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A B S T R A C T

Efficient data collection methods play a major role in helping us better understand the Earth and
its ecosystems. In many applications, the usage of unmanned aerial vehicles (UAVs) for monitoring
and remote sensing is rapidly gaining momentum due to their high mobility, low cost, and flexible
deployment. A key challenge is planning missions to maximize the value of acquired data in large
environments given flight time limitations. This is, for example, relevant for monitoring agricultural
fields. This paper addresses the problem of adaptive path planning for accurate semantic segmentation
of using UAVs. We propose an online planning algorithm which adapts the UAV paths to obtain
high-resolution semantic segmentations necessary in areas with fine details as they are detected in
incoming images. This enables us to perform close inspections at low altitudes only where required,
without wasting energy on exhaustive mapping at maximum image resolution. A key feature of our
approach is a new accuracy model for deep learning-based architectures that captures the relationship
between UAV altitude and semantic segmentation accuracy. We evaluate our approach on different
domains using real-world data, proving the efficacy and generability of our solution.

1. Introduction
Remote sensing and monitoring methods provide abun-

dant data for ecology and environment research in a broad
range of applications. However, the applicability of con-
ventional remote sensing methodologies in large-scale en-
vironments is limited when both fast and high-quality data
collection is required. Unmanned aerial vehicles (UAVs) are
experiencing a rapid uptake in a variety of aerial monitoring
applications, including search and rescue [16], wildlife
conservation [15, 9, 11], industrial inspection [6, 33], and
precision agriculture [24, 26, 38, 20]. Compared to tradi-
tional data acquisition methods, such as manual or static
sampling procedures [15], they offer a more flexible and
easier to execute way to monitor areas at high spatial and
temporal resolutions [15, 33]. In recent years, the advent
of deep learning (DL) has unlocked their potential for
image-based remote sensing, enabling flexible, low-cost
data collection and processing [6]. However, a key challenge
is planning paths to efficiently gather the most useful data
in large environments, while accounting for the constraints
of physical platforms, e.g. on fuel/energy, as well as the
characteristics of the on-board sensor and DL model used
for data processing.

This paper examines the problem of DL-based semantic
segmentation using UAVs. Specifically, we investigate how
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+Corresponding: Marija Popović, Niebuhrstraße 1A, 53113 Bonn,

Germany. mpopovic@uni-bonn.de.
All authors are with the University of Bonn, Germany. This work

has partially been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy,
EXC-2070 – 390732324 – PhenoRob and by the Federal Ministry of
Food and Agriculture (BMEL) based on a decision of the Parliament of
the Federal Republic of Germany via the Federal Office for Agriculture
and Food (BLE) under the innovation support programme under funding
no 28DK108B20 (RegisTer).

ORCID(s):

200

y (m)

0
0

x (m)

50

100 0

100

z 
(m

)

150

200

y (m)

0
0

x (m)

50

100 0

100

z 
(m

)

150

Figure 1: A comparison of our proposed adaptive path
planning strategy (top-left) against lawnmower coverage
planning (top-right) for UAV-based field segmentation, evalu-
ated using real-world data from the RIT-18 dataset [13] (bot-
tom). By allowing the paths to change online, our approach
enables selecting high-resolution (low-altitude) imagery in
areas with more semantic detail, enabling higher-accuracy,
fine-grained segmentation in these regions.

semantic information can be exploited for intelligent path
planning during a mission, i.e., online. Our problem setup
considers a UAV flying above a 2D terrain and taking
images of it using a downwards-facing camera, as depicted
in Fig. 1. The goal is to adaptively select the next sensing
locations for the UAV above the terrain to maximize the
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classification accuracy of objects or areas of interest seen in
images, e.g. animals on grassland or crops on a field. This
enables us to perform targeted high-resolution classification
only where necessary and thus maximize the value of data
gathered during a mission.

Aerial data acquisition campaigns rely often on coverage-
based planning to generate UAV paths at a fixed flight
altitude [4, 10]. Although they are easily implemented,
the main drawback of such methods is that they assume
an even distribution of features in the target environment;
mapping the entire area at a constant image spatial reso-
lution governed by the altitude. Recent work has explored
informative planning for terrain mapping, whereby the aim
is to optimize an information-theoretic mapping objective
subject to platform constraints. By modifying plans online,
such strategies enable adapting the flight path according
to the mission aim to maximize the value of collected
data. This can be used for improving the geometric es-
timation [22] or for semantic estimation tasks [35, 5].
Several previous studies in UAV-based informative planning
either consider planning at a fixed altitude [37, 31], i.e.
on a 2D plane above the terrain, or apply simple heuristic
predictive sensor models [24, 26, 16, 7], which limit the
quality of future plans. Two open challenges are therefore:
(1) reliably characterizing how the accuracy of segmented
images varies with the altitude and relative scales of the
objects in registered images and (2) designing strategies
to incorporate such models into the planning pipeline for
improved targeted data collection efficiency.

The contribution of this paper is a new adaptive planning
algorithm that directly tackles the altitude dependency of
the DL semantic segmentation model using UAV-based
imagery. First, our approach leverages prior labeled terrain
data to empirically determine how classification accuracy
varies with altitude; we train a deep neural network with
images obtained at different altitudes that we use to initialize
our planning strategy. Based on this analysis, we develop a
decision function using Gaussian Process (GP) regression
that governs the decision-making strategy. This function
is first initialized on a training scenario and then updated
online on a spatially separate testing scenario during a
mission as new images are received.

For replanning, the UAV path is chosen according to the
decision function and segmented images to obtain higher
classification accuracy in more semantically detailed or
interesting areas. This allows us to gather more accurate data
in targeted areas without relying on a heuristic sensor model
for informative planning.

This article corresponds to an extension of the au-
thors’ preliminary conference work [35]. We consolidate
our previous contribution in adaptive planning with ad-
ditional explanations and experimental results. A major
difference is that the journal version formulates our methods
in a general way, rendering them directly applicable to any
UAV-based semantic segmentation scenario, e.g. search and
rescue [16], urban scene analysis, wetland assessment, in

addition to precision agriculture and lake monitoring, which
are studied as motivating applications in our experiments.

2. Related Work
There is an emerging body of literature addressing on-

line mission planning for UAV-based remote sensing. In this
section, we briefly overview recent work related to semantic
segmentation of aerial images and adaptive path planning
approaches for efficient data acquisition using resource-
constrained platforms.

2.1. Semantic Segmentation Using Aerial Imagery
The goal of semantic segmentation is to assign a pre-

determined class label to each pixel of an image. State-of-
the-art approaches are predominantly based on fully convo-
lutional neural networks (CNNs) due to their rich feature
representation and end-to-end training capabilities, which
generally allow for superior performance compared against
handcrafted vision pipelines [6]. In remote sensing, CNNs
have been successfully applied to aerial image datasets
in various scenarios, e.g. for crop/weed segmentation in
precision agriculture [30, 31, 20], tracking and infrastruc-
ture inspection [19], urban scene analysis [14, 1], wildlife
detection [9], among others.

In the past few years, technological advancements have
enabled computationally efficient segmentation on board
small UAVs with constraints on size, weight, and power.
Nguyen et al. [19] introduced MAVNet, a light-weight
network designed for real-time aerial surveillance and in-
spection. Sa et al. [30] and Deng et al. [8] proposed CNN
architectures to segment vegetation for smart farming using
similar platforms. Recently, Bultmann et al. [3] designed a
UAV system for real-time semantic fusion using multiple
sensor modalities. Our work examines a problem setup
similar to these studies: we adopt the light-weight ERFNet
architecture, introduced by Romera et al. [29] for semantic
segmentation of terrain based on aerial images obtained
from a downwards-facing camera.

A fundamental difference with respect to the works
above is that, instead of flying predetermined paths for data
collection, our focus is on adaptive planning. We propose to
exploit accurate real-time segmentation capabilities to mod-
ify the flight plan online to achieve targeted data acquisition.
Specifically, our goal is to localize areas of interest and finer
detail (e.g. high vegetation cover in a field or victims in a
disaster site) online and steer the robot for adaptive, high-
accuracy mapping in these regions.

2.2. Multi-Resolution Monitoring
An important trade-off in aerial imaging arises from

the fact that the same point on a field can be observed
from different altitudes. As a result, image spatial resolution
degrades with increasing ground area coverage, i.e. the
closer a UAV flies to the ground plane, the greater the
level of image detail, but the smaller the observed area
and hence the higher the flight time required to completely
cover a field of fixed size. Peña et al. [23] established that
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Figure 2: Overview of our adaptive planning approach. Each time one area of the field is segmented, we decide whether the
UAV should follow its predefined path (‘Next waypoint’) or scout the same region at a lower altitude to obtain higher-resolution
images here (‘Scouting at higher resolution’). In the second case, we update the decision-making strategy (‘Update decision
function’) by comparing the segmentation results of the re-observed regions at different altitudes.

there are optimal altitudes for monitoring plants based on
their size. Duporge et al. [9] presented similar findings in
wildlife monitoring applications. These studies motivate our
approach for adaptively modifying the flight altitude during
a mission based on the image content.

Relatively limited research has addressed the altitude-
resolution trade-off in the contexts of semantic segmenta-
tion and robotic motion planning. Several works [1, 20] in-
vestigated network architectures with variable-size kernels
that are robust to flight altitude changes. However, such
methods have not yet been studied in adaptive decision-
making scenarios where the physical robot constraints dur-
ing data collection are taken into account.

Various methods have been proposed to address plan-
ning with multi-resolution sensors. For 3D mapping with
image-based semantic information, Dang et al. [7] em-
ployed an interesting method for weighting distance mea-
surements according to their resolution. This sensor model
is used to guide exploration planning in unknown envi-
ronments based on the current map state. Sadat et al. [32]
proposed an adaptive coverage-based strategy that assumes
sensor accuracy increases with altitude. Other studies [38,
31] only considered fixed-altitude mission planning in ter-
rain monitoring problems; thereby neglecting the altitude
dependency of the camera. We follow previous approaches
that empirically assess the effects of multi-resolution obser-
vations for trained models [16, 25, 27, 11]. In contrast to
these works, which derive the sensor model for planning
offline, i.e. before a mission, our contribution is a decision
function that supports online updates based on incoming
images for more reliable predictive planning performance.

2.3. Adaptive Path Planning
Adaptive algorithms for active sensing allow an agent

to replan online as measurements are collected during a
mission to focus on application-specific interests. Several
works have successfully incorporated adaptivity require-
ments within informative path planning problems. Here,
the objective is to minimize uncertainty in target areas as
quickly as possible, e.g. for exploration [36, 7], underwater
surface inspection [12], target search [16, 32, 34, 11], and
environmental sensing [34, 25]. These problem setups differ
from ours in several ways. First, they consider a probabilis-
tic map to represent the entire environment, using a sensor
model to update the map with new uncertain measurements.
In contrast, our approach directly exploits the accuracy in
semantic segmentation to drive the next actions in adaptive
planning. This circumvents the computational expenses of
storing and updating a global map. Second, they consider a
predefined, i.e. non-adaptive, sensor model, whereas ours
is adapted online using a GP according to the behavior
of the semantic segmentation model. The usage of GPs
for path planning has already been exploited by Nardi et
al. [18]; in contast to their method, we additionally use
online segmentation to adapt the GP online.

Very few works have considered planning based on
semantic information. Oßwald et al. [21] proposed to ex-
plore a scene exploiting background information given by
a user. Bartolomei et al. [2] introduced a perception-aware
planner for UAV pose tracking. Although, like us, they
exploit semantics to guide next UAV actions, their goal is
to triangulate high-quality sparse landmarks whereas we
aim to obtain accurate pixel-wise semantic segmentation
in dense images. Dang et al. [7] and Meera et al. [16]
studied informative planning for active target search using
object detection networks with distance-based uncertainties.
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Ghods et al. [11] explored a similar problem setup with
multiple search agents. Most similar to our approach is
that of Popović et al. [25], which adaptively plans the 3D
path of a UAV for terrain monitoring based on an empirical
performance analysis of a SegNet-based architecture at
different altitudes [30]. A key difference is that our decision
function, representing the network accuracy, is not static.
Instead, we allow it to change online and thus adapt to
new unseen environments. Moreover, for path planning, we
present a general approach applicable for problems with
different numbers of semantic labels.

3. Our Adaptive Path Planning
Our problem setup considers a UAV surveying a flat

field of known size using a downwards-facing camera and
subject to flight time constraints. The goal is to maximize
the accuracy in the semantic segmentation of RGB images
taken by the camera. We propose a data-driven approach
that uses information from incoming images to adapt an
initial predefined UAV flight path online. The main idea
behind our approach is to guide the UAV to take high-
resolution images for fine-grained segmentation at lower
altitudes (higher spatial resolutions) only in areas where
high semantic detail is desired.

Fig. 2 shows an overview of our planning strategy. We
first divide the target field into non-overlapping regions and,
for each, associate a waypoint in the 3D space above the
field from which the camera footprint of the UAV camera
covers the entire area. From these waypoints, we then define
a lawnmower coverage path that we use to bootstrap the
adaptive strategy. Our planning strategy consists of two
main steps. First, at each waypoint along the lawnmower
path, we use a deep CNN to assign a semantic label to each
pixel in the region observed in the image. Second, based
on the segmentation output, we decide whether the current
region contains enough semantic value for more detailed re-
observation at a higher image resolution, i.e., lower UAV
altitude; otherwise, the UAV continues its pre-determined
coverage path. The replanning procedure is repeated for
each waypoint on the original lawnmower path.

A key aspect of our approach is a new data-driven deci-
sion function which enables the UAV to select a new altitude
for higher-resolution images only if they are needed. The
decision function captures the relative pixel-wise ratio of
semantic labels of interest in an image, allowing us to judge
whether an area contains high semantic value and thus needs
closer inspection. This function is updated adaptively during
the mission by comparing the segmentation results of the
current region at the different altitudes. In this way, we can
precisely capture the relationship between image resolution
(altitude) and segmentation accuracy when planning new
paths.

In the following sub-sections, we first describe the CNN
for semantic segmentation (Sec. 3.1) before detailing our
path planning strategy, which consists of offline planning
(Sec. 3.2.1 and Sec. 3.2.2) and online path adaptation
(Sec. 3.2.3).

Semantic Train Path Train Test
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Figure 3: Our experimental setup using the WeedMap [31]
and RIT-18 [13] datasets. Green, red, and blue indicate
the fields used to train a CNN for semantic segmentation,
initialize the planning strategy, and for evaluation. For an
extensive evaluation of our approach, we swap the roles of
the fields so that we test our algorithm on each field once.

3.1. Semantic Segmentation
In this work, we consider the semantic segmentation of

RGB images not only as of the final mission goal but also
as the tool within our planning algorithm used to define
adaptive paths for re-observing given regions of the field.
Each time the UAV reaches a waypoint, we perform pixel-
wise semantic segmentation in the current view to assign
a class label to each pixel from the set  = {𝑙1, 𝑙2,… , 𝑙𝐶},
where 𝐶 is the number of classes. Specitically, our proposed
approach leverages the ERFNet [29] architecture provided
by the Bonnetal framework [17] that allows for real-time
inference. We train this CNN on RGB images collected at
different altitudes to allow it to generalize across possible al-
titudes without the need for retraining. If the same region is
observed by the camera from different altitudes, we preserve
the results obtained with the highest resolution, assuming
that higher-resolution images yield greater segmentation
accuracy.

3.2. Path Planning
Given a trained CNN model, our path planning algo-

rithm can be divided in three parts. First, we define a
lawnmower strategy to cover the entire region of interest.
Second, we initialize a decision function, based on the data
obtained in previous flights on a spatially disjoint region,
which serves as the starting point for our online planner.
Third, while flying above the region of interest, we update
the decision function as soon as new data is available.

3.2.1. Initial Strategy
In the first replanning step, the initial UAV flight path

is calculated at a fixed altitude above the target field based
on a standard zig-zag lawnmower strategy [10]. Such a
path enables covering the field efficiently assuming no prior
knowledge about it is available. In Sec. 3.2.3, we adapt
this initial path according to the non-uniform distribution
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of features of interest to improve semantic segmentation
performance.

For a desired region of interest, we define a lawnmower
path based on a series of waypoints. A waypoint is defined
as a position 𝐰𝑖 in the 3D UAV workspace above the field
where: (i) the UAV camera footprint does not overlap the
footprints of any other waypoint; (ii) the UAV performs the
semantic segmentation of its current field of view; (iii) the
UAV decides to revise its path or to execute the path as
previously determined; and (iv) we impose zero velocity and
zero acceleration.

The initial flight path is calculated in form of fixed
waypoints at the highest altitude 𝐖ℎmax = {𝐰0,𝐰1,… ,𝐰𝑛},
which is empirically set. If necessary, we modify this coarse
plan by inserting further waypoints based on the new camera
imagery as it arrives. At each waypoint 𝐰𝑖, the UAV decides
either to follow the pre-computed coverage path, i.e. moving
to 𝐰𝑖+1, or to inspect the current region more closely at a
lower altitude. In the second case, we define a second series
of waypoints, 𝐖ℎ′ = {𝐰0,𝐰1,… ,𝐰𝑛}, at the desired alti-
tude, ℎ′, that will be inserted before 𝐰𝑖+1 ∈ 𝐖ℎmax so that
the resulting path, at the desired altitude, is a lawnmower
strategy covering the camera footprint from 𝐰𝑖 ∈ 𝐖ℎmax .

3.2.2. Decision Function Initialization
We develop a decision function that takes a given way-

point as input and outputs the next waypoint, either 𝐰𝑖+1 ∈
𝐖ℎmax or 𝐰0 ∈ 𝐖ℎ′ , given the semantic segmentation
result. In the second case, where there is an altitude change,
our decision function also outputs the value of the desired
altitude ℎ′. To do this, we start by defining a subset of
class labels  = {𝑙1, 𝑙2,… , 𝑙𝐿}, ⊆  considered as
being interesting for more detailed semantic analysis. For
a segmented image, we compute the number of pixels
belonging to these labels as a fraction of the total number
of pixels:

𝜎 =
∑

𝑙∈ 𝑝𝑙
𝑃tot

, (1)

where 𝑃𝑡𝑜𝑡 is the total number of pixels in the image and 𝑝𝑙
is the total number of pixels classified as the labels in .
The semantic ratio 𝜎 gives us a way to infer how valuable
it is to spend time on the current region of the field. It
captures the intuition that higher values of this ratio indicate
more possible misclassifications among the class labels of
interest. To quantify such a relationship, we let the UAV
run on a separate field, where we have access to ground
truth data, segmenting regions of the fields with different
altitudes. Segmenting the same region of the field with
different altitudes provides two pieces of information that
we use to shape the decision function. On one hand, we have
the difference between the altitudes from which we segment
the field, Δℎ = ℎmax − ℎ′. On the other hand, we have the
the difference between the semantic ratio 𝜎 in the predicted
segmentation, Δ𝜎 = 𝜎ℎmax

− 𝜎ℎ′ . At the same time, we can
compare 𝜎 to the accuracy of the predicted segmentation by
computing the mean intersection over union (mIoU). The

mIoU is defined as the average over the classes  of the
semantic ratio between the intersection of ground truth (gt)
and predicted segmentation (pred) and the union of the same
quantities:

mIoU = 1
||

∑

𝑙∈

gt𝑙 ∩ pred𝑙
gt𝑙 ∪ pred𝑙

. (2)

Again, we define the difference between mIoUs at different
altitudes as ΔmIoU = mIoUℎmax

− mIoUℎ′ .
Our method thus considers two sets of observations,

representing the relationships between the semantic ratio 𝜎
and UAV altitude ℎ (called ) and between the ratio 𝜎 and
mIoU (called ) as follows:

 =

⎡

⎢

⎢

⎢

⎣

Δ𝜎0 Δℎ0
Δ𝜎1 Δℎ1

⋮
Δ𝜎𝑛 Δℎ𝑛

⎤

⎥

⎥

⎥

⎦

,  =

⎡

⎢

⎢

⎢

⎣

Δ𝜎0 ΔmIoU0
Δ𝜎1 ΔmIoU1

⋮
Δ𝜎𝑛 ΔmIoU𝑛

⎤

⎥

⎥

⎥

⎦

. (3)

While both sets are initialized offline, we only update
 online given that  requires access to ground truth
data, which is clearly not available on testing fields. We
fit both sets of observations using Gaussian Process (GP)
regression, a nonparametric Bayesian regression approach
[28]. A GP assumes a Gaussian process prior 𝑓 (𝑥), which
is fully defined by a mean function 𝑚(𝑥) and a covariance
function 𝑘(𝑥𝑖, 𝑥𝑗):

𝑓 (𝑥) ∼ (𝑚(𝑥), 𝑘(𝑥𝑖, 𝑥𝑗)) . (4)

To capture environmental phenomena, a common choice
is to set the mean function 𝑚(𝑥) = 0 and to use the squared
exponential covariance function:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜍2𝑓 exp

(

−1
2
|𝑥𝑖 − 𝑥𝑗|2

𝓁2

)

+ 𝜍2𝑛 , (5)

where 𝜃 = {𝓁, 𝜍2𝑓 , 𝜍
2
𝑛} are the model hyperparameters and

represent respectively the length scale 𝓁, the variance of
the output 𝜍2𝑓 and of the noise 𝜍2𝑛 . Typically, the hyperpa-
rameters are learned from the training data by maximizing
the log marginal likelihood. Given a set of observations 𝑦
of 𝑓 for the inputs 𝐗 (i.e. our sets , ), GP regression
allows for learning a predictive model of 𝑓 at the query
inputs 𝐗∗ by assuming a joint Gaussian distribution over
the samples. The predictions at 𝐗∗ are represented by the
predictive mean 𝜇∗ and variance 𝜎2∗ defined as:

𝜇∗ = 𝐊(𝐗∗,𝐗)𝐊−1
XX 𝑦,

𝜎2∗ = 𝐊(𝐗∗,𝐗∗) −𝐊(𝐗∗,𝐗)𝐊XX
−1𝐊(𝐗,𝐗∗),

(6)

where 𝐊XX = 𝐊(𝐗,𝐗) + 𝜍2𝑛 𝐈, and 𝐊(⋅, ⋅) are matrices
constructed using the covariance function 𝑘(⋅, ⋅) evaluated
at the training and test inputs, 𝐗 and 𝐗∗. In the following,
we will use the ground sampling distance (GSD) to identify
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Figure 4: Visual comparison of trajectories traveled by the UAV over a field using different planning strategies. Top WeedMap,
bottom RIT-18. The coverage paths (left) are restricted to fixed heights and cannot map targeted areas of interest. The linear
decision function (middle) enables adaptive planning, but it is continuous with respect to altitude and leads to sudden jumps.
Our adaptive approach overcomes this issue, leaving the path less often and more purposefully at selected heights for more
efficient mapping. The black spheres indicate measurement points.

the image resolution (thus the UAV altitude) from which
semantic segmentation is performed. The GSD is defined
as: GSD = ℎ𝑆𝑤

𝑓𝐼𝑤
, where ℎ is the UAV altitude in meters, 𝑆𝑤

is the camera sensor width in centimeters, 𝑓 the focal length
of the camera in centimeters and 𝐼𝑤 is the image width in
pixels.

3.2.3. Online Adaptation
To adapt the UAV behavior online to fit the differences

between the testing and training fields, we update the GP
defined by the set  in the following way. In the testing field,
each time the UAV decides to change altitude to a lower
one, we compute a new pair Δ𝜎′,Δℎ′ and re-compute the
GP output as defined in Eq. (4). This procedure is repeated
for each waypoint on the original lawnmower path.

4. Experimental Results
We validate our proposed algorithm for online adaptive

path planning on the application of UAV-based semantic
segmentation. The goal of our experiments is to demonstrate
the benefits of using our adaptive strategy to maximize
segmentation accuracy in missions while keeping a low
execution time. Specifically, we show results to support
two key claims: our online adaptive algorithm can (i) map
high-interest regions with higher accuracy and (ii) improve

segmentation accuracy while keeping a low execution time
with respect to the baselines described in Sec. 4.2.

4.1. Datasets
Our approach is evaluated using two real-world datasets,

WeedMap [31] and RIT-18 [13]. We consider aerial data
captured from different domains to demonstrate the gen-
eral applicability of our method. WeedMap consists of 8
different fields collected with two different having different
channels. It also provides pixel-wise semantic segmentation
labels for each of the 8 fields; the class labels present in this
dataset are soil, crop and weed. In this study, we focus only
on the 5 fields having RGB information. We split the 5 fields
into training and testing sets (Fig. 3). One of the training
fields is used to initialize the decision function that shapes
altitude selection in the adaptive strategy, as described
in Sec. 3.2.3. RIT-18 consists of labelled high-resolution
multi-spectral orthomosaics obtained from remote sensing
imagery, in this dataset we consider the labels for asphalt,
beach, vegetation, water, and building. Note that, in order to
reduce the complexity of semantic segmentation task for our
experimental purposes, we define such labels by grouping
together similar classes in the original dataset.

Fig. 3 specifies the the dataset splits studied in our ex-
perimental setup. For each experiment in the following sub-
sections, we test our approach and the baselines described
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Figure 5: Averaged results for the testing fields. The red
cross lies to the left of all performances with a linear decision
function, indicating performance improvement.

in Sec. 4.2 on each field once, and then report the average
values for each run.

4.2. Baselines
To evaluate our proposed approach, we compare it

against two main baselines.
The first one is the standard lawnmower strategy where

a UAV covers the entire field at the same altitude, for this
strategy we use consider five different altitudes resulting
in GSD ∈ {1.0, 1.5, 2.0, 2.5, 3.0} cm∕px. The lawnmower
strategy with a fixed GSD of 3.0 cm∕px corresponds to the
initial plan for our strategy described in Sec. 3.2. The second
baseline is defined by only initializing the UAV behavior as
described in Sec. 3.2.1 and without adapting the strategy
online using the decision function as new segmentations
arrive. We refer to this strategy as “Non Adaptive”. This
benchmark allows us to study the benefit of adaptivity
obtained by using our proposed approach (“Adaptive”).

4.3. Metrics
Our evaluation considers two main criteria: segmenta-

tion accuracy and mission execution time. For execution

(a) WeedMap. (b) RIT-18.

Figure 6: Qualitative field segmentation results using the
proposed adaptive strategy using our decision function (bot-
tom left) and lawnmower strategy (bottom right) for path
planning. The circled details demonstrate that our adaptive
planning approach enables targeted high-resolution seg-
mentation to capture finer details at higher accuracy.

time, we compute the total time taken by the UAV to survey
the whole field, including the time needed to move between
waypoints, segment a new image, and plan the next path. To
assess the quality of the semantic segmentation we compute
the mIoU metric according to Eq. (2).

4.4. Field Segmentation Accuracy vs. Execution
Time

The first experiment is designed to show that our pro-
posed strategy obtains higher accuracy when compared
against the baseline methods while keeping low execution
time. We show such results in Fig. 5a for WeedMap and
Fig. 5b for RIT-18. For each strategy, we compute the mIoU
(over the entire field) and the execution time needed by the
UAV to complete its path. The adaptive strategy crosses
the line defined by the lawnmower strategies at different
altitudes, meaning that it can achieve better segmentation
accuracy while keeping a lower execution time. The non-
adaptive strategy instead lies under the curve, failing to
overtake the lawnmower strategy. We plot exemplary paths
results from the different strategies in Fig. 4; in the top row
on the left, we show the lawnmower strategy with altitudes
corresponding to GSDs of 1.0 cm∕px and 3.0 cm∕px, in the
bottom row the lawnmower strategy corrispond to GSDs of
4.7 cm∕px and 14.1 cm∕px. In both cases, the middle and
right plots show the paths resulting from non-adaptive and
adaptive strategy, respectively.

For the experiment on WeedMap, our set of targeted
labels of interest comprises the two vegetation classes,
 = {crop,weed}. This is representative of a precision
agriculture task where mission objective is to closely inspect
plants. Using this subset of labels, the improvement of the
mIoU is mainly given by the crop class while the accuracy
values for the remaining classes remain stable.

For the experiment on RIT-18, we target one class at a
time and plot the average results over each run, resulting
in a total of 10 runs considering the 5 classes each with
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Figure 7: Means and standard deviations of the per-image
statistics for semantic segmentation. Our adaptive strategy
leads to better performance when scouting the field at low
altitudes (high GSDs).

the testing and validation sets reversed. Results from these
experiments show that our approach yields better segmenta-
tion performance and lower execution time when the target
class is not dominating the scene. Intuitively, the more
spatially localized the class is, the more closely it can be
inspected in a targeted way and hence the greater the benefit
of using our adaptive multi-resolution strategy to reduce
altitude only in this area. This is the case, for example, when
targeting classes such as ashpalt or water in RIT-18. As
qualitative examples, Fig. 6 compares the semantic masks
obtained using the adaptive approach and a lawnmower
strategy. The circled details illustrate situations where our
proposed adaptive method produces visually more correct
segmentations without loss of detail by allowing the UAV to
reobserve a target area at higher resolutions.

4.5. Per-Image Segmentation Accuracy vs.
Altitude

The second experiment shows the ability of our ap-
proach to achieve targeted semantic segmentation when
compared to the non-adaptive strategy. At this stage, we
compute mIoU for each image that contributes to the final

segmentation of the whole field. This gives us a way of
evaluating the efficiency of our adaptation strategy. We then
visualize the means and standard deviations. As can be
seen in Fig. 7, our adaptive strategy provides higher per-
image accuracies when the UAV is scouting the field at low
altitudes. This entails that, with our strategy, the limited
flight time resources are spent in a more efficient manner
in terms of monitoring performance.

5. Conclusion
This paper presents a new approach for adaptive path

planning for UAVs in general multi-resolution semantic
segmentation applications. A key contribution of this paper
is a new adaptive planning algorithm that directly tack-
les the altitude dependency of the deep learning seman-
tic segmentation model using UAV-based imagery. Our
strategy exploits the prior knowledge of a field and the
new incoming segmentations to enable adaptive decision-
making for mapping targeted areas of interest at higher
image resolutions. Experimental results using real-world
data from different domains validate that our strategy leads
to high segmentation accuracy while minimizing flight time
needed to cover the field. Our approach opens a direction
for efficient UAV mapping, especially in applications such
as precision agriculture, where certain areas of a field need
to be closely inspected.
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