, Acapulco, Mexico,
2003.

[12] M. Montemerlo and S. Thrun. A multi-resolution pyramid for outdoor
robot terrain perception. In Proc. of the National Conference on

Artificial Intelligence (AAAI), 2004.

[13] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping. In Proc. of

the National Conference on Artificial Intelligence (AAAI), pages 593–
598, Edmonton, Canada, 2002.

[14] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM
with approximate data association. In Proc. of the 12th Int. Conference

on Advanced Robotics (ICAR), pages 242–249, 2005.

[15] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor estimates. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2006.
[16] Pfaff P. and Burgard W. An efficient extension of elevation maps for

outdoor terrain mapping. In Proc. of the Int. Conf. on Field and Service

Robotics (FSR), pages 165–176, Port Douglas, QLD, Australia, 2005.
[17] S. Singh and A. Kelly. Robot planning in the space of feasible

actions: Two examples. In Proc. of the IEEE Int. Conf. on Robotics
& Automation (ICRA), 1996.

[18] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial re-
altionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous
Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[19] S. Sukkarieh, E.M. Nebot, and H. Durrant-Whyte. A high integrity
imu/gps navigation loop for autonomous land vehicle application.
IEEE Transactions on Robotics and Automation, 15(3), 1999.

[20] S. Thrun. An online mapping algorithm for teams of mobile robots.
Int. Journal of Robotics Research, 20(5):335–363, 2001.

[21] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping.
In Proceedings of the IEEE Int. Conf. on Robotics and Automation

(ICRA), San Francisco, CA, 2000.
[22] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel,

W. Burgard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker.
A system for volumetric robotic mapping of abandoned mines. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Taipei,
Taiwan, 2003.

[23] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. Winning the darpa grand
challenge. Journal of Field Robotics, 2006. To appear.

[24] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[25] C. Urmson. Navigation Regimes for Off-Road Autonomy. PhD thesis,

Robotics Institute, Carnegie Mellon University, 2005.
[26] J. Weingarten and R. Siegwart. 3d slam using planar segments. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2006.

[27] O. Wulf, K-A. Arras, H.I. Christensen, and B. Wagner. 2d mapping of
cluttered indoor environments by means of 3d perception. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA), pages 4204–
4209, New Orleans, 2004.

[28] C. Ye and J. Borenstein. A new terrain mapping method for mobile
robot obstacle negotiation. In Proc. of the UGV Technology Conference
at the 2002 SPIE AeroSense Symposium, 1994.

[C24] G. Grisetti, G.D. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi.

Speeding-up rao-blackwellized slam. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 442–447, Orlando, FL, USA, 2006.

Speeding Up Rao-Blackwellized SLAM
Giorgio Grisetti∗† Gian Diego Tipaldi† Cyrill Stachniss∗ Wolfram Burgard∗ Daniele Nardi†

∗University of Freiburg, Department of Computer Science, D-79110 Freiburg, Germany
†Dipartimento Informatica e Sistemistica, Universitá “La Sapienza”, I-00198 Rome, Italy

Abstract— Recently, Rao-Blackwellized particle filters have
become a popular tool to solve the simultaneous localization
and mapping problem. This technique applies a particle filter in
which each particle carries an individual map of the environment.
Accordingly, a key issue is to reduce the number of particles
and/or to make use of compact map representations. This
paper presents an approximative but highly efficient approach
to mapping with Rao-Blackwellized particle filters. Moreover, it
provides a compact map model. A key advantage is that the
individual particles can share large parts of the model of the
environment. Furthermore, they are able to re-use an already
computed proposal distribution. Both techniques substantially
speed up the overall process and reduce the memory require-
ments. Experimental results obtained with mobile robots in large-
scale indoor environments and based on published, standard
datasets illustrate the advantages of our methods over previous
Rao-Blackwellized mapping approaches.

I. I

Learning maps is a fundamental task of mobile robots and

a lot of researchers focused on this problem. In the literature,

the mobile robot mapping problem is often referred to as the

simultaneous localization and mapping (SLAM) problem [3, 7,

8, 9, 13, 14, 15, 20]. In general, SLAM is a complex problem

because for learning a map the robot requires a good pose

estimate while at the same time a consistent map is needed to

localize a robot. This dependency between the pose and the

map estimate makes the SLAM problem hard and requires to

search for a solution in a high-dimensional space.

Murphy, Doucet, and colleagues [15, 2] introduced Rao-

Blackwellized particle filters (RBPFs) as an effective means

to solve the SLAM problem. The main problem of the Rao-

Blackwellized approaches is their complexity, measured in

terms of the number of particles required to learn an accurate

map. Reducing this quantity is one of the major challenges for

this family of algorithms.

The contribution of this paper is a technique that reduces the

computational and the memory requirements in the context of

Rao-Blackwellized mapping. In this way, it becomes feasible

to maintain a comparably large set of particles online. This

is achieved by enabling a subset of samples to share large

parts of the map and to use the same proposal distribution.

Our system allows a standard laptop computer to perform all

computations necessary to learn accurate maps with more than

one thousand samples online.

This paper is organized as follows. After the discussion of

related work, we briefly introduce Rao-Blackwellized map-

ping. We then describe our technique for efficiently drawing

particles from a proposal distribution. After this, we present

our map representation. Finally, we show experiments illustrat-

ing the improvements of our approach to Rao-Blackwellized

mapping.

II. RW

Solutions to the SLAM problem can be classified according

to their underlying estimation technique. The most popu-

lar approaches are Extended Kalman filters (EKFs), maxi-

mum likelihood techniques, sparse extended information filters

(SEIFs), and Rao Blackwellized particle filters (RBPFs). The

effectiveness of the EKF comes from the fact that it estimates

the fully correlated posterior over landmark positions and robot

poses [10, 17]. Its weakness lies in the strong assumptions

regarding the motion model and the sensor noise. Moreover,

the landmarks are assumed to be uniquely identifiable. There

exist techniques [16] to deal with unknown data association

in the SLAM context. However, if certain assumptions are

violated the filter is likely to diverge [6].

An alternative approach is to use a maximum likelihood

algorithm that computes a map by constructing a network

of relations. The relations represent the spatial constraints

between the poses of the robot [8, 12].

Thrun et al. [20] proposed a SEIF method which uses the

inverse of the covariance matrix. In this way, measurements

can be integrated efficiently. Eustice et al. [5] presented an

improved technique to accurately compute the error-bounds

within the SEIF framework and thus reduces the risk of

becoming overly confident.

In [15, 2], Rao-Blackwellized particle filters have been

introduced as an effective means to solve the SLAM problem.

Each particle in a RBPF represents a potential trajectory of

the robot and a map of the environment. The framework has

been subsequently extended by Montemerlo et al. [13, 14]

for approaching the SLAM problem with landmarks. To learn

accurate grid maps, RBPFs have been used by Eliazar and

Parr [3] and Hähnel et al. [9]. Whereas the first work describes

an efficient map representation, the second one presents an

improved motion model that reduces the number of required

particles. A combination of the approach of Hähnel et al. and

Montemerlo et al. as been presented by Grisetti et al. [7],

which extends the ideas of FastSLAM-2 to the grid map case.

We present in this paper an approximative solution to Rao-

Blackwellized mapping which describes how to draw particles

and how to represent maps so that the system can be executed

significantly faster and needs less memory resources.

Lisien et al. [11] realized an hierarchical map model in

the context of SLAM and reported that this improves loop-

closing. Bosse et al. [1] describe a generic framework for

SLAM in large-scale environments. They use a graph structure

of local maps with relative coordinate frames similar to the

work described in [4]. This approach is able to reduce the

complexity and at the same time it can better deal with

linearization problems in the context of EKF-SLAM. Our

approach is related to this framework since we also use local

maps attached to a graph structure to model the environment.

However, our motivation to use such a map representation is

to allow multiple particles to share a map.

The contribution of the paper is a computational and mem-

ory efficient Rao-Blackwellized particle filter for SLAM. Our

approach allows the robot to efficiently determine the proposal

distributions to sample the next generation of particles in an

approximative manner. Additionally, we present a compact

map model in which multiple particles share a map. This

enables us to maintain substantially more samples with less

memory and computational requirements compared to state-

of-the-art Rao-Blackwellized mapping approaches.

III. R-B M

RBPFs for SLAM are used to estimate the posterior

p(x1:t,m | z1:t, u1:t−1) about the trajectory x1:t of the robot

and the map m of the environment given the observations z1:t

and odometry measurements u1:t−1. Its key idea is to separate

the estimation of the trajectory of the robot from the map

estimation process

p(x1:t,m | z1:t, u1:t−1) = p(m | x1:t, z1:t)p(x1:t | z1:t, u1:t−1). (1)

This can be done efficiently, since the posterior over maps

p(m | x1:t, z1:t) can be computed analytically given the knowl-

edge of x1:t and z1:t. Computing the posterior p(x1:t | z1:t, u1:t−1)

is similar to the localization problem, since only the trajectory

of the vehicle needs to be estimated. This is done using a par-

ticle filter which incrementally processes the observations and

the odometry readings. The overall process can be summarized

by the following four steps:

1) Sampling: The next generation of particles is obtained

from the current generation by sampling from a so-called

proposal distribution.

2) Importance Weighting: An individual importance weight

is assigned to each particle according to the most recent

observation, the pose estimate, and the map associated

with this particle.

3) Resampling: Particles with a low importance weight are

typically replaced by samples with a high weight. This

step is necessary since only a finite number of particles

is used to approximate a continuous distribution.

4) Map Estimation: The map of each particle is updated

based on pose represented by that particle.

Several authors proposed optimizations to Rao-Blackwellized

mapping. They either presented compact map representa-

tions [3] to deal with large particle sets or accurate proposal

distributions [7, 9, 13] in order to keep the number of samples

small.

IV. S U R-B M

In this section, we present our approach to Rao-

Blackwellized mapping which is able to handle large particle

sets while reducing the memory and computational require-

ments. Our implementation is based on the open-source im-

plementation [18] of the mapping system of Grisetti et al. [7].

The mayor drawback of this approach lies in its complexity.

It runs online only for small particle sets. This is due to an

informed but expensive to compute proposal distribution which

is determined for each particle individually. Furthermore, each

particle maintains a full grid map.

In the context of Rao-Blackwellized particle filters for

SLAM, the proposal is used to model the relative movement

of the vehicle under uncertainty. In most situations, this

uncertainty is similar for all samples within one movement. It

therefore makes sense to use the same uncertainty to propagate

the particles as long as they appear to represent similar

state hypotheses. In this section, we derive a way to sample

multiple particles from the same proposal. As a result, the

time consuming computation of the proposal distribution can

be carried out for a few particles that are representatives for

groups of similar samples.

Furthermore, local maps which are represented in a robot-

centered coordinate frame look similar for many particles. We

therefore present a compact map model in which multiple

particles can share a map. Instead of storing an individual map,

each sample maintains only a set of reference frames for the

different local maps. This substantially reduces the memory

requirements of the mapping algorithm.

A. Different Situations During Mapping

Before we derive our new proposal distributions, we start

with a brief analysis of the behavior of a RBPF. One can

distinguish three different types of situations during mapping:

• The robot is moving through unknown areas,

• is moving through well-known areas, or

• is closing a loop.

In each of those situations, the filter behaves differently.

Whenever the robot is moving through unknown terrain, the

trajectory uncertainty grows. This is due to the fact that the

errors are accumulated along the trajectory. The resulting

uncertainty can only be bounded by observations which cover

a (partially) known region.

In the second case, a map of the surroundings of the robot is

known and in this way the SLAM problem turns into a local-

ization problem which is typically easier to handle. Whenever

the robot is closing a loop, the particle cloud is often widely

spread. By reentering known areas, the filter can typically

determine which particles are consistent with their own map

and which are not. Such a situation leads to an unbalanced

distribution of particle weights. The next resampling action

then eliminates a series of unlikely hypotheses.

For each of these three situations, we will present a proposal

distribution that needs to be computed only for a small set of

representatives rather than for all particles. For the beginning,

let us assume that

(d)(a) (b) (c)

Fig. 1. Image (a) depicts the pose hypothesis of a particle, its local map, and
the computed proposal which represented by the blue/dashed ellipse. Image
(b) illustrates the proposal distribution represented in the ego-centric reference
frame of that sample. Image (c) shows a second particle and its map. By
carrying out a coordinate transform, the proposal of the first particle can be
used by the second particle as long as their maps are locally similar (d).

1) the current situation is known, which means that the

robot can determine whether it is moving through un-

known terrain, within a known area, or is closing a loop,

2) the corresponding local maps of two samples are similar

if considered in a particle-centered reference frame. In

the following, we refer to this property as local similarity

of the maps,

3) an accurate algorithm for pose tracking is used and the

observations are affected by a limited sensor noise.

B. Computing the Proposal for Unknown Terrain

When moving through unknown areas, most parts of the

map are irrelevant for computing the proposal distribution.

Only a local map around the current pose is therefore taken

into account. This map, called m̃
(i)

t−1
, refers to the local map of

particle i with respect to the pose x
(i)

t−1
of that particle at time

step t−1. In the surroundings of the robot, we can approximate

p(xt | m
(i)

t−1
, x

(i)

t−1
, zt, ut−1) ≃ p(xt | m̃

(i)

t−1
, x

(i)

t−1
, zt, ut−1). (2)

Under Assumption 2, which requires that the maps of

particle i and j are locally similar, we can write

m̃
(i)

t−1
⊖ x

(i)

t−1
≃ m̃

(j)

t−1
⊖ x

(j)

t−1
. (3)

Here ⊕ and ⊖ are the standard pose compounding operators

(see [12]). E.g., a⊖b is an operator that translates all the points

in the domain of the function a so that the new origin of the

domain of a is b and ⊕ is its inverse.

We observed that the proposal distributions for different

particles are similar if transformed to an ego-centric reference

frame

p(xt | m̃
(j)

t−1
, x

(j)

t−1
, zt, ut−1) ⊖ x

(j)

t−1

≃ p(xt | m̃
(i)

t−1
, x

(i)

t−1
, zt, ut−1) ⊖ x

(i)

t−1
. (4)

As a result, we can determine the proposal for a particle j

by computing the proposal in the reference frame of particle i

and translating it to the reference frame of particle j

p(xt | m̃
(j)

t−1
, x

(j)

t−1
, zt, ut−1)

≃ x
(j)

t−1
⊕ (p(xt | m̃

(i)

t−1
, x

(i)

t−1
, zt, ut−1) ⊖ x

(i)

t−1
). (5)

This computation is illustrated in Figure 1. Eq. (5) shows

how transform a proposal between particles while the robot

moves through unknown terrain. The complex proposal com-

putation needs to be performed only once and can then be

translated to the reference frame of the other particles.

C. Computing the Proposal for Already Visited Areas

Whenever the robot moves through known areas, each parti-

cle stays localized in its own map according to Assumption 3.

To update the new pose of each particle while the robot moves,

we maximize the likelihood of the observation around the pose

predicted by odometry

x
(i)
t = argmax

xt

p(xt | m̃
(i)

t−1
, x

(i)

t−1
, zt, ut−1). (6)

Analog to Eq. (3)-(5), we can express the proposal of

particle j using the one of particle i. The only difference is

that we do not apply the ⊕ and ⊖ operators based on the

poses of the samples. Instead, the operators are applied based

on the particle dependent reference frames l(i) and l(j) of the

local maps. These reference frames were established when

previously mapping the terrain. This results in

p(xt | m̃
(j)

t−1
, x

(j)

t−1
, zt, ut−1)

≃ l(j)
⊕ (p(xt | m̃

(i)

t−1
, x

(i)

t−1
, zt, ut−1) ⊖ l(i)). (7)

Combining Eq. (6) and Eq. (7) leads to

x
(j)
t = argmax

xt

p(xt | m̃
(j)

t−1
, x

(j)

t−1
, zt, ut−1) (8)

≃ l(j) ⊕
(

argmax
xt

p(xt | m̃
(i)

t−1
, x

(i)

t−1
, zt, ut−1)

︸ ︷︷ ︸

x
(i)
t

⊖l(i)
)

(9)

= l(j) ⊕ (x
(i)
t ⊖ l(i)). (10)

Under the Assumptions 2 and 3, we can estimate the poses

of all samples according to Eq. (10). In this way, the complex

computation of an informed proposal needs to be done only

once. When the robot is in one of the two situations described

above, the computation of the importance weights is done as

proposed in [7] except that we have to evaluate the weights

only once.

D. Computing the Proposal When Closing a Loop

In contrast to the two situations described before, the

computation of the proposal is more complex in case of a

loop-closure. This is due to the fact that Assumption 2 (local

similarity) is typically violated even for subsets of particles.

This fact can be illustrated by supposing a widely spread cloud

of particles when closing a loop. The different samples re-

enter the previously mapped terrain at different locations. This

results in different hypotheses about the topology of the envi-

ronment and definitively violates Assumption 2. Dealing with

such a situation, requires additional effort in the estimation

process.

Let us start with the informed proposal considering all

sensor observations z1:t and the most recent odometry read-

ing ut−1. The proposal can be factorized as

p(xt | z1:t, x
(i)

1:t−1
, ut−1)

= ηp(zt | z1:t−1, x
(i)

1:t−1
)p(xt | x

(i)

t−1
, ut−1) (11)

= ηp(zt | xt,m
(i)

t−1
)p(xt | x

(i)

t−1
, ut−1), (12)

where η is a normalizer resulting from Bayes’ rule.

Whenever a particle i closes a loop, we consider that its map

m
(i)

t−1
consists of two components. The first one is a local map

m
(i)

local
, which has no overlap with the previously seen area and

does not affect the loop closure. Secondly, a loop map m
(i)

loop

which models a previously mapped part of the environment

re-visited after moving through unknown terrain for a long

period of time.

p(zt | xt,m
(i)

t−1
) = p(zt | xt,m

(i)

local
,m

(i)

loop
) (13)

Under the assumption that these two maps are disjoint, it

is possible to choose a likelihood function that allows us to

apply the following factorization

p(zt | xt,m
(i)

local
,m

(i)

loop
) ∝ p(zt | xt,m

(i)

local
)p(zt | xt,m

(i)

loop
).(14)

Notice that the computation of the proposal in case of a

loop-closure is more expensive than in the two other situations.

Fortunately, loop-closing situations occur rarely. The robot has

to travel through unknown and eventually known terrain for

a comparably long period of time before a loop-closure can

occur.

According to the importance sampling principle, the particle

weights are given by

w
(i)
t = w

(i)

t−1

p(x
(i)
t | zt, x

(i)

t−1
,m

(i)

local
,m

(i)

loop
, ut−1)

p(x
(i)
t | zt, x

(i)

t−1
,m

(i)

local
, ut−1)

(15)

= w
(i)

t−1

η
(i)

1
p(zt | x

(i)
t ,m

(i)

local
)p(zt | x

(i)
t ,m

(i)

loop
)

η
(i)

2
p(zt | x

(i)
t ,m

(i)

local
)

(16)

= w
(i)

t−1
p(zt | x

(i)
t ,m

(i)

loop
)
η

(i)

1

η
(i)

2

, (17)

where η1 and η2 are normalization factors resulting from

Bayes’ rule.

E. Approximative Importance Weight Computation

Eq. (17) tells us how to update the particle weights in

case of a loop closure. Unfortunately, the computation of

the normalizing factors η1 and η2 cannot be done efficiently.

Therefore, in our current implementation, the weights are

evaluated according to the raw observation model based on

the loop map mloop

w
(i)
t ≃ w

(i)

t−1
p(zt|x

(i)
,m

(i)

loop
) (18)

rather than according to Eq. (17). This means that we ignore

the ratio of the normalizing factors η1 and η2 and approximate

the importance weights when closing a loop. This is signif-

icantly faster to compute and as we will demonstrate in the

experiments, the approximation error is small.

V. A S E, L S,

P T

All of the derivations made in the previous section require

the robot to know whether it is moving through unknown

terrain, through a previously mapped area, or is currently

closing a loop (Assumption 1). Here, we describe how to

distinguish the different cases. Detecting the first two situations

robot

newly created particle clustersoriginal cluster

uncertainty

Fig. 2. The left image depicts a cluster while the robot is approaching a
loop-closure. The shown particle cluster splits up into three different clusters
(topology hypotheses) as depicted in the right image.

can be done in a straightforward way by comparing the area

covered by the current observation given the particle pose and

the map constructed so far.

More difficult is to decide whether or not the robot is closing

a loop. To make this decision, we apply the approach proposed

by Stachniss et al. [19] in the context of exploration with

active loop-closing. This approach uses a dual representation

consisting of a grid map and a topologic map that models the

trajectory of the vehicle. By comparing both representations,

one is able to accurately determine whether or not a robot is

closing a loop.

Assumption 2 (local similarity) typically holds only up to

the first loop closure but is then violated. By explicitly mod-

eling the different topological hypotheses, it is still possible

to represent the posterior in an appropriate way. To achieve

local similarity, we introduce the notation of a particle cluster

which describes a subset of particles for which the assumption

of local similarity between maps holds. Ambiguities in the

posterior can then be modeled using multiple particle clusters.

Such clusters are obtained by grouping similar samples so that

the maps within one cluster represent the same topology.

In the following, we explain how to represent such a set

of samples and how to split up a particle cluster in case the

assumption of local similarity is violated.

In our current system, we represent a map as a set of local

maps also called patches. A global map for a given particle can

be obtained by specifying the location of each patch within

a global reference frame. Each sample therefore has to store

only a list of reference frames l
(i)
n for the patches. In this way,

the individual patches P1, . . . ,PN need to be stored only once

per cluster. The map of particle i can be computed by

m(i) =
⋃

n

l(i)n ⊕ Pn. (19)

Within one particle cluster, the local maps of each particle

fulfills the assumption of local similarity. Therefore, they

can share their patches. This results in a more compact

representation compared to storing individual grid maps. In our

current implementation, we used a graph structure where each

node is a reference to the corresponding patch. To actually

implement this representation, we store for each particle the

state vector s
(i)
t

s
(i)
t =
〈

x
(i)
t

︸︷︷︸

robot pose

, k
︸︷︷︸

cluster ID

, l
(i)

1
, . . . , l

(i)

Nk
︸ ︷︷ ︸

patches locations

〉

. (20)

Each cluster Ck is represented by

Ck =
〈

P1, . . . ,PNk
︸ ︷︷ ︸

pointer to patches

,
{

el,m

}

︸︷︷︸

graph edges

〉

. (21)

Note that the number Nk of patches does not grow with the

length of trajectory traveled by the robot. It grows with the

Fig. 3. Learned map of the MIT Killian Court using our approach.

number of relevant patches which is related to the size of the

environment.

In the beginning of the mapping process, we start with

a single cluster, but after closing a loop, multiple topology

hypotheses typically occur. Whenever a topological hypothesis

represented by a particle cluster needs to be split up, one

has to determine which particle belongs to which topological

hypothesis. In our current implementation, we cluster the

samples according to their Euclidian distance to the different

nodes in their own graph structure of reference frames. For

each particle, we determine the list of nodes in the field

of view of that sample. We order this list according to the

Euclidian distance from the pose represented by the sample

to the corresponding node. Then, a cluster is given by the

samples which have the same list of nodes. An example which

illustrates how new clusters are created in case of a loop-

closure is depicted in Figure 2.

Throughout our experiments, we observed that multiple

particle clusters are created when closing a loop. The actual

number ranges up to 50. However, after a few iterations only

a small number of cluster (up to 5) typically survive.

Note that it might be possible to represent each cluster by an

EKF and not by particles like we do. However, in this case one

would have to deal with linearization problems and Gaussian

uncertainty. Furthermore, our approach uses grid maps and

does not rely on predefined feature extractors like typical EKF

approaches do.

To fulfill Assumption 3, we apply an incremental scan

alignment technique based on laser range finder data.

The experiments presented in this paper indicate that this

setup/implementation is sufficient to satisfy the three assump-

tions. As a result, we obtain a mapping system which provides

highly accurate maps in a fast and memory efficient manner.

VI. E

In this section, we present experiments based on real robot

datasets which are commonly used within the SLAM com-

munity. In the first experiment, we corrected several log files

using our approach. Figure 3 depicts the resulting map of the

MIT Killian Court. This is a challenging dataset, since it is

a large (it took 2.5h to record this log file) and it contains

Fig. 4. The left image depict the Intel Research Lab and the right one the
Austin ACES building at the University of Texas.

TABLE I

C MIT

 PC 1.3 GH CPU.

#particles execution time max. memory

our approach 2,000 51 min 210 MB

our approach 1,000 41 min 180 MB

our approach 500 30 min 165 MB

RBPF of [18] 150 (memory swapping) 2.9 GB

RBPF of [18] 80 300 min 1.5 GB

RBPF of [18] 50 190 min 1 GB

several nested loops which can lead to particle depletion. As

shown in this figure, the map does not show inconsistencies

like for example double walls. Comparable results have been

obtained using the Intel Research Lab and the Austin ACES

dataset which are both depicted in Figure 4.

The second experiment is designed to show the advantages

of our approach compared to a Rao-Blackwellized mapper

without our optimizations. For this comparison, we used the

open-source mapper provided in [18]. We compared the overall

time, needed to correct the MIT Killian Court dataset and

the memory used to store the maps. This was done using a

(comparably slow) PC with a 1.3 GHz CPU and 1.5 GB RAM.

The results of both mapping approaches are summarized in

Table I. In our current implementation, the filter update for

each cluster takes in average 20 ms when moving through

known terrain and 200 ms when moving through unknown

terrain. When actually closing a loop, each particle requires

approximatively 2 ms of execution time while the check for

the closure takes around 0.3 ms per sample.

Since the approximated proposal is not as accurate as the

original one, we need more particles to achieve the same

robustness in filter convergence and quality of the resulting

maps. However, we can maintain more than one order of

magnitude more particles while requiring less runtime and

memory. In all our experiments, this sufficiently accounted

for the less accurately drawn samples.

The savings on runtime are mainly caused by transforming

an already computed proposal distribution so that it can be

used for several particles instead of computing it from scratch

each time. The memory savings are due to the fact that

all particles within a cluster can share a single map model.

Furthermore, the memory usage and runtime of our approach

grows much slower when increasing the number of particles.

The reason is that the complexity of our filter grows mainly

with the number of topological hypotheses (particle clusters)

which need to be maintained and not directly with the number

 0

 100

 200

 300

 400

 500

 0

 10

 20

 30

 40

 50

n
u

m
b

er
 o

f
p

at
ch

es

n
u

m
b

er
 o

f
cl

u
st

er
s

time

patches
clusters

Fig. 5. This plot depicts the number of patches in the memory and the
number of clusters over time for the MIT dataset using 1500 particles.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

im
p
o
rt

an
ce

 w
ei

g
h
t

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

time

approximated
exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

time

approximated
exact

Fig. 6. Difference in the particle weights caused the approximative compu-
tation for three different samples during a loop closure. The left and middle
image show typical results, the right one depicts the one of the worst results
during our experiments.

of samples. Notice that the maximum memory usage shown

of our approach is much higher than the typical one. There

exist a few peaks in the memory usage which arise from a

loop closure where several clusters are temporarily created

but deleted after a few steps (compare Figure 5). The typical

memory usage is around 20% of the maximum usage.

Figure 5 depicts the number of patches that need to be stored

and the number of clusters during the estimation process of the

MIT dataset with 1,500 particles. As can be seen, the number

of clusters is typically small until a loop closure occurs. At

this point, the number of clusters increases. However, after a

short period of time most of the clusters vanish.

The last experiment evaluates the error introduced by our

approximative importance weight computation when closing

a loop. We ignore the normalization factors to achieve a

faster estimation. We analyzed the loop-closing actions and in

most situations the approximation error was small. Figure 6

depicts the differences between the sound computation and

our approximation for three different particles during a loop

closure. For a more quantitative evaluation between both

methods, we computed the KL-divergence (KLD) between the

distribution of the importance weights in both cases. It turned

out, that the average KLD was only 0.02 (a KLD of 0 means

that the distributions are equal and the higher the value the

more different are the distributions). Substantiated by the good

approximation quality, we ignore the evaluation of η1 and η2

when computing the particle importance weight.

VII. C

In this paper, we presented efficient optimizations for Rao-

Blackwellized SLAM on grid maps. We are able to update

the complex posterior requiring substantially less resources by

performing the computations only for a set of representatives

instead of for all particles. We extended a state-of-the-art

mapping system in a way that the computation of the proposal

distribution is significantly faster and needs only a fraction of

the memory resources. The key idea is that clusters of particles

can share a compact map representation as well as an informed

proposal distribution to draw the next generation of particles.

With our optimizations, we are able to maintain more than

one order of magnitude more samples and at the same time

require less memory and computational resources compared to

other state-of-the-art Rao-Blackwellized mapping techniques.

This increase in number of particles we are able to maintain

compensates for the errors introduced by our approximations.

Our approach has been implemented, tested, and evaluated

based on real robots and standard log files used within the

SLAM community to demonstrate the accuracy as well as the

benefits of our system.

R

[1] M. Bosse, P.M. Newman, J.J. Leonard, and S. Teller. An altas framework
for scalable mapping. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Taipei, Taiwan, 2003.
[2] A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russel. Rao-Black-

wellized partcile filtering for dynamic bayesian networks. In Proc. of

the Conf. on Uncertainty in Artificial Intelligence (UAI), 2000.
[3] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous localiza-

tion and mapping without predetermined landmarks. In Proc. of the

Int. Conf. on Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.
[4] C. Estrada, J. Neira, and J.D. Tardós. Hierachical slam: Real-time ac-

curate mapping of large environments. IEEE Transactions on Robotics,
21(4):588–596, 2005.

[5] R. Eustice, M. Walter, and J.J. Leonard. Sparse extended information
filters: Insights into sparsification. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 641–648, 2005.
[6] U. Frese and G. Hirzinger. Simultaneous localization and mapping

- a discussion. In Proc. of the IJCAI Workshop on Reasoning with
Uncertainty in Robotics, pages 17–26, Seattle, WA, USA, 2001.

[7] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based
slam with Rao-Blackwellized particle filters by adaptive proposals and
selective resampling. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), pages 2443–2448, Barcelona, Spain, 2005.
[8] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic

environments. In Proc. of the IEEE Int. Symp. on Computational
Intelligence in Robotics & Automation (CIRA), pages 318–325, 1999.

[9] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2003.

[10] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and
Automation, 7(4):376–382, 1991.

[11] B. Lisien, D. Silver D. Morales, G. Kantor, I.M. Rekleitis, and H. Choset.
Hierarchical simultaneous localization and mapping. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2003.
[12] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Journal of Autonomous Robots, 4:333–349, 1997.
[13] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:

An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), Acapulco, Mexico, 2003.
[14] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A

factored solution to simultaneous localization and mapping. In Proc. of

the National Conference on Artificial Intelligence (AAAI), 2002.
[15] K. Murphy. Bayesian map learning in dynamic environments. In Proc. of

the Conf. on Neural Information Processing Systems (NIPS), 1999.
[16] J. Neira and J.D. Tardós. Data association in stochastic mapping

using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6), 2001.
[17] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial

realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.
[18] C. Stachniss and G. Grisetti. Mapping results obtained with

Rao-Blackwellized particle filters. http://www.informatik.uni-
freiburg.de/∼stachnis/research/rbpfmapper/, 2004.

[19] C. Stachniss, D. Hähnel, W. Burgard, and G. Grisetti. On actively closing
loops in grid-based fastslam. Advanced Robotics, 19:1059–1080, 2005.

[20] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23(7/8), 2004.

[C25] M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke. Metric

localization with scale-invariant visual features using a single perspective

camera. In H.I. Christiensen, editor, European Robotics Symposium 2006,

volume 22 of STAR Springer tracts in advanced robotics, pages 143–157.

Springer-Verlag Berlin Heidelberg, Germany, 2006.

Metric Localization with Scale-Invariant Visual

Features using a Single Perspective Camera

Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

University of Freiburg, Computer Science Institute, D-79110 Freiburg, Germany

Abstract. The Scale Invariant Feature Transform (SIFT) has become a popular fea-

ture extractor for vision-based applications. It has been successfully applied to met-

ric localization and mapping using stereo vision and omnivision. In this paper, we

present an approach to Monte-Carlo localization using SIFT features for mobile

robots equipped with a single perspective camera. First, we acquire a 2D grid map of

the environment that contains the visual features. To come up with a compact envi-

ronmental model, we appropriately down-sample the number of features in the final

map. During localization, we cluster close-by particles and estimate for each cluster

the set of potentially visible features in the map using ray-casting. These relevant

map features are then compared to the features extracted from the current image.

The observation model used to evaluate the individual particles considers the differ-

ence between the measured and the expected angle of similar features. In real-world

experiments, we demonstrate that our technique is able to accurately track the po-

sition of a mobile robot. Moreover, we present experiments illustrating that a robot

equipped with a different type of camera can use the same map of SIFT features for

localization.

1 Introduction

Self-localization is one of the fundamental problems in mobile robotics. The topic

was studied intensively in the past. Many approaches exist that use distance infor-

mation provided by a proximity sensor for localizing a robot in the environment.

However, for some types of robots, proximity sensors are not the appropriate choice

because they do not agree with their design principle. Humanoid robots, for example,

which are constructed to resemble a human, are typically equipped with vision sen-

sors and lack proximity sensors like laser scanners. Therefore, it is natural to equip

these robots with the ability of vision-based localization.

In this paper, we present an approach to vision-based mobile robot localization

that uses a single perspective camera. We apply the well-known Monte-Carlo lo-

calization (MCL) technique [5] to estimate the robot’s position. MCL uses a set of

2 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

random samples, also called particles, to represent the belief of the robot about its

pose. To locate features in the camera images, we use the Scale Invariant Feature

Transform (SIFT) developed by Lowe [15]. SIFT features are invariant to image

translation, scale, and rotation. Additionally, they are partially invariant to illumi-

nation changes and affine or 3D projection. These properties make SIFT features

particularly suitable for mobile robots since, as the robots move around, they typ-

ically observe landmarks from different angles and distances, and with a different

illumination.

Whereas existing systems, that perform metric localization and mapping using

SIFT features, apply stereo vision in order to compute the 3D position of the fea-

tures [20, 7, 21, 2], we rely on a single camera only during localization. Since we

want to concentrate on the localization aspect, we facilitate the map acquisition pro-

cess by using a robot equipped with a camera and a proximity sensor. During map-

ping, we create a 2D grid model of the environment. In each cell of the grid, we store

those features that are supposed to be at that 2D grid position. Since the number of

observed SIFT features is typically high, we appropriately down-sample the number

of features in the final map. During MCL, we then rely on a single perspective cam-

era and do not use any proximity information. Our approach estimates for clusters

of particles the set of potentially visible features using ray-casting on the 2D grid.

We then compare those features to the features extracted from the current image. In

the observation model of the particle filter, we consider the difference between the

measured and the expected angle of similar features. By applying the ray-casting

technique, we avoid comparing the features extracted out of the current image to

the whole database of features (as the above mentioned approaches do), which can

lead to serious errors in the data association. As we demonstrate in practical experi-

ments with a mobile robot in an office environment, our technique is able to reliably

track the position of the robot. We also present experiments illustrating that the same

map of SIFT features can be used for self-localization by different types of robots

equipped with a single camera only and without proximity sensors.

This paper is organized as follows. After discussing related work in the following

section, we describe the Monte-Carlo localization technique that is applied to esti-

mate the robot’s position. In Section 4, we explain how we acquire 2D grid maps of

SIFT features. In Section 5, we present the observation model used for MCL. Finally,

in Section 6, we show experimental results illustrating the accuracy of our approach

to estimate the robot’s position.

2 Related Work

Monte-Carlo methods are widely used for vision-based localization and have been

shown to yield quite robust estimates of the robot’s position. Several localization

approaches are image-based, which means that they store a set of reference images

taken at various locations that are used for localization. Some of the image-based

methods rely on an omnidirectional camera in order to localize a mobile robot. The

advantages of omnidirectional images are the circular field of view and thus, the

Metric Localization with SIFT Features using a Single Camera 3

knowledge about the appearance of the environment in all possible gaze directions.

Recent techniques were for example presented by Andreasson et al. [1] who de-

veloped a method to match SIFT features extracted from local interest points in

panoramic images, by Menegatti et al. [16] who use Fourier coefficients for fea-

ture matching in omnidirectional images, and by Gross et al. [9] who compare the

panoramic images using color histograms. Wolf et al. [23] apply a combination of

MCL and an image retrieval system in order to localize a robot equipped with a

perspective camera. The systems presented by Ledwich and Williams [12] and by

Kŏsécka and Li [11] perform Markov localization within a topological map. They

use the SIFT feature descriptor to match the current view to the reference images.

Whenever using those image-based methods, care has to be taken in deciding at

which positions to collect the reference images in order to ensure a complete cov-

erage of the space the robot can travel in. In contrast to this, our approach stores

features at the positions where they are located in the environment and not for all

possible poses the robot can be in.

Additionally, localization techniques have been presented that use a database of

observed visual landmarks. SIFT features have become very popular for metric lo-

calization as well as for SLAM (simultaneous localization and mapping, [21, 2]).

Se et al. [20] were the first who performed localization using SIFT features in a re-

stricted area. They did not apply a technique to track the position of the robot over

time. Recently, Elinas and Little [7] presented a system that uses MCL in combi-

nation with a database of SIFT features learned in the same restricted environment.

All these approaches use stereo vision to compute the 3D position of a landmark

and match the visual features in the current view to all those in the database to find

correspondences. To avoid matching the observations to the whole database of fea-

tures, we present a system that determines the sets of visible features for clusters of

particles. These relevant features are then matched to the features in the current im-

age. This way, the number of ambiguities, which can occur in larger environments, is

reduced. The relevant features are determined by applying a ray-casting technique in

the map of features. The main difference to existing metric localization systems using

SIFT features is however that our approach is applicable to robots that are equipped

with a single perspective camera only, whereas the other approaches require stereo

vision or omnivision.

Note that Davison et al. [3] and Lemaire et al. [13] presented approaches to

feature-based SLAM using a single camera. These authors use extended Kalman

filters for state estimation. Both approaches have only been applied to robots moving

within a relatively small operational range.

Vision-based MCL was first introduced by Dellaert et al. [4]. The authors con-

structed a global ceiling mosaic and use simple features extracted out of images

obtained with a camera pointing to the ceiling for localization. Systems that apply

vision-based MCL are also popular in the RoboCup domain. In this scenario, the

robots use environment-specific objects as features [19, 22].

4 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

3 Monte-Carlo Localization

To estimate the pose xt (position and orientation) of the robot at time t, we apply

the well-known Monte-Carlo localization (MCL) technique [5], which is a variant of

Markov localization. MCL recursively estimates the posterior about the robot’s pose:

p(xt | z1:t, u0:t−1)

= η · p(zt | xt) ·

∫

xt−1

p(xt | xt−1, ut−1) · p(xt−1 | z1:t−1, u0:t−2) dxt−1 (1)

Here, η is a normalization constant resulting from Bayes’ rule, u0:t−1 denotes the

sequence of all motion commands executed by the robot up to time t− 1, and z0:t is

the sequence of all observations. The term p(xt | xt−1, ut−1) is called motion model

and denotes the probability that the robot ends up in state xt given it executes the

motion command ut−1 in state xt−1. The observation model p(zt | xt) denotes the

likelihood of making the observation zt given the robot’s current pose is xt. To deter-

mine the observation likelihood, our approach compares SIFT features in the current

view to those SIFT features in the map that are supposed to be visible (see Section 5).

MCL uses a set of random samples to represent the belief of the robot about its

state at time t. Each sample consists of the state vector x
(i)
t and a weighting fac-

tor ω
(i)
t that is proportional to the likelihood that the robot is in the corresponding

state. The update of the belief, also called particle filtering, is typically carried out

as follows. First, the particle states are predicted according to the motion model. For

each particle a new pose is drawn given the executed motion command since the pre-

vious update. In the second step, new individual importance weights are assigned to

the particles. Particle i is weighted according to the likelihood p(zt | x
(i)
t). Finally,

a new particle set is created by resampling from the old set according to the parti-

cle weights. Each particle survives with a probability proportional to its importance

weight.

Due to spurious observations it is possible that good particles vanish because they

have temporarily a low likelihood. Therefore, we follow the approach proposed by

Doucet [6] that uses the so-called number of effective particles [14] to decide when

to perform a resampling step

Neff =
1

∑N

i=1

(

w(i)
)2 , (2)

where N is the number of particles. Neff estimates how well the current particle

set represents the true posterior. Whenever Neff is close to its maximum value N ,

the particle set is a good approximation of the true posterior. Its minimal value 1

is obtained in the situation in which a single particle has all the probability mass

contained in its state.

We do not resample in each iteration, instead, we only resample each time Neff

drops below a given threshold (here set to N
2). In this way, the risk of replacing good

particles is drastically reduced.

Metric Localization with SIFT Features using a Single Camera 5

4 Acquiring 2D Maps of Scale-Invariant Features

We use maps of visual landmarks for localization. To detect features, we use the

Scale Invariant Feature Transform (SIFT). Each image feature is described by a vec-

tor 〈p, s, r, f〉 where p is the subpixel location, s is the scale, r is the orientation, and

f is a descriptor vector, generated from local image gradients. The SIFT descriptor

is invariant to image translation, scaling, and rotation and also partially invariant to

illumination changes and affine or 3D projection. Lowe presented results illustrat-

ing robust matching of SIFT descriptors under various image transformations [15].

Mikolajczyk and Schmid compared SIFT and other image descriptors and showed

that SIFT yields the highest matching accuracy [17].

Ke and Sukthankar [10] presented an approach to compute a more compact rep-

resentation for SIFT features, called PCA-SIFT. They apply principal components

analysis (PCA) to determine the most distinctive components of the feature vector.

As shown in their work, the PCA-based descriptor is more distinctive and more ro-

bust than the standard SIFT descriptor. We therefore use that representation in our

current approach. As suggested by Ke and Sukthankar, we apply a 36 dimensional

descriptor vector resulting from PCA.

To acquire a 2D map of SIFT features, we used a B21r robot equipped with a

perspective camera and a SICK laser range finder. We steered the robot through the

environment to obtain image data as well as proximity and odometry measurements.

The robot was moving with a speed of 40cm/s and collected images at a rate of 3Hz .

To be able to compute the positions of features and to obtain ground truth data, we

used an approach to grid-based SLAM with Rao-Blackwellized particle filters [8].

Using the information about the robot’s pose and extracted SIFT features out of the

current camera image, we can estimate the positions of the features in the map. More

specifically, we use the distance measurement of the laser beam that corresponds

to the horizontal angle of the detected feature and the robot’s pose to calculate the

2D position of the feature. Thus, we assume that the features are located on the

obstacles detected by the laser range finder. In the office environment in which we

performed our experiments, this assumption leads to quite robust estimates even if

there certainly exist features that are not correctly mapped. In each 2D grid cell, we

store the set of features that are supposed to be at that 2D grid position. Currently,

we use a grid resolution of 10 by 10cm. In the first stage of mapping, we store all

observed features.

After the robot moved through the environment, the number of observed SIFT fea-

tures is extremely high. Typically, we have 150-500 features extracted per image with

a resolution of 320 by 240 pixels. This results in around 600,000 observed features

after the robot traveled for 212m in a typical office environment. After map acqui-

sition, we down-sample a reduced set of features that is used for localization. For

each grid cell, we randomly draw features. A drawn feature is rejected if there is

already a similar feature within the cell. We determine similar features by compar-

ing their PCA-SIFT vectors (see below). We sample a maximum of 20 features for

each grid cell. Using the sampling process, features that were observed more often

have a higher chance to be selected and features that were detected only once (due to

6 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

failure observations or noise) are eliminated. The goal of this sampling process is to

reduce computational resources and at the same time obtain a representative subset

of features. To choose good representatives for the features, a clustering based on the

descriptor vectors can be carried out.

The left image of Figure 3 shows a 2D grid map of SIFT features of an office

environment that was acquired by the described method. The final map contains

approximately 100,000 features. Note that also a stereo camera system, which was

not available in our case, would be an appropriate solution for map building. The

presented map acquisition approach is not restricted to robots equipped with a laser

range finder.

5 Observation Model for SIFT Features

In the previous section, we described how to built a map of SIFT features using a

robot equipped with a camera and a proximity sensor. In this section, we describe

how a robot without a proximity sensor can use this environmental model for local-

ization with a single perspective camera.

Sensor observations are used to compute the weight of each particle by estimating

the likelihood of the observation given the pose of the particle in the map. Thus, we

have to specify how to compute p(zt | xt). In our case, an observation zt consists of

the SIFT features in the current image: zt = {o1, . . . , oM} where M is the number

of features in the current image. To determine the likelihood of an observation given

a pose in the map, we compare the observed features with the features in the map by

computing the Euclidean distance of their PCA-SIFT descriptor vectors.

In order to avoid comparing the features in the current image to the whole set

of features contained in the map, we determine the potentially visible features. This

helps to cope with an environment that contains similar landmarks at different loca-

tions (e.g. several similar rooms). In case one matches the current observation against

the whole set of features, this leads to serious errors in the data association.

To compute the relevant features, we group close-by particles to a cluster. We

determine for each particle cluster the set of features that are potentially visible from

these locations. This is done using ray-casting on the feature grid map. To speed-up

the process of finding relevant features, one could also precompute for each grid cell

the set of features that are visible. However, in our experiments, computing the simi-

larity of the feature vectors took substantially longer than the ray-casting operations.

Typically, we have 150-500 features per image.

In order to compare two SIFT vectors, we use a distance function based on the

Euclidian distance. The likelihood that the two PCA-SIFT vectors f and f ′ belong

to the same feature is computed as

p(f = f ′) = exp

(

−
‖f − f ′‖

2 · σ2
1

)

, (3)

where σ1 is the variance of the Gaussian.

Metric Localization with SIFT Features using a Single Camera 7

In general, one could use Eq. (3) to determine the most likely correspondence

between an observed feature and the map features. However, since it is possible that

different landmarks exist that have a similar descriptor vector, we do not determine

a unique corresponding map feature for each observed feature. In order to avoid

misassignments, we instead consider all pairs of observed features and relevant map

features. This set of pairs of features is denoted as C. For each pair of features in C
we use Eq. (3) to compute the likelihood that the corresponding PCA-SIFT vectors

belong to the same feature.

This information is than used to compute the likelihood p(zt | x
(i)
t) of an obser-

vation given the pose x
(i)
t of particle i, which is required for MCL. Since a single

perspective camera does not provide depth information, we can use only the angular

information to compute this likelihood. We therefore consider the difference between

the horizontal angles of the currently observed features in the image and the features

in the map to compute p(zt | x
(i)
t). More specifically, we compute the distribution

over the angular displacement of a particle given the observation and the map. For

each particle, we compute a histogram over the angular differences between the ob-

served features and the map features. The x-values in that histogram represent the

angular displacement and the y-values its likelihood. The histogram is computed us-

ing the pairs of features in C evaluated using Eq. (3).

In particular, we compute for each pair (o, l) ∈ C the difference between the

horizontal angle at which the feature was observed and the angle at which the feature

should be located according to the map and the particle pose. We add the likelihood

that these features are equal, which is given by Eq. (3), to the corresponding bin of

the histogram. As a result, we obtain a distribution about the angular error of the

particle.

In mathematical terms, the value h(b) of a bin b (representing the interval of

angular differences from α−(b) to α+(b)) in the histogram is given by

h(b) = β +
∑

{

(o,l)∈C

∣

∣α−(b)≤α(o)−α(l)<α+(b)
}

p(fo = fl), (4)

where α(·) is the function that computes the horizontal angle of a feature for a given

pose of the robot, fo is the PCA-SIFT descriptor of feature o, and fl of feature l
accordingly. β is a constant greater that zero ensuring that no angular displacement

has zero probability.

The histograms of particles that are close to the correct pose of the robot have

high values around zero. In case that there are several similar features in the environ-

ment, the histogram has multiple modes.

One finally needs to compute the observation likelihood of a particle. So far,

we computed the distribution about the horizontal angular displacement, not its ac-

tual value. In case of a uni-modal or Gaussian distribution it would be sufficient to

consider only the distance of the mean from zero taking into account the variance.

However, in real-world situations, it is likely that one obtains multi-modal distribu-

tions.

8 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

Each bin of that histogram stores the probability mass of the corresponding an-

gular displacement of the particle. Therefore, we compute the observation likelihood

given we have the angular displacement of that bin and multiply it with the value

stored in that bin. The observation likelihood given the histogram is then computed

by the sum over these values

p(zt | x
(i)
t) =

∑

b

h(b) · exp
(

−
1

2 · σ2
2

·

[

α+(b) + α−(b)

2

]2
)

, (5)

where σ2 is the variance of a Gaussian describing the likelihood of a particle depend-

ing on the angular displacement. Figure 1 illustrates the whole process of computing

the observation likelihood for a single particle.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-3 -2 -1 0 1 2 3

li
k

el
ih

o
o

d

angular displacement [rad]

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

w
ei

g
h

t

angular displacement [rad]

(a) (b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-3 -2 -1 0 1 2 3

w
ei

g
h

te
d

 l
ik

el
ih

o
o

d

angular displacement [rad]

According to Eq. (5),

this leads to p(zt | x
(i)
t

) = 0.25.

(c)

Fig. 1. Image (a) shows the distribution about the horizontal angular displacement for a par-

ticular particle computed according to Eq. (4). The plot shown in (b) depicts the Gaussian that

is used to compute the weight of a sample depending on the displacement. Finally, image (c)

shows the resulting histogram in which each bin of the histogram (a) is multiplied by the cor-

responding value of the Gaussian. Summing up the bins leads to an observation likelihood of

0.25.

Metric Localization with SIFT Features using a Single Camera 9

Fig. 2. Example images with generated SIFT features. The images were obtained from two

different cameras used in the experiments. The standard camera (left) was used for map acqui-

sition as well as for localization and a low-cost wide-angle camera (right) for further evaluation

of our localization approach.

Note that a further improvement of the sensor model can be obtained by using the

joint compatibility test between pairs of feature as proposed by Neira and Tardós [18]

and not considering all possible data associations.

6 Experimental Results

To evaluate our approach to estimate the pose of the robot equipped with a single

perspective camera, we carried out a series of real-world experiments with wheeled

and humanoid robots in an office environment. The B21r robot that performed the

mapping task carries a standard camera with an opening angle of approximately 65◦.

In order to show that the acquired feature map can be used by robots equipped with

different cameras, we performed the localization experiments using a low-cost wide-

angle camera (with an opening angle of about 130◦). The difference between typical

images of both cameras can be seen in Figure 2. The arrows indicate the location,

orientation, and scale of the generated SIFT features. The acquired map is depicted

in Figure 3.

6.1 Localization Accuracy

In this experiment, the wheeled robot traveled a distance of approximately 20m.

Figure 3 shows the estimated trajectory as well as the true pose of the robot during

this experiment. The ground truth has been determined using laser range data. The

evolution of the particle filter is illustrated in Figure 4. It shows the particle clouds

as well as the true position and the pose estimate provided by odometry.

A more quantitative analysis showing the localization error over time can be

found in Figure 5. Between time step 40 and 50, the error in the pose of the vehicle

was comparably high. This is because we used the weighted mean of the samples

10 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

-10

-5

 0

 5

-10 -5 0 5 10

y
 [

m
]

x [m]

features

-5

 0

 5

-5 0 5 10

y
 [

m
]

x [m]

weighted mean
true pose
odometry

Fig. 3. The left image shows the 2D map acquired in a typical office environment. Each cross

represents the estimated 2D position of a SIFT feature. The right image depicts the estimated

trajectory as well as the ground truth of a localization experiment. As can be seen, the weighted

mean of the particles is close to the true pose of the robot.

t=0

odometry

true pose

t=12

true pose

odometry

t=33

true pose

odometry

t=41

true pose

odometry

t=50

true pose

odometry

t=60

odometry

true pose

Fig. 4. The particle set during localization. The two arrows indicate the pose resulting from

odometry information as well as the true pose of the robot. The true pose of the vehicle was

determined by using a laser range finder that was mounted on the robot for this purpose. The

occupancy grid map is only shown for a better illustration and was not used for localization.

for the error computation and because the belief was temporarily multi-modal. This

fact can be observed in the snapshots depicted in Figure 4. As this experiment illus-

trates, our technique is able to accurately estimate the pose of the robot. The average

error in the x/y-position was 39cm. The average error in the orientation of the vehi-

cle was 4.5◦. We got comparable localization results when using different cameras

with a more constrained field of view like the one which was used for map acquisi-

tion. During our experiments, we used 800 particles in our particle filter, which were

initialized with a Gaussian centered at the starting pose of the robot.

Metric Localization with SIFT Features using a Single Camera 11

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

p
o
si

ti
o
n
 e

rr
o
r

[m
]

time

odometry
weighted mean

-10

-5

 0

 5

 10

 0 10 20 30 40 50 60 70 80

an
g
u
la

r
er

ro
r

[d
eg

]

time

weighted mean

Fig. 5. Evolution of the error during the localization experiment depicted in Figure 3.

Fig. 6. The humanoid robot Max.

6.2 Tracking the Pose of a Humanoid Robot

To further evaluate our approach, we applied our localization technique to the hu-

manoid robot depicted in Figure 6. To estimate the pose of the robot based on exe-

cuted motion commands, we perform dead reckoning. The gait control input consists

of motor currents that control the lateral, speed, sagittal, and the rotational speed. The

estimated velocities are integrated to determine the relative movement. Compared to

a wheeled robot equipped with odometry sensors, this leads to a noisy pose estimate.

Furthermore, due to the design of the humanoid robot, the camera images are often

blurred because of vibrations.

In this experiment, the robot Max traveled along the trajectory shown in Figure 7.

The red circles correspond to position where an observation was made. The particle

clouds obtained in this experiment are given in Figure 8. In case no sensor infor-

mation is integrated, the pose estimate has a high uncertainty as can be seen in the

first row of that figure. In contrast to this, the use of our vision-based localization

technique reduces the uncertainty and enables to localize the humanoid. Note that

due to unstable motion of the humanoid, missing odometry sensors, vibrations, and

the shaking camera, the localization is less robust compared to a wheeled robot.

12 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

plot 1

plot 2

plot 3

Fig. 7. The trajectory of Max. The red circles indicate the positions where observations were

made. The corresponding plots of the particle clouds are shown in Figure 8.

plot 1 plot 2 plot 3

Fig. 8. Vision-based localization of a humanoid robot. The images in the first row depict

the evolution of the particles in case no sensor information is used. The high uncertainty in

the particle cloud results from the poor motion estimate resulting from dead reckoning. The

images in the second row show the result of our localization approach. As can be seen, the

visual information allows to accurately estimate the pose of the humanoid robot.

Metric Localization with SIFT Features using a Single Camera 13

7 Conclusions

In this paper, we presented an approach to mobile robot localization that relies on

a single perspective camera. Our technique is based on Monte-Carlo localization

and uses SIFT features extracted from camera images. In the observation model of

our particle filter, we compare descriptor vectors of features in the current image to

the set of potentially visible map features given the pose of the particles. Based on

this information, we compute a distribution about the angular displacement for each

sample given the current observation. The evaluation of potential correspondences

between features is done efficiently by performing the necessary computations for

clusters of particles. By using only the relevant features in the vicinity of the particles

in the observation model, we reduce the number of data association failures. As we

demonstrate in real-world experiments carried out with a wheeled as well as with a

humanoid robot, our system provides an accurate metric pose estimate for a mobile

robot without requiring proximity sensors, omnivision, or a stereo camera.

Acknowledgment

This project is partially supported by the German Research Foundation (DFG), grant

BE 2556/2-1 and SFB/TR-8 (A3). We would like to thank D. Lowe for providing

his software to detect SIFT features and Y. Ke for his PCA-SIFT implementation.

Further thanks to J. Stückler and M. Schreiber for helping us carrying out the exper-

iments with the humanoid robot.

References

1. H. Andreasson, A. Treptow, and T. Duckett. Localization for mobile robots using

panoramic vision, local features and particle filter. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2005.

2. T.D. Barfoot. Online visual motion estimation using FastSLAM with SIFT features. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2005.

3. A.J. Davison, Y. González Cid, and N. Kita. Real-time 3D SLAM with wide-angle vision.

In IFAC/EURON Symposium on Intelligent Autonomous Vehicles (IAV), 2004.

4. F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the Condensation algorithm for

robust, vision-based mobile robot localization. In Proc. of the IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), 1999.

5. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile robots.

In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 1998.

6. A Doucet. On sequential simulation-based methods for bayesian filtering. Technical

report, Signal Processing Group, Departement of Engeneering, University of Cambridge,

1998.

7. P. Elinas and J.J. Little. σMCL: Monte-Carlo localization for mobile robots with stereo

vision. In Proc. of Robotics: Science and Systems (RSS), 2005.

14 Maren Bennewitz, Cyrill Stachniss, Wolfram Burgard, and Sven Behnke

8. G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based SLAM with Rao-

Blackwellized particle filters by adaptive proposals and selective resampling. In Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

9. H.-M. Gross, A. Köning, C. Schröter, and H.-J. Böhme. Omnivision-based probabilistic

self-localization for a mobile shopping assistant continued. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2003.

10. Y. Ke and R. Sukthankar. PCA-SIFT: A more distinctive representation for local image

descriptors. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2004.

11. J. Kŏsécka and L. Li. Vision based topological Markov localization. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2004.

12. L. Ledwich and S. Williams. Reduced SIFT features for image retrieval and indoor local-

ization. In Australian Conf. on Robotics and Automation (ACRA), 2004.

13. T. Lemaire, S. Lacroix, and J. Solà. A practical 3D bearing-only SLAM algorithm. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2005.

14. J.S. Liu. Metropolized independent sampling with comparisons to rejection sampling and

importance sampling. Statist. Comput., 6:113–119, 1996.

15. D. G. Lowe. Object recognition from local scale-invariant features. In Proc. of the

Int. Conf. on Computer Vision (ICCV), 1999.

16. E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro. Image-based Monte-Carlo lo-

calisation with omnidirectional images. Robotics & Autonomous Systems, 48(1):17–30,

2004.

17. K. Mikolajczk and C. Schmid. A performance evaluation of local descriptors. In Proc. of

the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2003.

18. J. Neira and J. D. Tardós. Data association in stochastic mapping using the joint compat-

ibility test. IEEE Transactions on Robotics and Automation, 17(6):890–897, 2001.

19. T. Röfer and M. Jüngel. Vision-based fast and reactive Monte-Carlo Localization. In

Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2003.

20. S. Se, D.G. Lowe, and J.J. Little. Global localization using distinctive visual features. In

Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2002.

21. R. Sim, P. Elinas, M. Griffin, and J.J. Little. Vision-based SLAM using the Rao-

Blackwellised particle filter. In IJCAI Workshop on Reasoning with Uncertainty in

Robotics (RUR), 2005.

22. M. Sridharan, G. Kuhlmann, and P. Stone. Practical vision-based Monte Carlo localiza-

tion on a legged robot. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),

2005.

23. J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization by combining

an image retrieval system with Monte Carlo Localization. IEEE Transactions on Robotics

and Automation, 21(2):208–216, 2005.

[W1] P. Pfaff, R. Kuemmerle, D. Joho, C. Stachniss, R. Triebel, and

W. Burgard. Navigation in combined outdoor and indoor environments us-

ing m ulti-level surface maps. In Workshop on Safe Navigation in Open and

Dynamic Environments a t the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), San Diego, CA, USA, 2007.

Navigation in Combined Outdoor and Indoor Environments

using Multi-Level Surface Maps

P. Pfaff∗ R. Kümmerle∗ D. Joho∗ C. Stachniss∗ R. Triebel+ W. Burgard∗

∗Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
+Autonomous Systems Lab, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland

Abstract— Whenever mobile robots are used in real world
applications, the ability to learn an accurate model of the
environment and to localize itself based on such a model are
important prerequisites for reliable operation. Whereas these
problems have been successfully solved in the past for most
indoor tasks, in which the robot is assumed to operate on a flat
surface, such approaches are likely to fail in combined indoor
and outdoor environments in which the three-dimensional
structure of the world needs to be considered. In this paper,
we consider the problem of localizing a vehicle that operates
in 3D indoor as well as outdoor settings. Our approach is
entirely probabilistic and does not rely on GPS information.
It is based on so-called multi-level surface maps which are
an extension of the well-known elevation maps. In addition to
that, we present a technique that allows the robot to actively
explore the environment. This algorithm applies a decision-
theoretic approach and considers the uncertainty in the model
to determine the next action to be executed. In practical
experiments, we illustrate the properties as well as advantages
of our approach compared to other techniques.

I. INTRODUCTION

Robots that are able to acquire an accurate model of their

environment and to localize themselves based on such a

model are regarded as fulfilling a major precondition of truly

autonomous mobile vehicles.

The problem of mobile robot localization with range sen-

sors in outdoor environments arises whenever GPS signals

are missing due to occlusions caused by buildings, bridges, or

trees. Furthermore, in case of combined outdoor and indoor

environments, relying on GPS information will obviously

lead to failure in the pose estimate. In such situations, a

mobile robot typically has to estimate its position in the

environment using its exteroceptive sensors and a map of the

environment. However, when a robot attempts to perceive its

environment to localize itself, the choice of the direction of

the perception can substantially influence the accuracy of the

position estimate. The localization task requires a given map

of the environment. In case such a model is not available, it

has to be learned by the robot. This problem is also known as

autonomous exploration. So far, most approaches to mobile

robot exploration assume that the robot lives in a plane.

They typically focus on generating motion commands that

minimize the time needed to cover the whole terrain [13],

[24]. A frequently used technique is to build an occupancy

grid map since it can model unknown locations efficiently.

The robot seeks to reduce the number of unobserved cells

or the uncertainty in the grid map. In the three-dimensional

space, however, such approaches are not directly applicable.

The size of occupancy grid maps in 3D, for example,

prevents the robot from exploring an environment larger than

a few hundred square meters.

The contribution of this paper are solutions to the local-

ization and to the autonomous exploration problem in three-

dimensional, combined outdoor and indoor environments.

Both techniques use multi-level surface maps to provide

an appropriate model of the environment. The MCL-based

localization technique does not require GPS information

and uses only proximity data from a laser range finder as

well as odometry information. Our exploration technique

extents existing exploration approaches used in 2D to the

three-dimensional space. It selects actions that reduce the

uncertainty of the robot about the world. It does so by

reasoning about potential measurements that can be obtained

when selecting an action. Our approach is able to deal

with negative obstacles like, for example, abysms, which is

a problem of robots exploring a three-dimensional world.

Experiments carried out in simulation and on a real robot

show the effectiveness of our techniques.

II. RELATED WORK

The problem of localizing a mobile robot in indoor and

outdoor environments with range sensors or cameras has

been studied intensively in the past. In indoor environments,

Monte-Carlo localization (MCL) [5] is one of the current

state-of-the-art approaches. Outdoors, Adams et al. [1] ex-

tract predefined features from range scanners and apply a

particle filter for localization. Davison and Kita [4] utilize a

Kalman filter for vision-based localization with point features

on non-flat surfaces. Recently, Agrawal and Konolige [2]

presented an approach to robot localization in outdoor ter-

rains based on feature points that are tracked across frames

in stereo images. Lingemann et al. [15] recently described a

method for fast localization in in- and outdoor environments.

Their system operates on raw data sets, which results in

huge memory requirements. Additionally, they apply a scan-

matching routine for localization, which does not facilitate

global localization. To reduce the memory requirements of

outdoor terrain representations, several researchers applied

elevation maps [3], [12], [14], [17]. A probabilistic approach

to localize a planetary rover in such elevation maps has been

described by Olson [16]. In this system, elevation maps were

sufficient to robustly localize the vehicle, mainly because

the number of vertical and overhanging objects is negligible

in environments like on Mars. However, environments on

earth contain many objects like buildings or trees which have

vertical or even overhanging surfaces. To address this issue,

we use multi-level surface (MLS) maps [22] to represent

the environment in this paper. MLS maps discretize the

environment into cells and store for each cell a list of patches

representing the individual layer in the environment as well

as vertical structures.

So far, most approaches to mobile robot exploration as-

sume that the robot lives in a plane. They typically focus

on generating motion commands that minimize the time

needed to cover the whole terrain [13], [24]. A frequently

used technique is to build an occupancy grid map since it

can model unknown locations efficiently. The robot seeks

to reduce the number of unobserved cells or the uncertainty

in the grid map [24], [18]. In the three-dimensional space,

however, such approaches are not directly applicable. The

size of occupancy grid maps in 3D, for example, prevents

the robot from exploring an environment larger than a few

hundred square meters.

Whaite and Ferrie [23] presented an exploration approach

in 3D that uses the entropy to measure the uncertainty in

the geometric structure of objects that are scanned with

a laser range sensor. In contrast to the work described

here, they use a fully parametric representation of the ob-

jects and the size of the object to model is bounded by

the range of the manipulator. Surmann et al. [20] extract

horizontal planes from a 3D point cloud and construct a

polygon with detected lines (obstacles) and unseen lines (free

space connecting detected lines). They sample candidate

viewpoints within this polygon and use 2D ray-casting to

estimate the expected information gain. In contrast to this,

our approach uses an extension of 3D elevation maps and

3D ray-casting to select the next viewpoint. González-Baños

and Latombe [9] also build a polygonal map by merging

safe regions. Similar to our approach, they sample candidate

poses in the visibility range of frontiers to unknown area.

But unlike in our approach, they build 2D maps and do not

consider the uncertainty reduction in the known parts of the

map. Fournier et al. [8] present an 3D exploration approach

utilizing an octree structure to represent the environment.

However, it is unclear if the presented approach is able to

explore on multiple levels.

The contribution of this paper are techniques for au-

tonomously learning MLS maps with a mobile robot based

on laser range finder and odometry only. We furthermore

describe how a robot can utilize such a model to track its own

pose and to globally localize itself. Our approach does not

rely on GPS information and thus allows a robot to operate

in combined indoor and outdoor scenarios.

III. 3D MODEL OF THE ENVIRONMENT

Our exploration system uses multi-level surface maps

(MLS maps) as proposed by Triebel et al. [22]. MLS maps

use a two-dimensional grid structure that stores different

elevation values. In particular, they store in each cell of a

Fig. 1. Standard elevation map (left) which is not able to represent the
underpass under the bridge correctly, and multi-level surface map (right)
that correctly represents the height of the vertical objects and is able to
model multiple levels.

discrete grid the height of the surface in the corresponding

area. In contrast to elevation maps, MLS maps allow us

to store multiple surfaces in each cell. Each surface is

represented by a Gaussian with the mean elevation and its

uncertainty σ. In the remainder of this paper, these surfaces

are referred to as patches. This representation enables a

mobile robot to model environments with structures like

bridges, underpasses, buildings, or mines. They also enable

the robot to represent vertical structures by storing a vertical

depth value for each patch. Figure 1 shows two example

maps from the same environment. The left image shows that

it is not possible to represent an underpass , overhanging and

vertical objects correctly using elevation maps. On the other

hand the right image illustrates the ability of the MLS map

approach to represent all these structures correctly.

IV. GPS-FREE LOCALIZATION USING MLS MAPS

In this chapter, we assume that the robot already has a

multi-level surface map available for localization. In the next

chapter, we then present a technique to autonomously learn

a MLS map.

To estimate the pose x = (x, y, z, ϕ, ϑ, ψ) of the robot in

its environment, we consider probabilistic localization, which

follows the recursive Bayesian filtering scheme. The key idea

of this approach is to maintain a probability density p(xt |
z1:t,u0:t−1) of the robot’s location xt at time t given all

observations z1:t up to time t and all control inputs u0:t−1

up to time t− 1. This posterior is updated as follows:

p(xt | z1:t,u0:t−1) =

α · p(zt | xt) ·
∫

p(xt | ut−1,xt−1) · p(xt−1) dxt−1.(1)

Here, α is a normalization constant ensuring that p(xt |
z1:t,u0:t−1) sums up to one over all xt. The terms

to be described in Eqn. (1) are the prediction model

p(xt | ut−1,xt−1) and the sensor model p(zt | xt). One ma-

jor contribution of this paper is an appropriate computation

of these models in the case that an MLS map is given.

For the implementation of the described filtering scheme,

we use a sample-based approach which is commonly known

as Monte Carlo localization [5]. Monte-Carlo localization

is a variant of particle filtering [6] where each particle

corresponds to a possible robot pose and has an assigned

weight wi. The belief update from Eqn. (1) is performed by

the following two alternating steps:

1) In the prediction step, we draw for each particle with

weight wi a new particle according to wi and to the

prediction model p(xt | ut−1,xt−1).

nS1

S1

v̂t

nS2

nS3

nS4

nS5

v̂t+1

v̂t+2

v̂t+3
S2

S3 S4

S5

vt vt+1 vt+2 vt+3

Fig. 2. Application of our prediction model to a series of 2D motion
vectors (black). They are rotated to estimate the 3D motion vectors (red).
The dashed line indicates the tolerance interval for the z-coordinate.

2) In the correction step, a new observation zt is inte-

grated. This is done by assigning a new weight wi to

each particle according to the sensor model p(zt | xt).

A. Prediction Model for MLS Maps

The prediction model p(xt | ut−1,xt−1) we use is based

on an approach introduced by Eliazar et al. [7]. It reflects

systematic errors such as drift, as well as the uncertainty in

the execution of an action u = (xu, yu, θu), where (xu, yu)
is the translation and θu the rotation angle. To incorporate

this 2D motion into our 3D map we proceed as follows. First,

we obtain a possible outcome (xv, yv, θv) of the action by

applying the probabilistic model. Then, we adapt the motion

vector v = (xv, yv) to the shape of the 3D surface traversed

by the robot. This surface is obtained from the given MLS

map and consists of planar square patches. To adapt the

motion vector, we discretize it into segments of length c,
which is the cell size of the MLS map, in our case 0.1 m.

For each segment, we determine the corresponding surface

patch S and rotate the segment according to the orientation

(ϕS , ϑS) of the patch, where ϕS is the rotation about the

x-axis and ϑS the rotation about the y-axis. The patch

orientation is computed from the normal vector nS of the

patch S, which in turn is obtained by fitting a plane into the

local vicinity of S. The normal vector computation is done

beforehand and constitutes an extension to the framework of

MLS maps. In general, it is not robust against noise and small

errors in the MLS map, which results in an uncertainty of the

patch orientation. In our approach, we model this uncertainty

by adding Gaussian noise to the orientation parameters ϕS

and ϑS . Thus, our prediction model expresses the uncertainty

in 5 out of 6 position parameters – x, y and ψ by the 2D

motion model and ϕ and ϑ by our 3D extension. For the

last one – the height value z – we have the constraint that

the robot must stay on the ground. Therefore, we adjust

the z-value manually whenever it is too high or too low.

This is illustrated in Figure 2. Finally, after concatenating

all transformed motion vector segments, we obtain a new

3D motion vector v̂ which is added to the current estimate

of the robot position xt−1 to obtain a new position estimate

xt.

zk dk

Fig. 3. Example of a single beam which ends close to vertical object in
the MLS map. In the end point model, the probability phit(zk | x) only
depends on the distance dk between the end point of the k-th laser beam
and the closest obstacle in the map.

B. Endpoint Sensor Model for MLS Maps

In our sensor model, we treat each beam independently

and determine the likelihood of a whole laser scan by

factorizing over all beams. Thus, we have

p(z | x) =

K
∏

k=1

p(zk | x) (2)

where K is the number of beams in each laser measurement

z. In Eqn. (2) and in the following, we drop the index

t for convenience. Our sensor model p(zk | x) is based

on an approach that has been introduced by Thrun [21] as

likelihood fields (LF) or end point model. In particular, we

formulate the sensor model p(zk | x) for each particular

beam as a mixture of three different distributions:

p(zk | x) = αhitphit(z
k | x)+

αrandprand(z
k | x) + αmaxpmax(zk | x), (3)

where phit is a normal distribution N (0, σ2) that models

situations in which the sensor detects an obstacle. Random

measurements are modeled using a uniform distribution

prand(z
k | x). Maximum range measurements are covered

by a point mass distribution pmax(zk | x). These three dis-

tributions are weighted by the non-negative parameters αhit,

αrand, and αmax, which sum up to one. The values for αhit,

αrand, αmax, and σ2 used in our current implementation

have been determined empirically.

In the end point model, the probability phit(zk | x) only

depends on the distance dk between the end point of the k-

th laser beam and the closest obstacle in the map. Figure 3

shows an example of a single beam zk which ends close to

vertical object in the MLS map. Thus, the physical property

of the laser beam is ignored, because the model just uses the

end point and does not consider the beam characteristic of the

laser. Therefore, we need to calculate the global coordinates

for a beam end point. If we denote the angle of the k-th beam

relative to the zero angle with ζk, then the end point p̃k =
(x̃k, ỹk, z̃k)T of that beam in the robot’s own coordinate

frame is calculated as

x̃k

ỹk

z̃k

 =

x̂
ŷ
ẑ

+Rzk

cos(ζk)
sin(ζk)

0

 , (4)

where (x̂, ŷ, ẑ)
T

denotes the position of the sensor at time

t and R is a rotation matrix that expresses the 3D sensor

orientation in the robot’s coordinate frame. For a given robot

pose x = (x, y, z, ϕ, ϑ, ψ) at time t we can compute the

global coordinates pk = (xk, yk, zk)T of the k-th beam end

point pk as follows

xk

yk

zk

 = R(ϕ, ϑ, ψ)

x̃k

ỹk

z̃k

+

x
y
z

 , (5)

where R(ϕ, ϑ, ψ) denotes the rotation matrix for the given

Euler angles ϕ, ϑ, and ψ. In MLS maps, obstacles are

represented as vertical surface patches, which can be seen as

vertical segments of occupied space. Unfortunately, there is

no efficient way to find the closest of all vertical segments to

a given beam end point. Therefore, we use an approximation

by uniformly sampling a set P of 3D points from all vertical

patches. The distance dk of the k-th beam end point pk to

the closest obstacle is then approximated as the Euclidean

distance d(pk,P) between pk and P . This distance can be

efficiently calculated by storing all points from P in a kD-

tree.

Equations. (4) and (5) describe a 3D transform T (zk;x)
of the measurement zk at position x. Using this and the fact

that phit is Gaussian, we can compute phit as

phit(z
k | x) ≈ 1√

2πσ2
exp

(

−1

2

(

d(pk,P)

σ

)2
)

, (6)

where pk = T (zk;x). Plugging this into Eqn. (3) and the

result into Eqn. (2), we obtain the entire sensor model.

V. AUTONOMOUS EXPLORATION IN

THREE-DIMENSIONAL ENVIRONMENTS

The previous section covered the problem of localizing

a vehicle in a MLS map. In this section, we relax the

assumption that such a model is provided and present an

approach to autonomously learn a MLS map with our mobile

robot.

In order to autonomously explore the environment, we first

need to perform a traversability analysis, thereby avoiding

positive and negative obstacles. Then we determine candidate

viewpoints in the vicinity of unexplored areas and evaluate

those candidate viewpoints by considering the travel costs to

a particular viewpoint and the expected information gain of

a measurement at this viewpoint.

A. Traversability Analysis

A grid based 2D traversability analysis usually only takes

into account the occupancy probability of a grid cell –

implicitly assuming an even environment with only positive

obstacles. In the 3D case, especially in outdoor environments,

we additionally have to take into account the slope and the

roughness of the terrain, as well as negative obstacles such

as abysms which are usually ignored in 2D representations.

Each patch p will be assigned a traversability value τ(p) ∈
[0, 1]. A value of zero corresponds to a non-traversable patch,

a value greater zero to a traversable patch, and a value of

one to a perfectly traversable patch. In order to determine

τ(p), we fit a plane into its local 8-patch neighborhood

by minimizing the z-distance of the plane to the elevation

values of the neighboring patches. We then compute the

slope and the roughness of the local terrain and detect

obstacles. The slope is defined as the angle between the

fitted plane and a horizontal plane and the roughness is

computed as the average squared z-distances of the height

values of the neighboring patch to the fitted plane. The

slope and the roughness are turned into traversability values

τs(p) and τr(p) by linear interpolation between zero and a

maximum slope and roughness value respectively. In order

to detect obstacles we set τo(p) ∈ {0, 1} to zero, if the

maximum squared z-distance of a neighboring patch exceeds

a threshold, thereby accounting for positive and negative

obstacles, or if the patch has less than eight neighbors. The

latter is important for avoiding abysms in the early stage

of an exploration process, as some neighboring patches are

below the edge of the abysm and therefore are not visible

yet.

The combined traversability value is defined as τ(p) =
τs(p) ·τr(p) ·τo(p). Next, we iteratively propagate the values

by convolving the traversability values of the patch and its

eight neighboring patches with a Gaussian kernel. For non-

existent neighbors, we assume a value of 0.5. The number

of iterations depends on the used cell size, the robot’s size

and a safety margin. In order to enforce obstacle growing,

we do not perform a convolution if one of the neighboring

patches is non-traversable (τ = 0), but rather set the patch’s

traversability directly to zero in this case.

B. Viewpoint Generation

We follow the popular frontier-based approach to explo-

ration [24] and adapt it to the needs of a 3D environment.

In our approach, a patch is considered as explored if it has

eight neighbors and its uncertainty, measured by the entropy

in the patch, is below a threshold. Additionally, we track the

entropy as well as the number of neighbors of a patch. If

the entropy or number of non-existing neighbors cannot be

reduced as expected over several observations, we consider

it to be explored nonetheless since further observations do

not seem to change the state of the patch.

A frontier patch is defined as an unexplored patch with at

least one explored neighboring patch. Most of these patches

have less than eight neighbors and therefore are considered as

non-traversable, since they might be at the edge of an abysm.

Therefore, we cannot drive directly to a frontier patch.

Instead, we use a 3D ray-casting technique to determine

close-by candidate viewpoints. A patch is considered as

a candidate viewpoint, if it is reachable and there is at

least one frontier patch that is likely to be observable from

that viewpoint. Instead of using ray-casting to track emitted

beams from the sensor at every reachable position, we use

a more efficient approach. We emit virtual beams from

the frontier patch instead and then select admissible sensor

locations along those beams (Figure 4). This will reduce the

number of needed ray-casting operations as the number of

frontier patches is much smaller than the number of reachable

patches.

occ

d

d

free

Fig. 4. To generate viewpoints, we emit laser beams from viewpoints
and determine admissible sensor positions along those beams. The interval
dfree needs to be free and the interval docc has to contain a reachable
patch.

Fig. 5. Outdoor map showing sampled candidate viewpoints as red (dark
gray) spheres.

In practice, we found it useful to reject candidate view-

points, from which the expected information gain is below

a threshold. We also cluster the frontier patches by the

neighboring relation, and prevent patches from very small

frontier clusters to generate candidate viewpoints. This will

lead to a more reliable termination of the exploration process.

Candidate viewpoints of an example map are shown in

Figure 5.

C. Viewpoint Evaluation

The utility u(v) of a candidate viewpoint v, is computed

using the expected information gain E{I(v)} and the travel

costs t(v). As the evaluation involves a costly 3D ray-casting

operation, we reduce the set of candidate viewpoints by

sampling uniformly a fixed number of viewpoints from that

set.

In order to simultaneously determine the shortest paths to

all candidate viewpoints, we use a deterministic variant of

the value iteration. The costs of moving from a patch p to

p′ can be defined as

c(p, p′) = d(p, p′) + w(1 − τ(p′)) (7)

where d(p, p′) describes the Euclidian distance and τ(p′)
the traversability of p′. The constant w is used to weight

the penalization for traversing poorly traversable patches.

The travel costs t(v) of a viewpoint v is defined as the

accumulated step costs of the shortest path to that viewpoint.

The expected information gain considers the uncertainty

reduction in the known parts of the map as well as the

information gain caused by new patches that are expected

to be discovered.

To determine the patches that are likely to be hit by a laser

measurement, we first perform a ray-cast operation similar

to [19]. We determine the intersection points of the cell

boundaries and the 3D ray projected onto the 2D grid. In

a second step, we determine for each cell the height interval

covered by the ray and check for collisions with patches

contained in that cell by considering their elevation and depth

values.

Let the sequence L = 〈l1, . . . , lm〉 be an equidistant

discretization of the maximum laser range. If the simulated

laser ray hits a patch in distance that falls into lh, we

can divide L into three subsequences Lf , Lh, and Ln,

whereas Lf = 〈l1, . . . , lh−1〉 contains the collision free

traversed distances, Lh = 〈lh〉 contains the above mentioned

discretized distance to the patch that has been hit, and

Ln = 〈lh+1, . . . , lm〉 contains the non-traversed distances.

Accordingly, if the simulated ray does not hit a patch, this

will result in three subsequences Lf = L and Lh = Ln = 〈〉.
For each traversed distance l ∈ Lf ∪ Lh we expect the

ray during a real measurement to end after distance l with

probability p(l). If l ∈ Lf , then this corresponds to the

discovery of a new patch, which implies an information gain

If (l). If l ∈ Lh, then this corresponds to a measurement of

an already known patch, which implies an information gain

Ih(l). The expected information gain of ray r then is defined

as

E{I(r)} =
∑

l∈L

p(l)I(l) =
∑

l∈Lf

p(l)If (l) +
∑

l∈Lh

p(l)Ih(l).

(8)

Here we assume p(l) = 0 for l ∈ Ln, as we do not expect

the ray to travel through a known patch.

To assess the probabilities p(l), we created statistics

through simulated measurements in a large outdoor map

which yielded a conditional probability distribution ps(d |
αv) denoting the probability of hitting an obstacle after

distance d when the elevation angle of the ray is αv . The

intuition behind this is, that it is much more likely for

downward pointing rays to hit a patch than for upward

pointing rays. Secondly, the probability to hit an obstacle

is not equally distributed along the laser range, especially

not for downward pointing rays. Using this distribution, we

can define

p(l) =

ps(l | αv) l ∈ Lf

∑

li∈Lh∪Ln ps(li | αv) l ∈ Lh

0 l ∈ Ln

(9)

with αv being the elevation angle of the current ray r.

The information gain Ih is defined by the uncertainty

reduction in the known map. We therefore temporary add

a new measurement mh into the grid cell of the hit patch ph

with a corresponding mean and variance that depends on the

distance lh of the simulated ray. The mean and variance of

the patch ph will then be updated by using a Kalman filter.

As a patch is represented as a Gaussian, we can compute the

entropy H(p) of a patch as

H(p) =
1

2
log
(

2eπσ2
)

. (10)

The information gain Ih(l) is then defined as the difference

Ih(l) = H(ph) −H(ph | mh) l ∈ Lh. (11)

between the entropy H(ph) of the patch ph before and the

entropy H(ph | mh) after the temporary incorporation of the

simulated measurement mh.

For the information gain If we will proceed similarly.

As a newly discovered patch pf will be inserted with

an uncertainty σ proportional to the distance l ∈ Lf of

measurement mf , we can thereby compute H(pf | mf) as

in Eqn. 10. We assume that the uncertainty σb of the patch

before it has been measured, is bounded by the distance dp

to the nearest patch in that cell and choose, as a heuristic, an

uncertainty so that 3σb = dp. Using σb we can define H(pf)
and finally compute

If (l) = H(pf) −H(pf | mf) l ∈ Lf . (12)

The expected information gain E{I(v)} of a viewpoint v is

then defined as the sum E{I(v)} =
∑

r∈RE{I(r)} of the

expected information gains of all casted rays r ∈ R.

Finally, the utility u(v) of each candidate viewpoint is

computed by a relative expected information gain and travel

costs as

u(v) = α
E{I(v)}

maxxE{I(x)} +(1−α)
maxx t(x) − t(v)

maxx t(x)
. (13)

By varying the constant α ∈ [0, 1] one can alter the

exploration behavior by trading off the travel costs and the

expected information gain.

D. Overlap

As explained before, we choose the viewpoint with the

best utility as the next goal point. However, to ensure that

we can construct a globally consistent map, we have to

continously track the position of the vehicle. We construct

a network of constraints between poses according to the

observations. We then apply an efficient global optimization

approach [10], [11] to correct the poses.

To ensure that the relations between poses can be accu-

rately determined, a certain overlap between consecutive 3D

scans is required. We perform several 3D scans along the

way to ensure this sufficient overlap. We use the 3D ray-

casting technique to simulate a 3D scan and estimate the

overlap of a real scan at each patch pi of the planned path

〈p1, . . . , pn〉. The estimated overlap ô(pi) = rl/|R| is ratio

of the number of rays rl that hit a patch of the last local map

to the number of all casted rays |R| for a simulated scan at

patch pi. The patch pi with the highest index i ∈ {1, . . . , n}
whose overlap ô(pi) is above a threshold is chosen as the

subgoal for the next 3D scan.

Based on the map estimate so far, we apply the localization

approach described in the previous chapter. Based on the

most likely pose reported by the localization module, we

perform scan-matching to refine the estimate. The relation

between poses that are determined in this way are then added

to the constraint network. The exploration ends, if the set of

candidate viewpoints is empty.

VI. EXPERIMENTS

In this section, we present experiments designed to il-

lustrate the properties of the presented techniques as well

as their advantages compared to other techniques. First, we

present experiments that evaluate the GPS-free localization

approach using laser range finder only. Then, we investigate

the properties of our uncertainty-driven exploration approach.

A. Localization

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16p
a
rt

ic
le

s
 c

lo
s
e
r

th
a
n
 1

m
 t
o
 g

ro
u
n
d
 t
ru

th
 [
%

]

resampling step

MLS Map
Elevation Map

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16p
a
rt

ic
le

s
 c

lo
s
e
r

th
a
n
 1

m
 t
o
 g

ro
u
n
d
 t
ru

th
 [
%

]

resampling step

MLS Map
Elevation Map

Fig. 6. Convergence of the particles to the true position of the robot with
500,000 (left) and 1,000,000 (right) particles. The x-axes depict the number
of resampling steps, while the y-axes show the percentage of particles that
are closer than 1m to the true position.

 0

 20

 40

 60

 80

 100

250000 500000 750000 1000000

s
u

c
c
e

s
s
 r

a
te

 [
%

]

particles

MLS Map
Elevation Map

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600

tr
a
n
s
la

ti
o
n
 e

rr
o
r

[m
]

time step

MLS Map
Elevation Map

Fig. 7. The left image depicts the number of successful localizations after
15 resampling steps for the two different map representations for particle
numbers from 250,000 up to 1,000,000. The right image shows the average
localization error over all particles for a tracking experiment with 1,000
particles. In average the use of the MLS maps leads to smaller errors.

The first set of experiments is designed to evaluate the

performance of the MLS map approach in the context of a

global localization task. Figure 6 depicts the convergence of

the particles to the true position of the robot with 500, 000
and 1, 000, 000 particles. Whereas the x-axis corresponds to

the resampling step, the y-axis shows the number of particles

in percent that are closer than 1m to the true position, which

has been computed by a tracking experiment with 100, 000
particles. Shown are the evolutions of these numbers when

the MCL is applied on standard elevation maps and on MLS

maps. Note that the elevation map does not reach 100%.

This is due to the fact that the sensor model for the stan-

dard elevation map relies on a highly smoothed likelihood

function, which is good for global localization but does not

achieve maximal accuracy during tracking. The application

of a more peaked sensor model in the case of the standard

elevation map would lead to much higher divergence rates.

In both cases, a t-test showed that it is significantly better to

apply the MLS maps than the standard elevation maps for

the global localization task. Experiments with 250,000 and

750,000 particles showed the same behavior. The left image

of Figure 7 shows the number of successful localizations

for the two different map representations and for different

numbers of particles. Here, we assumed that the localization

was achieved when every particle differed by at most 1m
from the true location of the robot. We can see that the global

localization performs more robust on the MLS map than on

the standard elevation map.

Fig. 8. MLS map used for the localization experiments. The area
represented by this map spans approximately 195 by 146 meters. The blue
/ dark gray line shows the localized robot poses. The yellow / light gray
line shows the pure odometry. The traversed trajectory has a length of 284
meters.

As a second set of experiments we carried out experiments,

in which we analyzed the accuracy of the MLS map approach

in the context of a position tracking task. To obtain the

corresponding data set, we steered along a loop in our

campus environment. The traversed trajectory has a length

of 284 meters. Figure 8 depicts a top view of the MLS map

of our test environment. The blue / dark gray line shows

the localized robot poses. The yellow / light gray line shows

the pure odometry. The right image of Figure 7 depicts the

average localization error for a tracking experiment with

1,000 particles. As can be seen from the figure, the MLS map

robot

Fig. 9. Overview of the simulation environment and a detailed view of
the entrance on the first floor with the robot in front of it.

approach outperforms the standard elevation map approach.

The tracking experiments have been computed online on a

standard PC with an AMD Athlon 64 3200+ processor. In

the practical experiments we found that the use of the MLS

maps results in a computational overhead of no more than

10% compared to elevation maps.

B. Exploration

The first exploration experiment is designed to show the

ability of our exploration technique to take full advantage

of the capabilities that MLS maps provide, e.g. representing

multiple surface layers on top of each other. In a simulation

environment with realistic rigid body physics we constructed

a two-story building (Figure 9). It consists of two rooms

located on top of each other, each 12 by 8 meters in size,

and an unsecured balcony, where the robot is initially located.

The house is surrounded by some trees and bushes, which

are approximated by cuboids. We restricted the location of

possible viewpoints to a rectangular area around the house in

order to focus on the exploration of the house rather than the

free space around the house. The robot explored the balcony,

traversed the upper room and proceeded down a ramp that

connects the upper room with the ground floor. The robot

drove around the house and then entered the entrance to

the room in the first floor. During the exploration of the

lower room several 3D loops with positions at the upper

room have been closed. He then visited a last viewpoint

at the back of the house and then the exploration ended.

The robot visited 18 viewpoints, performed 29 3D scans and

traveled a distance of 212 meters. The final map consists

of 185,000 patches. We demonstrated with this experiment,

that we are able to deal with several challenges that simple

mapping approaches are not able to deal with, e.g. negative

obstacles and multiple surface layers. A 2D approach would

simply have fallen down the unsecured balcony, and simple

3D mapping approaches like, for example, elevation maps,

would not support the exploration of the two storys on top

of each other. Figure 10 shows the constructed map with a

detailed view of the entrance to the lower room.

To demonstrate the ability to explore real environments,

we performed an experiment on the campus of the University

of Freiburg using an ActivMedia Pioneer 2-AT equipped

with a SICK laser range scanner mounted on a pan-tilt unit.

To give the exploration an initial direction, we restricted

the generation of viewpoints to the half-plane in front of

the initial location of the robot. The robot followed a path

Fig. 10. Detailed view of the final traversability map showing the robot’s
trajectory as a blue line.

bordered by the wall of a house on the left side and grassland

on the right side (Figure 11). Then he entered a small

courtyard on the left, which was sufficiently explored after

a few scans. He then proceeded to explore the rest of the

campus until he reached the border of the defined half-

plane. The figure shows four snapshots of the exploration

process. In the last image, the robot traveled 186 meters,

visited 18 viewpoints and performed 26 3D scans. The

corresponding map including the traversability information

contains about 410,000 patches and is depicted in Figure 12.

In both experiments, we set α = 0.5 in order to equally

consider the travel costs and expected information gain.

VII. CONCLUSION

In this paper, we considered the problem of autonomously

learning a three-dimensional model for combined outdoor

and indoor environments with a mobile robot. We further-

more demonstrated how to localize a mobile vehicle based

on such a model without requiring GPS information. Our

approach uses proximity data from a laser range finder as

well as odometry. Using our three-dimensional model of the

environment, namely multi-level surface maps, we obtain

significantly better results compared to elevation maps. We

also presented an algorithm to actively acquire such maps

from an unknown environment. This approach is decision-

theoretic and trades off the cost of carrying out an action with

the expected information gain of future observations. The

approach also considers negative obstacles such as absyms

which is an important prerequisite for robots operating in 3D

environments.

ACKNOWLEDGMENT

This work has partly been supported by the DFG within

the Research Training Group 1103 and under contract num-

ber SFB/TR-8, by the EC under contract number FP6-IST-

34120-muFly, action line: 2.5.2.: micro/nano based subsys-

tems, and under contract number FP6-004250-CoSy.

start

robot

next goal

Fig. 11. Course of the exploration process on the university campus.

Fig. 12. Traversability map of the university campus.

REFERENCES

[1] M. Adams, S. Zhang, and L. Xie. Particle filter based outdoor robot
localization using natural features extracted from laser scanners. In
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2004.

[2] M. Agrawal and K. Konolige. Real-time localization in outdoor
environments using stereo vision and inexpensive gps. In International

Conference on Pattern Recognition (ICPR), 2006.

[3] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons,
and W. R. L. Whittaker. Ambler: An autonomous rover for planetary
exploration. IEEE Computer Society Press, 22(6):18–22, 1989.

[4] A Davison and N. Kita. 3d simultaneous localisation and map-building
using active vision for a robot moving on undulating terrain. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition, Kauai.
IEEE Computer Society Press, December 2001.

[5] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proc. of the IEEE Int. Conf. on Robotics &

Automation (ICRA), Leuven, Belgium, 1998.

[6] A. Doucet, N. de Freitas, and N. Gordan, editors. Sequential Monte-

Carlo Methods in Practice. Springer Verlag, 2001.

[7] A. Eliazar and R. Parr. Learning probabilistic motion models for
mobile robots. In Proc. of the International Conference on Machine

Learning (ICML), 2004.

[8] Jonathan Fournier, Benoit Ricard, and Denis Laurendeau. Mapping
and exploration of complex environments using persistent 3D model.
In Proc. of the Canadian Conf. on Computer and Robot Vision (CRV),
pages 403–410, Montreal, Canada, 2007.

[9] H.H. González-Baños and J.-C. Latombe. Navigation strategies for
exploring indoor environments. Int. Journal of Robotics Research,
21(10-11):829–848, 2002.

[10] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard.
Efficient estimation of accurate maximum likelihood maps in 3d. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), San Diego, CA, USA, 2007. To appear.

[11] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree
parameterization for efficiently computing maximum likelihood maps
using gradient descent. In Proc. of Robotics: Science and Systems

(RSS), Atlanta, GA, USA, 2007.

[12] M. Hebert, C. Caillas, E. Krotkov, I.S. Kweon, and T. Kanade. Terrain
mapping for a roving planetary explorer. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 997–1002, 1989.

[13] S. Koenig and C. Tovey. Improved analysis of greedy mapping. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), Las Vegas, NV, USA, 2003.
[14] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury and;

M. Herrb, and R. Chatila. Autonomous rover navigation on unknown
terrains: Functions and integration. Int. Journal of Robotics Research,
21(10-11):917–942, 2002.

[15] K. Lingemann, H. Surmann, A. Nüchter, and J. Hertzberg. High-
speed laser localization for mobile robots. Journal of Robotics &

Autonomous Systems, 51(4):275–296, 2005.
[16] C.F. Olson. Probabilistic self-localization for mobile robots. IEEE

Transactions on Robotics and Automation, 16(1):55–66, 2000.
[17] C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot. 3-d modelling and

robot localization from visual and range data in natural scenes. In 1st

International Conference on Computer Vision Systems (ICVS), number
1542 in LNCS, pages 450–468, 1999.

[18] C. Stachniss and W. Burgard. Exploring unknown environments with
mobile robots using coverage maps. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1127–1132, Acapulco, Mexico,
2003.

[19] C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based ex-
ploration using rao-blackwellized particle filters. In Proc. of Robotics:

Science and Systems (RSS), pages 65–72, Cambridge, MA, USA, 2005.
[20] H. Surmann, A. Nüchter, and J. Hertzberg. An autonomous mobile

robot with a 3D laser range finder for 3D exploration and digitalization
of indoor environments. Journal of Robotics & Autonomous Systems,
45(3-4):181–198, 2003.

[21] S. Thrun. A probabilistic online mapping algorithm for teams of
mobile robots. International Journal of Robotics Research, 20(5):335–
363, 2001.

[22] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[23] P. Whaite and F. P. Ferrie. Autonomous exploration: Driven by

uncertainty. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(3):193–205, 1997.
[24] B. Yamauchi. Frontier-based exploration using multiple robots. In

Proc. of the Second International Conference on Autonomous Agents,
pages 47–53, Minneapolis, MN, USA, 1998.

[W2] H. Strasdat, C. Stachniss, M. Bennewitz, and W. Burgard. Visual

bearing-only simultaneous localization and mapping with improved feature

matching. In Fachgespräche Autonome Mobile Systeme (AMS), Kaiser-

slautern, Germany, 2007.

Visual Bearing-Only Simultaneous Localization and

Mapping with Improved Feature Matching

Hauke Strasdat, Cyrill Stachniss, Maren Bennewitz, and Wolfram Burgard

Computer Science Institute, University of Freiburg, Germany

Abstract. In this this paper, we present a solution to the simultaneous localiza-

tion and mapping (SLAM) problem for a robot equipped with a single perspective

camera. We track extracted features over multiple frames to estimate the depth in-

formation. To represent the joint posterior about the trajectory of the robot and a

map of the environment, we apply a Rao-Blackwellized particle filter. We present

a novel method to match features using a cost function that takes into account

differences between the feature descriptor vectors as well as spatial information.

To find an optimal matching between observed features, we apply a global opti-

mization algorithm. Experimental results obtained with a real robot show that our

approach is robust and tolerant to noise in the odometry information of the robot.

Furthermore, we present experiments that demonstrate the superior performance

of our feature matching technique compared to other approaches.

1 Introduction

Mapping is one of the fundamental problems in mobile robotics since representations

of the environment are needed for a series of high level applications. Without an ap-

propriate model of the environment, for example, delivery tasks cannot be carried out

efficiently. A large group of researchers investigated the so-called simultaneous local-

ization and mapping (SLAM) problem. The majority of approaches focuses on prox-

imity sensors to perceive the environment such as laser range finders, sonars, radars, or

stereo vision cameras.

In this paper, we address the problem of learning maps using a mobile robot equipped

with a single perspective camera only. Compared to a laser range finder, cameras have

the advantage that they are cheap and lightweight. One of the problems, however, is the

missing distance information to observed landmarks. This information is not provided

by a perspective camera. We present a mapping system that can use this sensor setup

to learn maps of the environment. Our approach applies a Rao-Blackwellized particle

filter to maintain the joint posterior about the trajectory of the robot and the map of the

environment. We furthermore present a novel method to establish the data association

between features. It takes into account the individual feature descriptor vectors as well

as spatial constraints. Our approach is able to compute the optimal matching between

observed and already tracked features. To achieve this, we apply the Hungarian method

which is an efficient global optimization algorithm. Experiments carried out with a real

robot illustrate the advantages of our technique for learning maps with robots using a

single perspective camera.

2 Related Work

Davison et al. [1,2] proposed a visual SLAM approach using a single camera that

does not require odometry information. The system works reliable in room-size en-

vironments but is restricted in the number of landmarks it can handle. Landmarks are

matched by looking back into the image at the expected region and by perfoming a lo-

cal match. Sim et al. [3] use a stereo camera in combination with FastSLAM [4]. SIFT

features [5] in both cameras are matched using their description vectors as well as the

epipolar geometry of the stereo system. The matching between observations and land-

marks is done using the SIFT descriptor only. In the bearing-only algorithm of Lemaire

et al. [6], the feature depth is estimated using a mixture of Gaussians. The Gaussians

are initialized along the first observation and they are pruned in the following frames.

3 Visual SLAM and Feature Matching

The joint posterior about the robot’s trajectory and the map is represented by a Rao-

Blackwellized Particle Filter (RBPF) similar to FastSLAM [4]. It allows the robot to

efficiently model the joint posterior in a sampled fashion.

To obtain landmarks, we extract speeded-up visual features (SURF) [7] out of the

camera images. These features are invariant to translation and scale. They can be ex-

tracted using a Fast-Hessian keypoint detector. The 64-dimensional feature descriptor

vector d is computed using horizontal and vertical Haar wavelet responses. A rotational

dependent version of SURF is used since the roll angle of the camera is fixed when it is

attached to a wheeled robot.

In order to obtain spherical coordinates of a feature given its position in the image,

we apply a standard camera model. In this way, pixel coordinates of detected keypoints

are transformed into the azimuthal angle θ and the spherical angle φ . The distance ρ to

the observed feature cannot be measured since we use only a monocular camera. The

tuple (θ ,φ) is referred to as bearing-only observation z.

3.1 Observation Model

In this section, we assume that a map of 3D-landmark is given. Each landmark l is

modeled by a 3D Gaussian (µ ,Σ). Moreover, we assume data association problem be-

tween observed features and landmarks is solved. These assumption are relaxed in the

subsequent sections.

For each particle k, each observation z = (θ ,φ)T perceived in the current frame is

matched with a landmark l ∈ M[k], where M[k] is the map carried by particle k. For each

complete assignment of the currently observed features to map features, an update of

the Rao-Blackwellized particle filter is carried out.

In order to determine the likelihood of an observation z in the update step of the

particle filter, we need to compute the predicted observation ẑ of landmark l = (µ ,Σ)
for particle k. To achieve this, we have to apply two transformations. First, we transform

world coordinates µ = (µ1,µ2,µ3)
T into camera-centric coordinates c = (c1,c2,c3)

T

using the function g. Afterwards, the camera-centric Cartesian point c is transformed

into camera-centric spherical coordinates ẑ = (ρ̂ , θ̂ , φ̂)T using the function h:

ẑ = h(g(µl,x
[k])) (1)

Here, x[k] is the current pose of particle k. The corresponding measurement uncer-

tainty Q is predicted using the Jacobean G = h′(g′(µl,x
[k])) as

Q = G ·Σ ·GT + diag(σρ ,σθ ,σφ). (2)

Here, Σ is the covariance matrix corresponding to landmark l, and σθ and σφ rep-

resent the uncertainty over the two spherical angles. The uncertainty over the depth σρ

is set to a high value in order to represent the bearing-only aspect of the update. The

observation likelihood λ is based on a Gaussian model as

λ = |Q|−
1
2 exp

−

1

2

0

θ − θ̂

φ − φ̂

T

Q−1

0

θ − θ̂

φ − φ̂

. (3)

Since the depth ρ to the observed feature is unknown, the pretended innovation (ρ − ρ̂)
is set to zero. We weight each particle k with respect to its observation likelihood λ .

Finally, the Kalman gain is calculated by K = Σ ·GT ·Q−1 so that the landmark

(µ ,Σ) can be updated using an extended Kalman filter (EKF) approach.

3.2 Depth estimation and Landmark Initialization

Although it is possible to integrate bearing-only observations into the RBPF, the full

3D information is necessary in order to initialize landmarks in a 3D map. We track fea-

tures over consecutive frames and estimate the depth ρ of the features using discrete

probability distributions similar to [1] but in a bottom-up manner. When a feature f is

initially observed, a 3D ray is cast from the camera origin o towards the observed fea-

ture. Equally weighted bins b[j] – representing different distances ρ [j] – are distributed

uniformly along this ray within a certain interval. This reflects the fact that initially

the distance to the feature is unknown. To get an estimate about the depth of the fea-

tures, they are tracked over consecutive frames (the next subsection explains the feature

matching process). In case the initial feature f is matched with a feature f̄ in the con-

secutive frame, the bins are projected back into that frame. They lie on the so-called

epipolar line [8], the projection of the 3D ray into the image. The depth hypotheses ρ [j]

are weighted according to the distance to the pixel location of feature f̄ using a Gaus-

sian model. Figure 1 illustrates the estimation process for two features in consecutive

frames. As soon as the variance of the histogram Var(ρ [j]) falls below a certain thresh-

old, the depth is estimated by the weighted average over the histogram ρ = ∑ j h[j] ·ρ [j].

If it is not possible to initialize a landmark within n frames, the corresponding feature

is discarded (here n=5).

O

Fig. 1. This figure shows the depth estimation process for two features (crosses). Left: A ray is

cast from the camera origin through the initial feature. Center: The ray is re-projected in the

consecutive frame. This line (dashed) is called epipolar line. Depth hypotheses (circles) were

distributed uniformly on the ray in the Cartesian space, which results in an irregular distribution in

the image space. Right: Hypotheses are weighted according to their distance to the corresponding

feature.

Depth Estimation as Preprocessing Step The robot’s pose at the point in time, when

the corresponding feature is observed initially, determines where the 3D ray is located

in the world. Naı̈vely, for each particle a histogram of depth hypotheses has to be main-

tained so that the bins can be updated accordingly to the individual particle poses. How-

ever, this would lead to an overhead in computation time and memory. Fortunately, it

is possible to maintain a depth histogram independently of the particles. The 3D ray is

described by the angles θ , φ and an arbitrary origin o. Over the following n frames, the

relative motion is added to o, so that the projection of the hypotheses’ positions into the

current frame can be calculated. Since the motion noise for wheeled robots is negligible

within n frames, it can be omitted for the depth estimation process only.

Landmark Initialization Once a feature is reliably tracked and the depth of a feature is

estimated, a landmark l is initialized. This has to be done for each particle k individually.

Using the particle pose at the time t f when feature f was observed for the first time, the

global Cartesian landmark position µ can be calculated by

µl := g−1
(

h−1
(

ρ f ,θ f ,φ f

)

,x
[k]
t f

)

, (4)

whereas the landmark uncertainty results from

Σ := G−T ·H−1 ·R ·H−T ·G−1. (5)

The uncertainty over the depth estimation process is reflected by the diagonal covari-

ance matrix R = diag(Var(ρ
[j]
f),σθ ,σφ).

3.3 Data Association

Finally, we describe how to match the current feature observations with landmarks in

the map as well as with tracked features which are not yet contained in the map. This

is done using the Hungarian method [9]. The Hungarian method is a general method

to determine the optimal assignment under a given cost function. In our case, we use a

cost function that takes into account differences of the feature descriptor vectors as well

as well as spatial information to determine matches between observations and tracked

features as well as between observations and landmarks.

Feature Matching Intuitively, features that are tracked to obtain the corresponding

depth ρ can be matched based on their descriptor vectors using the Euclidean distance.

However, this approach has a serious short-coming. Its performance is low on similar

looking features since it completely ignores the feature positions. Thus, we instead use

the distance of the descriptor vectors as a hard constraint. Only if the Euclidean distance

falls below a certain threshold, a matching is considered. We define the cost function

by means of the epipolar line introduced in Section 3.2. By setting the matching cost

to the distance of the feature to this line in the image space (see Figure 2), not only the

pixel locations of the comparing features are considered but also the relative movement

of the robot between the corresponding frames is incorporated.

Landmark Matching Using Observation Likelihoods Similarly, during the match-

ing process between landmarks and observations we use the distance of the descriptor

vectors as a constraint. Landmarks are matched with observations using their positions.

Since the observations are bearing-only, the distance to the landmark position cannot

be computed directly. For this reason, the observation likelihood in Eq. (3) is used. It is

high if and only if the distance between the observation and prediction is small. Thus,

the cost is defined by the reciprocal of the observation likelihood 1/λ . If the observa-

tion likelihood lies below a certain threshold, the cost are set to a maximum value. This

refers to the fact that the features are regarded as different features with probability one.

4 Experimental Results

The first mapping experiment is performed on a wheeled robot equipped with a per-

spective camera and a laser range scanner (see Figure 3). The robot was steered through

a 10m by 15m office environment for around 10 minutes. Two camera frames per sec-

ond and odometry data was recorded. In addition, laser range data is stored in order to

calculate a ground truth estimate of the robot’s trajectory using scan matching on the

laser data [10].

The results are illustrated in Figure 4. Following the presented approach, the average

error of the robot path in terms of the Euclidean distance in the x/y-plane is 0.28m. The

error in the orientation averages 3.9◦. Using the odometry of the robot only, one obtains

an average error of 1.69m in the x/y-plane and 22.8◦ in orientation.

We compared our feature matching approach using the Hungarian method on the

distance to the projected line to other three techniques. Figure 5 shows a qualitative

Fig. 2. Hungarian Matching: The cost function is set to the

distance between the epipolar line and the feature location

in the image space.

Fig. 3. Wheeled robot

equipped with a perspective

camera.

-2

-1

 0

 1

 2

 3

 4

-5 -4 -3 -2 -1 0 1

y
 i
n

 m

x in m

true pose
odometry

SLAM
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

 i
n

 m

frame number

uncertainty
odometry error

SLAM error

-4

-2

 0

 2

 4

 6

 8

 10

-6 -4 -2 0 2 4 6 8 10

y
 i
n

 m

x in m

true pose
odometry

SLAM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000 1200 1400

E
u

c
lid

e
a

n
 d

is
ta

n
c
e

 i
n

 m
frame number

uncertainty
odometry error

SLAM error

Fig. 4. The robot’s trajectory is shown on the left, the corresponding error functions and uncer-

tainty are shown on the right. Top: If the robot explores an unknown environment, the error values

go up as well as the uncertainty. As soon as the loop is closed, the estimation error and uncertainty

decreases, whereas the odometry error still goes up. Bottom: Complete trajectory.

evaluation of our approach on a difficult example – a heater which has a number of very

similar looking features close to each other. Furthermore, we compare the Hungarian

method quantitatively to the nearest neighbor approach, both using the distance to the

epipolar line as cost function. If the Hungarian method is used, approximately 2% more

landmarks are initialized. This number – obtained by four different sequences of 500

images each – can be explained by the fact that mismatches are likely to yield too high

variances in the depth estimation. Landmarks, however, are initialized only if the depth

can be estimated with low variance. By manual inspection, one can see that the data

association has less errors than the nearest neighbor approach (see Figure 5).

5 Conclusions

In this paper, we presented a novel technique for learning maps with a mobile robot

equipped with a single perspective camera only. Our approach applies a RBPF to main-

tain the joint posterior about the trajectory of the robot and the map of the environment.

Using our approach, the robot is able to compute the optimal data association between

observed and already mapped features by applying the Hungarian method. Experiments

carried out with real a robot showed the effectiveness of our approach.

Acknowledgment

This work has partialy been supported by the German Research Foundation (DFG) un-

der the contract numbers SFB/TR-8 and BE 2556/2-1. Special thanks to Dieter Fox,

t

t−4

t−3

t−2

t−1

Fig. 5. Starting from the current frame at time t, we look back to evaluate how many features in

the current frame were reliable tracked over the last four frames. The nearest neighbor assign-

ment on SURF descriptors (left) results in 10 matches and 12 mismatches, whereas our approach

results in 20 matches and 4 mismatches (right). Our approach also outperforms the two other

combinations: nearest neighbor assignment using the projected line (14 matches, 7 mismatches)

and the Hungarian method on the SURF descriptors (14 matches, 4 mismatches).

who supervised the first author in the early stages of developing the presented frame-

work. We would like to thank Herbert Bay and Luc Van Gool for making the SURF

binaries publicly available.

References

1. Davison A: Real-time simultaneous localization and mapping with a single camera.

In Proc. of European Conf. on Computer Vision (ECCV), 2003.

2. Davision A, Reid I, Molton N, and Stasse O: MonoSLAM: Real-time single cam-

era SLAM. IEEE Transaction on Pattern Analysis and Machine Intelligence 29(6),

2007.

3. Sim R, Elinas P, Griffin M, and Little J: Vision-based SLAM using a Rao-Black-

wellized particle filter. In Proc. of IJCAI Workshop on Reasoning with Uncertainty

in Robotics, 2005.

4. Montemerlo M, Thrun S, Koller D, and Wegbreit B: FastSLAM: A factored solu-

tion the to simultanieous localization and mapping problem. In Proc. of National

Conference on Artificial Intelligence (AAAI), 2002.

5. Lowe D: Distinctive image feature from scale-invariant keypoints. In Proc. of In-

ternational Journal of Computer Vision (IJCV), 2003.

6. Lemaire T, Lacroix S, and Sol J: A practical bearing-only SLAM algorithm. In

Proc. of IEEE International Conf. on Intelligent Robots and Systems (IROS), 2005.

7. Bay H, Tuytelaars T, and Van Gool L: SURF: Speeded up robust features. In

Proc. of European Conf. on Computer Vision (ECCV), 2006.

8. Hartley R and Zisserman A: Multiple View Geometry in Computer Vision. Cam-

birdige university press, second edition, 2003.

9. Kuhn H: The Hungarian method for the assigment problem. Naval Research Logis-

tic Quaterly, 2:83-97, 1955.

10. Lu F and Milios E: Robot pose estimation in unkown environments by matching 2d

range scans. In Proc. of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 935-938, 1994.

[W3] D. Joho, C. Stachniss, P. Pfaff, and W. Burgard. Autonomous explo-

ration for 3d map learning. In Fachgespräche Autonome Mobile Systeme

(AMS), Kaiserslautern, Germany, 2007.

Autonomous Exploration for 3D Map Learning

Dominik Joho, Cyrill Stachniss, Patrick Pfaff, and Wolfram Burgard

University of Freiburg, Department of Computer Science, Germany

{joho, stachnis, pfaff, burgard}@informatik.uni-freiburg.de

Abstract. Autonomous exploration is a frequently addressed problem in the ro-

botics community. This paper presents an approach to mobile robot exploration

that takes into account that the robot acts in the three-dimensional space. Our

approach can build compact three-dimensional models autonomously and is able

to deal with negative obstacles such as abysms. It applies a decision-theoretic

framework which considers the uncertainty in the map to evaluate potential ac-

tions. Thereby, it trades off the cost of executing an action with the expected

information gain taking into account possible sensor measurements. We present

experimental results obtained with a real robot and in simulation.

1 Introduction

Robots that are able to acquire an accurate model of their environment are regarded

as fulfilling a major precondition of truly autonomous mobile vehicles. So far, most

approaches to mobile robot exploration assume that the robot lives in a plane. They

typically focus on generating motion commands that minimize the time needed to cover

the whole terrain [1,2]. A frequently used technique is to build an occupancy grid map

since it can model unknown locations efficiently. The robot seeks to reduces the number

of unobserved cells or the uncertainty in the grid map. In the three-dimensional space,

however, such approaches are not directly applicable. The size of occupancy grid maps

in 3D, for example, prevents the robot from exploring an environment larger than a few

hundred square meters.

Whaite and Ferrie [3] presented an exploration approach in 3D that uses the entropy

to measure the uncertainty in the geometric structure of objects that are scanned with

a laser range sensor. In contrast to the work described here, they use a fully parametric

representation of the objects and the size of the object to model is bounded by the range

of the manipulator. Surmann et al. [4] extract horizontal planes from a 3D point cloud

and construct a polygon with detected lines (obstacles) and unseen lines (free space

connecting detected lines). They sample candidate viewpoints within this polygon and

use 2D ray-casting to estimate the expected information gain. In contrast to this, our

approach uses an extension of 3D elevation maps and 3D ray-casting to select the next

viewpoint. González-Baños and Latombe [5] also build a polygonal map by merging

safe regions. Similar to our approach, they sample candidate poses in the visibility

range of frontiers to unknown area. But unlike in our approach, they build 2D maps

and do not consider the uncertainty reduction in the known parts of the map.

The contribution of this paper is an exploration technique that extents known tech-

niques from 2D into the three-dimensional space. Our approach selects actions that re-

duce the uncertainty of the robot about the world and constructs a full three-dimensional

model using so-called multi-level surface maps. It reasons about the potential measure-

ments when selecting an action. Our approach is able to deal with negative obstacles

like, for example, abysms, which is a problem of robots exploring a three-dimensional

world. Experiments carried out in simulation and on a real robot show the effectiveness

of our technique.

2 3D Model of the Environment

Our exploration system uses multi-level surface maps (MLS maps) as proposed by

Triebel et al. [6]. MLS maps use a two-dimensional grid structure that stores differ-

ent elevation values. In particular, they store in each cell of a discrete grid the height of

the surface in the corresponding area. In contrast to elevation maps, MLS maps allow us

to store multiple surfaces in each cell. Each surface is represented by a Gaussian with

the mean elevation and its uncertainty σ . In the remainder of this paper, these surfaces

are referred to as patches. This representation enables a mobile robot to model environ-

ments with structures like bridges, underpasses, buildings, or mines. They also enable

the robot to represent vertical structures by storing a vertical depth value for each patch.

2.1 Traversability Analysis

A grid based 2D traversability analysis usually only takes into account the occupancy

probability of a grid cell – implicitly assuming an even environment with only positive

obstacles. In the 3D case, especially in outdoor environments, we additionally have to

take into account the slope and the roughness of the terrain, as well as negative obstacles

such as abysms which are usually ignored in 2D representations.

Each patch p will be assigned a traversability value τ(p) ∈ [0,1]. A value of zero

corresponds to a non-traversable patch, a value greater zero to a traversable patch, and

a value of one to a perfectly traversable patch. In order to determine τ(p), we fit a plane

into its local 8-patch neighborhood by minimizing the z-distance of the plane to the ele-

vation values of the neighboring patches. We then compute the slope and the roughness

of the local terrain and detect obstacles. The slope is defined as the angle between the

fitted plane and a horizontal plane and the roughness is computed as the average squared

z-distances of the height values of the neighboring patch to the fitted plane. The slope

and the roughness are turned into traversability values τs(p) and τr(p) by linear interpo-

lation between zero and a maximum slope and roughness value respectively. In order to

detect obstacles we set τo(p)∈ {0,1} to zero, if the squared z-distance of a neighboring

patch exceeds a threshold, thereby accounting for positive and negative obstacles, or if

the patch has less than eight neighbors. The latter is important for avoiding abysms in

the early stage of an exploration process, as some neighboring patches are below the

edge of the abysm and therefore are not visible yet (see Fig. 1 (a)).

The combined traversability value is defined as τ(p) = τs(p) · τr(p) · τo(p). Next,

we iteratively propagate the values by convolving the traversability values of the patch

and its eight neighboring patches with a Gaussian kernel. For non-existent neighbors,

we assume a value of 0.5. The number of iterations depends on the used cell size and

the robot’s size. In order to enforce obstacle growing, we do not perform a convolution

(a) (b)

Fig. 1. (a) While scanning at an abysm, some of the lower patches will not be covered by a laser

scan (dashed area). Since the patches at the edge of the abysm have less than eight neighbors,

we can recognize them as an obstacle (red / dark gray area). (b) Outdoor map showing sampled

candidate viewpoints as red (dark gray) spheres.

if one of the neighboring patches is non-traversable (τ = 0), but rather set the patch’s

traversability directly to zero in this case.

3 Our Exploration Technique

An exploration strategy has to determine the next viewpoint the robot should move to in

order to obtain more information about the environment. Identifying the best viewpoint

is a two step procedure in our system. First, we define the set of possible viewpoints or

candidate viewpoints. Second, we evaluate those candidates to find the best one.

3.1 Viewpoint Generation

One possible definition of the set of candidate viewpoints is that every reachable posi-

tion in the map is a candidate viewpoint. However, this is only feasible if the evaluation

of candidate viewpoints is computationally cheap. If the evaluation is costly, one has

to settle for heuristics to determine a smaller set. A popular heuristic is the frontier

approach [2] that defines candidate viewpoints as viewpoints that lie on the frontier

between obstacle-free and unexplored areas. In our approach, a patch is considered as

explored if it has eight neighbors and its uncertainty, measured by the entropy in the

patch, is below a threshold. Additionally, we track the entropy as well as the number of

neighbors of a patch. If the entropy or number of non-existing neighbors cannot be re-

duced as expected over several observations, we consider it to be explored nonetheless

since further observations do not seem to change the state of the patch.

A frontier patch is defined as an unexplored patch with at least one explored neigh-

boring patch. Most of these patches have less than eight neighbors and therefore are

considered as non-traversable, since they might be at the edge of an abysm. Therefore,

we cannot drive directly to a frontier patch. Instead, we use a 3D ray-casting tech-

nique to determine close-by candidate viewpoints. A patch is considered as a candidate

viewpoint, if it is reachable and there is at least one frontier patch that is likely to be ob-

servable from that viewpoint. Instead of using ray-casting to track emitted beams from

the sensor at every reachable position, we use a more efficient approach. We emit vir-

tual beams from the frontier patch instead and then select admissible sensor locations

along those beams. This will reduce the number of needed ray-casting operations as the

number of frontier patches is much smaller than the number of reachable patches.

In practice, we found it useful to reject candidate viewpoints, from which the un-

seen area is below a threshold. We also cluster the frontier patches by the neighboring

relation, and prevent patches from very small frontier clusters to generate candidate

viewpoints. This will lead to a more reliable termination of the exploration process.

Candidate viewpoints of an example map are shown in Fig. 1 (b).

3.2 Viewpoint Evaluation

The utility u(v) of a candidate viewpoint v, is computed using the expected information

gain I(v) and the travel costs t(v). As the evaluation involves a costly 3D ray-casting

operation, we reduce the set of candidate viewpoints by sampling uniformly a fixed

number of viewpoints from that set.

In order to simultaneously determine the shortest paths to all candidate viewpoints,

we use a deterministic variant of the value iteration [7]. The costs

c(p, p′) = dist(p, p′)+w(1− τ(p′)) (1)

from patch p to a traversable neighboring patch p′ considers the distance dist(p, p′), as

well as the traversability τ(p′). A constant factor w is used to weight the penalization for

traversing poorly traversable patches. The travel costs t(v) of a viewpoint v is defined

as the accumulated step costs of the shortest path to that viewpoint.

In order to evaluate the information gain of a viewpoint candidate, we perform a ray-

cast operation to determine the patches that are likely to be hit by a laser measurement

similar to [8]. We therefore determine the intersection points of the cell boundaries

and the 3D ray projected onto the 2D grid. Next we determine for each cell the height

interval covered by the ray and check for collisions with patches contained in that cell

by considering their elevation and depth values. Using a standard notebook computer,

our approach requires around 25 ms to evaluate one potential viewpoint including the

3D ray-cast operation. This allows us to run our algorithm with minimal delays only for

typical environments.

For each casted ray that hits a patch, we temporary add a new measurement into the

patch’s grid cell with a corresponding mean and variance that depends on the distance

of the laser ray. The mean and variance of the patch will then be updated using the

Kalman update. As a patch is represented as a Gaussian, we can compute the entropy

H(p) of the patch as

H(p) =
1

2

(

1+ log
(

2πσ
2
))

. (2)

The information gain I(p) of a ray-cast is then defined as the difference between the

entropy H(p) of the patch before and the entropy H(p | m) after the temporary incor-

poration of the simulated measurement

I(p) = H(p)−H(p | m). (3)

Additionally, we add a constant value for each empty cell traversed by the ray. In this

way, we reward viewpoints from which unseen areas are likely to be visible, while

we are still accounting for the reduction of existing uncertainties in the known map.

Rays that do not hit any patch and do not traverse any empty cells, will result in an

information gain of zero. The information gain I(v) of a viewpoint v is then defined

as the sum of the information gains of all casted rays. Finally, the utility u(v) of each

candidate viewpoint is computed by a relative information gain and travel costs as

u(v) = α

I(v)

maxx I(x)
+(1−α)

maxx t(x)− t(v)

maxx t(x)
. (4)

By varying the constant α ∈ [0,1] one can alter the exploration behavior by trading off

the travel costs and the information gain.

3.3 Localization and Termination

The registration of newly acquired information involves a scan matching procedure

with the previous local map. We therefore cannot drive directly to the next viewpoint,

as the resulting overlap with the previous local map may be to small. Hence, we perform

several 3D scans along the way, which has the benefit, that it allows us to optimize the

localization of the robot with the pose returned by the scan matcher. We apply a 6D

Monte Carlo localization proposed by Kümmerle et al. [9]. After each 3D scan, we

replan the path to the selected viewpoint. If the viewpoint is unreachable, we choose a

new one. The exploration terminates if the set of candidate viewpoints is empty.

4 Experiments

The experiments described here are designed to illustrate the benefit of our exploration

technique which is able to build three-dimensional models of the environment and takes

into account the travel costs and the expected change in the map uncertainty to evalu-

ate possible actions. For the real-world experiments we used an ActivMedia Pioneer2-

AT robot with a SICK laser range finder mounted on a pan-tilt unit to acquire three-

dimensional range data. For a 3D scan we tilt the laser in a range of 40 degrees at four

equally spaced horizontal angles while acquiring the laser data.

We tested our approach in simulation and in a real-world scenario. For the simula-

tion experiments, we used a physical simulation environment that models our Pioneer

robot with its pan-tilt unit. The simulated indoor environment consisted of four rooms,

each connected to a corridor, and a foyer where the robot is located initially. The upper

two rooms are connected directly through a door, while the lower ones are not. The

robot efficiently covered the environment taking into account its constraints like travel

cost, and information gain. The robot traveled 59 meters, visited eight viewpoints, and

performed 15 scans (see Fig. 2 (a)-(c)). The final map, depicted in Fig. 2 (c) and (d),

covers an area of 22m×17m and contains about 41,000 patches.

Real-world experiments have been carried out on the university campus. In the ex-

periment shown in Fig. 2 (e)-(h) the robot traveled 84 meters, visited six viewpoints,

and performed 23 scans. The map depicted in Fig. 2 (g) and (h) contains about 197,000

viewpoint

next

start

robot

(a) Robot reached the first viewpoint. (b) Robot reached the fourth viewpoint.

(c) Robot reached the final viewpoint. (d) Perspective view of the final map.

viewpoint

next

start

robot

(e) Robot reached the first viewpoint. (f) Robot reached the fourth viewpoint.

(g) Robot reached the sixth viewpoint. (h) Perspective view of the map.

Fig. 2. (a)-(d) Exploration in a simulated indoor environment. One can see four rooms, a corridor,

and the foyer where the robot started the exploration. (e)-(h) Real-world exploration in an outdoor

scenario. One can see the walls of three buildings, the pitched roof of a green house, and several

street lamps and trees.

patches and its bounding box roughly covers an area of about 70m× 75m. In both ex-

periments, we set α = 0.55 and used a cell size of 0.1m×0.1m.

5 Conclusion

In this paper, we presented an approach to autonomous exploration for mobile robots

that is able to acquire a three-dimensional model of the environment, which is com-

pactly represented by a multi-level surface map. We addressed problems which are not

encountered in traditional 2D representations such as negative obstacles, roughness, and

slopes of non-flat environments. The viewpoint generation and evaluation procedure uti-

lizes 3D ray-casting operations to account for the 3D structure of the environment. We

applied a decision-theoretic framework which considers both the travel costs and the

expected information gain to efficiently guide the exploration process. Simulation and

real-world experiments showed the effectiveness of our technique.

6 Acknowledgment

This work has been partly supported by the German Research Foundation (DFG) under

contract number SFB/TR-8 and within the Research Training Group 1103.

7 References

1. Tovey C, Koenig S: Improved analysis of greedy mapping. Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2003.

2. Yamauchi B: Frontier-based exploration using multiple robots. Proc. of the Second

Int. Conf. on Autonomous Agents 47–53, 1998.

3. Whaite P, Ferrie FP: Autonomous exploration: Driven by uncertainty. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 19(3):193–205, 1997.

4. Surmann H, Nüchter A, Hertzberg J: An autonomous mobile robot with a 3D laser

range finder for 3D exploration and digitalization of indoor environments. Journal

of Robotics and Autonomous Systems 45(3-4):181–198, 2003.

5. González-Baños HH, Latombe JC: Navigation strategies for exploring indoor en-

vironments. Int. Journal of Robotics Research 21(10-11):829–848, 2002.

6. Triebel R, Pfaff P, Burgard W: Multi-level surface maps for outdoor terrain mapping

and loop closing. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS), 2006.

7. Burgard W, Moors M, Stachniss C, et al.: Coordinated multi-robot exploration.

IEEE Transactions on Robotics 21(3):376–378, 2005.

8. Stachniss C, Grisetti G, Burgard W: Information gain-based exploration using rao-

blackwellized particle filters. Proc. of Robotics: Science and Systems (RSS) 65–72,

2005.

9. Kümmerle R, Triebel R, Pfaff P, et al.: Monte carlo localization in outdoor ter-

rains using multi-level surface maps. Proc. of the Int. Conf. on Field and Service

Robotics (FSR), 2007.

[W4] P. Lamon, C. Stachniss, R. Triebel, P. Pfaff, C. Plagemann, G. Grisetti,

S. Kolski, W. Burgard, and R. Siegwart. Mapping with an autonomous car.

In Workshop on Safe Navigation in Open and Dynamic Environments at

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Beijing,

China, 2006.

Mapping with an Autonomous Car
Pierre Lamon∗ Cyrill Stachniss∗ Rudolph Triebel† Patrick Pfaff†

Christian Plagemann† Giorgio Grisetti† Sascha Kolski∗ Wolfram Burgard† Roland Siegwart∗

∗Eidgenössische Technische Hochschule (ETH), Inst. of Robotics and Intelligent Systems, 8092 Zurich, Switzerland
†University of Freiburg, Department of Computer Science, D-79110 Freiburg, Germany

Abstract— In this paper, we present an approach towards
mapping and safe navigation in real, large-scale environments
with an autonomous car. The goal is to enable the car to au-
tonomously navigate on roads while avoiding obstacles and while
simultaneously learning an accurate three-dimensional model of
the environment. To achieve these goals, we apply probabilistic
state estimation techniques, network-based pose optimization,
and a sensor-based traversability analysis approach. In order
to achieve fast map learning, our system compresses the sensor
data using multi-level surface maps. The overall systems runs on
a modified Smart car equipped with different types of sensors.
We present several results obtained from extensive experiments
which illustrate the capabilities of our vehicle.

I. I

Learning models of the environment and safely navigating

based on that models is a fundamental task of mobile robots.

Many researcher focused on learning map of indoor as well

as outdoor scenes. Recently, modified cars became a new

platform in robotics. Compared to standard robots, cars offer

the possibility to travel longer distances, carry more sensors,

and thus being more suitable for mapping large areas. On the

one hand, this offers the opportunity to address robotic tasks on

a larger scale but on the other hand requires efficient solutions

to common problems like mapping or localization.

In this paper, we describe our modified Smart car equipped

with different sensor to monitor the environment. We present

our approach to mapping large outdoor areas with that ve-

hicle. Our map representation can be seen as an extention

of elevation maps that allows us to model different layers in

the environment and therefore different drivable areas like, for

example, bridges or underpasses. It overcomes serious limita-

tions of elevation maps and is able to model the environment in

an adequate way needing only a few more memory resources

compared to elevation maps.

The reminder of this paper is organized as follows. After

the discussion of related work, we present detail about our

modified Smart car. Then, we will explain our approach to

localization using different sensors. In Section V, we introduce

our model of the environment and present a method to learn

these model. Finally, we present experiments illustrating the

maps obtained with our robot in real world experiments.

II. RW

The problem of learning models of the environment has

been studied intensively in the past. Most approaches generate

two-dimensional models from range sensor data and a series of

different approach have been developed [22, 24, 37, 8, 7, 40,

11, 19]. In the literature, those approaches are often referred

to as solutions to the simultaneous mapping and localization

(SLAM) problem. Recently, several techniques for acquiring

three-dimensional data with 2d range scanners installed on

a mobile robot have been developed. A popular approach is

to use multiple scanners that point towards different direc-

tions [41, 13, 42]. An alternative is to use pan/tilt devices that

sweep the range scanner in an oscillating way [32, 26]. More

recently, techniques for rotating 2d range scanners have been

developed [17, 50].

Many authors have studied the acquisition of three-

dimensional maps from vehicles that are assumed to operate

on a flat surface. For example, Thrun et al. [41] present an

approach that employs two 2d range scanners for constructing

volumetric maps. Whereas the first is oriented horizontally

and is used for localization, the second points towards the

ceiling and is applied for acquiring 3d point clouds. Früh and

Zakhor [10] apply a similar idea to the problem of learning

large-scale models of outdoor environments. Their approach

combines laser, vision, and aerial images. Furthermore, several

authors have considered the problem of simultaneous mapping

and localization (SLAM) in an outdoor environment [5, 12,

43]. These techniques extract landmarks from range data and

calculate the map as well as the pose of the vehicles based on

these landmarks. Our approach described in this paper does

not rely on the assumption that the surface is flat. It uses

surface maps to capture the three-dimensional structure of the

environment and is able to estimate the pose of the robot in

all six degrees of freedom.

One of the most popular representations are raw data points

or triangle meshes [1, 20, 32, 44]. Whereas these models are

highly accurate and can easily be textured, their disadvantage

lies in the huge memory requirement, which grows linearly in

the number of scans taken. Accordingly, several authors have

studied techniques for simplifying point clouds by piecewise

linear approximations. For example, Hähnel et al. [13] use a

region growing technique to identify planes. Liu et al. [21]

as well as Martin and Thrun [23] apply the EM algorithm to

cluster range scans into planes. Recently, Triebel et al. [46]

proposed a hierarchical version that takes into account the

parallelism of the planes during the clustering procedure. An

alternative is to use three-dimensional grids [27] or tree-based

representations [34], which only grow linearly in the size of

the environment. Still, the memory requirements for such maps

in outdoor environments are high.

In order to avoid the complexity of full three-dimensional

maps, several researchers have considered elevation maps as an

attractive alternative. The key idea underlying elevation maps

is to store the 2 1
2
-dimensional height information of the terrain

in a two-dimensional grid. Bares et al. [2] as well as Hebert

et al. [14] use elevation maps to represent the environment

of a legged robot. They extract points with high surface

curvatures and match these features to align maps constructed

from consecutive range scans. Singh and Kelly [36] extract

elevation maps from laser range data and use these maps

for navigating an all-terrain vehicle. Ye and Borenstein [51]

propose an algorithm to acquire elevation maps with a moving

vehicle carrying a tilted laser range scanner. They propose

special filtering algorithms to eliminate measurement errors

or noise resulting from the scanner and the motions of the

vehicle. Wellington et al. [49] construct a representation based

on Markov Random Fields. They propose an environment

classification for agricultural applications. They compute the

elevation of the cell depending on the classification of the

cell and its neighbors. Compared to these techniques, the

contribution of the mapping approach presented in this paper

lies in two aspects. First, we classify the points in the elevation

map into horizontal points see from above, vertical points,

and gaps. This classification is important especially when a

rover is deployed in an urban environment. In such environ-

ments, typical structures like the walls of buildings cannot be

represented in standard elevation maps. Second, we describe

how this classification can be used to improve the matching

of different elevation maps.

In the context of autonomous cars, a series of successful

systems [45, 3, 48] have been developed for the DARPA

Gran Challenge [4], which was a desert race for autonomous

vehicles along an approximatively 130 mile course. As a result

of this challenge, there exist autonomous cars that reliably

avoid obstacle and navigate at comparably high speeds. The

focus of the Gran Challenge was to finish the race as quickly as

possible whereas certain issues like building consistent large-

scale maps of the environment have been neglected since they

where not needed for the race. Our approach towards mapping

large areas therefore has a different aim compared to the

vehicles participating in the Gran Challenge. Nevertheless, our

Smart car also benefited from different techniques used within

the Gran Challenge. We apply a similar approach to follow a

given trajectory than the winning vehicle Stanley [45].

III. V D

Our vehicle, called SmartTer (Smart all Terrain), is a stan-

dard Smart car that has been enhanced for fully autonomous

driving in both urban and non-urban environments. The model

is a Smart fortwo coupé passion of year 2005, which is

equipped with a 45 kW engine. This model has been chosen

because it gathers several advantages:

• compact and light Such characteristics allow us to easily

transport the vehicle on a trailer to the testing area1 and

fits in our lab’s mechanical workshop. Furthermore, its

light weight yields fair locomotion performance in rough

terrain.

1Because the car has been deeply modified, it is not allowed to drive on
public streets.

• power steering The power steering motor can deliver

enough torque to steer the car. So, it is possible to ”steer

by wire” with minor modification.

• auto gearshift No additional modification is required to

switch gears while the car is driving.

• easy access to the CAN bus Important sensory informa-

tion such as steering wheel angle and wheels velocities

are directly accessible.

All these features facilitate the process of modifying such a

vehicle for autonomous driving. The fully equipped SmartTer

is depicted in Fig. 1 and 2.

Fig. 1. SmartTer front view

Fig. 2. SmartTer side view

A. Vehicle modifications

In order to enhance the original model for autonomous

driving, several modifications have been performed on the car.

This section describes the mechanical and electrical changes

that were necessary.

• Wheels with better grip and larger diameter have been

mounted. This yields to an higher ground clearance and much

better traction in rough terrain.

• A 24V power generator has been installed in order to

power all the electronic devices and additional actuators.

The generator is driven by a belt and pulley that is directly

connected to the engine output axis (which is situated under

the trunk, at the rear of the car). Two batteries placed in

the trunk act as an energy buffer. They have a total capacity

of 48Ah and are continuously recharged when the engine is

running.

• To provide a clean interface to the vehicle, we integrated

an automotive ECU designed for highly reliable real-time

applications. This ECU has four CAN interfaces as well as

a wide variety of analog and digital I/O. In the vehicle, it

is sitting between the computers on the one hand and the

vehicle CAN bus and our actuators on the other hand. In

this ECU, we implemented a state machine that allows us to

enable different modes of operation (STOP, PAUSE and RUN)

via wired buttons as well as by a wireless remote control.

Besides these emergency buttons, the ECU handles timeouts

in the command coming from the computers and ensures a

safe vehicle state whenever those commands are missing. As

this system is in aspects of both hardware and software a hard-

real-time system.

• The power steering system applies a torque Madd on the

steering column that allows to minimize the effort required

by the driver to steer the wheels (see Fig. 3). This task

is fulfilled by the driving assistance unit (DA unit), which

minimize the torque sensed in the steering column by applying

an appropriate voltage to the power steering motor. The gain

of the DA controller is set based on the car’s velocity, which

is broadcasted on the CAN bus of the vehicle. In order

to use the power steering motor for ”steering by wire”, a

specific electronic board has been designed and inserted in the

vehicle’s control loop. The Vehicle CAN bus was disconnected

from the DA and routed to a computer (Rack0 in Fig. 3) so

that the steering angle as can be read and used by our own

controller. An additional CAN bus, called Computer CAN,

allows to feed the DA unit with the minimal set of CAN

messages required for the proper operation of the unit i.e.

engine on and car velocity messages. The same bus is used

to send commands to a CAN to analog module which ”fakes”

the torque voltage needed by the DA unit. Finally, the steering

angle is controlled with a PID controller running on the control

computer which minimizes the steering angle error e = at−as,

where at is the desired steering angle. A switch mounted

next to the steering wheel, enables the selection of manual

or controlled mode.

• A system of cable and pulleys is used to activate the break

pedal. The servo motor that pulls the cable is placed under the

driver’s seat and is commanded using the Computer CAN.

• A dedicated electronic board has been developed to enable

the use of a computer to set the gas command. The command

voltage, originally provided by a potentiometer embedded in

the gas pedal, is simply generated by a CAN to analog device.

This device receives commands through the Computer CAN

bus. A button mounted inside the car allows us to choose

Steering

electronic board

Madd

Steering
sensor

CAN to analog

ECU

V
e

h
ic

le
 C

A
N

C
o

m
p

u
te

r
C

A
N

Velocity

voltage

Torque

CAN

PID control

Rack0

S
w

it
c
h

DA Unit

minimize e = a − a

Motor

Torque
sensor

t s

Fig. 3. Steer by wire system

between normal or controlled mode.

B. Sensors

The sensors used for outdoor applications must meet strong

requirements such as mechanical robustness, water/dust proof-

ness and limited sensitivity to sun light. Thus, in comparison

with indoor applications, the choice is limited and the selection

of optimal sensors must be done carefully. In this section, all

the sensors that have been mounted on the car are described.

• Three navigation laser scanner sensors (SICK LMS291-

S05, outdoor version, rain proof, low sensitivity to sun light)

These sensors are used mainly for obstacle avoidance and local

navigation. One sensor is placed at the lower front slightly

looking down and the two others on the roof, looking to the

sides and slightly down. This ’A’ shape configuration enables a

large field of view and is well adapted to all kind of terrains.

The three sensors are visible in Fig. 1 and Fig. 4 depicts a

closer view of the sensors mounted on the roof.

Fig. 4. Sensors mounted on the roof

• Rotating 3D scanner This is a custom made sensor that is

mounted on the roof (see Fig. 5). In order to acquire 3D scans

of the environment, two SICK LMS291-S05 are mounted

sideways on a plate rotating around the vertical axis. A signal

is triggered each time the plate performs a full turn. That way

it is possible to know its angular position at each time (using

the rotational velocity of the motor and the elapsed time since

the last trigger). The data and power lines of the two SICK

sensors go through a slip ring, which is mounted along the

rotation axis. The 3D scans are mainly used to compute a

consistent 3D digital terrain model of the environment.

Fig. 5. Rotating scanner and omnidirectional camera

• Omnidirectional camera (Sony XCD-SX910CR, focal length

12mm, with parabolic mirror and dust protection) The setup is

mounted in front of the rotating scanner (see Fig. 5). It enables

the acquisition of panoramic images that are used to supply

texture information for the 3D digital terrain maps. The images

are also exploited to detect artificial object in the scene.

• Monocular camera (Sony XCD-SX910CR, focal length

4.2mm) This camera is placed in the car, behind the wind

shield. Like the omnidirectional camera, it is used to detect

artificial object in the scene.

• Differential GPS system (Omnistar Furgo 8300HP) This

device provides the latitude, longitude and altitude together

with the corresponding standard deviation and the standard

NMEA messages with a frequency of 5 Hz. When geostation-

ary satellites providing the GPS drift correction are visible

from the car, the unit enters the differential GPS mode (high

precision GPS). When no correction signal is available, the

device outputs standard precision GPS.

• Car sensors The measurements taken by the car sensors are

reported with a frequency of 100 Hz and are accessible via

the CAN bus of the vehicle. The car provides motor RPM,

temperatures, steering wheel angle, wheel velocities, gas pedal

position, and some further status information.

• Optical gyroscope (KVH DSP3000) This fibre optic gyro-

scope can measure very low rotation rates with a frequency

of 100 Hz. It is possible to use it as a heading sensor for a

comparably long period of time by integrating the angular rate.

Contrary to compasses, the integrated heading is not sensitive

to earth magnetic field disturbances. Finally, this unit offers

much better accuracy than mechanical gyro and is not sensitive

to shocks because it contains no moving parts.

• Inertial measurement unit (Crossbow NAV420, waterproof)

This unit provides sensor data with a frequency of 100 Hz

that contains the measurements from 3 accelerometers, 3

gyroscopes, a 3D magnetic field sensor and a GPS receiver.

The internal digital signal processor of the unit combines

the embedded sensors to provide the filtered attitude of the

vehicle (roll, pitch, heading to true north) and the position

(latitude, longitude and altitude). However, this sensor is

not well adapted for a ground vehicle driving at low speed

because of a bad signal/noise ratio of the inertial sensors.

Furthermore, the earth magnetic field can be strongly distorted

when the vehicle drives next to iron structures. This causes

large error on the estimated heading. For better accuracy and

robustness, we implemented our own localization algorithm,

which is presented in section IV. The algorithm combines the

measurements taken by the IMU, the differential gps, the car

sensors and the optical gyroscope.

C. Computational power and software architecture

The system consists of four compact PCI computer racks

communicating trough a gigabit Ethernet link. All the racks

have the same core architecture which is a Pentium M proces-

sor running at 2GHz, equipped with 1.5GB of RAM, Gigabit

and Fast Ethernet, two RS232 serial ports, USB ports and a

30GB hard disk. Each rack is dedicated to specific tasks and

acquires measurement from different sensors as it is depicted

in Fig. 6.

Navigation sicks

Vehicle (rack0)

Navigation (rack1)

3D Mapping (rack2)

Scene interpretation (rack3)

IMU

Camera

Omnicam

DGPS

Vehicle sensors
and actuators

Optical gyro

Rotating sicks

Fig. 6. Architecture of the system

The computer racks run the Linux operating system and

the software architecture is based on both GenoM [9] and

Carmen [25] robotic software architectures. The functional

modules running on different computers exchange data using

the Inter Process Communication (IPC) [35]. To guarantee

that the time stamp associated to each data packet is glob-

ally consistent, the CPU clocks are synchronized using the

Network Time Protocol Daemon (NTPD). In order to reduce

communication delays, the architecture has been designed in

such a way that it minimizes the amount of transmitted data.

The Vehicle rack is endowed with a CAN interface that is

used to access the vehicle CAN bus. The measurements of

the car sensors are continuously read and the car commands

such as the vehicle velocity and steering angle are passed to

the ECU. The other sensor i.e. the DGPS, the IMU and the

optical gyro are connected to the rack through RS232 serial

ports. The main tasks of the Vehicle rack are to keep track

of the vehicle position and to control its motion (steering,

breaking, velocity control, etc.).

The Navigation rack acquires range data from the three

navigation scanners through high speed RS422 serial ports.

It is endowed with a firewire interface (IEEE 1394) which

allows to grab images from the navigation camera. The main

task of this computer is to plan a safe path to the goal using the

sensor measurements (images and range data) and to provide

the motion commands to the Vehicle rack.

A 3D map of the traversed environment is updated on the

3D Mapping rack using the measurements acquired by the

rotating 3D scanner (RS422 board). Like on the Navigation

rack, the scanner data is acquired through RS422 ports. The

index signal is detected using a multi-purpose IO board and

the motor speed is set using an RS232 interface. For more

realistic rendering, the texture information acquired by the

omnidirectional camera is mapped on the 3D model as it is

depicted in Fig. 7

Fig. 7. 3D scan with texture. One recognize a tree on the left hand side,
yellow street markings (-x- shape), a pink box (next to the street markings)
and persons (on the right, with arms extended)

Finally, the scene analysis is performed on the Scene

interpretation rack. The artificial objects are extracted from

the textured 3D maps and raw omni-cam images and their

representation and location are stored in memory as the vehicle

moves along the path.

IV. L

Our localization algorithm is based on the inverse form of

the Kalman filter, i.e., the information filter. This filter has the

property of summing information contributions from different

sources in the update stage. This characteristic is advantageous

when many sensors are involved, which is the case in our

system. The localization is done in two steps, namely the state

prediction and the state update.

A. State Update

The car state is updated using the measurements taken by

several complementary sensors.

• Differential GPS We use the WGS-84 standard to convert

the GPS coordinates in Cartesian coordinates (x, y, z)

expressed in a local navigation frame n. The heading to

true north ψ is also output by the unit and is available in

the RMC message. The measurement model for the GPS

is

zgps =

xgps

ygps

zgps

ψgps

n

=

x

y

z

ψ

n

+ vgps (1)

In order to reject the erroneous fixes caused by multi-path

and satellite constellation change, we use the following

gating function [39]

zT (k) · S −1 · z(k) ≤ γ, (2)

where S is the innovation covariance of the observation.

The value of γ is set to reject innovations exceeding the

95% threshold.

• Car sensors For localization, we use the velocity ẋodo of

the car from the CAN bus. Unlike in the case of a flight

vehicle, the motion of a wheeled vehicle on the ground

is governed by nonholonomic constraints. Under ideal

conditions, there is no side slip and no motion normal

to the ground surface: the constraints are ẏodo = 0 and

żodo = 0. In any practical situation, these constraints are

often violated. Thus, as in [6], we use zero mean Gaussian

noise to model the extent of constraint violation. The

measurement model for the odometry is then expressed

as

zodo =

ẋodo

0

0

b

=
[

Cn
b

]T

ẋ

ẏ

ż

n

+ vodo, (3)

where Cn
b

is the matrix for transforming velocities ex-

pressed in the car’s frame b into the navigation frame n.

The observation noise covariance is obtained using

Rodo = Cn
b · diag

{

σ2
enc, σ

2
vy, σ

2
vz

} [

Cn
b

]T
, (4)

where σ2
enc is the variance of the car velocity and σ2

vy,σ2
vz

are the amplitude of the noise related to the constraints.

• Optical gyroscope The measurement model for the optical

gyro is

zopt = ψopt = ψ + bopt + vopt, (5)

where bopt is the angular offset between the heading to

true north ψ and the actual measurement of the gyro.

• Inertial measurement unit For the reasons mentioned

before, we disabled the GPS and used the unit in angle

mode: roll, pitch and heading to magnetic north. The

measurement model for this sensor is

zimu =

[

φimu

θimu

]

n

=

[

φ

θ

]

n

+ vimu (6)

ψimu = ψ + bimu + vhimu, (7)

where bimu is the angular offset between ψ and the heading

measurement of the IMU.

B. Prediction model

We apply a standard prediction model for the car which has

the following form

xk+1 =

Fx . . . 0
... Fy

Fz

...

0 . . . I5x5

· xk + wk. (8)

The state vector x contains the position and velocity ex-

pressed in the navigation frame n, the orientation of the vehicle

represented by the three angles roll φ, pitch θ and yaw ψ and

the two biases bimu and bopt:

x =
[

x ẋ y ẏ z ż φ θ ψ bimu bopt

]T
(9)

The position of the vehicle at time k + 1 is predicted using

the position and velocity at time k. This takes the form of a

first order process written as

Fx,y,z =

[

1 h

0 1

]

k

(10)

where h denotes the sampling period (h = 10 ms). All the

other elements of the state vector are predicted as simple

Gaussian processes. The covariance matrix Qk associated to

the state prediction process is represented as

Qk = Gk · qk ·G
T
k (11)

where qk is a diagonal matrix containing the variances of

the elements of the state vector

qx = diag
{

σ2
x σ2

y σ2
z σ2

φ σ2
θ

σ2
ψ σ2

bimu
σ2

bopt

}

(12)

Finally, the matrix mapping the noise covariance qk to the

process covariance Qk is written as

Gk =

gx . . . 0
... gy

...

gz

0 . . . diag5x5(h)

k

(13)

where

gx,y,z =

[

h2/2

h

]

(14)

V. M B

A. Map Representation

To represent the 3D data acquired with the rotating laser

scanners, we use Multi-Level Surface (MLS) maps [47]. These

maps can be regarded as an extension to elvation maps [2, 14,

36, 31, 29, 18]. The idea here is that each cell in a 2D grid

can contain many representations of 3D objects called surface

patches. A surface patch consists of a mean µ and a variance

µ

σ

d

X

Z

Fig. 8. Example of different cells in an MLS Map. Cells can have many
surface patches (cell A), represented by the mean and the variance of the
measured height. Each surface patch can have a depth, like the patch in cell
B. Flat objects are represented by patches with depth 0, as shown by the patch
in cell C.

σ, as well as a depth value d. Here, µ and σ define a Gaussian

distribution that reflects the uncertainty of the measured height

of an object’s surface. The depth value d represents the length

of a vertical interval starting at µ and pointing downwards.

The motivation behind this is to represent flat objects, such as

street, ground etc., and non-flat objects such as buildings in the

same framework. A surface patch of a building will usually

have a large depth value, while the depth of a street patch

is in general 0. Figure 8 illustrates different possible surface

patches in an MLS map.

B. Traversability Analysis and Feature Extraction

One main goal of the MLS map representation is the

ability to classify the terrain in which the robot moves. This

classification is important to use the map for path planning.

Another design goal for the MLS maps was the possiblity to

match local MLS maps to one big map, without relying on

the raw point cloud data. This matching process is usually

performed using the iterative closest point algorithm (ICP).

The map matching using ICP has been shown to be very

efficient when applying it to subsets of features rather than

to the entire data set [28, 33]. Therefore, we first classify

the surface patches into the three classes ’traversable’, ’non-

traversable’ and ’vertical’. Then we subsample each of these

classes and look for corresponding patches in the other map.

This will be described in the next section. For the patch

classification, we define vertical patches as those having non-

zero depth values. A patch is considered as traversable if it

is flat (the depth is 0) and the distance between its height the

height of the neighboring patches does not exceed 10cm. All

other flat patches are classified as non-traversable.

C. Map Matching

To calculate the alignments between two local MLS maps

calculated from individual scans, we apply the ICP algorithm.

The goal of this process is to find a rotation matrix R and

a translation vector t that minimize an appropriate error

function. Assuming that the two maps are represented by a

set of Gaussians, the algorithm first computes two sets of

feature points, X = {x1, . . . , xN1
} and Y = {y1, . . . , yN2

}. In

a second step, the algorithm computes a set of C index pairs

or correspondences (i1, j1), . . . , (iC, jC) such that the point xic

in X corresponds to the point y jc in Y for c = 1, . . . ,C. Then,

in a third step, the error function e defined by

e(R, t) :=
1

C

C∑

c=1

(xic − (Ry jc + t))TΣ−1(xic − (Ry jc + t)), (15)

is minimized. Here, Σ denotes the covariance matrix of the

Gaussian corresponding to each pair (xi, yi). In other words,

the error function e is defined by the sum of squared Maha-

lanobis distances between the points xic and the transformed

point y jc . In the following, we denote this Mahalanobis dis-

tance as d(xic , y jc).

In principle, one could define this function to directly

operate on the Gaussians when aligning two different MLS

maps. However, this would result in a high computational

effort, especially if the maps are very big and many Gaus-

sians are stored. Additionally, we need to take care of the

problem that the intervals corresponding to vertical structures

vary substantially depending on the view-point. Moreover, the

same vertical structure may lead to varying heights in the

surface map when sensed from different locations. In practical

experiments, we observed that this introduces serious errors

and often prevents the ICP algorithm from convergence. To

overcome this problem, we separate Eq. (15) into three com-

ponents each minimizing the error over the individual classes

of points. These three terms correspond to the three individual

classes, namely surface patches corresponding to vertical ob-

jects, traversable surface patches, and non-traversable surface

patches.

Let us assume that uic and u′
jc

are corresponding points,

extracted from vertical objects. The number of points sam-

pled from every interval classified as vertical depends on

the height of this structure. In our current implementation,

we typically uniformly sample four points per meter. The

corresponding points vic and v′
jc

are extracted from traversable

surface patches, wic and w′
jc

are extracted from not traversable

surfaces. The resulting error function then is

e(R, t) =

C1∑

c=1

dv(uic , u
′
jc

)

︸ ︷︷ ︸

vertical cells

+

C2∑

c=1

d(vic , v
′
jc

)

︸ ︷︷ ︸

traversable

+

C3∑

c=1

d(wic ,w
′
jc

).

︸ ︷︷ ︸

non-traversable

(16)

In this equation, the distance function dv calculates the Ma-

halanobis distance between the lowest points in the particular

cells. To increase the efficiency of the matching process, we

only consider a subset of these features by sub-sampling.

D. Loop Closing

Usually, the map matching process described in the previous

section works well in cases where the robot travels only a

short distance. However, for longer distance the accumulated

local matching errors may be so large, that the overall map

becomes inconsistent. This becomes visible especially when

the robot returns to areas where it has been before, which is

usually called loop closing. In our case, this matching error

is bounded due to the high accurate GPS based global local-

ization described before. However, a smaller matching error

still remains and is visible in the maps. Therefore, we apply a

global pose estimation technique similar to the one presented

in [30]. For the details of this technique we refer to [47].

We only note that it is based on a non-linear minimization

of the difference between the 3D transformation parameters

(x, y, z, ϕ, ϑ, ψ) resulting from the robot poses and those given

by local pose constraints between overlapping local maps. The

local pose constraints are obtained by applying ICP matching

between overlapping local maps.

VI. P P

In order to acquire data about the environment, the car

needs to drive through its environment and visit the different

locations. This can be done by manually driving the car or in

a more challenging way by autonomous navigation. A realistic

approach is to provide a route description to the car and let it

run autonomously along that route. However, it is not sufficient

for safe navigation to only follow a predefined route since

obstacle might block the route and the car has to plan an

admissible trajectory around them.

The current version of our planning system follows the

ideas of Kelly and Stentz [15] and is closely related to the

approach of Thrun et al. [45]. The idea is to generate variations

of the originally specified route. The robot then evaluates

the different trajectories and selects the best admissible one

given a cost function. The trajectories are evaluated according

to traversability, curvature, and alignment with the specified

route. The chosen trajectory is then sent to a low level

controller, that keeps the car on the selected trajectory. The

controller itself does not change the speed of the vehicle, it

only adapts the steering angle of the car. The bigger the error

between the car and the trajectory it should follow, the more

the car tries to steer towards the given trajectory. We started

with a controller that was also applied by Thrun et al. [45]

which is given by the control low

α(t) = φ(t) + atan

(

κ ·
x(t)

v(t)

)

, (17)

where α refers to the new steering command, φ(t) to the

difference of the current steering angle and the orientation of

the trajectory the car should follow. x(t) refers to the current

distance between the position of the robot and the trajectory

and v(t) describes the velocity of the car. The control gain κ

influences, how intensive the car steers back to the trajectory.

A too high value leads to oscillation and a too small value

lead to a comparably slow convergence rate to the reference

trajectory. We determined the gain through experiments and

obtain good results for κ ∈ [0.2, 0.4].

This controller follows the given trajectory but can lead

to small overshoots in curves and to slightly shaky steering

commands of the car. To overcome this problem, we do not

use the raw velocity information but apply a post filtering

in a Kalman filter fashion. This leads to smoother velocity

estimates and helps to stabilize the steering command. We

furthermore do not compute φ(t) only based on the closest

point on the route but rather averaging of a few poses in

front of the car. This compensates for slightly un-smooth input

trajectories and reduces the risk of slight overshoots in curves.

VII. S T

The need for a sophisticated simulation environment for

our autonomous vehicle mainly originated in two facts. First,

the complex software architecture developed by several re-

searchers at different labs had to be tested as a complete

system as early as possible to verify the appropriateness of

interfaces, interaction protocols, and data rates. Second, as

the development of software and hardware was conducted

in parallel from the early beginning of the project on, there

was an inherent need for physically plausible data sets to

test the algorithms, especially in the area of 3d mapping and

navigation.

As a consequence, we have built a 3d simulation envi-

ronment for our autonomous vehicle, its main sensors, and

the outdoor terrain. An example for such a simulation is

depicted in Figure 9. The developed system is based on the

Gazebo simulator [16], which is part of the Player/Stage

project. Gazebo uses the Open Dynamics Engine [38] to

yield physically plausible simulations in three dimensions by

taking into account friction, forces, and rigid body dynamics.

It includes a wide variety of pre-build models for robotics

applications and is relatively easy to extend. We developed a

number of plug-in models for our autonomous smart car and

its primary sensors which are three static laser range finders,

two rotating laser range finders, an GPS and inertial sensor.

Fig. 9. The simulated autonomous Smart car in outdoor terrain (left). The
simulation includes two rotating laser range finders mounted on top of the
vehicle (right). The laser beams are visualized in blue.

Instances of these models can be configured and inserted

into a simulated world using a simple XML-based description

language. At the same time, the plug-in models implement the

necessary interfaces and IPC-based communication protocols

to our navigation and mapping system so they can readily

be exchanged for real hardware components. There are no

simulator specific message types build into the overall system

to ensure that the architecture is clearly focused on the real

application domain.

A. The Simulated Environment

In general, there are several different ways how the sim-

ulated environment can be specified. For testing basic navi-

gation capabilities, the simulator supports a flat ground plane

and simple geometric objects as obstacles, see the left image of

Figure 10. More complex and realistic ground surfaces can be

defined in terms of elevation maps or surface maps. By using

the interface to the surface map data structure, one can run

simulation experiments on terrain that has been traversed with

the real vehicle. The right image on Figure 10, for example,

depicts the simulated Smart car driving on a surface model that

has automatically been constructed from real data acquired at

an outdoor test site.

Fig. 10. The simulated environments can be composed of simple geometric
objects (left) or can be automatically build from 3d laser range finder data
gathered by the real vehicle (right).

B. Experiences with the Simulator

There are often controversial discussions, whether the

achievements possible through simulation are worth the efforts

necessary for developing and maintaining the simulator itself.

From our experience, one should not spend an excessive

amount of time on optimizing system parameters in simu-

lation since the real system typically differs substantially in

these aspects. On the other hand, the development of the 3d

mapping capabilities, the navigation system, and especially the

combination of both in one control loop was clearly facilitated

by the simulation system.

For the 3d mapping algorithms, the main benefits lay in

the possibility to set up simple geometric environments and

to compare the mapping results with the known ground truth.

Additionally, by simulating a moving vehicle with its physical

properties we were able to get an intuition on how accurate the

localization system has to be for achieving dense and accurate

maps. It was also relatively easy to compare the results for

different sensor placements, configurations, and data rates.

For the development of the navigation system, the avail-

ability of simple geometric environments was less important

as this could be simulated more easily and faster by a simple

planar simulation directly build into the navigation module.

Far more important was the possibility to test the navigation

algorithm in a dynamic setting together with the real local

traversability maps calculated online. This could neither have

been achieved by replaying real log files nor by using less

realistic simulation.

VIII. E

A. Localization

Our approach to localization has been extensively tested and

proved to be accurate and reliable in an urban environment. A

typical result obtained during the validation phase is depicted

in Fig. 11. The figure represents the estimated trajectory of

the car overlayed on the ortho-photo of the EPFL campus.

During the experiment, the car drove on areas were GPS

was not available or of bad quality (close to buildings,

underground, along narrow alleys bordered with trees, etc.).

Fig. 11. Overlay of the estimated trajectory on the ortho-photo of EPFL.
The zones where the GPS was not available are highlighted. The total traveled
distance is 2350m.

However, the localization algorithm was able to cope with

GPS faults and provided accurate positioning estimation, such

as depicted in Fig. 12.

-30

-20

-10

 0

 10

 20

 30

 40

-200 -150 -100 -50 0 50 100

y
[m

]

x[m]

GPS faults and occlusions

XY estimated
GPS measurements

c

a

b

Fig. 12. The graph represents a part of the trajectory depicted in Fig.
11. In this urban environment the GPS signal is disturbed by many objects
(trees, buildings, etc.) and GPS faults are of high amplitude. The localization
algorithm was able to reject erroneous GPS fixes and to provide accurate
estimations. The labels a,b and c mark areas where GPS is of poor quality
(a, b) or unavailable (c).

The uncertainty associated to the pose estimation mainly

depends on the GPS fixes quality. As depicted in Fig. 13, the

standard deviation is low when differential GPS is available

(∼ 3 cm) but increases as soon as fixes become unavailable

(up to 60 cm).

B. Mapping

To acquire the data, we steered the robotic car over an mili-

tary test sight. On its path, the robot encountered three nested

loops. The goal of these experiments is to demonstrate that

our representation yields a significant reduction of the memory

requirements compared to a point cloud representation, while

still providing sufficient accuracy. Additionally, they show that

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300 350 400

S
ig

m
a
 [
m

]

Time [s]

Standard deviation for X,Y

X sigma
Y sigma

c

a

b

Fig. 13. Standard deviation along the north (x) and west axis (y) for the
trajectory depicted in Fig. 12. The standard deviation increases when GPS
quality is poor and decreases as soon as it gets better. The labels a,b and c
corresponds to the zones marked in Fig. 12

our representation is well-suited for global pose estimation and

loop closure. Furthermore we show that our representation is

easy to apply to our simulator.

In the experiment we acquired 312 local point clouds

consisting of 22,700,000 data points. The area scanned by the

robot spans approximately 250 by 200 meters. During the data

acquisition, the robot traversed three nested loops with a length

of approximately 1,200m. Figure 14 shows a top view of the

resulting MLS map with a cell size of 50cm x 50cm and 3

cutouts with a visualized smart. The yellow/light grey surface

patches are classified as traversable. It requires 17.15 MBytes

to store the computed map, where 36% of 200,300 cells are

occupied. Compared to this the storage of the 22,700,000 data

points requires 544,8 Mbytes.

IX. C

In this paper, we presented our approach to mapping of

large-scale areas using an autonomous car. We first described

out modifies Smart car and setup. Then, we presented out

approach to localization which is based on an information

filter that merges the information obtained by a variety of

different sensors. We furthermore presented our compact map

model that is suitable to model outdoor environment in an

appropriate way. We showed how to construct a model given

a set of smaller map build on the fly. We describe our

approach to consistently merge the individual map into a

global representation. Our approach has been implemented and

tested using a real car equipped with different types of sensors.

All experiments presented in this paper, show the result of real

world data obtained with this robot.

A

This work has partly been supported by EC under contract

number FP6-IST-027140-BACS, FP6-004250-CoSy, and FP6-

2005-IST-5-muFly as well as by the German Research Foun-

dation (DFG) within the Research Training Group 1103 and

under contract number SFB/TR-8. The authors would like to

thank Mike Montemerlo for providing extremely helpful hints

in the context of the navigation module.

Fig. 14. The left handed image shows a top view of the resulting MLS map of a military test sight with a cell size of 50cm x 50cm. The area scanned by
the robot spans approximately 250 by 200 meters. During the data acquisition, the robot traversed three nested loops with a length of approximately 1,200m.
On the right hand side three cutouts with a visualized smart are depicted. The yellow/light grey surface patches are classified as traversable.

R

[1] P. Allen, I. Stamos, A. Gueorguiev, E. Gold, and P. Blaer. Avenue:
Automated site modeling in urban environments. In Proc. of the 3rd

Conference on Digital Imaging and Modeling, pages 357–364, 2001.

[2] J. Bares, M. Hebert, T. Kanade, E. Krotkov, T. Mitchell, R. Simmons,
and W. R. L. Whittaker. Ambler: An autonomous rover for planetary
exploration. IEEE Computer Society Press, 22(6):18–22, 1989.

[3] L.B. Cremean, T.B. Foote, J.H. Gillula, G.H. Hines, D. Kogan, K.L.
Kriechbaum, J.C. Lamb, J. Leibs, L. Lindzey, C.E. Rasmussen, A.D.
Stewart, J.W. Burdick, and R.M. Murray. Alice: An information-rich
autonomous vehicle for high-speed desert navigation. Journal of Field

Robotics, 2006. Submitted for publication.

[4] DARPA. Darpa gran challenge rulebook. Website, 2004.
http://www.darpa.mil/grandchallenge05/Rules 8oct04.pdf.

[5] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and
M. Csorba. A solution to the simultaneous localisation and map building
(SLAM) problem. IEEE Transactions on Robotics and Automation,
17(3):229–241, 2001.

[6] G. Dissanayake, S. Sukkarieh, and H. Durrant-Whyte. The aiding of
a low-cost strapdown inertial measurement unit using vehicle model

constraints for land vehicle applications. IEEE Transactions on Robotics

and Automation, 17(5), 2001.

[7] A. Eliazar and R. Parr. DP-SLAM: Fast, robust simultainous local-
ization and mapping without predetermined landmarks. In Proc. of the
Int. Conf. on Artificial Intelligence (IJCAI), pages 1135–1142, Acapulco,
Mexico, 2003.

[8] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 2428–2435, Barcelona, Spain, 2005.

[9] S. Fleury, M. Herrb, and F. Ingrand. GenoM.
http://softs.laas.fr/openrobots/tools/genom.php.

[10] C. Früh and A. Zakhor. An automated method for large-scale, ground-
based city model acquisition. International Journal of Computer Vision,
60:5–24, 2004.

[11] G. Grisetti, C. Stachniss, and W. Burgard. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), pages 2443–2448, Barcelona, Spain, 2005.

[12] J. Guivant and E. Nebot. Optimization of the simultaneous localization
and map building algorithm for real time implementation. IEEE

Transactions on Robotics and Automation, 17(3):242–257, 2001.

[13] D. Hähnel, W. Burgard, and S. Thrun. Learning compact 3d models
of indoor and outdoor environments with a mobile robot. Robotics and

Autonomous Systems, 44(1):15–27, 2003.

[14] M. Hebert, C. Caillas, E. Krotkov, I.S. Kweon, and T. Kanade. Terrain
mapping for a roving planetary explorer. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), pages 997–1002, 1989.

[15] A. Kelly and A. Stentz. Rough terrain autonomous mobility, part 1:
A theoretical analysis of requirements. Journal of Autonomous Robots,
5:129–161, 1998.

[16] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. Technical report, USC Center for
Robotics and Embedded Systems, CRES-04-002, 2004.

[17] P. Kohlhepp, M. Walther, and P. Steinhaus. Schritthaltende 3D-
Kartierung und Lokalisierung für mobile inspektionsroboter. In
18. Fachgespräche AMS, 2003. In German.

[18] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury and; M. Herrb,
and R. Chatila. Autonomous rover navigation on unknown terrains:
Functions and integration. Int. Journal of Robotics Research, 21(10-
11):917–942, 2002.

[19] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on Robotics and
Automation, 7(4), 1991.

[20] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital michelangelo project: 3D scanning of large statues. In
Proc. SIGGRAPH, pages 131–144, 2000.

[21] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun. Using
EM to learn 3D models with mobile robots. In Proceedings of the

International Conference on Machine Learning (ICML), 2001.

[22] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Journal of Autonomous Robots, 4:333–349, 1997.

[23] C. Martin and S. Thrun. Online acquisition of compact volumetric maps
with mobile robots. In IEEE International Conference on Robotics and

Automation (ICRA), Washington, DC, 2002. ICRA.

[24] M. Montemerlo, S. Thrun D. Koller, and B. Wegbreit. FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges. In Proc. of the Int. Conf. on

Artificial Intelligence (IJCAI), pages 1151–1156, Acapulco, Mexico,
2003.

[25] M. Montemerlo, N. Roy, S. Thrun, D. Hähnel, C. Stachniss, and
J. Glover. CARMEN – the carnegie mellon robot navigation toolkit.
http://carmen.sourceforge.net, 2002.

[26] M. Montemerlo and S. Thrun. A multi-resolution pyramid for outdoor
robot terrain perception. In Proc. of the National Conference on Artificial

Intelligence (AAAI), 2004.

[27] H.P. Moravec. Robot spatial perception by stereoscopic vision and 3d
evidence grids. Technical Report CMU-RI-TR-96-34, Carnegie Mellon
University, Robotics Institute, 1996.

[28] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6d SLAM
with approximate data association. In Proc. of the 12th Int. Conference
on Advanced Robotics (ICAR), pages 242–249, 2005.

[29] C.F. Olson. Probabilistic self-localization for mobile robots. IEEE

Transactions on Robotics and Automation, 16(1):55–66, 2000.

[30] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor estimates. In ICRA, 2006.

[31] C. Parra, R. Murrieta-Cid, M. Devy, and M. Briot. 3-d modelling and
robot localization from visual and range data in natural scenes. In 1st
International Conference on Computer Vision Systems (ICVS), number
1542 in LNCS, pages 450–468, 1999.

[32] K. Pervölz, A. Nüchter, H. Surmann, and J. Hertzberg. Automatic
reconstruction of colored 3d models. In Proc. Robotik, 2004.

[33] P. Pfaff and W. Burgard. An efficient extension of elevation maps for
outdoor terrain mapping. In In Proc. of the Int. Conf. on Field and

Service Robotics (FSR), pages 165–176, 2005.

[34] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley
Publishing Inc., 1989.

[35] R. Simmons. IPC – inter process communication.
http://www.cs.cmu.edu/afs/cs/project/TCA/www/ipc/index.html.

[36] S. Singh and A. Kelly. Robot planning in the space of feasible actions:
Two examples. In Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 1996.

[37] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[38] Russell Smith. Open dynamics engine. Website, 2002. http://www.
q12.org/ode/ode.html.

[39] S. Sukkarieh, E.M. Nebot, and H. Durrant-Whyte. A high integrity
imu/gps navigation loop for autonomous land vehicle application. IEEE

Transactions on Robotics and Automation, 15(3), 1999.
[40] S. Thrun. An online mapping algorithm for teams of mobile robots.

Int. Journal of Robotics Research, 20(5):335–363, 2001.
[41] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile

robot mapping with applications to multi-robot and 3D mapping. In
Proceedings of the IEEE Int. Conf. on Robotics and Automation (ICRA),
San Francisco, CA, 2000. IEEE.

[42] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Bur-
gard, C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. A system
for volumetric robotic mapping of abandoned mines. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), Taipei, Taiwan, 2003.
[43] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durant-

Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23(7-8):693–704,
2004.

[44] S. Thrun, C. Martin, Y. Liu, D. Hähnel, R. Emery Montemerlo, C. Deep-
ayan, and W. Burgard. A real-time expectation maximization algorithm
for acquiring multi-planar maps of indoor environments with mobile
robots. IEEE Transactions on Robotics and Automation, 20(3):433–442,
2003.

[45] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney. Winning the darpa grand challenge. Journal of

Field Robotics, 2006. To appear.
[46] R. Triebel, F. Dellaert, and W. Burgard. Using hierarchical EM to extract

planes from 3d range scans. In Proc. of the IEEE Int. Conf. on Robotics

& Automation (ICRA), 2005.
[47] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for

outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.
[48] C. Urmson. Navigation Regimes for Off-Road Autonomy. PhD thesis,

Robotics Institute, Carnegie Mellon University, 2005.
[49] Carl Wellington, Aaron Courville, and Anthony Stentz. Interacting

markov random fields for simultaneous terrain modeling and obstacle
detection. In Proceedings of Robotics: Science and Systems, Cambridge,
USA, June 2005.

[50] O. Wulf, K-A. Arras, H.I. Christensen, and B. Wagner. 2d mapping of
cluttered indoor environments by means of 3d perception. In ICRA-04,
pages 4204–4209, New Orleans, apr 2004. IEEE.

[51] C. Ye and J. Borenstein. A new terrain mapping method for mobile
robot obstacle negotiation. In Proc. of the UGV Technology Conference

at the 2002 SPIE AeroSense Symposium, 1994.

[W5] S. Kolski, D. Furgeson, C. Stachniss, and R. Siegwart. Autonomous

driving in dynamic environments. In Workshop on Safe Navigation in Open

and Dynamic Environments at the IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS), Beijing, China, 2006.

Autonomous Driving in Dynamic Environments

Sascha Kolski∗, Dave Ferguson†, Cyrill Stachniss∗, and Roland Siegwart∗

∗Swiss Federal Institute of Technology (ETHZ) †Carnegie Mellon University (CMU)

Zurich, Switzerland Pittsburgh, PA, USA

{kolskis, scyrill, rsiegwart}@ethz.ch dif@cmu.edu

Abstract— Autonomous vehicles are being used increasingly
often for a range of tasks, including automated highway driving
and automated parking. These systems are typically either spe-
cialized for structured environments and depend entirely on such
structure being present in their surroundings, or are specialized
for unstructured environments and ignore any structure that may
exist. In this paper, we present a hybrid autonomous system
that recognizes and exploits structure in the environment in the
form of driving lanes, yet also navigates successfully when no
such information is present. We believe this approach is more
flexible and more robust than either of its sub-components alone.
We demonstrate the effectiveness of our system on both marked
roads and unmarked lots under the presence of dynamic objects,
such as pedestrians or other vehicles.

I. INTRODUCTION

Every year, thousands of people are killed in road acci-

dents, with millions more injured. The vast majority of these

accidents are due to human error, with roughly 5% caused

by vehicle defects [1]. Such staggering findings motivate the

use of driver assistant systems and fully automated vehicles

to increase driver and passenger safety.

Driver assistant systems can help drivers to identify dan-

gerous vehicle states and traffic scenarios and reduce the risk

of accidents. These driver assistant systems are widespread

in all categories of vehicles and range from anti-lock brakes

to radar based adaptive cruise control. The development of

these systems has been accelerated by integrated drive-by-wire

components such as electronic gas pedals, brakes, and steering

systems.

The development of such components has also hastened

the arrival of autonomous passenger vehicles. In 1997, the

NavLab vehicles travelled ‘no hands’ across the United States,

requiring only accelerator and brake pedal interaction from

the driver [2]. In 2005, 23 autonomous vehicles started a race

across the Nevada desert in the DARPA Grand Challenge race

[3], with 5 of them finishing the 211.1 Km distance.

Most of these systems depend on environmental structure

like driving lanes or dense sets of GPS points. However, in

many common driving scenarios neither of these sources of

information will be available, for example, when leaving a

road and entering a parking lot.

Autonomous navigation in unstructured environments is an

active research area in field robotics, and a number of effective

approaches have been developed that address this task [4]–[7].

A common technique is to maintain a map of the environment

and use this to plan safe paths to a desired goal location.

As the vehicle traverses the environment, it updates its map

and path based on its observations. Such an approach works

well when dealing with reasonably small areas, but storing and

planning over maps of the entire environment is impractical

when traversing long distances. Further, without taking into

account non-spatial information such as road markings, these

approaches are unable to ensure that the vehicle stays within

its lane (or even on the road) when navigating through highway

or urban environments.

In this paper we present a hybrid navigation system that

combines the benefits of existing approaches for driving in

structured environments (e.g. roads) and unstructured envi-

ronments (e.g. parking lots). When driving on detectable

roads, the system uses visual lane detection and laser range

data to generate a local map, which is processed by a local

planner to guide the vehicle down the lane while avoiding

obstacles. When driving in unstructured environments, the

system employs a global map and planner to generate an

efficient trajectory to a desired goal. The combined system is

capable of navigating a passenger car to a given goal position

without relying on road structures, yet it makes use of such

structure when it is available. We also describe extensions to

this approach capable of dealing with dynamic obstacles, such

as pedestrians or other vehicles, that are commonly found in

realistic driving scenarios.

We begin by briefly introducing our autonomous Smart

vehicle and its onboard sensors. We then describe our system

for navigating structured and unstructured environments, and

go on to describe how this system can be used in environments

containing dynamic obstacles. In Section IX we present results

from runs performed in road and parking lot scenarios and we

conclude with discussion.

II. VEHICLE AND SENSORS

Our vehicle is a Smart fortwo passenger car that has been

modified for autonomous operation. Firstly, we have interfaced

the Smart’s controller area network (CAN) bus to access data

on the dynamic state of the vehicle, specifically the wheel

speed and the steering angle. We have also added actuators

to the brake pedal and interfaced the electronic gas pedal

and power steering. Finally, a number of sensors (discussed

below) have been added to provide vehicle and environmental

information. A detailed description of the mechanical and

architectural aspects of the vehicle can be found in [8].

Fig. 1. Our autonomous Smart car platform. There are three fixed laser range
finders mounted on the front of the vehicle and on the sides of the roof, and
two spinning laser range finders mounted together on the center of the roof.
Inside the vehicle, mounted behind the windscreen, is an automotive camera
used for lane detection.

A. Proprioceptive Sensors

As with many other passenger cars, the Smart is equipped

with a variety of sensors which are linked using the vehicle’s

CAN bus. By interfacing this bus it is possible to access the

sensor data and measure the vehicle’s dynamic state precisely.

a) Wheel Encoders: The overall vehicle speed is derived

from the four wheel encoders with a resolution of 0.5 revo-

lutions/minute. The steering wheel angle is available with a

resolution of 0.04◦.

b) IMU: We have added a 6 degree of freedom IMU to

the Smart that is able to measure angular rates up to 100◦/sec

at a resolution of 0.025◦. Lateral accelerations in all three

dimensions can be measured up to 2g with a resolution of

0.01 m/s2.

B. Exteroceptive Sensors

c) Differential GPS system: (Omnistar Furgo 8300HP,

rain proof antenna) This system provides an accurate position

estimate together with its standard deviation when satellites

providing the GPS drift correction are visible from the car.

When no correction is available standard GPS is provided.

d) Laser Range Finders: We use five SICK laser range

finders for sensing the spatial structure of the environment.

These are configurable laser range finders based on time of

flight measurements, with angular resolutions of 1 or 0.5◦,

angular ranges of 180◦ and measuring ranges up to 80 meters.

Three of these lasers are kept at fixed angles—one at the front

of the vehicle and two on the sides of the roof—to quickly

detect upcoming obstacles and difficult terrain, and two of the

lasers are mounted to a spinning platform—on the center of

the roof—to provide full 3D information about the vicinity of

the vehicle.

e) Monocular Camera: An automotive gray-scale cam-

era is mounted inside the vehicle at the top of the windscreen

for observing the area in front of the vehicle and detecting

lane information. The resolution of the camera is 750 × 400

pixels and it delivers information at 25 frames per second.

III. POSITION ESTIMATION

The localization algorithm used in our system is based on

the information form of the Kalman filter, the Information

filter. This filter has the property of summing information

contributions from different sources in the update stage. This

characteristic is very interesting when many sensors are in-

volved, which is the case in our system. Our sensor fusion

scheme is based on [9] [10] and [11]. To accurately localize the

vehicle, four different sensors are used: DGPS, IMU, optical

gyro and vehicle sensors (wheel encoders and steering angle

sensor). The combination of their measurements allows the

estimation of the vehicle’s 6 degrees of freedom i.e. the 3D

position (x, y, z) and the attitude (roll, pitch, heading).

A detailed description of this aproach can be found in [8].

IV. TRAVERSABILITY ESTIMATION

Reliable estimates of the traversable area in the vicinity of

the vehicle are crucial for autonomous driving. We currently

use the three static laser range finders on our vehicle to

estimate the traversability of the area in front of the vehicle.

Given a laser range observation, we first compute the end

points of the individual beams. We then add the 3D points

to the cells of a local two-dimensional grid map according to

the x, y-coordinate of the beam (horizontal position). We then

parse the cells and compute the mean and variance of the

z-values (vertical position) for each cell. The traversability

classification of a cell is performed locally based on these

values. When adding observations from multiple laser range

finders into a single grid, it is often the case that false obstacles

are detected by some of the lasers (described as phantom

obstacles by Thrun et al. [12]). These false obstacles are

caused by small errors in the pitch estimate of the pose

of the vehicle. To remove these artifacts, we compute the

traversability estimate individually for each scan and merge the

independently-estimated traversability values into a common

grid structure. We found that this yields good results when

moving on streets as well as on unpaved roads. An example

traversability map produced by this approach is shown in

Figure 2.

V. TRAVERSABILITY PREDICTION

If an autonomous vehicle has onboard far-range sensors,

then the information from these sensors can be used by the

vehicle to enable smooth following of winding roads and

early reaction to obstacles in the vehicle’s route. The smaller

the sensing range, the more extreme the obstacle avoidance

movements of the vehicle must be. This is also true for

following the current road lane. To generate smoother motion

Fig. 2. A traversability map obtained using the three fixed laser range finders
on our vehicle. Black areas are untraversable and the red/grey arrows illustrate
the trajectory taken by the car.

of the vehicle using only our laser range finders, we perform

a prediction of the traversable area at a far range by using the

accurate near-range information provided by these sensors.

In order to perform the prediction, we compute a 1D pattern

of average cost values. This pattern is generated by storing,

for each cell in our 1D pattern, the average cost of all the

already-observed cells in our local cost map that have their

lateral offset position from the current route match the cell

position in our 1D template. This process is illustrated by the

image in the second row of Figure 3.

We then use this pattern to estimate unknown traversability

cost values for cells far away from the vehicle along the

current route (illustrated by the blue lines in the same figure).

In this way, we obtain an estimate of the expected cost in

the currently unobserved area. The image in the last row of

Figure 3 provides an example result of this estimation. The

area within the red rectangle is the measured cost map and

the the area in the blue rectangle is the predicted cost based

on the measured cost map.

This technique allows us to estimate the traversability of

areas that have not been observed with the sensors. This

prediction does not cope with unforseen obstacles but it does

help the car to improve its estimate of the road projection. This

is especially important if the localization is affected by GPS

drift, since in this case it is not sufficient to simply follow the

predefined route. With our approach we are able to robustly

estimate the road and the traversable area, even when faced

with GPS drift or outages.

VI. DRIVING IN STRUCTURED ENVIRONMENTS

When driving in structured environments such as roads or

highways, it is important for safety that vehicles abide by

traffic rules and stay in their own lanes. For autonomous

vehicles, such structure is useful because it constrains the

available actions of the vehicle and reduces the complexity

of the navigation task. For instance, if an autonomous vehicle

is traveling down a road, it knows it must stay within its

current lane so the lane can be used as a guide for where the

vehicle must travel to next. Such an approach can be coupled

with a standard commercial navigation unit that provides

higher-level guidance on when to turn down which street.

Fig. 3. The traversability prediction. The image in the first row shows a local
cost map representing the traversable and non-traversable area. The dashed
line illustrates the route. Based on this map and the route description, we
compute a 1d cost pattern based on the cell labeled by the red lines in the
image in the second row. We then use this pattern to predict the traversability
in from of the car (illustrated by the blue lines in the third figure). Finally,
we obtain a cost prediction for cells not observed to far by the robot (labeled
by the blue rectangle in the last image).

The resulting combined system can autonomously navigate

between arbitrary road locations.

However, to ensure safe navigation, it is not enough to just

follow the current lane. The vehicle must be alert at all times

and able to avoid other cars and objects that may unexpectedly

place themselves in its path, such as cars pulling out from

driveways or pedestrians crossing the street, for example. To

achieve such behavior in our Smart, we construct a local map

using the traversability estimation method described in the

previous section and plan a collision-free path through this

map. Both the map and the plan are updated frequently (at 20

and 10 Hz, respectively). With both the local obstacles and

lane information encoded in the local map, the vehicle is able

to plan trajectories that keep it within the current lane and also

avoid any obstacles.

A. Lane Detection

To extract lane information, we use a monocular gray-

scale camera designed for automotive use and a real-time lane

detection algorithm running on a separate computer equipped

Fig. 4. Example results from our lane detection approach applied to images
from a straight (top) and curved (bottom) section of road.

with a frame grabber. Our approach combines hypotheses

from several lane detection algorithms, each designed to detect

different types of lanes, such as the closest lane to the vehicle,

straight lanes, or curved or symmetric lanes. These algorithms

rely mainly on the spatial gradient of the image to extract

their hypotheses. The results of the individual algorithms are

then combined to determine the most probable lane. Example

results from our lane detection algorithm are shown in Figure

4 and more details on the algorithm can be found in [13].

B. Local Planning

In order to follow the current lane safely and smoothly, we

project a set of potential vehicle actions onto our traversability

map and check the cost of these actions. For this, we use an

approach similar to that used by the Stanford Racing Team

in the Grand Challenge [12]. We take the centerline of the

lane and use this to construct a set of possible trajectories for

the vehicle to execute. These trajectories vary in their lateral

offset from the nominal centerline path and provide a series

of alternatives from which the best obstacle-free trajectory can

be selected.

By exploiting the structure of the driving lane, this com-

bined approach provides smooth, safe trajectories for the

vehicle when it is operating on roads.

VII. DRIVING IN UNSTRUCTURED ENVIRONMENTS

In unstructured environments where there is no lane infor-

mation to guide or constrain the actions of the vehicle, we

must use a more general approach for navigation. For instance,

imagine our vehicle has arrived at its intended destination

address and now wants to park in a specified goal location

within the parking lot. To do this, we can still use the local

planning component of our system, however we now need to

compute a path for the planner to follow as we no longer have

lane information to provide this for the vehicle. To generate

these paths we use the Field D* algorithm, which has been

incorporated into several fielded robotic systems [14]. This

algorithm provides very low-cost 2D paths through grid-based

representations of an environment and is able to repair these

paths to account for new information as the vehicle observes

obstacles during its traverse. These paths do not take into

account the heading restrictions of the vehicle and instead

approximate the least-cost path to the goal for a vehicle that

can turn in place. Because Field D* does not encode the

mobility constraints of the vehicle, it cannot be used alone

for accurate trajectory planning for the vehicle. Consequently,

we combine it with a local planner to provide feasible paths.

One way to do this is to use the Field D* path as the input

to our local planner, which will then track this path to the goal.

As the vehicle navigates through the environment, the global

Field D* path is updated based on new information received

through the onboard sensors, and the trajectories generated by

the local planner are subsequently updated to reflect the new

global path. This approach works well in static environments,

where the Field D* path can be quite accurately tracked using

the local planner. However, in dynamic environments such an

approach may not be ideal, as discussed below.

VIII. NAVIGATING IN DYNAMIC ENVIRONMENTS

Typical driving scenarios involve dynamic obstacles: there

are usually pedestrians or other vehicles moving around within

the environment that need to be avoided. These dynamic

obstacles need to be accurately detected and reasoned about

in order to produce safe paths for our vehicle to traverse. In

the following two subsections we describe extensions to our

navigation approach that enable us to model and reason about

dynamic elements.

A. Mapping Dynamic Environments

To detect and predict the trajectories of moving objects,

several approaches have been proposed in the robotics commu-

nity. Feature-based approaches operate extract features from

the raw data and then track these features to compute their

motion parameters. Such approaches are suitable for a variety

of sensor data, for example, vision, radar, and laser, and have

been widely used [15]. However, these approaches typically

require a priori knowledge of the features to track and are

therefore only suitable for the detection of well defined classes

of objects. Raw data-based approaches, on the other hand,

detect motion from raw sensor data and do not depend on

any model of the objects being observed. They are thus less

accurate for predicting well-behaved, known object classes

but perform well when confronted with a range of different

dynamic elements.

Our vehicle uses a raw data-based scan alignment approach

to detect moving objects in the environment. Based on work

Fig. 5. Scan points taken during a test ride on campus. The static structure of the environment (curbs, buildings) is detected as static parts of the environment
while the oncomming vehicle forms an L-shaped set of dynamic points.

introduced by Jensen [16], our algorithm extends the iterative

closest points algorithm (ICP) [17]. The ICP algorithm aligns

two sets of points by iteratively finding the set of points in one

scan that are closest to a set of points in the other scan, and

then computing a transformation that minimizes the distance

between the two sets of points. Special care has to be taken to

suppress outliers, which are points that are present in one scan,

but not in the other, because they bias the alignment. The pose

correction dx, dy, dΘ is computed as a weighted mean over all

connected points. The link between a scan point (xi, yi) and

a scan point (xj , yj) is expressed by a link variable li = j.

With this the pose correction can be computed from the linked

scan points and results in

dx =
1

I

∑

i=I∗

(xi − xli) (1)

dy =
1

I

∑

i=I∗

(yi − yli) (2)

dΘ =
1

I

∑

i=I∗

(φi − φli) (3)

Linking and correcting are repeated until the correction value

is below a predefined threshold. The resulting transformation

determines the displacement from the reference to the corre-

spondence pose.

While in scan matching outliers are a disturbing factor and

are filtered out in each iteration, they are very useful for the

detection of dynamic obstacles. In our approach, the outliers

found in each iteration of scan matching are collected and

clustered. The resulting clusters are candidates for dynamic

objects and are tracked to derive their motion parameters.

Figure 5 provides an example illustrating this ability of this

approach to filter static points from those in motion.

B. Planning in Dynamic Environments

When driving within road lanes, dynamic obstacles usually

do not significantly interfere with the traverse of our vehicle

because their behavior is well-defined. To ensure we don’t

collide with any of these obstacles, our local planner can

estimate the trajectories of these other vehicles or pedestrians

and then check that its intended trajectory does not intersect

these objects at any point in time. Figure 6 shows a simple

example of this reasoning. The local planner can then remove

from contention any trajectories that intersect dynamic obsta-

cles (or modify the velocity profile of the trajectory to avoid

the obstacle). Since the local planner is generating a series

of possible trajectories that span the current driving lane, at

least one of these trajectories should still be obstacle-free if

the dynamic obstacle is abiding by traffic rules.

For our unstructured driving scenario, the situation is com-

plicated because the dynamic obstacles may interfere entirely

with the global path being tracked. Thus, it may not be possible

to track this path using our local planner. Instead, we may need

to evaluate a more general set of possible local trajectories

for the vehicle to execute, including some that do not follow

the current path. For this, we use an approach that follows a

large body of work on outdoor mobile robot navigation [4],

which has the local planner project out a range of possible

local trajectories and then evaluate each trajectory based on

both the cost of the trajectory itself (in terms of curvature,

terrain, distance, etc), as well as the cost of a global path

from the endpoint of the local trajectory to the goal. Thus,

rather than a single global path being planned from the current

vehicle position to the goal, global paths are planned from

each trajectory endpoint. Since Field D*, like most replanning

algorithms, performs planning in a backwards direction out

from the goal, computing these extra paths and their associated

costs is very efficient (and often requires no extra planning at

all).

Figure 7 shows an illustrative example of this combined

approach. Here, a set of local arc-based trajectories are shown

in red/gray, with the best trajectory shown in blue/black. Here,

the best trajectory was selected based on a combination of

the cost of the trajectory itself and the cost of a global path

from the end of the trajectory to the goal (the goal is shown

as a filled circle at the right of the figure). The global path

from the end of the best trajectory to the goal is also shown in

blue/black. In this example, a purely local planner would have

selected the straight trajectory leading directly to the right,

as this brings it closest to the goal in terms of straight-line

distance. However, such a trajectory could cause it to get stuck

behind the clump of obstacles in the middle of the map.

IX. EXPERIMENTS

We have tested our system in both structured and unstruc-

tured environments. For structured environments, we had the

vehicle drive down a road and record the resulting local maps.

Fig. 6. Local planning amidst dynamic obstacles. If an agent (facing upwards) assumes the dynamic obstacle (traveling in from the right) is static when
choosing its next action (potential actions shown as the arcs emanating out from the agent), it may select an action that will have it collide with the obstacle
at some future point in time. Instead, it needs to estimate the position of the dynamic obstacle in the future and use these estimates to select an action that
will avoid the obstacle at all times. The three images show the potential position of the agent based on its available actions, as well as the position of the
dynamic obstacle, at three stages in time (the color of each agent reflects the time).

Fig. 8. Results from global planning and mapping in an unstructured environment. Shown here is the map created from the laser during an autonomous
traverse from an initial position on a rural road to a goal position inside a large parking lot. Also shown is the path (in blue/black) traversed by the vehicle.
The vehicle began from the position marked in green/gray at the top of the map, and navigated to the goal position marked in red/gray at the bottom.

Fig. 9. Snapshots from a video taken of the traverse in Figure 8.

Fig. 7. Global Planning in Unstructured Environments. The vehicle
projects a set of feasible local trajectories through the local map from its
current position and orientation (trajectories for a single speed are shown in
red/gray). The cost of each of these trajectories is computed based on the cost
of the cells the trajectory travels through (darker areas are more expensive,
with black cells representing obstacles). A global path is planned from the
end of each trajectory to the goal (shown as a filled circle on the right side of
the map) and the cost of this path is added to the cost of the trajectory. The
best trajecotry is shown in blue/black, along with the global path from the
end of this trajectory to the goal. The map here has been configuration-space
expanded so that the vehicle can be treated as a single point during planning.

Figure 10 shows the combined cost map constructed from

the series of local maps and highlights both obstacles and lane

information. Since the laser range data does not contain any

information about the lane markings, the vision-based lane

detection system is necessary to keep the vehicle in its lane.

To test our vehicle in unstructured environments, we gave it

a more complex task. We began on a road and tasked it with

autonomously navigating to a goal location in a nearby parking

lot. Because there were large shrubs between its initial position

and its goal, it was forced to travel down the road until it

observed an opening through which it could enter the parking

lot. At this point it entered the parking lot and navigated to

its goal location.

Figure 8 shows the resulting map built by the vehicle and

the vehicle’s traverse. Figure 9 shows a series of images taken

from a video of the traverse. Overall the vehicle travelled about

140 meters in 62 seconds, i.e. at average speed of roughly 2.3

m/s.

The vehicle trajectory seen in Figure 8 shows its ability to

navigate in a scenario given a sparse set of waypoints and a

combination of global and local path planning techniques.

Together these experiments illustrate our vehicle’s ability

to navigate through both road and non-road environments.

Our vehicle effectively avoids obstacles to reach a defined

goal position without relying on an a priori model of the

environment.

X. CONCLUSION

In this paper we have presented a hybrid approach for

autonomous navigation in structured and unstructured envi-

ronments. Our approach exploits any lane structure present

in the environment and combines this with local obstacle

information to guide the vehicle along safe trajectories. When

Fig. 10. Results from our lane detection and mapping in a structured
environment. Data was gathered from roughly 100 meters of traverse down a
road (traveling from left to right). The top image shows the combined local
maps created by the vehicle during the traverse, with lane information shown
as dark gray areas and obstacles shown in black. Notice that the obstacle
information does not provide any real indication of the location of the lane or
even road, and so does not suffice for safely guiding the vehicle. The bottom
image shows a satellite map of the area.

no structure is detected, the approach falls back on a global

planner that generates efficient paths for the vehicle to desired

goal locations. We have provided results demonstrating the

operation of the vehicle in both structured and unstructured

environments.

ACKNOWLEDGEMENTS

We thank the European Commission for partially funding

this work through the SPARC project (Secure Propulsion using

Advanced Redundant Control) under IST-507859 and the

BACS Project under contract number FP6-IST-027140-BACS.

Dave Ferguson is partially supported by a U.S. National

Science Foundation Graduate Research Fellowship.

REFERENCES

[1] M. Shell, “Final report of the european esafety working group
on road safety, online available,” 2003. [Online]. Available:
http://europa.eu.int/informationsociety/activities/esafety/indexen.htm

[2] C. Thorpe, T. Jochem, and D. Pomerleau, “The 1997 automated highway
demonstration,” in 1997 International Symposium on Robotics Research,
1997.

[3] “Darpa grand challenge race website.” [Online]. Available:
http://www.darpa.mil/grandchallenge

[4] A. Kelly, “An intelligent predictive control approach to the high speed
cross country autonomous navigation problem,” Ph.D. dissertation,
Carnegie Mellon University, 1995.

[5] A. Stentz and M. Hebert, “A complete navigation system for goal
acquisition in unknown environments,” Autonomous Robots, vol. 2,
no. 2, pp. 127–145, 1995.

[6] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 1999.
[7] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja, and

K. Schwehr, “Recent progress in local and global traversability for
planetary rovers,” in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2000.
[8] P. Lamon, S. Kolski, and R. Siegwart, “The smartter - a vehicle for

fully autonomous navigation and mapping in outdoor environments,” In
Proceedings of CLAWAR 2006, Brussels, Belgium, 2006.

[9] P. Lamon and R. Siegwart, “3d position tracking in challenging terrain,”
Proceedings of the Field and Service Robotics FSR 2005, August 2005,
2005.

[10] E. N. G. Dissanayake, S. Sukkarieh and H. Durrant-Whyte, “The
aiding of a low-cost strapdown inertial measurement unit using vehicle
model constraints for land vehicle applications,” IEEE Transactions on

Robotics and Automation, 2001, 2001.
[11] E. N. S. Sukkarieh and H. Durrant-Whyte, “A high integrity imu/gps

navigation loop for autonomous land vehicle applications,” IEEE Trans-

actions on Robotics and Automation, Jun 1999, 1999.
[12] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-
fian, and P. Mahoney, “Winning the darpa grand challenge,” Journal of

Field Robotics, 2006, accepted for publication.
[13] M. Bellino, Y. Lopez de Meneses, P. Ryser, and J. Jacot, “Lane

detection algorithm for an onboard camera,” SPIE proceedings of the

first Workshop on Photonics in the Automobile, 2004.
[14] D. Ferguson and A. Stentz, “Field D*: An Interpolation-based Path

Planner and Replanner,” in Proceedings of the International Symposium

on Robotics Research (ISRR), 2005.
[15] C.-C. Wang, C. Thorpe, and S. Thrun, “Online simultaneous localization

and mapping with detection and tracking of moving objects: Theory
and results from a ground vehicle in crowded urban areas,” in IEEE

International Conference on Robotics and Automation, May 2003.
[16] B. Jensen, R. Philippsen, and R. Siegwart, “Motion detection and path

planning in dynamic environments,” in Workshop Proc. Reasoning with

Uncertainty in Robotics, International Joint Conference on Artificial

Intelligence IJCAI’03, 2003.
[17] P. J. Besl and N. D. Kay, “A method for registration of 3-d shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992.

